CHALMERS

Block coupled matrix solvers in foam-extend-3
and more

Teaching within: CFD with OpenSource software
(TMEO050)

Klas Jareteg

klas.jareteg@chalmers.se
Chalmers University of Technology

2015-09-27

= DISCLAIMER: This offering is not approved or endorsed by OpenCFD Limited, the
producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD®

trade marks. Following the trademark policy.

= DISCLAIMER: The ideas and code in this presentation and all appended files are
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE

http://www.openfoam.com/legal/trademark-policy.php

Plan and outline

Block matrix basics
General idea
Implementation in foam-extend-3
Templates in C++ and OpenFOAM
Pressure and velocity solver
pUCoupledFoam - Introduction
pUCoupledFoam - Hands on
Miscallaneous
Explicit pressure-velocity coupling
Mesh and matrix formats
Git
Python scripting

Learning objectives

At the end of this lesson you should:
= be acquainted with the block coupled format in foam-extend-3.2

= better understand the basics of the pressure-velocity implementation in
OpenFOAM

= have some hands on experience with pUCoupledFoam
= know some basic git concepts and commands

= better understand templating and object orientation in C++

Conventions/Environments/Code version

= Environments used:

Code 0.1:

Further study of the code

More information 0.1:

For further reading on the subject

Tips 0.1:
More (or less) general tips on OpenFOAM® or related

= Code presented is based on commit 094e842 (part of branch nextRelease,
foam-extend-3.2)

Earlier presentations/lectures on related topic

= Henrik Rusche and Hrvoje Jasak. Implicit solution techniques for coupled
multi-field problems — Block Solution, Coupled Matrices. June 2010

= |vor Clifford. Block-Coupled Simulations Using OpenFOAM. . June 2011

= K. Jareteg, V. Vukovic, and H. Jasak. puCoupledFoam - an open source coupled
incompressible pressure-velocity solver based on foam-extend. 2014. URL:
http://www.openfoamworkshop.org/download/0FWO9_P_0105.pdf

= K. Jareteg and |. Clifford. Block coupled matrix solvers in foam-extend-3. 9th
OpenFOAM Workshop, Zagreb. 2014

= K. Jareteg. Coupled solvers and more - Lecture within CFD with open source
2013 (TMEO050). |ecture slides TMEO50. 2013, URL:
http://www.tfd.chalmers.se/~hani/kurser/0S_CFD_2013/KlasJareteg_
CoupledSolvers_20130917.pdf

= K. Jareteg. “Block coupled calculations in OpenFOAM: A coupled incompressible
flow solver”. Project work within: CFD with OpenSource software, 2012,
Chalmers. Oct. 2012

http://www.openfoamworkshop.org/download/OFW09_P_0105.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2013/KlasJareteg_CoupledSolvers_20130917.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2013/KlasJareteg_CoupledSolvers_20130917.pdf

Block matrix basics

Block matrix basics
General idea

Pressure and velocity solver

Miscallaneous

Python scripting

Coupled systems

Coupling on many levels:
= Model level (example: couple a turbulence model to your steady state
solver)
= Equation level (example: couple the pressure equation to the velocity
equation)
= Matrix level (example: GGI and regionCoupling)

Differ between:
= explicit coupling: solve one matrix equation for each variable, use fixed values for
all other unknowns (example: velocity components in standard simpleFoam)

= implicit coupling: directly solve the linear couplings between variables by
including multiple equations in the same matrix system

More information 1.1:

Previous trainings on coupled systems:

= "Implicit solution techniques for coupled multi-field problems — Block Solution, Coupled
Matrices”, OFWS5, Henrik Rusche and Hrvoje Jasak

Why block matrices?

Coupled problems often encountered:

Pressure-velocity
Multiphase flow
Solid mechanics
Heat transfer in a porous medium

Multiple energy neutronics

Allows to solve coupled problems implicitly:

Faster convergence as compared to iterative, explicit methodologies

= Alternative algorithms, not necessarily iterating between equations

Potentially greater stability for stiff problems

Explicit solver formulations

Examples:

= Velocity components in simpleFoam and pisoFoam

= Turbulence and momentum equations in simpleFoam and pisoFoam
Advantages:

= Requires less memory than implicit coupling

= Potentially easier to implement (treating one equation at a time)
Disadvantages:

= Dependencies resolved by Picard or fixed point iterations

= Often slow convergence for strongly coupled problems and potentially
divergence for stiff problems. One has to resort to under-relaxation and/or
semi-implicit algorithms

10

Implicit solver formulation

Advantages:
= Increasing the convergence rate, fewer iterations
= Potentially necessary for the problem to converge
= Lower necessary under-relaxation
Disadvantages:
= Increased memory cost, each matrix coefficient a tensor instead of a scalar
= Potentially increased CPU time for weakly coupled problems

= |f one equation is non-symmetric and the other symmetric, the block
matrix must be non-symmetric

11

Theory of the block matrix solver

Finite-volume discretization of block coupled equation set

= (Ug, Uy, uz) in cell Pis dependent on (ug, Uy, uz)p in cell P and
(Uzy Uy, Uz) y in cell N

= Off-diagonal entries only for cells sharing a face

Resulting discretization for cell P

apip + E anyuy = b
N

= In current framework ai is written as a tensorial product

Qzz Qzy Qzz Uz
au = Ay Qyy Qyz Uy
Qzx Azy Qzz Uy

= Assemble the sparse linear system

[A] [u] = [b]

12

Levels of block coupling

Three special cases

= Segregated - no coupling between variables

Diagonal and off-diagonal coefficients are in the form of diagonal or
spherical tensors

Qzx Ug Qg Ug
apup+ E anuiy = ayy Uy +§ ayy Uy
N Qzz P Uz p N Qzz N Uz

= Point-implicit - coupling between variables in the owner cell (eg. chemical
reactions)

Diagonal coefficient is a full tensor

Qzz OQry Qzz Uz Gz Uz

apip+ E aNliy = | Gye Gyy Gyz Uy +§ : Ayy Uy
Az [¢) [¢) U, a, U,

N 2T 2y 22 P z P N 22 N z

13

Levels of block coupling

= Fully coupled - coupling between variables in both owner and neighbour
cells (eg. stress analysis, adjoint convection)

Ug

T Qgz Qzy Qzz Uz
apup+ E aNuy = Qyz Qyy Qyz Uy + E Qyz Qyy Gy Uy
N Qzy Qzy Qzz P Uz p N Qzy Qzy Qzz N Uz

= In spirit of generic programming, the aim is to support all levels of
coupling using the same underlying functionality

= The size of the block-coupled system is arbitrary (1x1, 2x2, 3x3, , NxN)

14

Linear solver algorithms

= Sparseness pattern of block matrix is unchanged from scalar matrix
+ Sparseness pattern is mesh dependent

= |terative solution algorithms use simple operations
= Vector-matrix multiplication
Gauss-Seidel sweep
Matrix decomposition
= All readily generalize for matrix with tensor coefficients

« Simply define primitive operations for NxN coefficients and N-length vectors
(coefficient-vector multiplication, coefficient inversion, dot product, etc.)

15

Block matrix basics

Block matrix basics
Implementation in foam-extend-3

Pressure and velocity solver

Miscallaneous

Python scripting

16

Implementation in foam-extend-3

= Matrix class BlockLduMatrix implemented to handle block matrices in a
general, templated manner (Primary development by: Hrvoje Jasak)

= Sparsity pattern preserved, still lower, upper and diagonal:

Code 1.1: $FOAM_SRC/foam/matrices/blockLduMatrix/BlockLduMatrix/BlockLduMatrix.H

//— Diagonal coefficients 106
CoeffF1e1d<Type>* diagPtr_; 107

108
//— Upper triangle coefficients. Also used for symmetric matrix 109
CoeffFleld<Type>* upperPtr_; 110

111
//— Lower triangle coefficients 112
CoeffFleld<Type> *lowerPtr_; 113

= Allows 1duMatrix and lduMatrixAdressing to be re-used:

Code 1.2: SFOAM_SRC/foam/matrices/blockLduMatrix/BlockLduMatrix/BlockLduMatrix.H

/ LDU mesh reference 96
const lduMesh& lduMesh_; 97

= Compared to the standard 1duMatrix, the coefficients are now templated

Get to know the code

Tips 1.1:
= Learn to find your way around the code:
- grep keyword “find -iname "*.C""
Doxygen (pre-generated: http://www.openfoam.org/docs/cpp/)

= Get acquainted with the general code structure:
+ Study the structure of the src-directory
» Try to understand where the matrix classes are found

= When you are writing your own solvers study the available utilities:
- find how to read variables from dicts scalars, booleans and lists
« find out how to add an argument to the argument list

18

http://www.openfoam.org/docs/cpp/

Templating in BlockLduMatrix

= Coefficient fields are template on Type, example diagonal coefficients:

Code 1.3: $FOAM_SRC/foam/ ices/blockL ix/BlockLduMatrix/BlockL ix.H
typedef CoeffField<Type> TypeCoeffField; 87
//— Return diagonal coefficients 274
const TypeCoeffField& diag() const; 275

= Templating allows different coupled problems to be handled in same
structure

= Optimized performance by potential specific implementations for each
Type

= Types specified includes: vector2, vector3, vector4, scalar, vector.
Also larger vectors can be included by adding a new type (e.g vector12)

More information 1.2:

See $FOAM_SRC /foam/primitives/VectorN/ for implementation of e.g. vector2

= Note that the structure works also for scalar and that
BlockLduMatrix<scalar> and fvScalarMatrix will give equivalent performance

19

Block matrix basics

Block matrix basics

Templates in C++ and OpenFOAM
Pressure and velocity solver

Miscallaneous

Python scripting

20

Tips 1.2:

Tips on templates
= Templated functions and classes can operate with generic types.
= Templates are generated at compile time (compare to virtual functions)
= Allows reusing algorithms and classes which are common to many specific

types

Example: List
= A list could be used different type of contents — generic class needed
= ListI.H: included already in the header file

= Compilation done for each specific type (remember: generated during
compile-time)

Example: BlockLduMatrix
= Allow matrix coefficients to be of generic size
= Each <Type> must have operators needed defined

= Compilation done for each specific type (remember generated during
compile-time)

21

More information 1.3:
= Read the basics (and more):
» http://www.cplusplus.com/doc/tutorial/templates/
« Effective C++: 50 Specific Ways to Improve Your Programs and Designs
» C4++ Templates: The Complete Guide (Vandervoorde)

= Look at existing code to see how the templating is implemented, used and
compiled ("code explains code”)

22

http://www.cplusplus.com/doc/tutorial/templates/

Pressure and velocity
solver

Block matrix basics

Pressure and velocity solver
pUCoupledFoam - Introduction

Miscallaneous

Python scripting

23

pUCoupledFoam

= Coupled solver released with foam-extend-3.1

= Incompressible pressure-velocity coupled solver, coupled alternative to
simpleFoam

= Solver based on an explicit use of Rhie-Chow interpolation

More information 2.1:
Presentation during session "Block coupled”:

= "pUCoupledFoam - an open source coupled incompressible pressure-velocity solver based on
foam-extend” Klas Jareteg, Vuko Vukcevic, Hrvoje Jasak, 9th OpenFOAM Workshop,
Zagreb, 2014

24

pUCoupledFoam - Implicit formulation |

= Navier-Stokes, incompressible, steady-state:

V- (U)=0

V. (UU) —

= Semi-discretized form:

= Modified pressure:

> [UU - VU], - 8¢ = —

faces

ZUf~sf:0

faces

V(rVU)

DI

1
= ——47‘7p
P

Z P;S;

faces

(1)
(2)

(4)

()

25

pUCoupledFoam - Implicit formulation Il

= Rhie-Chow in continuity equation:

> [- D (VP - TF7)] - $i =0

faces

where the second and third term introduces Rhie-Chow interpolation,
corresponding to the difference between the pressure gradient and the
interpolated gradient.

26

pUCoupledFoam - Coupled equations

= Solution variable of length 4:

Code 2.1: $FOAM_APP/solvers/coupled/pUCoupledFoam/createFields.H

volVector4Field Up

(

I0object

"Up”,
runTime.timeName (),
mesh,
IOobject :: NO_READ,
I0object :: AUTO_WRITE
).
mesh,
dimensionedVector4("zero”, dimless, vector4::zero)

= volVectorField gives storage for solution

boundaries to be used (cyclic, processor, ...

(7)

variable and allows for coupled

)

27

pUCoupledFoam - Coupled equation discretization |

= Discretizing the momentum equation:

> [UU-vVU|-S¢=—> PiSy

faces faces

Code 2.2: SFOAM_APP /solvers/coupled /pUCoupledFoam/UEqn.H

Info<<"UEqn created"<<endl;
fvVectorMatrix UEqn

fvm::div(phi, U)
+ turbulence—>divDevReff (U)

= Note that the implicit gradient of the pressure is handled separately:

Code 2.3: $FOAM_APP /solvers/ /pUC 0am /| ingTerms.H

BlockLduSystem<vector, vector> pInU(fvm::grad(p));

= Implicit gradient (fvm: :grad) new operator.

(8)

oo hwN

pUCoupledFoam - Coupled equation discretization Il

= Continuity equation discretized as:

Z —EVPf -Se+ Z f. S¢ = Z —-D(VPFP:- Sy

faces faces faces

Code 2.4: $FOAM_APP /solvers/coupled/pUCoupledFoam/pEqn.H
fvScalarMatrix pEqn

— fym::laplacian(rUAf, p)

— fvc::div(presSource)

)

= Implicit divergence (fvm::div) new operator

Code 2.5: $FOAM_APP /solvers/ /pUC 0am/ ingTerms.H

BlockLduSystem<vector, scalar> Ulnp(fvm::UDiv(U));

(9)

14
15
16
17
18
19

29

pUCoupledFoam - Coupled equation discretization Il

= Implicit contributions added using new block matrix functions:

Code 2.6: SFOAM_APP /solvers/ led/pUCoupledFoam/pUCoupledFoam.C

U.correctBoundaryConditions (
p.correctBoundaryConditions (

H
)i

= System solved and solution retrieved:

Code 2.7: SFOAM_APP /solvers/ /pUC: 0am/pUCi ‘0am.C

// Solve the block matrix
maxResidual = cmptMax (UpEqn.solve().initialResidual());

// Retrieve solution
UpEqn.retrieveSolution(0, U.internalField()
UpEqn.retrieveSolution(3, p.internalField()

)
)

U.correctBoundaryConditions ();
p.correctBoundaryConditions ();

phi = (fvc::interpolate(U) & mesh.Sf()) + pEqn.flux() + presSource;
include "continuityErrs . H"
p.relax();

turbulence—>correct ();

89
920

30

More information 2.2:

Use of tmp

tmp is used to minimize the computational effort in the code

In general C4++ will create objects in local scope, return a copy and
destroy the remaining object

This is undesired for large objects which gives lots of data transfer
To avoid the local object to be out of scope the tmp container is used

Example in operators returning a discretized equation

Source and more info: http://openfoamwiki.net/index.php/OpenF0AM_guide/

tmp

31

http://openfoamwiki.net/index.php/OpenFOAM_guide/tmp
http://openfoamwiki.net/index.php/OpenFOAM_guide/tmp

Code 2.8: $SFOAM_SRC/finiteVolume/finif /di /gaussDi /gaussDi

template<class Type>
tmp
<
BlockLduSystem<vector, typename innerProduct<vector, Type>::type>
> gaussDivScheme<Type >::fvmUDiv

(
const GeometricField<Type, fvPatchField, volMesh>& vf
) const

FatalErrorIn

("tmp<BlockLduSystem> fvmUDiv\n"

”(\" GeometricField<Type, fvPatchField, volMesh>&"

WA\

) <l\r:|mp|icit div operator defined only for vector.’
<< abort(FatalError);

typedef typename innerProduct<vector, Type>::type DivType;

32

pUCoupledFoam - Benchmarking |

Case 1: Backward facing step
= Structured mesh, 4800 cells
= Comparison of simpleFoam and pUCoupledFoam

= Under-relaxation in pUCoupledFoam: none in pressure, 0.995 in U

Figure : Geometry and velocity solution for back facing step case

Major performance increase, both considering number of iterations and
elapsed time

Convergence per iteration is same for both matrix solvers using
pUCoupledFoam

33

pUCoupledFoam - Benchmarking Il

Residual

10°®

Backward facing step
T ' = p, simpleFoam, CG/BICG, (lam)

= Ux, simpleFoam, CG/BiCG, (lam)

— p. pUCoupledFoam, BiCGStab, (lam)

p. pUCoupledFoam, AMG, (lam)
Ux, pUCoupledFoam, AMG, (lam)

Ux, pUCoupledFoam, BICGStab, (lam)

H i i i
50 100 150 200 250
Iteration

Figure : Performance of simpleFoam compared to pUCoupledFoam.

300

34

pUCoupledFoam - Benchmarking Ill

Backward facing step

Residual

107 b S S - R O

P, simpleFoam, CG/BICG
Ux, simpleFoam, CG/BICG

p. pUCoupledFoam, BICGStab
Ux, pUCoupledFoam, BICGStab
p. pUCoupledFoam, AMG

Ux, puCoupledFoam, AMG

10

Time [s]

Figure : Performance of simpleFoam compared to pUCoupledFoam.

pUCoupledFoam - Benchmarking 1V
Case 2: Munk M3 airfoil in 2D
= Unstructured mesh, 36410 cells
= Comparison of simpleFoam and pUCoupledFoam
= Under-relaxation in pUCoupledFoam: none in pressure, 0.85 in U

Figure : Geometry (zoomed) and pressure solution for Munk M3 airfoil case.

= Major performance increase, both considering number of iterations and
elapsed time

= Better performance for the AMG solver

36

pUCoupledFoam - Benchmarking V

10°

Residual

Comparison for Munk M3 airfoil (2D)

p. simpl . CG/BICG
Ux, simpleFoam, CG/BICG

p. pUCoupledFoam, AMG
Ux, pUCoupledFoam, AMG

p. pUCoupledFoam, BICGStab
Ux, pUCoupledFoam, BICGStab

i i
20 40 60 80 100 120
Iteration

L
140

Figure : Performance of simpleFoam compared to pUCoupledFoam.

160

37

pUCoupledFoam - Benchmarking VI

10°

Residual

Comparison for Munk M3 airfoil (2D)

— p. simpleFoam, CG/BICG
Ux, simpleFoam, CG/BICG
p. pUCoupledFoam, BICGStab
Ux, pUCoupledFoam, BICGStab
p. pUCoupledFoam, AMG
Ux, pUCoupledFoam, AMG

20 40 60 80
Time [s]

100

Figure : Performance of simpleFoam compared to pUCoupledFoam.

38

Pressure and velocity
solver

Block matrix basics

Pressure and velocity solver

pUCoupledFoam - Hands on
Miscallaneous

Python scripting

39

Test cases

Existing tutorial cases for pUCoupledFoam:

= cavity
= backwardFacingStepLaminar

= backwardFacingStepTurbulent

Interesting to compare to simpleFoam:

= Compare the results (pressure, velocity, ...

= Compare the convergence rates

= Compare the running times

. a script is needed!

40

pyBenchmark - a test utility example

Python script to benchmark the coupled solver, abilities:

Read a configuration file to setup all cases

Run cases and extract elapsed time and iteration counts

Generate Matplotlib figures of the performance of the compared cases
Run the separate cases and plots in subprocesses, parallelizing the script

Wrapper around PyFoam

41

pyBenchmark - config |

Based on a config file parsed using ConfigParser:

= General: Listing the different cases to be run. The cases refer to one section
each. Also listing the different plots to be generated.

Code 2.9: $FOAM_APP /Code/benchmark.cfg

[General]

cases: cavity

root: compared_cases

plots: cavity_per_time cavity_per_iteration

AW

= Cases: One section per case. Each case including the path to the template of the

case, whether blockMesh should be run and which solver settings should be
tested.
Code 2.10: $FOAM_APP /Code/benchmark.cfg
[cavity]
solvers: pU_BiCG pU_AMG simpleFoam_BiCG

template: templates/cavity
blockMesh: True

10
11
12
13

42

pyBenchmark - config I

= Solvers: Specifying the information for the solver to be used (under-relaxation,
matrix solvers, etc.)

Code 2.11: $SFOAM_APP /Code/benchmark.cfg

[pU_BicG]

solver: pUCoupledFoam
label: BiCGStab
fields: Up

Up: solver BiCGStab

tolerance le—07
relTol 0.001
maxIter 500
minlter 0

preconditioner Cholesky
underrelax: p None U 0.995 k 0.95 epsilon 0.95

69
70
71
72
73
74
75
76
w
78
79

43

pyBenchmark - config Ill

= Plots: One section for each plot to be generated. Each plot is based on a case
section and a set of solvers compared.

Code 2.12: $FOAM_APP /Code/benchmark.cfg

[cavity_per_time]

type: residuals

xaxis: t linear

xlabel: Time [s]

ylabel: Residual

yaxis: log

residuals: p Ux

title: Comparison for cavity case

labels: variable solver matrixsolver

outputname: plots/cavity_per_time
outputtypes: pdf
cases: cavity cavity cavity

solvers: simpleFoam_BiCG pU_BiCG pU_AMG

44

pyBenchmark - getting and running the script

Checkout via git (username="ofcourse”, password="pUCoupledFoam"):

git clone ssh://ofcourse@foamaday.com/code/ofcourse . ‘

Run the scripts from the example directory:

./runBenchmark.py —h
Usage: Run benchmarking of different solvers
Options:
—h, —help show this help message and exit
—d, —debug Debug from logger
—c CONFIGFILE, —configfile=CONFIGFILE
Config file
—p, —plot Plot according to config file
—r, —run Run the benchmarking cases
—s, —setup Setup the benchmarking cases

45

Miscallaneous

Block matrix basics

Pressure and velocity solver

Miscallaneous
Explicit pressure-velocity coupling

Python scripting

46

Incompressible flow

Acknowledgement for description: Professor Hrvoje Jasak

= For low Mach numbers the density and pressure decouple.
= General Navier-Stokes equations simplify to:
vV-(U)=0 (10)
ou 1
Bt +V.-(UU)-V@VU) = —;Vp (11)
= Non-linearity in the equation (V - (UU)) resolved by iteration
= Continuity equation requiring the flow to be divergence free

= No explicit pressure dependence for the divergence free criterion. Pressure
equation must be derived.

47

Incompressible flow - equation coupling |

= Pressure equation retrieved from the continuity equation.

= Start by a semi-discretized form of the momentum equation:

apUp = H(U) — VP (12)
where:
H(U) =) ayUy (13)
N
and rearranged to:
Up = (ap) 'H(U) - (ap) 'VP (14)

48

Incompressible flow - equation coupling |l

= Eq. (14) is then substituted in to the continuity equation:
V- ((ap)"'VP) =V - ((ap)""H(U)) (15)

= Gives two equations: momentum and pressure equation

= Pressure equation will assure a divergence free flux, and consequently the
face fluxes (F'= S¢- U) must be reconstructed from the solution of the
pressure equation:

F=—(ap)"'St-VP+ (ap) 'St - H(U) (16)

49

SIMPLE

Acknowledgement for description: Professor Hrvoje Jasak

SIMPLE algorithm is primarily used for steady state problems:
® Guess the pressure field
® Solve momentum equation using the guessed pressure field (eq. 14)
©® Compute the pressure based on the predicted velocity field (eq. 15)
© Compute conservative face flux (eq. 16)
@ lterate

In reality, under relaxation must be used to converge the problem

More information 3.1:
Study the source code of simpleFoam:

= Try to recognize the above equations in the code

50

Rhie-Chow correction

= Rhie and Chow introduced a correction in order to be able to use
collocated grids

= This is used also in OpenFOAM, but not in an explicit manner

= The Rhie-Chow like correction will occur as a difference to how the
gradient and Laplacian terms in eq. (15) are discretized.

More information 3.2:
Further explanation on the Rhie-Chow interpolation:
= Computational methods for fluid dynamics, Ferziger and Peric

= Description from an OpenFOAM point of view: Peng-Karrholm:
http://www.tfd.chalmers.se/~hani/kurser/0S_CFD_2007/rhiechow.pdf

51

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/rhiechow.pdf

Miscallaneous

Block matrix basics

Pressure and velocity solver

Miscallaneous
Mesh and matrix formats

Python scripting

52

Matrix format in OpenFOAM |

Matrix:
= Sparse matrix system:
+ No zeros stored
« Only neighbouring cells will give a contribution
= Basic format of the 1duMatrix:

.- diagonal coefficients
« upper coefficients
« lower coefficients (not necessary for symmetric matrices)

More information 3.3:
Study the code for 1duMatrix:
= find the diagonal, upper and lower fields
Lazy Evaluation in lduMatrix:
= Used to avoid calculation and transfer of unnecessary data

= Example lduMatrix:

- Used for returning the upper part of the matrix (upper())
= If upper part does not exist it will be created
- If it already exists it is simply returned

= To achieve lazy evaluation you will see pointers used in OpenFOAM

53

Matrix format in OpenFOAM I
lduMatrix

= Basic square sparse matrix

= Stored in three arrays: the diagonal, the upper and the lower part:

Code 3.1: $FOAM_SRC/foam/matrices/IduMatrix/IduMatrix/lduMatrix.H

Coefficients (not including interfaces) 90
scalarField *lowerPtr_, *diagPtr_, *upperPtr_; 91

= Diagonal elements: numbered as cell numbers

= Off-diagonal elements: are numbered according to faces.

54

Matrix format in OpenFOAM Il

Sparsity of matrix:
A = Aij

= ¢, j: contribution from cell j on cell 4
= 4,4 contribution from cell 7 on cell j
= {> j. upper elements
= ¢ < j lower elements

= ¢ =j diagonal elements

(17)

55

Matrix format in OpenFOAM IV

fvMatrix

= Specialization for finite volume
= Adds source and reference to field

= Helper functions:

Code 3.2: SFOAM_APP /solvers/incompressible/simpleFoam /pEqn.H

volScalarField AU = UEqn().A();

U = UEqn().H()/AU;

UEgn.clear();

phi = fvc::interpolate(U) & mesh.Sf();
adjustPhi(phi, U, p);

~o o s w

56

Miscallaneous

Block matrix basics

Pressure and velocity solver

Miscallaneous

Git
Python scripting

57

Git

= Version control system! - meant to manage changes and different versions
of codes

= Distributed - each directory is a fully functioning repository without
connection to any servers

= Multiple protocols - code can be pushed and pulled over HTTP, FTP, ssh

1Many more version control systems exist, e.g. Subversion and Mercurial

58

Git - Hands on |

Basics:

= Initialize a repository in the current folder:

git init

= Check the current status of the repository:

git status

= Add a file to the revision control:

git add filename

= Now again check the status:

git status

= In order to commit the changes:

git commit —m "Message that will be stored along with the commit”

= List the currents commits using log:

git log

59

Git - Hands on Il

Branches:

= When developing multiple things or when multiple persons are working on
the same code it can be convenient to use branches.

= To create a branch:

git branch name_new_branch

= List the available branches:

git branch ‘

= Switch between branches by:

= Branches can be merged so that developments of different branches are
brought together.

git checkout name_new_branch ‘

60

Git - Hands on 11

Ignore file:
= Avoid including compiled files and binary files in the revision tree.

= Add a .gitignore file. The files and endings listed in the file will be
ignored. Example:

Skip all the files ending with .o (object files)
¥
.0

Skip all dependency files
*.dep

= When looking at the status of the repository the above files will be ignored.

61

Git - Information and software

Some documentation:

= Git - Documentation: http://git-scm.com/doc (entire book available
at: https://github.s3.amazonaws.com/media/progit.en.pdf)

= Code School - Try Git:
http://try.github.io/levels/1/challenges/1

= ... google!
Examples of software:

= Meld - merging tool, can be used to merge different branches and commits
(http://meldmerge.org/)

= Giggle - example of a GUI for git
(https://wiki.gnome.org/Apps/giggle)

62

http://git-scm.com/doc
https://github.s3.amazonaws.com/media/progit.en.pdf
http://try.github.io/levels/1/challenges/1
http://meldmerge.org/
https://wiki.gnome.org/Apps/giggle

Why? What? How?

What is a script language?
= Interpreted language, not usually needed to compile
= Aimed for rapid execution and development
= Examples: Python, Perl, Tcl ...

Why using a script language?
= Automatization of sequences of commands
= Easy to perform data and file preprocessing
= Substitute for more expansive software
= Rapid development

How to run a script language?
= Interactive mode; line-by-line

= Script mode; run a set of commands written in a file

63

Python basics

= Interpreted language, no compilation by the user
= Run in interactive mode or using scripts
= Dynamically typed language: type of a variable set during runtime

nyn
5

foo
bar

= Strongly typed language: change of type requires explicit conversion

>>> foo=1
>>> bar="a"
>>> foobar=footbar
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int’' and 'str’

64

Python syntax |

= Commented lines start with "#"

= Loops and conditional statements controlled by indentation

if 1==1:
print "Yes, 1=1"
print "Will always be written”

= Three important data types:
« Lists:

>>> foo = [1,"a"]

>>> bar = [1, 2, 3, 4]
>>> print foo[0]

1

>>> print bar|[:]

[1, 2, 3, 4]

>>> print bar[1:2]
[2]

>>> print bar[—1]
4

>>> bar.append(4)
>>> print bar
[1, 2, 3, 4, 4]

Python syntax Il

Tuples:

>>> foo = (1,2,3)
>>> print "Test %d use %d of tuple %d” % foo
Test 1 use 2 of tuple 3

Dictionaries:

>>> test = {}

>>> test['value ']=4

>>> test['name’']="test”

>>> print test

{'name’: ’'test’', 'value’': 4}

66

Python modules |

Auxiliary code can be included from modules. Examples:

os: Operating system interface. Example:

import os

Run a command
os.system("run command”)

shutil: High-level file operations

import shutil

Copy some files
shutil.copytree('template’, runfolder ')

67

Case study: Running a set of simulations |

= Multiple OpenFOAM runs with different parameters
= Example: edits in fvSolution:

» Make a copy of your dictionary.
« Insert keywords for the entries to be changed
« Let the script change the keywords and run the application

#1/ usr /bin/python

import os
import shutil

presweeps = [2,4]
cycles = [W','V']

for p in presweeps:
for ¢ in cycles:
os.system('rm —rf runfolder’)
shutil.copytree('template’, 'runfolder"’)

os.chdir('runfolder")

os.system("sed —i 's/PRESWEEPS/%d/' system/fvSolution "%p)

os.system("sed —i 's/CYCLETYPE/%s/' system/fvSolution"%c)
os.system("mpirun —np 8 steadyNavalFoam —parallel > log.steadyNavalFoam")

os.chdir('..")

68

Case study: Extract convergence results |

= Run cases as in previous example and additionally extract some running
time

#!/usr/bin/python

import os
import shutil

presveeps = [2,4]
cycles = [W', 'V’

for p in presweeps:
for ¢ in cycles:
os.system('rm —rf runfolder’)
shutil.copytree('template’, 'runfolder’)

os.chdir('runfolder’)
os.system("sed —i 's/PRESWEEPS/%d/’ system/fvSolution %p)
os.system("sed —i 's/CYCLETYPE/%s/' system/fvSolution %c)
os.system("mpirun —np 8 steadyNavalFoam —parallel > log.steadyNavalFoam")
£ = open('log.steadyNavalFoam', 'r"')
for line in f:
linsplit = line.rsplit()
if len(linsplit>7):
if 1s[0]=="ExecutionTime":
exectime = float(1s[2])
clocktime = float(1s[6])

f.close()
print "Cycle=%s, presweeps=d, execution time=%f, clocktime=%f"%(c,p,exectime,clocktime)
os.chdir (..’

Case study: Setting up large cases |

#1/ usr/bin/python

Klas Jareteg

2013—08—30

Desc:

Setting up the a case with a box

import os,sys,shutil

opj = os.path.join

from optparse import OptionParser
import subprocess

MESH = ' /home/klas /OpenFOAM/ klas —16—ext—git /run/krjPbe /2D/meshes /box/coarse /moderator . blockMesh '
FIELDS = '/home/klas /OpenFOAM/ klas —16—ext—git /run/krjPbe /2D/meshes/box/coarse /0"

OPTIONS
parser = OptionParser ()
parser.add_option('—c”, "—clean”, dest="clean”,
action="store_true”, default=False)
parser.add_option("—s"”, "—setup”, dest="setup”,

action="store_true”, default=False)
(options, args) = parser.parse_args()

CLEAN UP

if options.clean:
os.system('rm —fr 0')
os.system('rm —fr [0—9]*")

70

Case

study: Setting up large cases Il

SETUP

options.setup:
shutil.copy (MESH, 'constant/polyMesh/blockMeshDict ")

p = subprocess.Popen (['blockMesh'],\
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, error = p.communicate ()

if error:
print bcolors.FAIL + "ERROR: blockMesh failing” + bcolors.ENDC
print bcolors.ENDC + "ERROR MESSAGE: %s'%error + bcolors.ENDC

try:
shutil.rmtree('0")

except OSError:
pass

shutil.copytree(FIELDS, '0')

71

Plotting with Python - matplotlib

Test of matplotlib

4
#!/usr/bin /python 35
import matplotlib.pyplot as plt 3.0
import numpy as np
2.5
x = np.linspace(0,1)
y = np.linspace(0,2) > 2.0
y = y**2
15
plt.figure()
plt.plot(x,y) 10
plt.title('Test of matplotlib')
plt.xlabel('x') 05
plt.ylabel('y')
plt.savefig(' Test.pdf’, format='pdf") 8.0 0.2 04 08 0.8 10

Figure : Example plot from matplotlib

More on plotting

= matplotlib (http://matplotlib.org/):
- Plotting package with MATLAB equivalent syntax
« Primarily 2D plots
= MayaVi2 (http://code.enthought.com/projects/mayavi/):

» Plots 3D
= Works with VTK, possible complement to ParaView

73

http://matplotlib.org/
http://code.enthought.com/projects/mayavi/

Read more

Python introduction material:
= Python tutorial: http://docs.python.org/2/tutorial/
Python and high performance computing:

= http://www.c3se.chalmers.se/index.php/Python_and_High_
Performance_Computing

74

http://docs.python.org/2/tutorial/
http://www.c3se.chalmers.se/index.php/Python_and_High_Performance_Computing
http://www.c3se.chalmers.se/index.php/Python_and_High_Performance_Computing

PyFoam

From documentation:

“This library was developed to control OpenFOAM-simulations with a decent
(sorry Perl) scripting language to do parameter-variations and results analysis.
It is an ongoing effort. | add features on an As-Needed basis but am open to
suggestions.”

Abilities:
= Parameter variation
= Manipulation directories
= Setting fields and boundary conditions

= Generate results and plots

http://openfoamwiki.net/index.php/Contrib_PyFoam

75

http://openfoamwiki.net/index.php/Contrib_PyFoam

More modules

= logging: Flexible logging which could be used also for modules.

= optparse: Parser for command line options. Example from

http://docs.python.org/2/library/optparse.html:

from optparse import OptionParser

parser = OptionParser ()

parser.add_option("—f", "—file”, dest="filename",

help="write report to FILE", metavar="FILE")
parser.add_option("—q", "—quiet”,

action="store_false", dest="verbose", default=True,

help="don't print status messages to stdout”)

(options, args) = parser.parse_args ()

= numpy: Scientific computing with Python. Information
http://wiki.scipy.org/Tentative_NumPy_Tutorial
« Array and matrix operations
« Linear algebra

76

http://docs.python.org/2/library/optparse.html
http://wiki.scipy.org/Tentative_NumPy_Tutorial

Case study: Meshing with Python |

= Library of objects and functions to read a config file and produce a set of
meshes and fields

)OO0

VOO0
)O0O0

=l
o=

5 - '
|
% = 2
A

S S

L5
i
| s

:

Case study: Meshing with Python Il

Needed for simulation:
= All meshes (16x4+1+1=66)
= All fields (=2400)
= All coupled patches
Reasons to automatize:
= Changes in mesh configurations (mesh independence tests etc.)
= Change in geometrical configurations

= Change in field initial and boundary conditions

78

Case study: Meshing with Python Il

Meshes and fields produced from a configuration file read by Python
application:

[general]
dimensions: 3
convert: 0.01
time: 0

[GeneralAssembly]

name: Generalized assembly mesh

symmetry: 4

nx: 7

lattice: guid pin0 guid pinO
pin0 pin0 pin0 pin0
guid pin0 guid pin0
pin0 pin0 pin0 pin0

dphi: 8
pitch: 1.25
H: 1.0

dz:
gz: 1
ref: 0.0
ref_dz: 1.0
ref_gz: 0

.0
.0

moderatorfields: T p K k epsilon U G
modinnfields: T p K k epsilon U G
neutronicsmultiples: Phi Psi

fuefields: T rho K h p

clafields: T rho K h p

gapfields: T p_gap K k_gap epsilon_gap U_gap G

[pino]

79

Case study: Meshing with Python

type: FuelPin
fue_ro: 0.41
fue_ri: 0.12
fue_dr: 4

Vv

80

Case study: Meshing with Python V

blockMeshDict

convertToMeters 0.010000;

vertices

(
(0.000000 0.000000 0.000000)
(0.070711 0.070711 0.000000)
(0.055557 0.083147 0.000000)

(4.375000 4.167612 0.000000)

(4.375000 4.167612 1.000000)

(1000.000000 1000.000000 1000.000000)
):

blocks
(
hex (01225677) (111) simpleGrading (1.000000 1.000000 1.000000)
hex (02101057 1313) (111) simpleGrading (1.000000 1.000000 1.000000)
hex (0 10 16 16 5 13 19 19) (1 1 1) simpleGrading (1.000000 1.000000 1.000000)
hex (0 16 22 22 5 19 25 25) (1 1 1) simpleGrading (1.000000 1.000000 1.000000)
hex (0 166 172 172 5 169 175 175) (1 1 1) simpleGrading (1.000000 1.000000 1.000000)
hex (0 172 178 178 5 175 181 181) (1 1 1) simpleGrading (1.000000 1.000000 1.000000)
hex (0 178 184 184 5 181 187 187) (1 1 1) simpleGrading (1.000000 1.000000 1.000000)

81

Case study: Meshing with Python VI

Summary:
= Using blockMesh for structured meshes with many regions
= Need for a script in order to be able to reproduce fast and easy

= Object oriented library written in Python

82

	Block matrix basics
	General idea
	Implementation in foam-extend-3
	Templates in C++ and OpenFOAM

	Pressure and velocity solver
	pUCoupledFoam - Introduction
	pUCoupledFoam - Hands on

	Miscallaneous
	Explicit pressure-velocity coupling
	Mesh and matrix formats
	Git

	Python scripting

