
Cite as: Hansson, J.: Introducing a hybrid rebound and sticking particle-wall interaction model. In

Proceedings of CFD with OpenSource Software, 2023, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS CFD#YEAR 2023

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Introducing a hybrid rebound and sticking
particle-wall interaction model

Developed for OpenFOAM-v2112

Author:
Johannes Hansson
Chalmers University of
Technology
johanneh@chalmers.se

Peer reviewed by:
Henrik Ström

Wei Chen
Saeed Salehi

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 14, 2024

http://dx.doi.org/10.17196/OS_CFD#YEAR_2023

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to perform Lagrangian particle tracking in OpenFOAM using the
icoUncoupledKinematicCloud function object.

• How to use the standard particle-wall interaction models rebound (with constant coefficients
for elasticity and restitution), stick and escape.

The theory of it:

• The basics of Lagrangian particle tracking.

• How inertia affects particle trajectories.

• What levels of particle-fluid coupling are available and when they can be used.

• The basics of elastic and inelastic collisions.

• How expected particle behavior, either rebound or stick, depends on particle- and local carrier
flow properties, according to a chosen collision model.

How it is implemented:

• How the user-selected particle behavior, rebound or stick, is handled once a collision has been
detected.

How to modify it:

• How to add new particle-wall collision models and types.

• How to implement a hybrid particle-wall interaction model that uses the predictions of a chosen
collision model to predict rebound or stick dynamically.

1

Prerequisites

This tutorial is intended for OpenFOAM users that have some experience with using the software.
Therefore, the report assumes that the reader is familiar with the following:

• Usage of Linux command line tools and bash scripting.

• Basic experience of running OpenFOAM tutorial cases and making simple modifications to
the case dictionaries.

• Usage of ParaView, for post-processing of simulation results.

• Experience in compiling OpenFOAM code is beneficial, but not required.

2

Contents

1 Theoretical background 4
1.1 Lagrangian particle tracking . 4
1.2 Effect of inertia on particle trajectory . 5
1.3 Fluid-particle coupling . 6
1.4 Types of collisions . 6
1.5 Details of the implemented collision model . 7

1.5.1 Adhesion model . 7
1.5.2 Resuspension model . 9

2 Lagrangian particle tracking in OpenFOAM 11
2.1 Basic particle tracking setup . 11
2.2 Particle-wall interaction models . 13

2.2.1 Implementation details of the particle-wall interaction models 13
2.3 Running the particle tracking . 16
2.4 Testing the stick collision model . 17

3 Implementing a new collision model 20
3.1 Setting up the source code . 20
3.2 Creating a new particle-wall collision model . 21
3.3 Modifying the new collision model . 23
3.4 Testing the new collision type . 26
3.5 Implementing the snow collision model . 29
3.6 Testing the snow collision model . 33

A The kinematicCloudProperties file 38

B The LocalInteraction.C file 41

C The LocalInteractionMix.C file 44

3

Chapter 1

Theoretical background

1.1 Lagrangian particle tracking

When simulating particle-laden flows, the fluid and particles are often treated as two separate frames
of reference. The carrier fluid is generally treated according to the Eulerian description, whereas
the particles are treated according to the Lagrangian description. In this work we focus on the
Lagrangian description of the particles and assume that the Eulerian description of the fluid is
known to the reader. Additionally, we limit the discussion to inert, solid, particles. Bubbles and
similar particles are outside the scope of this work.

In the Lagrangian description, particles are treated as discrete points that may or may not have
an associated volume. Small particles, when compared to the spatial scales of the carrier fluid, are
often modeled without any volume effects. This assumption makes simulations easier to implement
and computationally cheaper. The assumption is, for small particles, associated with only negligible
modeling errors. Comparatively large particles, on the other hand, need to be modeled with non-zero
volume since the carrier fluid properties are not constant over the surface of the particle. A more
complex and computationally expensive model is then needed to accurately model the behavior of
larger particles. In this work we consider only comparatively small particles, so the zero-volume
modeling approximation is used throughout this report.

The separate description of Eulerian fluid and Lagrangian particles also allows us to consider
the effects of particle inertia on the particle tracks. For very light, neutrally buoyant, particles it
is possible to use an Eulerian description of the particle transport mechanisms. The description of
their collective motion is then given by the evolution of a particle concentration field. However, when
we have particles with finite inertia or some degree of buoyancy, then we need a different description
to capture their behavior.

In the Lagrangian model for the particles we instead solve Newton’s equation of motion given
a set of forces acting on each individual particle, instead of on a packet of a particle concentration
field, as is the case in the Eulerian description. From Newton’s second law of motion we know that

ma =
∑
i

Fi, (1.1)

where m is the particle mass, a is the acceleration vector and Fi is force vector of force number i.
The forces are often divided into two categories depending on their origin, fluid-particle interaction
forces and ancillary forces. The fluid-particle forces include, for example, drag and pressure gradient
forces. Ancillary forces represent forces that do not directly come from the fluid, such as gravitational
and electrostatic forces. Using this categorization, the force summation in Eq. (1.1) can then be
expressed as

ma =
∑
i

Ffluid−particle,i +
∑
j

Fancillary,j . (1.2)

From a modeling perspective, the fluid-particle forces are surface forces that must be integrated over
the surface of the particle to quantify their contribution to the particle track. The ancillary forces

4

1.2. Effect of inertia on particle trajectory Chapter 1. Theoretical background

are, on the other hand, typically body forces that act over the entire particle volume. Expanding
the summation signs in Eq. (1.2) with, for example, the forces mentioned above, we can rewrite
Eq. (1.1) as

ma = Fdrag + Flift + Fpressure gradient + Fgravity + Felectrostatic + . . . (1.3)

Do note, however, that it is important to evaluate which forces are relevant in each particular case.
It could be that a particular system needs a description of, for example, the lift force, but not the
electrostatic forces, and Eq. (1.3) would need to be modified accordingly.

As an example, we can describe the drag force on a sphere by the surrounding fluid by using the
commonly used model given by [1, 2, 3]

Fdrag = −3

4

µfCDRep
ρpd2p

urel

|urel|
, (1.4)

where we have dynamic viscosity of the carrier fluid µf , particle drag coefficient CD, particle
Reynolds number Rep, particle density ρp, particle diameter dp and relative velocity urel = up − uf

between the particle up and the fluid uf . In the case of a sphere, the drag coefficient can be obtained
using [1, 2, 3]

CD =


24

Rep

(
1 +

1

6
Re2/3p

)
if Rep ≤ 1000

0.424 if Rep > 1000

(1.5)

and the particle Reynolds number is given by [1, 2, 3]

Rep =
ρf |urel|dp

µf
, (1.6)

where ρf is the fluid density. This is the drag model implemented in the commonly used sphereDrag

force model in OpenFOAM.

1.2 Effect of inertia on particle trajectory

The typical choice of using the Lagrangian framework for modeling the particles is due to how particle
inertia can be modeled. Heavy, high-density particles tend to follow trajectories that are not affected
much by the surrounding fluid, almost like a bullet. On the other hand, lighter, neutrally buoyant
particles tend to follow the surrounding flow very closely, which is the typical behavior of often used
tracer particles. Light particles can be approximately modeled using an Eulerian framework, but
heavier particles are not as easy to model in this description. On the other hand, by using the
Lagrangian framework particle inertia is always included in the description, accurately describing
both light and heavy particles.

The effects of inertia on particle behavior in the fluid is often described by the so-called Stokes
number, which is defined by

St =
t0u0

l0
, (1.7)

where t0 is the relaxation time of the particle, u0 is the fluid velocity and l0 is a characteristic length
scale, often of an obstacle. The relaxation time is given, under the assumption of Stokes flow, by

t0 =
ρpd

2
p

18µf
. (1.8)

Stokes flow represents the flow cases where the particle Reynolds number is Rep << 1. A low Stokes
number represents a light particle that reacts quickly to changes in the fluid. In the equations above
it is seen as a small relaxation time t0. A high Stokes number, on the other hand, represents a
heavy particle with a comparatively large relaxation time, which means the particle reacts slowly
to changes in the fluid. The Stokes number can then be used as a measure of inertial effects on
particles suspended in a fluid. Previous works have, for example, studied particle deposition on a
cylinder as a function of Stokes number [4].

5

1.3. Fluid-particle coupling Chapter 1. Theoretical background

1.3 Fluid-particle coupling

In the typical case of Lagrangian particle tracking we have two or more phases, which means that
we must consider how the different phases couple to each other. If we consider Lagrangian particles
in an Eulerian carrier fluid, then we have three categories of interactions between the fluid and the
particles.

The simplest type of interaction, one-way coupling, represents the case where the carrier fluid
affects the particles, but the particles do not affect the fluid or each other. This description is well-
suited for flows in which the particle volume fraction is very low, so called dilute flows. These flows
have so few particles that their effect on turbulence is negligible, so the fluid is not affected by their
presence. The particles are also so well-dispersed that they rarely collide with each other. This is
the easiest type of interaction to model, from a computational perspective.

If the particle volume fraction is a bit higher, then we also need to consider the effect particles
have on the carrier fluid. This is referred to as two-way coupling, where the fluid affects the particles
and the particles affect the fluid. However, the particles are still so well-dispersed that they only
rarely collide. This means that particle-particle interaction is not an important factor and can be
ignored. Two-way coupling is slightly more complex to model than one-way coupling.

Finally, if the particle volume fraction is high enough we also need to model the effects of particle-
particle collisions, in addition to the fluid-particle and particle-fluid couplings. This happens for
dense flows where the particles make up a significant fraction of the total system volume. This
type of coupling is called four-way coupling and represents a sharp increase in computational cost
as opposed to one- and two-way coupling.

In this work we are mainly interested in particle-wall collisions, so to simplify our computational
setup we only consider one-way coupling. This coupling method provides enough accuracy for the
dilute flows considered. It is important to note that using four-way coupling would not change any
results for this type of flow, except that the computational cost would go up.

1.4 Types of collisions

There are generally two types of collisions, elastic and inelastic collisions. Elastic ones are collisions
in which both momentum and kinetic energy is conserved. In inelastic collisions, however, only
momentum is conserved. Some degree of kinetic energy is lost as heat due to internal friction.
The degree of inelasticity is typically measured using the coefficient of restitution e. This variable
represents the change in speed just before and just after the collision, i.e. if we have a collision
between a small particle and a solid wall then

|vafter| = e|vbefore|, (1.9)

where vbefore and vafter represent the particle velocities just before and after the collision. A coefficient
of restitution e = 1 represents a collision in which no kinetic energy is lost in the process. This is
also known as a perfectly elastic collision. For 0 < e < 1 we have an inelastic collision. This is
the typical kind of collision found in real life. Some, but not all, of the velocity is lost in this
interaction. Finally, we have e = 0 which represents a perfectly inelastic collision. In this case the
two objects stick together after the collision. Worth noticing is that the coefficient of restitution is
not necessarily constant for all collisions between the same two objects. The coefficient value could,
for example, depend on the collisional velocity or angle.

In the above discussion, the collision is assumed to be head-on, i.e. with no sideways velocity
component. For clarity we could then rewrite Eq. (1.9) as

|vn,after| = e|vn,before|, (1.10)

where vn represent normal velocities. In reality, such a component is typically present. We can then
use e to denote the coefficient of restitution in the normal direction and µ as the friction coefficient in
the tangential direction. µ then represents the fraction of kinetic energy in the tangential direction

6

1.5. Details of the implemented collision model Chapter 1. Theoretical background

that is lost in a collision. Similarly to Eq. (1.10) we get

|vt,after| = (1− µ)|vt,before|, (1.11)

where vt represent tangential velocities. A value of µ = 0 represents a collision in which no tangential
kinetic energy is lost.

1.5 Details of the implemented collision model

The method outlined in this tutorial works for many types of instantaneous particle-wall collision
models, but as an example we implement a collision model proposed by Eidev̊ag et al. [5]. This
model is tuned for use with ice particles impacting on bluff bodies used in research for the automotive
industry. The methodology presented in this report is, nevertheless, general in the sense that other
models, such as for ash particles [6], can be implemented using a similar strategy.

Eidev̊ag et al.’s collision model consists of two major parts, an adhesion model and a resuspension
criterion. The adhesion model calculates if a certain collision will lead to particle sticking or rebound
with a certain coefficient of restitution. The resuspension criterion checks if the drag force exerted
on a deposited particle is large enough to allow it to be resuspended into the flow. If the criterion
predicts that the particle will be resuspended then the particle will not be allowed to stick and
a perfectly elastic collision is instead triggered. This behavior may not be strictly correct since a
real particle that is resuspended loses all information about original incidence angle and velocity,
whereas this model keeps this information in the perfect collision. However, this behavior is used in
the article by Eidev̊ag et al. [5], so we use it here as well for consistency.

A schematic illustration of the Eidev̊ag et al. collision model is presented in Figure 1.1. Here we
see the main calculation steps in the model and which conditions are checked to decide which collision
behavior the model should trigger. Further details about the model are presented in Sections 1.5.1
and 1.5.2.

Collision
detected

Calculate Dc

Particle
diameter
> Dc?

Calculate
coefficients
of resti-
tution

Both
coefficients

≈ 0?

Elastic
rebound

Stick

Inelastic
rebound

Resuspension model Adhesion model

Yes

No

Yes

No

Figure 1.1: A schematic illustration of the Eidev̊ag et al. collision model. It is composed of two
sub-models, the resuspension model and the adhesion model.

1.5.1 Adhesion model

When a particle approaches a wall, the particle experiences attractive van der Waals forces from
the wall [5]. Once the collision has happened, the kinetic energy of the particle determines if the
particle will stick to the surface or if it will be resuspended into the flow. If the kinetic energy of
the particle is not enough to overcome the attractive forces, then it will stick to the surface. If
not, then it will rebound. The forces that are active in the sticking process can be modeled using
the Johnson-Kendall-Roberts (JKR) model [7, 8]. This model takes into account both the elastic
response of the particle and wall, as well as the attractive van der Waals forces between the objects.
Eidev̊ag et al. [5] use a simplified implementation of this model based around two critical velocities,
the normal stick velocity Vc,n and the tangential stick velocity Vc,t. If the particle impact velocity

7

1.5. Details of the implemented collision model Chapter 1. Theoretical background

Vi is smaller than either of these critical velocities, then the corresponding velocity component is
eliminated. If the impact velocity is smaller than both velocities, then the particle sticks to the
surface.

In general, the coefficients of restitution for a particle-wall collision are in this model given by

en = eqe

√
1−

(
Vc,n

max (Vi, Vc,n)

)2

(1.12)

for the wall-normal direction and

et = 1− µ = eqe

√
1−

(
Vc,t

max (Vi, Vc,t)

)2

(1.13)

for the tangential direction. The variable eqe =
√
1− ξ =

√
1− 0.15 ≈ 0.92 represents the average

coefficient of restitution for head-on collisions between spheres and a solid wall, both made of ice.
These collisions were in the quasi-elastic regime, i.e. for collisions where Vi < Vc,n. ξ represents the
fraction of kinetic energy that is lost by causing mechanical damage at the interface between the
two colliding objects [9, 10].

The critical velocities above are derived from the JKR model. Here, the particle kinetic energy
needed for a complete rebound in the normal direction, Es, is defined by

Es =
3K1πa

2
0W

4(6)1/3
, (1.14)

where K1 ≈ 0.9355 is a numerical integration constant [5, 11]. The variable W represents the work
of adhesion and a0 is the equilibrium contact radius given by [5, 11]

a0 =

(
9πWR∗

2E∗

) 1
3

, (1.15)

in which E∗ is the effective Young’s modulus and R∗ is the effective radius of contact, defined by

R∗ =
R1R2

R1 +R2
, (1.16)

where R1 and R2 represent the radii of the two particles in a collision. In this case we assume that
R1 represents our colliding particle and R2 represents the wall, which can be approximated with
R2 → ∞. Using this assumption we get R∗ = R1. From these, Eidev̊ag et al. define the highest
velocity for sticking in the normal direction as

Vs =

√
2Es

mp
, (1.17)

with mp representing the mass of the particle and Es as defined in Eq. (1.14). For the tangential
direction, Eidev̊ag proposes the equation

Vc,t ≈ 0.23

(
∆γ

γ

)
Vc,n, (1.18)

where ∆γ
γ is the adhesion hysteresis of rolling [5]. Numerical values for the parameters are cho-

sen to represent material properties for ice-ice contacts, with the values W = 0.218 J/m2 and
E∗ = 5.4GPa [5]. The numerical value ∆γ

γ ≈ 1 comes from micron-sized ice particles [5, 11].

8

1.5. Details of the implemented collision model Chapter 1. Theoretical background

1.5.2 Resuspension model

The adhesion model only takes properties of the particle and wall into account when deciding on
whether to apply rebound or stick behavior for a certain collision. However, it is entirely possible that
a particle may stick, but that the fluid will almost immediately make it roll and eventually detach
from the surface, resuspending the particle into the flow. To also account for the effects of the fluid on
depositing particles, a resuspension criterion is proposed by Eidev̊ag et al. [5]. The implementation
of this resuspension criterion is based on a critical diameter Dc. Any colliding particle that has a
diameter larger than this is not allowed to stick, irrespective of what the adhesion model predicts.
The reason for this is that the fluid would immediately resuspend the particle due to the drag and
lift forces from the fluid. These particles instead experience a perfectly elastic collision with the
wall.

This critical diameter is derived from numerically solving the moment balance condition

FD,∥
dp
2

+M∥ = 2.4FD,∥
dp
2

≥ Ma. (1.19)

If the the inequality is true, then the particle is predicted to roll and eventually resuspend into the
flow. In Eq. (1.19), FD,∥ is the magnitude of the drag force on the particle parallel to the wall
surface, the vector expression for which is given by

FD,∥ =
1

2
ρfCD,∥Ap|Ub|Ub, (1.20)

where CD,∥ represents the drag coefficient in the tangential direction for a particle that is deposited
on a flat surface, Ap is the projected area of the particle and Ub is the fluid velocity at a dis-

tance
dp

2 from the wall surface. In Eq. (1.19) we also have the torque from non-uniformity in the
flow M∥, approximated by the expression

M∥ = 1.4FD,∥
dp
2
, (1.21)

and the adhesive resistance against starting a roll, Ma, which can be expressed as

Ma =
1

4
πWdpa0

∆γ

γ
. (1.22)

Solving Eq. (1.19) requires us to know the value of Ub. Eidev̊ag et al. use the expression

u+ =
Ub

uτ
, (1.23)

where u+ is a normalized velocity and uτ is the friction velocity. Here, u+ is not known directly
either so Eidev̊ag et al. [5] use the Reichardt profile [12, 13], given by

u+ =
1

κ
ln
(
1 + κy+

)
+ 7.8

(
1− exp

(
−y+

11

)
− −y+

11
exp

(
−y+

3

))
, (1.24)

to calculate u+ given the known values of dimensionless wall distance y+. In the equation, κ ≈ 0.41
is the von Kármán constant. Eidev̊ag et al. [5] use the expression

y+ =
ρfdpuτ

2µf
(1.25)

for this wall distance. Using Eq. (1.23), together with Eq. (1.24) and (1.25), we can calculate Ub

from uτ , which can be calculated from the wall shear stress according to [14]

uτ =

√
τw
ρ
. (1.26)

9

1.5. Details of the implemented collision model Chapter 1. Theoretical background

Wall shear stress is directly computable in the simulations, so we can now solve for the critical
diameter in Eq. (1.19).

Eidev̊ag et al. solved Eq. (1.19) numerically for a set of uτ values and observed that the solution
for the critical diameter Dc, to a good approximation, can be approximated by the fitting function

Dc = aub
τ , (1.27)

where a = 77.7µm and b = −1.34 are fitting parameters obtained by least squares fitting. When
using the model, Eidev̊ag et al. replace uτ with ûτ = uτ +3σuτ

, where uτ is the average uτ and σuτ

is the standard deviation in uτ .

10

Chapter 2

Lagrangian particle tracking in
OpenFOAM

This chapter describes how the existing OpenFOAM particle tracking implementation works. It
starts with a description of the icoUncoupledKinematicCloud function object and the files needed
for configuring the solver. Then, the existing particle-wall collision models are presented and dis-
cussed together with details of their implementation. Finally, an example of particle tracking solver
output is presented and discussed.

2.1 Basic particle tracking setup

One of the most flexible ways of running incompressible, one-way coupled Lagrangian particle track-
ing is using the icoUncoupledKinematicCloud function object [15]. This function object can be
coupled with any single-phase, incompressible, transient solver to track spherical particles at the
same time as the field is being solved. This makes the tracking more useful than simple tracer
particles that can be added in post-processing software such as ParaView since this simultaneous
tracking can include the effects of particle inertia. It can also track the particles accurately without
needing to save many flow field snapshots, thereby reducing storage space requirements.

To use this function object we need to do three things:

1. Declare the function object in the system/controlDict file

2. Declare particle tracking settings in the constant/kinematicCloudProperties file

3. Declare settings for gravity in the constant/g file

The first requirement is fulfilled by declaring a function object, in this case named tracks, in the
functions subdictionary of the controlDict file:

system/controlDict

//controlDict contents...

functions

{

tracks

{

type icoUncoupledKinematicCloud;

libs (lagrangianFunctionObjects);

}

}

For the second requirement we need to create a kinematicCloudProperties file similar to the ex-
cerpt presented below. A complete example of the kinematicCloudProperties file is presented in

11

2.1. Basic particle tracking setup Chapter 2. Lagrangian particle tracking in OpenFOAM

appendix A. This dictionary specifies many aspects of the particle tracking, such as interpolation
methods, number of particles to track, where they are injected, as well as particle diameters, densi-
ties, etc. In this report we are mainly concerned with how particle-wall collisions are implemented
and used, so we will place particular focus on the line patchInteractionModel localInteraction;

and the subdictionary localInteractionCoeffs. Note that . . . represents a shorthand for content
not shown.

constant/kinematicCloudProperties

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object kinematicCloudProperties;

}

solution

{

active true;

coupled false;

transient yes;

cellValueSourceCorrection off;

//...

}

//...

subModels

{

//...

patchInteractionModel localInteraction;

localInteractionCoeffs

{

patches

(

//...

"(cylinder)"

{

type stick;

}

);

}

//...

}

Similarly, for the third requirement we define the file constant/g as

constant/g

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: v2112 |

 | \\ / A nd | Website: www.openfoam.com |

 | \\/ M anipulation | |

 ---/

 FoamFile

 {

12

2.2. Particle-wall interaction models Chapter 2. Lagrangian particle tracking in OpenFOAM

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 object g;

 }

 // * //

 dimensions [0 1 -2 0 0 0 0];

 value (0 0 -9.81);

 // *** //

This is all the required setup to add particle tracking to many of the transient CFD solvers in Open-
FOAM. The rest of this report will deal with how to customize the particle tracking intermediate

library so that it can handle hybrid particle-wall collision behaviors.

2.2 Particle-wall interaction models

At the time of writing, OpenFOAM only supports a small set of particle-wall interaction models [16].
The currently implemented models are

• Rebound

• Stick

• Escape

The rebound condition represents a generally inelastic collision between a particle and a wall. The
degree of inelasticity is controlled by two parameters, e and mu, in the localInteractionCoeffs

subdictionary of the kinematicCloudProperties file. e represents the normal restitution coefficient
and mu represents the tangential friction, see Section 1.4. Perfectly elastic collisions can be realized
by setting the normal restitution coefficient e to one and the tangential friction mu to zero. When
using the rebound condition no particle will ever stick to the surface.

The stick condition represents unconditional sticking. If a particle impacts a surface, then it will
always stick to the surface and stay there forever. The particle cannot be resuspended into the flow.
This model does not need any extra parameters, in contrast to the rebound model.

Finally, the escape model just removes particles from the domain. It is often used at outlets or
other similar interfaces from which the particles cannot return. Separate models can be assigned to
each patch in the simulation domain, so it is possible to have, for example, an escape model at the
outlet and a stick model on the surface of some submerged object.

2.2.1 Implementation details of the particle-wall interaction models

Once a collision has been detected, the chosen collision model for a given patch is used to determine
how the particle will behave. The implementations of the particle-wall collision models are given in
the file $FOAM_SRC/lagrangian/intermediate/submodels/Kinematic/PatchInteractionModel/

LocalInteraction/LocalInteraction.C, as listed below. A full code listing of the collision models
are given in appendix B. A shorter outline of the code structure is given below.

LocalInteraction.C

template<class CloudType>

bool Foam::LocalInteractionMix<CloudType>::correct

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle

)

{

13

2.2. Particle-wall interaction models Chapter 2. Lagrangian particle tracking in OpenFOAM

//initialization code...

switch (it)

{

case PatchInteractionModel<CloudType>::itNone:

{

//...

}

case PatchInteractionModel<CloudType>::itEscape:

{

//...

}

case PatchInteractionModel<CloudType>::itStick:

{

//...

}

case PatchInteractionModel<CloudType>::itRebound:

{

//...

}

default:

{

//...

}

}

}

The listed function is responsible for choosing the collision model, based on user selection when
setting up the OpenFOAM case, and then apply the desired behavior on the particles. Once a
collision has been triggered, the correct function is run once for every particle that collides with
a patch. Critically, it is the swith statement on line 240 that determines the impact behavior
of this specific particle, based on the value of the it variable representing the selected collision
model for this patch. The code execution path then jumps to one of the four main interaction
cases, itNone, itEscape, itStick or itRebound. There is also a final, default, case that catches
any programming errors that might result in a particle trying to use a wall interaction model
that does not exist. itNone is a special wall interaction model that does nothing, often used
for top and bottom wall patches in two-dimensional simulations. Such patches are only used for
three-dimensional simulations and are not relevant for the two-dimensional version. The three re-
maining cases refer to the itemized models presented in Section 2.2. All interaction type variables
(itNone, itRebound, itStick, itEscape and itOther) are defined as enum entries on line 74
of the $FOAM_SRC/lagrangian/intermediate/submodels/Kinematic/PatchInteractionModel/

PatchInteractionModel/PatchInteractionModel.H file, see below. The itOther type is a special
interaction type that only triggers an error message about an unknown interaction type.

PatchInteractionModel.H

 template<class CloudType>

 class PatchInteractionModel

 :

 public CloudSubModelBase<CloudType>,

 public functionObjects::writeFile

 {

 public:

 // Public enumerations

 // Interaction types

 enum interactionType

 {

 itNone,

 itRebound,

 itStick,

 itEscape,

 itOther

 };

14

2.2. Particle-wall interaction models Chapter 2. Lagrangian particle tracking in OpenFOAM

 static wordList interactionTypeNames_;

Going back to the different cases in LocalInteraction.C, on line 246 in the listing below we have
the definition of the escape model. When this model is run, it removes the current particle from
the domain, records the particle escape in the nEscape counter and adds the particle mass to the
massEscape_ summation variable for escaped mass.

LocalInteraction.C

 case PatchInteractionModel<CloudType>::itEscape:

 {

 keepParticle = false;

 p.active(false);

 U = Zero;

 const scalar dm = p.mass()*p.nParticle();

 nEscape_[patchi][idx]++;

 massEscape_[patchi][idx] += dm;

 if (writeFields_)

 {

 const label pI = pp.index();

 const label fI = pp.whichFace(p.face());

 massEscape().boundaryFieldRef()[pI][fI] += dm;

 }

 break;

 }

On line 265 below we have the stick condition, that does essentially the same as the escape condition,
but without actually removing the particle from the domain. The particle will therefore remain in
place for as long as the simulation is running. Note that the variable keepParticle is true when
the particle is sticking, false when it is escaping. Also note that we here use the counters nStick
and massStick.

LocalInteraction.C

 case PatchInteractionModel<CloudType>::itStick:

 {

 keepParticle = true;

 p.active(false);

 U = Zero;

 const scalar dm = p.mass()*p.nParticle();

 nStick_[patchi][idx]++;

 massStick_[patchi][idx] += dm;

 if (writeFields_)

 {

 const label pI = pp.index();

 const label fI = pp.whichFace(p.face());

 massStick().boundaryFieldRef()[pI][fI] += dm;

 }

 break;

 }

The last particle-wall interaction model, rebound, is defined on line 284 below. On lines 309 and 310
we define the wall-normal and tangential directions. These directions are then used on lines 314 and
317 to modify the normal and tangential particle velocities, as described by the coefficients e and
mu. Velocities are computed relative to the wall or patch velocity, so that everything is transformed
to this new system by subtracting the patch velocity on line 295, and then adding it back on line
320. The if statement on lines 297 to 307 is used to avoid particles getting stuck on patch faces if
the relative velocity between particle and wall is very low [17].

15

2.3. Running the particle tracking Chapter 2. Lagrangian particle tracking in OpenFOAM

LocalInteraction.C

 case PatchInteractionModel<CloudType>::itRebound:

 {

 keepParticle = true;

 p.active(true);

 vector nw;

 vector Up;

 this->owner().patchData(p, pp, nw, Up);

 // Calculate motion relative to patch velocity

 U -= Up;

 if (mag(Up) > 0 && mag(U) < this->Urmax())

 {

 WarningInFunction

 << "Particle U the same as patch "

 << " The particle has been removed" << nl << endl;

 keepParticle = false;

 p.active(false);

 U = Zero;

 break;

 }

 scalar Un = U & nw;

 vector Ut = U - Un*nw;

 if (Un > 0)

 {

 U -= (1.0 + patchData_[patchi].e())*Un*nw;

 }

 U -= patchData_[patchi].mu()*Ut;

 // Return velocity to global space

 U += Up;

 break;

 }

The final case on line 324, the default case, just throws an error and prints an error message indicating
that we have tried to use a wall interaction model that has not been implemented. It should not be
possible to reach this case unless there is a bug in the implementation.

LocalInteraction.C

 default:

 {

 FatalErrorInFunction

 << "Unknown interaction type "

 << patchData_[patchi].interactionTypeName()

 << "(" << it << ") for patch "

 << patchData_[patchi].patchName()

 << ". Valid selections are:" << this->interactionTypeNames_

 << endl << abort(FatalError);

 }

2.3 Running the particle tracking

Once we have set up our case and defined the particle properties and behavior we are interested in,
starting the particle tracking is as simple as just running our regular transient solver for the fluid,
for example pisoFoam.

16

2.4. Testing the stick collision model Chapter 2. Lagrangian particle tracking in OpenFOAM

In the example case that accompanies this report we have a simulation set-up for flow around a
cylinder at Reynolds number Re = 200 000. This case also features particle tracking of small spheres
using the icoUncoupledKinematicCloud function object, as described in Section 2.1.

Below is an excerpt of the log output when pisoFoam is run on this case. It would look similar
even if another solver was used, for example pimpleFoam. Apart from the usual pisoFoam output
with results from the linear solvers, we are also presented with some particle tracking statistics.
We can see counters for number of particles, mass, momentum, etc. Of special interest for particle
deposition studies we have the per-patch statistics of the count and mass of escaped and stuck
particles. These statistics indicate, at a glance, if the system is behaving as expected.

Another important thing we can learn from this output is that it acts as a check that the
particle tracking is indeed running. The fluid solver is perfectly capable of continuing to run, even if
something is wrong with the particle tracking function object, so the fact that we can see the output
from the particle tracking means that it is running.

Time = 0.01

Courant Number mean: 0.0202404 max: 0.809068
smoothSolver : Solving for Ux, Init ia l residual = 1, Final residual = 4.54416e−08, No Iterations 11
smoothSolver : Solving for Uy, Init ia l residual = 1, Final residual = 3.83003e−08, No Iterations 10
GAMG: Solving for p, Init ial residual = 1, Final residual = 0.0341452, No Iterations 4
time step continuity errors : sum local = 4.59568e−07, global = −6.63446e−08, cumulative = −6.63446e−08
GAMG: Solving for p, Init ial residual = 0.134128, Final residual = 0.00416861, No Iterations 2
time step continuity errors : sum local = 1.49621e−07, global = −3.34946e−08, cumulative = −9.98391e−08
GAMG: Solving for p, Init ial residual = 0.0280719, Final residual = 6.94414e−07, No Iterations 12
time step continuity errors : sum local = 2.80701e−11, global = −4.81325e−12, cumulative = −9.9844e−08
smoothSolver : Solving for omega, Init ia l residual = 0.00259155, Final residual = 3.70316e−08, No

Iterations 4
smoothSolver : Solving for k, Init ia l residual = 1, Final residual = 4.6953e−08, No Iterations 6
bounding k, min: 0 max: 1.18753e−15 average : 1.00278e−15
ExecutionTime = 0.06 s ClockTime = 0 s

Solving2−D cloud kinematicCloud

Cloud: kinematicCloud injector : injection
Added 10 new parcels

Cloud: kinematicCloud
Current number of parcels = 10
Current mass in system = 5.17243e−09
Linear momentum = (5.1724e−09 −3.37811e−14 0)
|Linear momentum| = 5.1724e−09
Linear kinetic energy = 2.58619e−09
Average particle per parcel = 1
Injector injection :
− parcels added = 10
− mass introduced = 5.17243e−09
Parcel fate : system (number, mass)
− escape = 0, 0
Parcel fate : patch (sides) (number, mass)
− escape = 0, 0
− stick = 0, 0
Parcel fate : patch (inlet | outlet | injectionPatch) (number, mass)
− escape = 0, 0
− stick = 0, 0
Parcel fate : patch (cylinder) (number, mass)
− escape = 0, 0
− stick = 0, 0
Rotational kinetic energy = 0

2.4 Testing the stick collision model

To get a feel for how the default collision model stick works, we run the tutorial case with this
model. The positions of particles are presented in Figure 2.1, where red particles represent particles
that have attached themselves to the surface and blue particles represents particles that are free-
floating. From the figure we can clearly see that we get a section of deposition on the front of the
cylinder, as well as a some scattered deposition on the back side. Unexpectedly, we also get a few
particles that have not attached themselves to the surface, but are nonetheless stuck right at the

17

2.4. Testing the stick collision model Chapter 2. Lagrangian particle tracking in OpenFOAM

surface of the wall. The reason for this is not known, but it is suspected that this phenomenon is
due to the coarse mesh used in this report. An almost identical situation is reached with a pure
rebound condition, where no particles should deposit on the surface. Further work is needed to
properly resolve this question.

In Figure 2.2 we see a histogram of the deposited particles as a function of angle into the flow.
An angle of 0◦ represents the direction straight into the flow direction, i.e. at the flow stagnation
point. In this graph it is a bit easier to quantify deposition density compared to Figure 2.1. From the
histogram we see that most of the deposition is close to the stagnation point, with some deposition
on the back side of the cylinder, as expected from Figure 2.1.

1.5 1.0 0.5 0.0 0.5 1.0
x [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
[m

]

Flow direction

Figure 2.1: Particle deposition on a cylinder. Red represents particles that have attached to the
surface, blue particles that are free-floating.

18

2.4. Testing the stick collision model Chapter 2. Lagrangian particle tracking in OpenFOAM

150 100 50 0 50 100 150
Angle into flow [deg]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pa
rti

cle
 c

ou
nt

 [-
]

Figure 2.2: Number of particles that have deposited on a cylinder, as a function of angle into the
flow.

19

Chapter 3

Implementing a new collision
model

The two particle-wall collision models implemented in OpenFOAM, rebound and stick, work well for
many theoretical cases. However, the two models are a bit too limited when it comes to real-world
collisional behavior. It is entirely possible to see particles that under some conditions rebound from
a surface, and stick under slightly different conditions. The rebound behavior could even have non-
constant coefficients of restitution, making the case even more complex. This is, for example, seen
in the case of snow particles [5]. Also particles of ash or dust show similar behavior [6].

In this report we will, as an example, implement a snow-wall collisional model by Eidev̊ag et al. [5]
that is used in snow deposition studies in the car industry. This model describes both the rebound
and sticking behavior of the snow particles, as a function of properties of the particles themselves
and local flow conditions in the carrier fluid. It serves as a good illustration of the principles used
in this OpenFOAM programming tutorial since it combines two of the behaviors already existing
in the code into a new collisional model. By knowing how to implement this model we can easily
generalize the procedure to implement any similarly behaving model.

In order to simplify the implementation of the new model, we will break down the process into a
set of smaller steps. First, we will add a new particle-wall interaction model to the set of previously
existing models. Then, we will add a new type of collision to this model. Once we have checked
that this new model can be used by the OpenFOAM solvers, we start modifying the actual collision
model itself, first by implementing an ad hoc collision model that switches between rebound and
stick behavior, and finally by properly implementing the snow-wall collision model described by
Eidev̊ag et al. [5]. An advantage with implementing everything in steps is that we continuously
test our code and understanding throughout the process. We are, in some sense, always testing the
smallest possible problem set.

The following sections present a step-by-step guide for implementing a new collision model from
scratch. A full implementation of the final model is provided in the files accompanying this re-
port. These accompanying files also include the test case with flow around a cylinder presented in
Section 2.3.

3.1 Setting up the source code

The first step the development process is to implement a new PatchInteractionModel based on
the existing model LocalInteraction. This is not strictly necessary since it is possible to just add
a new collision type to the existing interaction model, but since we are going to do some important
changes to how the code works it is good practice to create a new, separate, model for the new
implementation. By doing this we also keep the ability of going back to the original collision model
without having to recompile any code.

In this tutorial we are mainly going to be working with the intermediate library. It contains

20

3.2. Creating a new particle-wall collision model Chapter 3. Implementing a new collision model

much of the needed code and features for Lagrangian particle tracking. The first step is to copy the
source code of this library to the user directory. To do this we use the commands

cd $WM_PROJECT_USER_DIR
cp -r $FOAM_SRC/lagrangian/intermediate .

In order to use the modifications we are about to introduce to the code, we need to compile the
user-local version of the library. Thus, we first need to change the compilation target from the
system directory FOAM_LIBBIN to FOAM_USER_LIBBIN.

cd $WM_PROJECT_USER_DIR/intermediate/Make
sed -i 's/FOAM_LIBBIN/FOAM_USER_LIBBIN/' files

We then compile the intermediate library using wmake.

cd $WM_PROJECT_USER_DIR/intermediate
wmake

This process creates the library file $FOAM_USER_LIBBIN/liblagrangianIntermediate.so which
is dynamically loaded by OpenFOAM at runtime. It is possible to change the name of the library
file from liblagrangianIntermediate.so to something else, but here we choose to keep the same
name as the system library so that the default behavior is overridden by our custom library, without
needing any further modifications. Note that the .so file ending represents a shared library, and
that the suffix is automatically added by the compiler.

In order to start using the modified intermediate library we also need to recompile the li-
brary containing the Lagrangian function objects. It is located at $FOAM_SRC/functionObjects/
lagrangian. Similarly as for the intermediate library, we copy the source code to the user direc-
tory, make a change to the compilation options and then compile.

cd $WM_PROJECT_USER_DIR
cp -r $FOAM_SRC/functionObjects/lagrangian .

cd $WM_PROJECT_USER_DIR/lagrangian/Make
sed -i 's/FOAM_LIBBIN/FOAM_USER_LIBBIN/' files

sed -i 's|-I$(LIB_SRC)/lagrangian/intermediate/lnInclude|-I$(WM_PROJECT_USER_DIR)/intermediate/
lnInclude|' options

cd $WM_PROJECT_USER_DIR/lagrangian
wmake

We need to make these changes so that the Lagrangian function object library links to our
new version of the intermediate library instead of the original, system-wide, version. Once the
compilation is finished we can use the Lagrangian particle tracking function object with our newly
compiled intermediate library. All further work in this tutorial will be done in the intermediate
library and we will no longer need to touch the Lagrangian function object code.

3.2 Creating a new particle-wall collision model

The particle-wall collision model that we aim to extend, LocalInteraction, is found in
$WM_PROJECT_USER_DIR/intermediate/submodels/Kinematic/PatchInteractionModel/

LocalInteraction/LocalInteraction.C However, since we need to do rather significant
modifications to the functionality of this file, we probably want to create a new user-selectable
patchInteractionModel that contains our modifications. Therefore, we will start by making
a copy of the LocalInteraction directory. The new name is arbitrary, but let us call it
LocalInteractionMix to indicate that we are mixing the original rebound and stick models.

cd $WM_PROJECT_USER_DIR/intermediate/submodels/Kinematic/PatchInteractionModel
mkdir LocalInteractionMix

cp LocalInteraction/LocalInteraction.H LocalInteractionMix/LocalInteractionMix.H

cp LocalInteraction/LocalInteraction.C LocalInteractionMix/LocalInteractionMix.C

Now we need to replace all references to LocalInteraction with references to
LocalInteractionMix.

21

3.2. Creating a new particle-wall collision model Chapter 3. Implementing a new collision model

cd $WM_PROJECT_USER_DIR/\
intermediate/submodels/Kinematic/PatchInteractionModel/LocalInteractionMix

sed -i 's/LocalInteraction/LocalInteractionMix/g' LocalInteractionMix.H

sed -i 's/localInteraction/localInteractionMix/g' LocalInteractionMix.H

sed -i 's/LocalInteraction/LocalInteractionMix/g' LocalInteractionMix.C

In order to be able to use this new class we need to compile it into our OpenFOAM user directory. We
then go to the $WM_PROJECT_USER_DIR/intermediate/Make directory and edit the files file so that
the compilation output directory is changed from $(FOAM_LIBBIN)/liblagrangianIntermediate

to $(FOAM_USER_LIBBIN)/liblagrangianIntermediate.

cd $WM_PROJECT_USER_DIR/intermediate/Make/
sed -i 's/FOAM_LIBBIN/FOAM_USER_LIBBIN/g' files

We must now make the OpenFOAM run-time model selection mechanism aware of
our new collision model. We do this by modifying $WM_PROJECT_USER_DIR/intermediate/

parcels/include/makeParcelPatchInteractionModels.H. First we need to add our newly
created header file LocalInteractionMix.H. Then, we need to add the macro call
makePatchInteractionModelType(LocalInteractionMix, CloudType).

cd $WM_PROJECT_USER_DIR/intermediate/parcels/include/
sed -i '/"LocalInteraction.H"/{p;s|"LocalInteraction.H"|"LocalInteractionMix.H"|;}'\
makeParcelPatchInteractionModels.H

sed -i '/LocalInteraction,/{p;s|LocalInteraction,|LocalInteractionMix,|;}'\
makeParcelPatchInteractionModels.H

We are now ready to compile our modified library. We then go to the root directory of the library
and run the compiler.

cd $WM_PROJECT_USER_DIR/intermediate/
wmake

To make compilation faster, it is possible to replace the wmake command with a parallelized version.
For example, to run the compilation on eight threads, use wmake -j 8. The resulting compiled code
is the same in both cases, but the second version of the command is significantly faster on multi-core
computers.

The new particle-wall collision model is now ready to use. Do, however, note that we
have so far only added a new model, with a new name, that behaves exactly like the
original version. To use the new collision model we simply need to change two lines in
the kinematicCloudProperties file of our case. First, we need to specify that we want
to use the new collision model by changing patchInteractionModel localInteraction; to
patchInteractionModel localInteractionMix;. Then, we need to modify the name of the sub-
dictionary specifying particle-wall interaction type for the different patches in the domain. To do so,
simply replace localInteractionCoeffs with localInteractionMixCoeffs. The final particle-
wall collision settings in the kinematicCloudProperties file then become

kinematicCloudProperties

 patchInteractionModel localInteractionMix;

 localInteractionMixCoeffs

 {

 patches

 (

 "(sides)"

 {

 type rebound;

 e 1; // normal restitution coefficient

 mu 0; // tangential friction

 }

 "(inlet|outlet|injectionPatch)"

 {

22

3.3. Modifying the new collision model Chapter 3. Implementing a new collision model

 type escape;

 }

 "(cylinder)"

 {

 type stick;

 }

);

 }

3.3 Modifying the new collision model

The new collision model we just created is identical in behavior to the original LocalInteraction
model. In order to implement the new collision behavior we need to create a new type of interaction
within LocalInteractionMix. In this report we will target a mixed rebound-stick criterion that can
behave in one of two ways. For certain collisional conditions, the particle should rebound. It should
then behave as if the rebound collision type had been selected. For other collisional conditions, the
model should behave as the stick type. The selection between these two types is based on the
collisional model described in Section 1.5.

We begin by creating a new type of particle-wall collision type within LocalInteractionMix.
Let us call this new type reboundStickMix. We then add a new enum entry,
itReboundStickMix, to PatchInteractionModel.H, and a string entry, "reboundStickMix", to
PatchInteractionModel.C. The two files should then look like the two listings below.

PatchInteractionModel.H

 template<class CloudType>

 class PatchInteractionModel

 :

 public CloudSubModelBase<CloudType>,

 public functionObjects::writeFile

 {

 public:

 // Public enumerations

 // Interaction types

 enum interactionType

 {

 itNone,

 itRebound,

 itStick,

 itReboundStickMix,

 itEscape,

 itOther

 };

PatchInteractionModel.C

 template<class CloudType>

 Foam::wordList Foam::PatchInteractionModel<CloudType>::interactionTypeNames_

 {

 "rebound", "stick", "reboundStickMix", "escape"

 };

Additionally, we must add a new case to the switch statement, i.e.

case itReboundStickMix:

{

it = "reboundStickMix";

break;

}

23

3.3. Modifying the new collision model Chapter 3. Implementing a new collision model

This produces the complete switch statement below.

PatchInteractionModel.C

 template<class CloudType>

 Foam::word Foam::PatchInteractionModel<CloudType>::interactionTypeToWord

 (

 const interactionType& itEnum

)

 {

 word it = "other";

 switch (itEnum)

 {

 case itNone:

 {

 it = "none";

 break;

 }

 case itRebound:

 {

 it = "rebound";

 break;

 }

 case itStick:

 {

 it = "stick";

 break;

 }

 case itReboundStickMix:

 {

 it = "reboundStickMix";

 break;

 }

 case itEscape:

 {

 it = "escape";

 break;

 }

 default:

 {

 }

 }

 return it;

 }

Next, we add a new if statement to translate from string to enum type.

else if (itWord == "reboundStickMix")

{

return itReboundStickMix;

}

The complete function then looks like below.

PatchInteractionModel.C

 template<class CloudType>

 typename Foam::PatchInteractionModel<CloudType>::interactionType

 Foam::PatchInteractionModel<CloudType>::wordToInteractionType

 (

 const word& itWord

)

 {

 if (itWord == "none")

 {

 return itNone;

 }

24

3.3. Modifying the new collision model Chapter 3. Implementing a new collision model

 if (itWord == "rebound")

 {

 return itRebound;

 }

 else if (itWord == "stick")

 {

 return itStick;

 }

 else if (itWord == "reboundStickMix")

 {

 return itReboundStickMix;

 }

 else if (itWord == "escape")

 {

 return itEscape;

 }

 else

 {

 return itOther;

 }

 }

Lastly, we add a new case to the switch statement in LocalInteractionMix.C, using . . . as a
shorthand for the contents of each switch case, giving us the following structure.

LocalInteractionMix.C

switch (it)

{

case PatchInteractionModel<CloudType>::itNone:

{

//...

}

case PatchInteractionModel<CloudType>::itEscape:

{

//...

}

case PatchInteractionModel<CloudType>::itStick:

{

//...

}

case PatchInteractionModel<CloudType>::itRebound:

{

//...

}

case PatchInteractionModel<CloudType>::itReboundStickMix:

{

}

default:

{

//...

}

}

To prepare for using this newly defined model, we need to change line 21 in the file
kinematicCloudProperties such that

kinematicCloudProperties

 "(cylinder)"

 {

 type reboundStickMix;

 }

Note that we have not yet added any code to the itReboundStickMix case, so running it right now
will not trigger the desired behavior.

25

3.4. Testing the new collision type Chapter 3. Implementing a new collision model

3.4 Testing the new collision type

Before we proceed any further, it is a good idea to test that our collision model works, even if it does
not do anything useful yet. We would therefore like to run a very simple check is to see if we can
trigger both types of behavior, rebound and stick. For the case of flow around a cylinder introduced
in Section 2.3, we can use an ad hoc condition based on the sign of the particle position in the y
direction. Here we use {

stick if yp ≥ 0

rebound if yp < 0
,

where yp represents the particle position in the y direction at the time of impact. This would mean
that particles only stick to the upper half of the front side of the cylinder. Particles that impact
the lower half would rebound. A condition like this has no physical meaning, but it is very simple
to verify in our coding. We will in Section 3.5 replace this ad hoc condition with a proper collision
model.

In the existing stick and rebound switch cases we already have all the code needed to describe the
behavior of a rebounding or sticking particle. To test our new model we then just need a selection
condition, essentially an if statement, that alternates between the two. We then call the already
existing rebound or stick code to handle that specific collision.

As a first test of our new mixed model we can then use the condition if (p.position()[1]<0)

to alternate between the two types of behavior. All we would need to do is to add the if statement
and then copy the existing code from the rebound and stick cases. Schematically it would look like
the code listing below.

LocalInteractionMix.C

case PatchInteractionModel<CloudType>::itReboundStickMix:

{

if (p.position()[1]<0)//proof-of-concept, rebound if particle y velocity is negative, stick

otherwise

//very ad hoc, used just to show the concept

{

//rebound code ...

}

else

{

//stick code ...

}

A complete listing of this ad hoc condition would then look like below.

LocalInteractionMix.C

case PatchInteractionModel<CloudType>::itReboundStickMix:

{

if (p.position()[1]<0)//proof-of-concept, rebound if particle y velocity is negative, stick

otherwise

//very ad hoc, used just to show the concept

{

keepParticle = true;

p.active(true);

vector nw;

vector Up;

this->owner().patchData(p, pp, nw, Up);

// Calculate motion relative to patch velocity

U -= Up;

if (mag(Up) > 0 && mag(U) < this->Urmax())

{

WarningInFunction

26

3.4. Testing the new collision type Chapter 3. Implementing a new collision model

<< "Particle U the same as patch "

<< " The particle has been removed" << nl << endl;

keepParticle = false;

p.active(false);

U = Zero;

break;

}

scalar Un = U & nw;

vector Ut = U - Un*nw;

if (Un > 0)

{

U -= (1.0 + patchData_[patchi].e())*Un*nw;

}

U -= patchData_[patchi].mu()*Ut;

// Return velocity to global space

U += Up;

break;

}

else

{

keepParticle = true;

p.active(false);

U = Zero;

const scalar dm = p.mass()*p.nParticle();

nStick_[patchi][idx]++;

massStick_[patchi][idx] += dm;

if (writeFields_)

{

const label pI = pp.index();

const label fI = pp.whichFace(p.face());

massStick().boundaryFieldRef()[pI][fI] += dm;

}

break;

}

}

Now, we can compile the intermediate library with wmake (see Section 3.2) and run the cylinder
case again. Once the case has completed we can analyze the results, which should look something
like Figure 3.1. Again, red represents particles that have attached to the cylinder surface, blue that
they are free-floating. We note that the behavior in Figure 3.1 is exactly the behavior we wanted to
see, particles stick only to the upper part of the the cylinder. From this we conclude that our new
collision model works as expected and we are ready to implement more realistic models.

27

3.4. Testing the new collision type Chapter 3. Implementing a new collision model

1.5 1.0 0.5 0.0 0.5 1.0
x [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
[m

]
Flow direction

Figure 3.1: Proof-of-concept visualization of the ad hoc rebound and sticking criterion. Red indicates
particles that have stuck to the cylinder surface, blue that particles are floating freely.

175 150 125 100 75 50 25 0
Angle into flow [deg]

0

2

4

6

8

10

12

14

Pa
rti

cle
 c

ou
nt

 [-
]

Figure 3.2: Number of particles that have deposited on a cylinder, as a function of angle into the
flow for the ad-hoc collision model. Particles have only deposited in the clockwise direction counted
from the stagnation point, yielding negative values for the angle.

28

3.5. Implementing the snow collision model Chapter 3. Implementing a new collision model

3.5 Implementing the snow collision model

Now that we know that our implemented code changes are understood by the OpenFOAM solvers,
we can start implementing the proper particle-wall collision model as presented in Section 1.5. The
high-level behavior of this model is going to be quite similar to the ad hoc model, i.e. we have
an if statement that checks a certain condition and chooses the appropriate collisional behavior,
rebound or stick, depending on the condition. In the case of the Eidev̊ag et al. model, we have two
conditions we need to check, one for the resuspension criterion and one for the sticking mechanism.
If the resuspension criterion determines that the particle will be resuspended, then we perform a
perfectly elastic collision. If not, then we check the adhesion criterion. If this condition predicts
that the particle will stick, then we call the existing stick code. If the particle is predicted not to
stick, then we run the rebound code, with coefficients of restitution given by the model. This can
be implemented as in the code excerpt below.

LocalInteractionMix.C

//Resuspension criterion.

//If particle diameter is >= D_c, then we always get rebound.

//Else, follow adhesion model

if (p.d() >= D_c)

{

//Particle will resuspend

//Always rebound with e_n=e_t=1

e_n = 1;

e_t = 1;

rebound(p,pp,keepParticle,patchi,U,idx,e_n,e_t);

}

else

{

//check adhesion model

if (e_n < SMALL && e_t < SMALL)

{

//stick

stick(p, pp, keepParticle, patchi, U, idx);

}

else

{

//rebound, variable e_n, e_t

rebound(p,pp,keepParticle,patchi,U,idx,e_n,e_t);

}

}

The critical diameterDc is calculated as presented in Section 1.5.2 and in the original publications by
Eidev̊ag et al. [5, 11]. A listing of the necessary code to implement this calculation is presented below.
This code first defines the two model parameters a and b. Then, the averaged wallShearStress

fields are interpolated to the particle position. Finally, Eq. (1.27) is used to calculate Dc.

LocalInteractionMix.C

//resuspension criterion

scalar a = 77.7e-6;

scalar b = -1.34;

const volVectorField& wallShearStressMeanField =

mesh_.lookupObject<volVectorField>("wallShearStressMean");

const volSymmTensorField& wallShearStressPrime2MeanField =

mesh_.lookupObject<volSymmTensorField>("wallShearStressPrime2Mean");

autoPtr<interpolation<vector>> interpolatorMean =

interpolation<vector>::New("cellPoint", wallShearStressMeanField);

auto wallShearStressMeanPointValue =

interpolatorMean->interpolate(p.position(), p.cell());

autoPtr<interpolation<symmTensor>> interpolatorPrime2Mean =

interpolation<symmTensor>::New("cellPoint", wallShearStressPrime2MeanField);

29

3.5. Implementing the snow collision model Chapter 3. Implementing a new collision model

auto wallShearStressPrime2MeanPointValue =

interpolatorPrime2Mean->interpolate(p.position(), p.cell());

scalar D_c = a*pow(sqrt(mag(wallShearStressMeanPointValue) +

3*sqrt(wallShearStressPrime2MeanPointValue.xx() +

wallShearStressPrime2MeanPointValue.yy() +

wallShearStressPrime2MeanPointValue.zz())), b);

For the adhesion model, the following code is used. It first defines the numerical values for the
material properties of ice-ice collisions. Then, it uses the equations presented in Section 1.5.1 to
arrive at the coefficients of restitution en and et.

LocalInteractionMix.C

//adhesion model

scalar W = 0.218; //J/m^2, work of adhesion

scalar E_star = 5.4e9; //Pa, effective Young's modulus

scalar Dgamma_gamma = 1; //[-], adhestion hysteresis of rolling

scalar e_qe = sqrt(1-0.15);

scalar R_star = p.d()/2; //m, effective radius of contact, i.e. particle radius when colliding with

wall, see Eidevåg 2020

scalar K_1 = 0.9355; //integration constant, see Eidevåg 2020

scalar m_p = p.mass()*p.nParticle(); //kg, mass of particle

scalar a_0 = cbrt(9*mathematical::pi*W*pow(R_star,2)/(2*E_star));

scalar E_s = 3*K_1*mathematical::pi*pow(a_0,2)*W/(4*cbrt(6.0));

scalar V_s = sqrt(2*E_s/m_p);

scalar V_cn = V_s; //Critical velocity in normal direction

scalar V_ct = 0.23*Dgamma_gamma*V_cn; //Critical velocity in tangential direction

vector nw; //wall normal vector

vector Up; //particle velocity

this->owner().patchData(p, pp, nw, Up);

vector Ur = U - Up; //particle velocity relative to wall

vector Un = (Ur & nw)*nw; //velocity component along normal direction

vector Ut = Ur - Un; //velocity component along tangential direction

scalar V_in = mag(Un);

scalar V_it = mag(Ut);

//wall-normal and tangential coefficients of restitution

scalar e_n = e_qe * sqrt(1 - pow((V_cn/(max(V_in, V_cn))),2));

scalar e_t = e_qe * sqrt(1 - pow((V_ct/(max(V_it, V_ct))),2));

In order to avoid code duplication, it is beneficial to convert the original rebound and stick switch
cases into proper functions that can be called from any switch case. In this way we can use the same
particle behavior in several different collision models. The new functions are presented below.

LocalInteractionMix.C

template<class CloudType>

void Foam::LocalInteractionMix<CloudType>::stick

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const label patchi,

vector& U,

const label idx

)

{

keepParticle = true;

p.active(false);

U = Zero;

const scalar dm = p.mass()*p.nParticle();

nStick_[patchi][idx]++;

30

3.5. Implementing the snow collision model Chapter 3. Implementing a new collision model

massStick_[patchi][idx] += dm;

if (writeFields_)

{

const label pI = pp.index();

const label fI = pp.whichFace(p.face());

massStick().boundaryFieldRef()[pI][fI] += dm;

}

}

LocalInteractionMix.C

template<class CloudType>

void Foam::LocalInteractionMix<CloudType>::rebound

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const label patchi,

vector& U,

const label idx,

const scalar e_n,

const scalar e_t

)

{

keepParticle = true;

p.active(true);

vector nw;

vector Up;

this->owner().patchData(p, pp, nw, Up);

// Calculate motion relative to patch velocity

U -= Up;

if (mag(Up) > 0 && mag(U) < this->Urmax())

{

WarningInFunction

<< "Particle U the same as patch "

<< " The particle has been removed" << nl << endl;

keepParticle = false;

p.active(false);

U = Zero;

return;

}

scalar Un = U & nw;

vector Ut = U - Un*nw;

if (Un > 0)

{

U -= (1.0 + e_n)*Un*nw;

}

U -= (1-e_t)*Ut;

// Return velocity to global space

U += Up;

}

This way, the original rebound and stick cases can be simplified to a simple function call, as seen
below.

LocalInteractionMix.C

31

3.5. Implementing the snow collision model Chapter 3. Implementing a new collision model

case PatchInteractionModel<CloudType>::itStick:

{

stick(p, pp, keepParticle, patchi, U, idx);

break;

}

case PatchInteractionModel<CloudType>::itRebound:

{

scalar e_n = patchData_[patchi].e();

scalar e_t = 1-patchData_[patchi].mu();

rebound(p,pp,keepParticle,patchi,U,idx,e_n,e_t);

break;

}

Additionally, these functions need to be declared in the header file LocalInteractionMix.H.

LocalInteractionMix.H

template<class CloudType>

class LocalInteractionMix

:

public PatchInteractionModel<CloudType>

{

// Private data

//...

virtual void stick

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const label patchi,

vector& U,

const label idx

);

virtual void rebound

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const label patchi,

vector& U,

const label idx,

const scalar e_n,

const scalar e_t

);

//...

Finally, we must declare the the mesh variable in the header file, and also initialize it in the class
constructor. The declaration is seen in the listing below.

LocalInteractionMix.H

template<class CloudType>

class LocalInteractionMix

:

public PatchInteractionModel<CloudType>

{

// Private data

// Reference to fluid mesh

const polyMesh& mesh_;

//...

In the constructor we define the initialization as on line 9 in the following code excerpt.

32

3.6. Testing the snow collision model Chapter 3. Implementing a new collision model

LocalInteractionMix.C

 template<class CloudType>

 Foam::LocalInteractionMix<CloudType>::LocalInteractionMix

 (

 const dictionary& dict,

 CloudType& cloud

)

 :

 PatchInteractionModel<CloudType>(dict, cloud, typeName),

 mesh_(cloud.mesh()), //this line was added

 patchData_(cloud.mesh(), this->coeffDict()),

 nEscape_(patchData_.size()),

 massEscape_(nEscape_.size()),

 nStick_(nEscape_.size()),

 massStick_(nEscape_.size()),

 writeFields_(this->coeffDict().getOrDefault("writeFields", false)),

 injIdToIndex_(),

 massEscapePtr_(nullptr),

 massStickPtr_(nullptr)

 {

 //...

The copy constructor is handled in an equivalent way.

3.6 Testing the snow collision model

Returning again to the example case of flow around a cylinder from Section 2.3, we now use the
localInteractionMix model representing our new collision model. A plot of the particle deposition
results using this model is presented in Figure 3.3. A clear distinction can be seen between this figure
and Figure 3.1. In Figure 3.3, far fewer particles actually stick to the cylinder. This observation
becomes even clearer if we compare the corresponding histograms in Figures 3.4 and 2.2. It is
then clear that this collision model has a pronounced effect on particle deposition rates, with an
approximately 60% reduction in deposition rates.

1.5 1.0 0.5 0.0 0.5 1.0
x [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
[m

]

Flow direction

Figure 3.3: Proof-of-concept visualization of the ad hoc rebound and sticking criterion. Red indicates
particles that have stuck to the cylinder surface, blue that particles are floating freely.

33

3.6. Testing the snow collision model Chapter 3. Implementing a new collision model

150 100 50 0 50 100 150
Angle into flow [deg]

0

2

4

6

8

10

Pa
rti

cle
 c

ou
nt

 [-
]

Figure 3.4: Number of particles that have deposited on a cylinder, as a function of angle into the
flow for the ad-hoc collision model. Around 60% fewer particles have deposited compared to the
stick case in Figure 2.2.

An important thing to keep in mind is that this report focuses on the methods and implementa-
tion strategies needed to implement new collision models into OpenFOAM. Further work is needed
to validate the fluid flow and particle deposition results. A good follow-up study would be to validate
the implemented collision model with the original results presented by Eidev̊ag et al. [5].

34

Bibliography

[1] J. Vandenkerckhove, “Technical comments,” ARS Journal, vol. 31, no. 10, pp. 1466–1469,
1961, publisher: American Institute of Aeronautics and Astronautics. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/8.5825

[2] A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-II: A computer program for
chemically reactive flows with sprays,” 1989, technical report, Los Alamos National Lab.
[Online]. Available: https://www.osti.gov/biblio/6228444

[3] (2023) OpenFOAM: API guide: SphereDragForce< CloudType > class template
reference. [Online]. Available: https://www.openfoam.com/documentation/guides/latest/api/
classFoam 1 1SphereDragForce.html

[4] N. E. L. Haugen and S. Kragset, “Particle impaction on a cylinder in a cross-
flow as function of stokes and reynolds numbers,” Journal of Fluid Mechanics,
vol. 661, pp. 239–261, 2010, publisher: Cambridge University Press. [Online].
Available: https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/
particle-impaction-on-a-cylinder-in-a-crossflow-as-function-of-stokes-and-reynolds-numbers/
30E0BF549C92BC497017023646DEE250

[5] T. Eidev̊ag, M. Eng, D. Kallin, J. Casselgren, Y. Bharadhwaj, T. S. Bangalore Narahari,
and A. Rasmuson, “Snow contamination of simplified automotive bluff bodies: A comparison
between wind tunnel experiments and numerical modeling,” SAE International Journal of
Advances and Current Practices in Mobility, pp. 2022–01–0901, 2022. [Online]. Available:
https://www.sae.org/content/2022-01-0901/

[6] U. Kleinhans, C. Wieland, F. J. Frandsen, and H. Spliethoff, “Ash formation and
deposition in coal and biomass fired combustion systems: Progress and challenges
in the field of ash particle sticking and rebound behavior,” Progress in Energy
and Combustion Science, vol. 68, pp. 65–168, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0360128517300795

[7] J. Hærvig, U. Kleinhans, C. Wieland, H. Spliethoff, A. L. Jensen, K. Sørensen, and T. J.
Condra, “On the adhesive JKR contact and rolling models for reduced particle stiffness
discrete element simulations,” Powder Technology, vol. 319, pp. 472–482, 2017. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0032591017305430

[8] J. S. Marshall, “Discrete-element modeling of particulate aerosol flows,” Journal of
Computational Physics, vol. 228, no. 5, pp. 1541–1561, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002199910800572X

[9] M. Higa, M. Arakawa, and N. Maeno, “Size dependence of restitution coefficients of ice in
relation to collision strength,” Icarus, vol. 133, no. 2, pp. 310–320, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0019103598959383

[10] T. Eidev̊ag, E. S. Thomson, S. Sollén, J. Casselgren, and A. Rasmuson, “Collisional damping
of spherical ice particles,” Powder Technology, vol. 383, pp. 318–327, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0032591021000413

35

https://arc.aiaa.org/doi/10.2514/8.5825
https://www.osti.gov/biblio/6228444
https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1SphereDragForce.html
https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1SphereDragForce.html
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/particle-impaction-on-a-cylinder-in-a-crossflow-as-function-of-stokes-and-reynolds-numbers/30E0BF549C92BC497017023646DEE250
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/particle-impaction-on-a-cylinder-in-a-crossflow-as-function-of-stokes-and-reynolds-numbers/30E0BF549C92BC497017023646DEE250
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/particle-impaction-on-a-cylinder-in-a-crossflow-as-function-of-stokes-and-reynolds-numbers/30E0BF549C92BC497017023646DEE250
https://www.sae.org/content/2022-01-0901/
https://www.sciencedirect.com/science/article/pii/S0360128517300795
https://www.sciencedirect.com/science/article/pii/S0360128517300795
https://www.sciencedirect.com/science/article/pii/S0032591017305430
https://www.sciencedirect.com/science/article/pii/S002199910800572X
https://www.sciencedirect.com/science/article/pii/S0019103598959383
https://www.sciencedirect.com/science/article/pii/S0032591021000413

Bibliography Bibliography

[11] T. Eidev̊ag, P. Abrahamsson, M. Eng, and A. Rasmuson, “Modeling of dry snow adhesion
during normal impact with surfaces,” Powder Technology, vol. 361, pp. 1081–1092, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0032591019309143

[12] H. Reichardt, “Vollständige darstellung der turbulenten geschwindigkeitsverteilung in
glatten leitungen,” vol. 31, no. 7, pp. 208–219, 1951. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19510310704

[13] Reichardt profile – CFD-wiki, the free CFD reference. [Online]. Available: https:
//www.cfd-online.com/Wiki/Reichardt profile

[14] F. M. White, Fluid mechanics, 8th ed. McGraw-Hill Education, 2016.

[15] (2023) OpenFOAM: API guide: icoUncoupledKinematicCloud class reference. [On-
line]. Available: https://www.openfoam.com/documentation/guides/latest/api/classFoam 1
1functionObjects 1 1icoUncoupledKinematicCloud.html

[16] (2023) OpenFOAM: API guide: PatchInteractionModel< CloudType > class template
reference. [Online]. Available: https://www.openfoam.com/documentation/guides/latest/api/
classFoam 1 1PatchInteractionModel.html

[17] (2020) ENH: Adding check for wall interaction when particle is stuck on moving (9207140e) ·
commits · development / openfoam · GitLab. [Online]. Available: https://develop.openfoam.
com/Development/openfoam/-/commit/9207140e377364fd73ebd2cf2006bb7837335ea2

36

https://www.sciencedirect.com/science/article/pii/S0032591019309143
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19510310704
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19510310704
https://www.cfd-online.com/Wiki/Reichardt_profile
https://www.cfd-online.com/Wiki/Reichardt_profile
https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1functionObjects_1_1icoUncoupledKinematicCloud.html
https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1functionObjects_1_1icoUncoupledKinematicCloud.html
https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1PatchInteractionModel.html
https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1PatchInteractionModel.html
https://develop.openfoam.com/Development/openfoam/-/commit/9207140e377364fd73ebd2cf2006bb7837335ea2
https://develop.openfoam.com/Development/openfoam/-/commit/9207140e377364fd73ebd2cf2006bb7837335ea2

Study questions

1. Why do we need a combined rebound and stick particle-wall collision model?

2. What are the benefits and limitations of one-way coupled particle tracking?

3. Are the effects of wall roughness in particle impacts included in the implementation presented
in this report?

4. What is the purpose of the resuspension model?

37

Appendix A

The kinematicCloudProperties file

kinematicCloudProperties

 /*--------------------------------*- C++ -*----------------------------------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration | Website: https://openfoam.org

 \\ / A nd | Version: 7

 \\/ M anipulation |

 ---/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object kinematicCloudProperties;

 }

 // * //

 solution

 {

 active true;

 coupled false;

 transient yes;

 cellValueSourceCorrection off;

 //maxCo 0.3;

 interpolationSchemes

 {

 rho cell;

 U cellPoint;

 mu cell;

 }

 averagingMethod basic;

 integrationSchemes

 {

 U Euler;

 }

 }

 constantProperties

 {

 parcelTypeId 1;

 rhoMin 1e-15;

 minParcelMass 1e-15;

38

Appendix A. The kinematicCloudProperties file

 rho0 917;

 youngsModulus 1e8;

 poissonsRatio 0.35;

 }

 subModels

 {

 particleForces

 {

 sphereDrag;

 }

 injectionModels

 {

 injection

 {

 type patchInjection;

 parcelBasisType fixed;

 //patch inlet;

 patch injectionPatch;

 U0 (1 0 0);

 nParticle 1;

 parcelsPerSecond 1000;

 sizeDistribution

 {

 type binned;

 binnedDistribution

 {

 distribution

 (

 (0.000030 0.2)

 (0.000050 0.2)

 (0.000075 0.2)

 (0.000100 0.2)

 (0.000150 0.2)

);

 }

 }

 flowRateProfile constant 1;

 massTotal 0;

 SOI 0;

 duration 30;

 }

 }

 patchInteractionModel localInteractionMix;

 localInteractionMixCoeffs

 {

 patches

 (

 "(sides)"

 {

 type rebound;

 e 1; // normal restitution coefficient

 mu 0; // tangential friction

 }

 "(inlet|outlet|injectionPatch)"

 {

 type escape;

 }

39

Appendix A. The kinematicCloudProperties file

 "(cylinder)"

 {

 type reboundStickMix;

 }

);

 }

 dispersionModel none;

 stochasticCollisionModel none;

 surfaceFilmModel none;

 collisionModel none;

 }

 cloudFunctions

 {

 }

 // *** //

40

Appendix B

The LocalInteraction.C file

LocalInteraction.C

 template<class CloudType>

 bool Foam::LocalInteraction<CloudType>::correct

 (

 typename CloudType::parcelType& p,

 const polyPatch& pp,

 bool& keepParticle

)

 {

 const label patchi = patchData_.applyToPatch(pp.index());

 if (patchi >= 0)

 {

 vector& U = p.U();

 // Location for storing the stats.

 const label idx =

 (

 injIdToIndex_.size()

 ? injIdToIndex_.lookup(p.typeId(), 0)

 : 0

);

 typename PatchInteractionModel<CloudType>::interactionType it =

 this->wordToInteractionType

 (

 patchData_[patchi].interactionTypeName()

);

 switch (it)

 {

 case PatchInteractionModel<CloudType>::itNone:

 {

 return false;

 }

 case PatchInteractionModel<CloudType>::itEscape:

 {

 keepParticle = false;

 p.active(false);

 U = Zero;

 const scalar dm = p.mass()*p.nParticle();

 nEscape_[patchi][idx]++;

 massEscape_[patchi][idx] += dm;

 if (writeFields_)

 {

41

Appendix B. The LocalInteraction.C file

 const label pI = pp.index();

 const label fI = pp.whichFace(p.face());

 massEscape().boundaryFieldRef()[pI][fI] += dm;

 }

 break;

 }

 case PatchInteractionModel<CloudType>::itStick:

 {

 keepParticle = true;

 p.active(false);

 U = Zero;

 const scalar dm = p.mass()*p.nParticle();

 nStick_[patchi][idx]++;

 massStick_[patchi][idx] += dm;

 if (writeFields_)

 {

 const label pI = pp.index();

 const label fI = pp.whichFace(p.face());

 massStick().boundaryFieldRef()[pI][fI] += dm;

 }

 break;

 }

 case PatchInteractionModel<CloudType>::itRebound:

 {

 keepParticle = true;

 p.active(true);

 vector nw;

 vector Up;

 this->owner().patchData(p, pp, nw, Up);

 // Calculate motion relative to patch velocity

 U -= Up;

 if (mag(Up) > 0 && mag(U) < this->Urmax())

 {

 WarningInFunction

 << "Particle U the same as patch "

 << " The particle has been removed" << nl << endl;

 keepParticle = false;

 p.active(false);

 U = Zero;

 break;

 }

 scalar Un = U & nw;

 vector Ut = U - Un*nw;

 if (Un > 0)

 {

 U -= (1.0 + patchData_[patchi].e())*Un*nw;

 }

 U -= patchData_[patchi].mu()*Ut;

 // Return velocity to global space

 U += Up;

 break;

 }

 default:

 {

 FatalErrorInFunction

42

Appendix B. The LocalInteraction.C file

 << "Unknown interaction type "

 << patchData_[patchi].interactionTypeName()

 << "(" << it << ") for patch "

 << patchData_[patchi].patchName()

 << ". Valid selections are:" << this->interactionTypeNames_

 << endl << abort(FatalError);

 }

 }

 return true;

 }

 return false;

 }

43

Appendix C

The LocalInteractionMix.C file

LocalInteractionMix.C

 template<class CloudType>

 void Foam::LocalInteractionMix<CloudType>::stick

 (

 typename CloudType::parcelType& p,

 const polyPatch& pp,

 bool& keepParticle,

 const label patchi,

 vector& U,

 const label idx

)

 {

 keepParticle = true;

 p.active(false);

 U = Zero;

 const scalar dm = p.mass()*p.nParticle();

 nStick_[patchi][idx]++;

 massStick_[patchi][idx] += dm;

 if (writeFields_)

 {

 const label pI = pp.index();

 const label fI = pp.whichFace(p.face());

 massStick().boundaryFieldRef()[pI][fI] += dm;

 }

 }

 template<class CloudType>

 void Foam::LocalInteractionMix<CloudType>::rebound

 (

 typename CloudType::parcelType& p,

 const polyPatch& pp,

 bool& keepParticle,

 const label patchi,

 vector& U,

 const label idx,

 const scalar e_n,

 const scalar e_t

)

 {

 keepParticle = true;

 p.active(true);

 vector nw;

 vector Up;

44

Appendix C. The LocalInteractionMix.C file

 this->owner().patchData(p, pp, nw, Up);

 // Calculate motion relative to patch velocity

 U -= Up;

 if (mag(Up) > 0 && mag(U) < this->Urmax())

 {

 WarningInFunction

 << "Particle U the same as patch "

 << " The particle has been removed" << nl << endl;

 keepParticle = false;

 p.active(false);

 U = Zero;

 return;

 }

 scalar Un = U & nw;

 vector Ut = U - Un*nw;

 if (Un > 0)

 {

 U -= (1.0 + e_n)*Un*nw;

 }

 U -= (1-e_t)*Ut;

 // Return velocity to global space

 U += Up;

 }

 template<class CloudType>

 bool Foam::LocalInteractionMix<CloudType>::correct

 (

 typename CloudType::parcelType& p,

 const polyPatch& pp,

 bool& keepParticle

)

 {

 const label patchi = patchData_.applyToPatch(pp.index());

 if (patchi >= 0)

 {

 vector& U = p.U();

 // Location for storing the stats.

 const label idx =

 (

 injIdToIndex_.size()

 ? injIdToIndex_.lookup(p.typeId(), 0)

 : 0

);

 typename PatchInteractionModel<CloudType>::interactionType it =

 this->wordToInteractionType

 (

 patchData_[patchi].interactionTypeName()

);

 switch (it)

 {

 case PatchInteractionModel<CloudType>::itNone:

 {

 return false;

 }

 case PatchInteractionModel<CloudType>::itEscape:

 {

45

Appendix C. The LocalInteractionMix.C file

 keepParticle = false;

 p.active(false);

 U = Zero;

 const scalar dm = p.mass()*p.nParticle();

 nEscape_[patchi][idx]++;

 massEscape_[patchi][idx] += dm;

 if (writeFields_)

 {

 const label pI = pp.index();

 const label fI = pp.whichFace(p.face());

 massEscape().boundaryFieldRef()[pI][fI] += dm;

 }

 break;

 }

 case PatchInteractionModel<CloudType>::itStick:

 {

 stick(p, pp, keepParticle, patchi, U, idx);

 break;

 }

 case PatchInteractionModel<CloudType>::itRebound:

 {

 scalar e_n = patchData_[patchi].e();

 scalar e_t = 1-patchData_[patchi].mu();

 rebound(p,pp,keepParticle,patchi,U,idx,e_n,e_t);

 break;

 }

 case PatchInteractionModel<CloudType>::itReboundStickMix:

 {

 //adhesion model

 scalar W = 0.218; //J/m^2, work of adhesion

 scalar E_star = 5.4e9; //Pa, effective Young's modulus

 scalar Dgamma_gamma = 1; //[-], adhestion hysteresis of rolling

 scalar e_qe = sqrt(1-0.15);

 scalar R_star = p.d()/2; //m, effective radius of contact, i.e. particle radius when

colliding with wall, see Eidevåg 2020

 scalar K_1 = 0.9355; //integration constant, see Eidevåg 2020

 scalar m_p = p.mass()*p.nParticle(); //kg, mass of particle

 scalar a_0 = cbrt(9*mathematical::pi*W*pow(R_star,2)/(2*E_star));

 scalar E_s = 3*K_1*mathematical::pi*pow(a_0,2)*W/(4*cbrt(6.0));

 scalar V_s = sqrt(2*E_s/m_p);

 scalar V_cn = V_s; //Critical velocity in normal direction

 scalar V_ct = 0.23*Dgamma_gamma*V_cn; //Critical velocity in tangential direction

 vector nw; //wall normal vector

 vector Up; //particle velocity

 this->owner().patchData(p, pp, nw, Up);

 vector Ur = U - Up; //particle velocity relative to wall

 vector Un = (Ur & nw)*nw; //velocity component along normal direction

 vector Ut = Ur - Un; //velocity component along tangential direction

 scalar V_in = mag(Un);

 scalar V_it = mag(Ut);

 //wall-normal and tangential coefficients of restitution

 scalar e_n = e_qe * sqrt(1 - pow((V_cn/(max(V_in, V_cn))),2));

 scalar e_t = e_qe * sqrt(1 - pow((V_ct/(max(V_it, V_ct))),2));

 //resuspension criterion

 scalar a = 77.7e-6;

 scalar b = -1.34;

 const volVectorField& wallShearStressMeanField =

 mesh_.lookupObject<volVectorField>("wallShearStressMean");

 const volSymmTensorField& wallShearStressPrime2MeanField =

46

Appendix C. The LocalInteractionMix.C file

 mesh_.lookupObject<volSymmTensorField>("wallShearStressPrime2Mean");

 autoPtr<interpolation<vector>> interpolatorMean =

 interpolation<vector>::New("cellPoint", wallShearStressMeanField);

 auto wallShearStressMeanPointValue =

 interpolatorMean->interpolate(p.position(), p.cell());

 autoPtr<interpolation<symmTensor>> interpolatorPrime2Mean =

 interpolation<symmTensor>::New("cellPoint", wallShearStressPrime2MeanField);

 auto wallShearStressPrime2MeanPointValue =

 interpolatorPrime2Mean->interpolate(p.position(), p.cell());

 scalar D_c = a*pow(sqrt(mag(wallShearStressMeanPointValue) +

 3*sqrt(wallShearStressPrime2MeanPointValue.xx() +

 wallShearStressPrime2MeanPointValue.yy() +

 wallShearStressPrime2MeanPointValue.zz())), b);

 //Resuspension criterion.

 //If particle diameter is >= D_c, then we always get rebound.

 //Else, follow adhesion model

 if (p.d() >= D_c)

 {

 //Particle will resuspend

 //Always rebound with e_n=e_t=1

 e_n = 1;

 e_t = 1;

 rebound(p,pp,keepParticle,patchi,U,idx,e_n,e_t);

 }

 else

 {

 //check adhesion model

 if (e_n < SMALL && e_t < SMALL)

 {

 //stick

 stick(p, pp, keepParticle, patchi, U, idx);

 }

 else

 {

 //rebound, variable e_n, e_t

 rebound(p,pp,keepParticle,patchi,U,idx,e_n,e_t);

 }

 }

 break;

 }

 default:

 {

 FatalErrorInFunction

 << "Unknown interaction type "

 << patchData_[patchi].interactionTypeName()

 << "(" << it << ") for patch "

 << patchData_[patchi].patchName()

 << ". Valid selections are:" << this->interactionTypeNames_

 << endl << abort(FatalError);

 }

 }

 return true;

 }

 return false;

 }

47

	Theoretical background
	Lagrangian particle tracking
	Effect of inertia on particle trajectory
	Fluid-particle coupling
	Types of collisions
	Details of the implemented collision model
	Adhesion model
	Resuspension model

	Lagrangian particle tracking in OpenFOAM
	Basic particle tracking setup
	Particle-wall interaction models
	Implementation details of the particle-wall interaction models

	Running the particle tracking
	Testing the stick collision model

	Implementing a new collision model
	Setting up the source code
	Creating a new particle-wall collision model
	Modifying the new collision model
	Testing the new collision type
	Implementing the snow collision model
	Testing the snow collision model

	The kinematicCloudProperties file
	The LocalInteraction.C file
	The LocalInteractionMix.C file

