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Learning outcomes

The reader will learn:

How to use it

• how the tutorial case is set up before running the chtMultiRegionFoam solver in FOAM-
extend-4.0 (Section 2.2).

• how to visualize the chtMultiRegionFoam cases in FOAM-extend-4.0 by paraView (Section
5.1).

The theory of it

• the code structure of the chtMultiRegionFoam solver (Section 2.1 and 3.1).

• the theory of the PIMPLE algorithm (Section 3.2).

• the equations of the conjugate heat transfer in fluid and solid regions (Section 3.3-3.4).

• the boundary condition coupling algorithm for multiple regions/physics (Section 3.5).

How it is implemented

• how to implement multiple time steps for multiple regions in chtMultiRegionFoam solver by
two different approaches (Section 4.1).

• how to test the implemented solvers (Section 4.2.2 and Section 4.3.2).

How to modify it

• how to modify the PIMPLE loop and other corresponding files to introduce an extra time step
for the solid regions (Section 4.2-4.3).

• how to modify the current temperature-coupled boundary condition into a new pressure-
coupled boundary condition (Chapter 6).
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Chapter 1

Introduction

This work is to demonstrate the structure of the chtMultiRegionFoam solver in FOAM-extend-4.0
and to implement modifications upon it. The installation instruction of FOAM-extend-4.0 can be
found on the website [1]. In this report, the structure of the multi-region solver chtMultiRegionFoam
and the boundary coupling methods between multiple regions will be illustrated.

The solver modification part in this report is regarded as an initial step to develop a wave-
structure-soil (WSS) interaction solver. The WSS multi-physics solver solves the interaction between
wave, structure and soil domains1 , as shown in Figures 1.1 and 1.2 (with and without the existence
of a structure). Wave pressure imposes directly on the soil and on the structure, triggering stresses
and displacements; and the structure stresses impose on the soil which is an indirect effect from
the wave pressure. The interaction between the multiple physical domains is achieved by boundary
coupling at the interfaces. The boundary coupling method will be explained in section 3.5.

The development of the WSS solver is based on chtMultiRegionFoam since they have the fol-
lowing features in common:

• The chtMultiRegionFoam solver is a multi-regional (multi-physics) solver for the conjugate
heat transfer (CHT) between fluid and solid regions. Similar to this, the wave-structure-soil
interaction solver will also solve the fluid (wave) and solid (structure and soil) regions. A
difference is that in WSS, the wave is solved using a solver for incompressible two-phase flows
containing a free surface, while in conjugate heat transfer the air is solved as a compressible
one-phase fluid.

• Anther common part between conjugate heat transfer and wave-structure-soil interaction is
that the displacement and deformation of the solid regions can be negligible. For conjugate
heat transfer, it is straightforward of such assumption; For wave-structure-soil interaction, it
is assumed that the displacement and deformation of the solids (structure and soil) are minor
compared to the wave length, thus they are negligible and the mesh will not be deformed. This
common part provides the possibility of using different time steps and different cell sizes for
the fluid and solid regions respectively.

• The chtMultiRegionFoam is a transient solver that performs the calculation of the CHT during
each time step until the convergence is achieved, while solving the WSS interaction is a same
process.

To implement a multi-physics solver, it is worthwhile to consider that different properties may
have various demands for convergence and stability. In the engineering practice, for example, for
solving the interaction between fluid (wave) and solid (soil) regions, the time step and mesh size for
the solid region(s) can be much larger than what is needed for solving fluid region(s).

1Note that the term domain is different from the term region in this report: a domain relates to a physics that
contains multiple region(s) with the same physical property. For example, in chtMultiRegionFoam, there are only
two domains (fluid and solid), while there are multiple regions (such as the topAir, bottomAir) for each domain.
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CHAPTER 1. INTRODUCTION 5

Figure 1.1: A demonstration of the fluid wave-soil interaction.

Figure 1.2: A demonstration of the wave-structure-soil interaction.

For solving the unsteady fluid regions in OpenFOAM, to achieve temporal accuracy and numerical
stability, a Courant number less than 1 is required [2]. The Courant number is defined for one cell
as

Co =
δt|U |
δx

(1.1)

where δt is the time step, |U | is the magnitude of the velocity through that cell and δx is the length
scale of the cell in the direction of the velocity. Therefore, the setting of the time step δt should be
small enough to satisfy the Courant number requisition. What is more, for solving the free surface
or turbulent problems, the cell size needs to be small enough to achieve more accurate results. On
the contrary, in solid mechanics, the mesh size and time step can be relatively larger compared to
solving the fluids. Therefore, for some multi-physics problems, it is not efficient to calculate the
multiple regions with the same mesh size and time step.

The chtMultiRegionFoam solver has interface mesh mapping that allows non-conformal meshes
and it has access to interface coupling functionality. However, the fluid and solid regions are solved
with the same time step in a loop, which needs to be modified to our case. To achieve multiple time
steps for each physical domain based on the chtMultiRegionFoam solver, the following modifications
need to be implemented:

• First, a different time step for the solid regions is to be introduced.

• Then the multi-region PIMPLE loop is to be modified to solve different domains in various
time steps.

• Two approaches to implement the multiple time steps are to be demonstrated: one approach
allows the adjustment of the time step while the other does not.

• Info statements for debugging purposes are to be added into the codes.

• Case studies are to be conducted to verify the new solvers.
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In addition to the implementation of the multiple time steps, a new boundary condition called
solidWallMixedPressureCoupled which applies a pressure mapping between the fluid and solid
regions for WSS interaction is developed. The boundary condition is tested but not verified at this
stage.

To finalize the WSS solver, further work needs to be performed, such as the modification of the
solid solver and fluid solver. Due to the time limitation of this project, these modifications will not
be performed at this stage. Future work is discussed in the last chapter.



Chapter 2

The chtMultiRegionFoam Solver

The chtMultiRegionFoam solver is a multi-region (multi-physics) solver that solves transient con-
jugate heat transfer between solid regions and fluid regions.

2.1 File structure of the solver

Since the chtMultiRegionFoam solver deals with multiple domains in different physical properties,
the file structure of the solver is different from the single-physics solvers. The file structure of the
chtMultiRegionFoam solver is shown as the tree below:

|----- chtMultiRegionFoam.C

|----- derivedFvPatchFields

| |----- solidWallHeatFluxTemperature

| | |----- solidWallHeatFluxTemperatureFvPatchScalarField.C

| | |----- solidWallHeatFluxTemperatureFvPatchScalarField.H

| |----- solidWallMixedTemperatureCoupled

| |----- solidWallMixedTemperatureCoupledFvPatchScalarField.C

| |----- solidWallMixedTemperatureCoupledFvPatchScalarField.H

|----- fluid

| |----- compressibleContinuityErrors.H

| |----- compressibleCourantNo.C

| |----- compressibleCourantNo.H

| |----- compressibleMultiRegionCourantNo.H

| |----- createFluidFields.H

| |----- createFluidMeshes.H

| |----- initContinuityErrs.H

| |----- readFluidMultiRegionPIMPLEControls.H

| |----- readFluidMultiRegionPISOControls.H

| |----- setRegionFluidFields.H

| |----- solveFluid.H

| |----- storeOldFluidFields.H

| |----- UEqn.H

| |----- hEqn.H

| |----- pEqn.H

|----- include

| |----- setInitialMultiRegionDeltaT.H

| |----- setMultiRegionDeltaT.H

|----- Make

| |----- files

| |----- options

7
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|----- readPIMPLEControls.H

|----- regionProperties

| |----- regionProperties.C

| |----- regionProperties.H

|----- solid

|----- createSolidFields.H

|----- createSolidMeshes.H

|----- readSolidMultiRegionPIMPLEControls.H

|----- readSolidMultiRegionPISOControls.H

|----- readSolidTimeControls.H

|----- setRegionSolidFields.H

|----- solidRegionDiffNo.C

|----- solidRegionDiffNo.H

|----- solidRegionDiffusionNo.H

|----- solveSolid.H

where

• chtMultiRegionFoam.C, the main source file, calls the needed files and solvers.

• regionProperties/, the subdirectory contains files that read fluid and solid region names set
in the constant/regionProperties of the case files.

• fluid/, the subdirectory contains source files that solve equations for continuity momentum,
enthalpy, pressure for the fluid regions.

• solid/, the subdirectory contains source files for solving heat conduction equation in solid
regions.

• derivedFvPatchFields/, the subdirectory contains files that set new boundary conditions for
the coupling between solid and fluid domains.

• include/, the subdirectory contains files to set/reset the multi-region time step.

• Make/, the subdirectory contains files for compilation purpose.

An insight of the code structure of the chtMultiRegionFoam solver will be presented in Chapter
3.

2.2 Case setup

A typical OpenFOAM case directory consists of the following three folders:

• 0

• constant

• system

This general case structure is also kept for multi-regional cases, but in each of those directories there
is one additional directory for each region. An example below is taken from the tutorial case in
$FOAM_TUTORIALS/heatTransfer/chtMultiRegionFoam/multiRegionHeater in FOAM-extend-4.0.
The structure of the multi-regional case before running the solver is shown as below, where the the
region sub-directories for the time directories are created by the Allrun script.

|--- 0

|--- cellToRegion

|--- cp

|--- epsilon
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|--- k

|--- Kappa

|--- p

| --- rho

| --- T

| --- U

|--- 0.001

| --- bottomAir

| |--- cellToRegion

| |--- cp

| |--- epsilon

| |--- k

| |--- Kappa

| |--- p

| |--- rho

| |--- T

| |--- U

| |--- polyMesh

| | --- ...

| --- heater

| |--- cellToRegion

| |--- cp

| |--- epsilon

| |--- k

| |--- Kappa

| |--- p

| |--- rho

| |--- T

| |--- U

| |--- polyMesh

| | ---...

| --- leftSolid

| |--- cellToRegion

| |--- cp

| |--- epsilon

| |--- k

| |--- Kappa

| |--- p

| |--- rho

| |--- T

| |--- U

| |--- polyMesh

| | --- ...

| --- rightSolid

| |--- cellToRegion

| |--- cp

| |--- epsilon

| |--- k

| |--- Kappa

| |--- p

| |--- rho

| |--- T

| |--- U

| |--- polyMesh
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| | --- ...

| --- topAir

|--- cellToRegion

|--- cp

|--- epsilon

|--- k

|--- Kappa

|--- p

|--- rho

|--- T

|--- U

|--- polyMesh

| --- ...

|--- constant

| --- polyMesh

| |--- blockMeshDict

| |--- ...

| --- bottomAir

| |--- g

| |--- RASProperties

| |--- thermophysicalProperties

| |--- turbulenceProperties

| --- topAir

|--- g -> ../bottomAir/g

|--- RASProperties

|--- thermophysicalProperties -> ../bottomAir/thermophysicalProperties

|--- turbulenceProperties -> ../bottomAir/turbulenceProperties

| --- regionProperties

| --- cellToRegion

|--- system

| --- controlDict

| --- fvSchemes

| --- fvSolution

| --- bottomAir

| |--- changeDictionaryDict

| |--- fvSchemes

| |--- fvSolution

| --- heater

| |--- changeDictionaryDict

| |--- fvSchemes

| |--- fvSolution

| --- leftSolid

| |--- changeDictionaryDict

| |--- fvSchemes -> ../heater/fvSchemes

| |--- fvSolution -> ../heater/fvSolution

| --- rightSolid

| |--- changeDictionaryDict

| |--- fvSchemes -> ../heater/fvSchemes

| |--- fvSolution -> ../heater/fvSolution

| --- topAir

|--- changeDictionaryDict

|--- fvSchemes -> ../bottomAir/fvSchemes

|--- fvSolution -> ../bottomAir/fvSolution

|--- Allrun
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In the tree, the symbol -> denotes the file is linked to another file.

• In the 0/ directory, boundary condition files for all desired fields have to be created by the
user. This directory is only needed when setting up the tutorial case which is not needed by
the solver.

• In the 0.001/ directory, the files are created by the Allrun script. Variables and the mesh files
in this directory are actually needed by the solver. The tutorial case is started to be solved
from the time step of 0.001.

• In the constant/ directory, polyMesh/ defines the initial geometry for the full domain, and it
is only needed when setting up the tutorial case. It is important to notice that, in this tutorial,
the region meshes are created by first making a mesh for the entire domain, then splitting it
up into regions using setSet, setsToZones, and splitMeshRegions. After that the mesh in
constant/polyMesh/ is not used anymore.

The file regionProperties specifies region names and assigns the physical phase to each
region: either fluid or solid.

For the fluid regions (bottomAir and topAir), there is a thermophysicalProperties file con-
taining the properties of the fluid, and also RASProperties and turbulenceProperties files,
which provide settings and parameters of the turbulent model.

• In the system directory, the changeDictionaryDict file in each folder contains details about
the necessary fields in the region. The OpenFOAM application changeDictionary will look up
for the dictionary files in the system/regionName folders and then create initial, boundary and
coupling conditions for all fields existing in 0 directory for all regions. The changeDictionaryDict
file is specially needed for setting up this tutorial case and it is not required for running the
solver.

There should be one fvSolution file for each region, for example system/bottomAir/fvSolution,
since each region has its own settings for the solution in that region. However, a dummy file
system/fvSolution is also required (the reason will be explained in the PIMPLE loop in
Section 3.2). The same settings have to be done in both files.

The fvSchemes for each region, for example, system/bottomAir/fvSchemes is required but
the system/fvSchemes file can actually be removed.

• The ./Allrun script for the tutorial case multiRegionHeater calls a series of additional
functions before running the solver. Its main part is shown below:
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#!/bin/bash

# Source tutorial run functions

. $WM_PROJECT_DIR/bin/tools/RunFunctions

#Pre-processing the tutorial case

rm -rf constant/polyMesh/sets

runApplicationAndReportOnError blockMesh

runApplicationAndReportOnError setSet -batch makeCellSets.setSet

rm constant/polyMesh/sets/*_old

runApplicationAndReportOnError setsToZones -noFlipMap

runApplicationAndReportOnError splitMeshRegions -cellZones

cp 0/* 0.001/bottomAir/

cp 0/* 0.001/heater/

cp 0/* 0.001/leftSolid/

cp 0/* 0.001/rightSolid/

cp 0/* 0.001/topAir/

runApplication changeDictionary -region bottomAir

mv log.changeDictionary log.changeDictionary_bottomAir

runApplication changeDictionary -region topAir

mv log.changeDictionary log.changeDictionary_topAir

runApplication changeDictionary -region heater

mv log.changeDictionary log.changeDictionary_heater

runApplication changeDictionary -region leftSolid

mv log.changeDictionary log.changeDictionary_leftSolid

runApplication changeDictionary -region rightSolid

mv log.changeDictionary log.changeDictionary_rightSolid

#Running the solver

runApplicationAndReportOnError chtMultiRegionFoam

It is seen that blockMesh, setSet, setsToZones, splitMeshRegions and changeDictionary

were run to finish the case preparation before running the chtMultiRegionFoam solver. The
purposes of each step is explained as below:

blockMesh: creates a mesh and defines the geometry for the full domain.

setSet: uses the makeCellSets.setSet in the top-level case directory to create and define the
cellSets.

setsToZones: converts the cellSets to the the cellZones that define the regions.

splitMeshRegions: splits the mesh into multiple regions, according to the cellZones.

changeDictionary: defines initial, boundary and coupling conditions for all fields of all re-
gions.

The runApplicationAndReportOnError is defined in the RunFunctions in the header of the
Allrun script to run the applications and to report the errors. It is a part of the test-loop, so that
the test loop can run the tutorial and see if it works or not.

The case setup for chtMultiRegionFoam is not a main tutorial in this project. A detailed case
setup for chtMultiRegionFoam has been demonstrated in the report of Singal [5]. It is worthwhile
to mention that the case setting of multiRegionHeater in OpenFOAM-4.0x differs from the setting
in FOAM-extend-4.0.



Chapter 3

A walk through the solver

The general steps of the chtMultiRegionFoam solver are [6]:

• Define multiple meshes, one for each ‘region’

• Create field variables on each mesh

• Solve separate governing equations on each mesh

• Apply a multi-region coupling at the boundary interface

• Iterate until the coupled solution is fully converged

In this chapter, we will walk through the solvers in the chtMultiRegionFoam including the main
source file chtMultiRegionFoam.C, the fluid solver, the solid solver and the derived coupling bound-
ary conditions.

3.1 The main file

We had an overview of multi-physics problems and the case setup of the chtMultiRegionFoam solver.
Now, from a developer’s perspective, how is the chtMultiRegionFoam solver constructed?

First, let us get into the top-level directory and look into the main source file, chtMultiRegionFoam.C.
Open a new terminal window and source FOAM-extend-4.0 by:

f40NR

or by other commands such as fe40, depending on the alias set by the user for initialising
FOAM-extend-4.0. Then,

cd $FOAM_SOLVERS/heatTransfer/chtMultiRegionFoam

vi chtMultiRegionFoam.C

The source file of chtMultiRegionFoam.C, shown in the box below, provides an overview of how
the solver is constructed:

13
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\*---------------------------------------------------------------------------*/

#include "fvCFD.H"

#include "basicPsiThermo.H"

#include "turbulenceModel.H"

#include "fixedGradientFvPatchFields.H"

#include "regionProperties.H"

#include "compressibleCourantNo.H"

#include "solidRegionDiffNo.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

regionProperties rp(runTime);

#include "createFluidMeshes.H"

#include "createSolidMeshes.H"

#include "createFluidFields.H"

#include "createSolidFields.H"

#include "initContinuityErrs.H"

#include "readTimeControls.H"

#include "readSolidTimeControls.H"

#include "compressibleMultiRegionCourantNo.H"

#include "solidRegionDiffusionNo.H"

#include "setInitialMultiRegionDeltaT.H"

while (runTime.run())

{

#include "readTimeControls.H"

#include "readSolidTimeControls.H"

#include "readPIMPLEControls.H"

#include "compressibleMultiRegionCourantNo.H"

#include "solidRegionDiffusionNo.H"

#include "setMultiRegionDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

if (nOuterCorr != 1)

{

forAll(fluidRegions, i)

{

#include "setRegionFluidFields.H"

#include "storeOldFluidFields.H"

}

}
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// --- PIMPLE loop

for (int oCorr=0; oCorr<nOuterCorr; oCorr++)

{

forAll(fluidRegions, i)

{

Info<< "\nSolving for fluid region "

<< fluidRegions[i].name() << endl;

#include "setRegionFluidFields.H"

#include "readFluidMultiRegionPIMPLEControls.H"

#include "solveFluid.H"

}

forAll(solidRegions, i)

{

Info<< "\nSolving for solid region "

<< solidRegions[i].name() << endl;

#include "setRegionSolidFields.H"

#include "readSolidMultiRegionPIMPLEControls.H"

#include "solveSolid.H"

}

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info << "End\n" << endl;

return 0;

}

// ************************************************************************* //

Type :q! to exit the opened text in the terminal.
The purpose of each included header file 1 can be seen in their descriptions at the top of that

file. The paths of the files can be found by the command (where <filename> is the name of that
particular file):

find $WM_PROJECT_DIR -name <filename>

For example, to look for the path of the turbulenceModel.H included in the main source file,
type the following command:

find $WM_PROJECT_DIR -name turbulenceModel.H

Then, four paths are shown up as below:

$FOAM_SRC/turbulenceModels/incompressible/turbulenceModel/lnInclude/turbulenceModel.H

$FOAM_SRC/turbulenceModels/incompressible/turbulenceModel/turbulenceModel.H

$FOAM_SRC/turbulenceModels/compressible/turbulenceModel/lnInclude/turbulenceModel.H

1Header file: the *.H files included before the main function
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$FOAM_SRC/turbulenceModels/compressible/turbulenceModel/turbulenceModel.H

The lines containing ‘lnInclude’ are just linking to the other file with a similar path. We can
see from above that in the OpenFOAM library, there are turbulenceModel.H files for both incom-
pressible and compressible models according to their paths. To check which turbulenceModel.H is
included, we can take a look at the Make/options file. Exit the opened text in the terminal by :q!,
and type

vi ./Make/options

It is shown in the last line of EXE_INC in the text that the the following directory is included:

-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel

We understand that the turbulenceModel.H file of the compressible model is included. Open the
file by

vi $FOAM_SRC/turbulenceModels/compressible/turbulenceModel/turbulenceModel.H

The description of the file shows that the purpose of the turbulenceModel.H is to declare
‘abstract base class for compressible turbulence models (RAS, LES and laminar)’. It includes the
source files of turbulenceModel.C.

Above is an example of how to look for the information of each included file. The purposes/de-
scriptions of the other included files in the chtMultiRegionFoam.C are provided as follows:

fvCFD.H – A standard file for finite volume method.

basicPsiThermo.H – To declare basic thermodynamic properties based on compressibility.

turbulenceModel.H – To declare and define abstract base class for compressible turbulence mod-
els (RAS, LES and laminar).

fixedGradientFvPatchFields.H – To make patch type as field type and declare the primitive
field types, such as scalar, tensor, vector, etc.

regionProperties.H – To declare simple class to hold region information for coupled region
simulations.

compressibleCourantNo.H – To calculate and output the mean and maximum Courant Num-
bers for the fluid regions.

solidRegionDiffNo.H –To calculate and output the mean and maximum Diffusion Numbers for
the solid regions.

In the main() function, the following files are included before running the loop. These files are
not proper header files; they only contain pieces of code that are inserted at each location.

setRootCase.H – To check the folder structure of the case.

createTime.H – To check runtime according to the controlDict and initiates time variables.

createFluidMeshes.H – To create fluid mesh for region(s).

createSolidMeshes.H – To create solid mesh for region(s).

createFluidFields.H – To create the fields for the fluid region: Reading fluid mesh thermo-
physical properties rho, kappa, U, phi, g, turbulence, DpDtFluid.
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createSolidFields.H – To create the fields for the solid region: Reading solid mesh thermo-
physical properties rho, cp, kappa, T.

initContinuityErrs.H – To declare and initialise the cumulative continuity error.

createTimeControls.H – To read the control parameters used by setDeltaT.

readSolidTimeControls.H – To read the control parameters diffusion number (DiNum) used in
the solid, lookup the ’maxDi’ or use the default value.

compressibleMultiRegionCourantNo.H – To calculate and output the mean and maximum
Courant Numbers for the fluid regions.

solidRegionDiffusionNo.H – To calculate the DiNum for all the solid regions.

setInitialMultiRegionDeltaT.H – To set the initial timestep for the chtMultiRegionFoam
solver.

Then in the while (runTime.run()) loop, initialising files are executed and some of them are
executed again. Purposes of the files are described as follows:

readTimeControls.H – To read the control parameters used by setDeltaT.

readSolidTimeControls.H – To read the control parameters used in the solid.

readPIMPLEControls.H – To read the nOuterCorrectors in fvSolution(this parameter only de-
fined for the fluid regions).

compressibleMultiRegionCourantNo.H – To calculate CoNum for fluid regions.

solidRegionDiffusionNo.H – To calculate DiNum for solid regions.

setMultiRegionDeltaT.H – To reset the time step to maintain a constant maximum courant
number(CoNum) and diffusion Numbers(DiNum). The time step is reset according to the DiNum
and CoNum calculated from compressibleMultiRegionCourantNo.H and solidRegionDiffusionNo.H.

3.2 The PIMPLE loop

The chtMultiRegionFoam solver uses the PIMPLE algorithm. PIMPLE algorithm is a combina-
tion of the pressure-implicit split-operator (PISO) and the semi-implicit method for pressure-linked
equations (SIMPLE) algorithms. Most fluid dynamics solver applications in OpenFOAM use either
the PISO, SIMPLE or the combined PIMPLE algorithm. These algorithms are iterative procedures
for coupling equations for momentum and mass conservation, PISO and PIMPLE being used for
transient problems and SIMPLE for steady-state. More explanation can be seen in section 4.5 of
the OpenFOAM user guide [2].

The PIMPLE looping is controlled by the following input parameters:

• nCorrectors: it sets the number of times the algorithm solves the pressure equation and
momentum corrector in each step; typically set to 2 or 3.

• nNonOrthogonalCorrectors: it specifies repeated solutions of the pressure equation and is

used to update the explicit non-orthogonal correction of the Laplacian term ∇· (1/A)
∇P , described

in section 4.4.4 of the OpenFOAM user guide [2]; typically set to 0 (particularly for steady-
state) or 1.
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• nOuterCorrectors: it enables looping over the entire system of equations within on time step,
representing the total number of times the system is solved; must be larger than or equal to 1
and is typically set to 1, replicating the PISO algorithm.

• momentumPredictor: the looping algorithms optionally begins each step by solving the mo-
mentum equation: the so-called momentum predictor. This parameter is a switch that controls
solving of the momentum predictor; typically set to off for some flows, including low Reynolds
number and multiphase.

In the chtMultiRegionFoam solver, the PIMPLE looping control parameters are specified in the
files of:

./fluid/readFluidMultiRegionPIMPLEControls.H and ./readPIMPLEcontrols.H.
The readFluidMultiRegionPIMPLEControls.H file declares the following PIMPLE parameters:

const dictionary& pimple = mesh.solutionDict().subDict("PIMPLE");

int nCorr(readInt(pimple.lookup("nCorrectors")));

int nNonOrthCorr =

pimple.lookupOrDefault<int>("nNonOrthogonalCorrectors", 0);

bool momentumPredictor =

pimple.lookupOrDefault<Switch>("momentumPredictor", true);

In readPIMPLEcontrols.H, nOuterCorrectors is declared:

fvSolution solutionDict(runTime);

const dictionary& pimple = solutionDict.subDict("PIMPLE");

int nOuterCorr(readInt(pimple.lookup("nOuterCorrectors")));

Regarding the case settings, the PIMPLE control parameters are set both in the
system/fvSolution and system/fluidRegionName/fvSolution, where fluidRegionName stands
for the directory named by the fluid region(s). These two files set the same parameters for the
PIMPLE loop, which means that there are (at least) two entries of the PIMPLE settings. The
redundant setting in the file system/fvSolution may due to a lack of tidying up the code of the
solver. A safe and simple way of fixing the setting is to give the same settings in both files.

An example of the PIMPLE loop setting in
chtMultiRegionFoam/multiRegionHeater/system/topAir/fvSolution in the tutorial case of FOAM-
extend-4.0 is presented in the box below:

PIMPLE

{

momentumPredictor off;

nOuterCorrectors 1;

nCorrectors 2;

nNonOrthogonalCorrectors 1;

pRefCell 0;

pRefValue 0;

}

Back to the main source file chtMultiRegionFoam.C, before the PIMPLE loop and after the
runTime++:



CHAPTER 3. A WALK THROUGH THE SOLVER 19

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

if (nOuterCorr != 1)

{

forAll(fluidRegions, i)

{

#include "setRegionFluidFields.H"

#include "storeOldFluidFields.H"

}

}

The #include "setRegionFluidFields.H" is to set the mesh and the field values that are used
in the calculation for the next time step. If nOuterCorr != 1, the same time step of the fluid
domain will be calculated more than once; therefore, #include "storeOldFluidFields.H" is to
retrieve the pressure and rho from the previous time step.

After that, the PIMPLE loop part is shown in the box below:

// --- PIMPLE loop

for (int oCorr=0; oCorr<nOuterCorr; oCorr++)

{

forAll(fluidRegions, i)

{

Info<< "\nSolving for fluid region "

<< fluidRegions[i].name() << endl;

#include "setRegionFluidFields.H"

#include "readFluidMultiRegionPIMPLEControls.H"

#include "solveFluid.H"

}

forAll(solidRegions, i)

{

Info<< "\nSolving for solid region "

<< solidRegions[i].name() << endl;

#include "setRegionSolidFields.H"

#include "readSolidMultiRegionPIMPLEControls.H"

#include "solveFluid.H"

}

}

It is shown that, within one time step, the fluidRegions are calculated first. Then the soildRegions
are computed based on the field data that are transferred from the fluidRegions. Both fluidRegions

and SolidRegions are looping by the same time step, while they are converged by separate iterations
within one time step.

In the subdirectories of fluid/ and solid/, the fluid solver and solid solver are defined in the
solveFluid.H and solveSolid.H files respectively. Those are described in the following sections.

3.3 Fluid solver

To get to know a solver, it is a good start to understand the known and unknown variables and
what equations it solves first.
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3.3.1 Unknown variables

The fluid equations solve density rho, velocity U, pressure p and the derivative of pressure DpDt.
The thermal solver for the fluid region is essentially the same as for the solid part, although the
variable solved for is the thermal energy h rather than the temperature T:

h = cp · dT (3.1)

where cp is the specific heat capacity at a constant pressure. The conventions differ between solid
mechanics and fluid mechanics.

3.3.2 Equations

The fluid solver solves four equations:

if (oCorr == 0)

{

#include "rhoEqn.H" //Solve the continuity for density.

}

#include "UEqn.H" //Solve the momentum equation

#include "hEqn.H" //Solve the thermal energy

// --- PISO loop

for (int corr = 0; corr < nCorr; corr++)

{

#include "pEqn.H" //solve pressure

}

turb.correct();

rho = thermo.rho();

The rhoEqn.H is included from the foam source library, not from the local solver directory. It
can be viewed by:

vi $FOAM_SRC/finiteVolume/lnInclude/rhoEqn.H

The rhoEqn in the C++ format is as below:

\*---------------------------------------------------------------------------*/

{

solve(fvm::ddt(rho) + fvc::div(phi));

}

// ************************************************************************* //

It solves the density of the compressible fluid according to the following equation (rhoEqn):

∂ρ

∂t
+∇ · (ρu) = 0 (3.2)

The other three equations UEqn.H, hEqn.H and pEqn.H can be seen in the ./fluid/ directory.
UEqn.H solves the momentum equation. In C++, the code of the momentum equation is shown

below:
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tmp<fvVectorMatrix> UEqn

(

fvm::ddt(rho, U)

+ fvm::div(phi, U)

+ turb.divDevRhoReff()

);

UEqn().relax();

if (momentumPredictor)

{

solve

(

UEqn()

==

fvc::reconstruct

(

fvc::interpolate(rho)*(g & mesh.Sf())

- fvc::snGrad(p)*mesh.magSf()

)

);

}

It demonstrates the momentum equation:

∂ρu

∂t
+∇ · (ρuu) +∇ · (µ∇u) +∇ ·

(
µ

[
(∇u)T − 2

3
tr(∇u)T I

])
= ρf −∇p (3.3)

where u denotes the velocity vector, f denotes the body force per unit mass acting on the fluid
element. The function turb.divDevRhoReff() denotes the full viscous stress tensor in compressible
flow:

turb.divDevRhoReff() = ∇ · (µ∇u) +∇ ·
(
µ

[
(∇u)T − 2

3
tr(∇u)T I

])
(3.4)

where tr denotes the trace of the tensor in three dimensions.
hEqn.H solves the thermal energy h:
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\\hEqn.H

{

fvScalarMatrix hEqn

(

fvm::ddt(rho, h)

+ fvm::div(phi, h)

- fvm::laplacian(turb.alphaEff(), h)

==

DpDt

);

if (oCorr == nOuterCorr-1)

{

hEqn.relax();

hEqn.solve(mesh.solutionDict().solver("hFinal"));

}

else

{

hEqn.relax();

hEqn.solve();

}

thermo.correct();

Info<< "Min/max T:" << min(thermo.T()).value() << ' '

<< max(thermo.T()).value() << endl;

}

The corresponding mathematical equation is:

ρ · ∂h
∂t

+∇ · (ρuh)−∇(αh) =
Dp

Dt
(3.5)

where α is the laminar thermal diffusivity in the unit of [kg/m/s], which is defined in the file:

$FOAM_SRC/thermophysicalModels/basic/basicThermo/basicThermo.H

In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by density and
specific heat capacity at constant pressure [8]. It measures the rate of transfer of heat of a material
from the hot side to the cold side.

α =
K

ρcp
(3.6)

where K denotes Kappa which is thermal conductivity [W/(m · K)], ρ is density [kg/m3], cp is specific
heat capacity [J/(kg·K)].

pEqn.H solves for pressure and updates the other variable fields.
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\\pEqn.H part(1)

{

bool closedVolume = p.needReference();

rho = thermo.rho();

volScalarField rUA = 1.0/UEqn().A();

surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));

U = rUA*UEqn().H();

surfaceScalarField phiU

(

fvc::interpolate(rho)

*(

(fvc::interpolate(U) & mesh.Sf())

+ fvc::ddtPhiCorr(rUA, rho, U, phi)

)

);

phi = phiU + fvc::interpolate(rho)*(g & mesh.Sf())*rhorUAf;

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix pEqn

(

fvm::ddt(psi, p)

+ fvc::div(phi)

- fvm::laplacian(rhorUAf, p)

);

The part above interpolates the density (rho) and solves the pEqn.
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\\pEqn.H part(2)

if

(

oCorr == nOuterCorr-1

&& corr == nCorr - 1

&& nonOrth == nNonOrthCorr

)

{

pEqn.solve(mesh.solutionDict().solver(p.name() + "Final"));

}

else

{

pEqn.solve(mesh.solutionDict().solver(p.name()));

}

if (nonOrth == nNonOrthCorr)

{

phi += pEqn.flux();

}

}

// Correct velocity field

U += rUA*fvc::reconstruct((phi - phiU)/rhorUAf);

U.correctBoundaryConditions();

// Update pressure substantive derivative

DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);

// Solve continuity

#include "rhoEqn.H"

// Update continuity errors

#include "compressibleContinuityErrors.H"

// For closed-volume cases adjust the pressure and density levels

// to obey overall mass continuity

if (closedVolume)

{

p += (massIni - fvc::domainIntegrate(psi*p))

/fvc::domainIntegrate(psi);

rho = thermo.rho();

}

// Update thermal conductivity

Kappa = thermoFluid[i].Cp()*turb.alphaEff();

}

The part above mainly updates pressure substantive derivative DpDt and the thermal conductivity
Kappa.
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3.4 Solid solver

3.4.1 Unknown variables

The unknown variable for the solid regions is the temperature T . Variables that are needed for
solving the temperature equation are: thermal conductivity (Kappa), specific heat capacity (cp),
and solid density (rho).

3.4.2 Equations

The solid solver solves the TEqn for solid regions.

\\solveSolid.H

{

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

tmp<fvScalarMatrix> TEqn

(

fvm::ddt(rho*cp, T)

- fvm::laplacian(Kappa, T)

);

TEqn().relax();

TEqn().solve();

}

Info<< "Min/max T:" << min(T) << ' ' << max(T) << endl;

}

The corresponding mathematical formula for the TEqn is:

ρ · cp
∂T

∂t
−∇(KT ) = 0 (3.7)

where K denotes Kappa.

3.5 Interface boundary coupling

In the solver, there are two alternatives for interface boundary conditions:

• solidWallHeatFluxTemperature: it allows introducing constant heat flux to a patch. It is
important to notice that it has nothing to do with the boundary coupling. The function of
this boundary condition is equal to the ’fixedGradient’ boundary condition in OpenFOAM.

• solidWallMixedTemperatureCoupled: this is a mixed boundary condition for coupling the
temperature at the interface, to be used by the conjugate heat transfer solver. Both sides use
a mix of zero gradient and neighbour value.

The solidWallMixedTemperatureCoupled directory defines the mixed coupling boundary con-
dition that the multi-regions are coupled via Dirichlet-Neumann partitioning strategy at the coupled
interface:

• Dirichlet boundary condition:
Γ1 = Γ2 (3.8)

where the neighbour patches have the same field value.
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• Neumann boundary condition:
∂Γ1

∂n1
=
∂Γ2

∂n2
(3.9)

where the neighbour patches agree on the gradient of the field value.

The Dirichlet-Neumann partitioning strategy satisfies both Dirichlet and Neumann boundary
conditions.

In the folder of solidWallMixedTemperatureCoupled/ in the solver, a
solidWallMixedTemperatureCoupledFvPatchScalarField.H file and a
solidWallMixedTemperatureCoupledFvPatchScalarField.C file declares and defines the coupled
boundary condition.

In the solidWallMixedTemperatureCoupledFvPatchScalarField.H, an example of how to use
this boundary condition is given in the description part.

Example usage:

myInterfacePatchName

{

type solidWallMixedTemperatureCoupled;

neighbourFieldName T;

Kappa Kappa;

value uniform 300;

}

The boundary type name is specified in the file as solidWallMixedTemperatureCoupled.

public:

//- Runtime type information

TypeName("solidWallMixedTemperatureCoupled");

solidWallMixedTemperatureCoupledFvPatchScalarField.C file defines the mixed type of the
boundary condition with the following three components: Line 33 to line 49 in
solidWallMixedTemperatureCoupledFvPatchScalarField.C

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::solidWallMixedTemperatureCoupledFvPatchScalarField::

solidWallMixedTemperatureCoupledFvPatchScalarField

(

const fvPatch& p,

const DimensionedField<scalar, volMesh>& iF

)

:

mixedFvPatchScalarField(p, iF),

neighbourFieldName_("undefined-neighbourFieldName"),

KappaName_("undefined-Kappa")

{

this->refValue() = 0.0;

this->refGrad() = 0.0;

this->valueFraction() = 1.0;

}

A comment in the solidWallMixedTemperatureCoupledFvPatchScalarField.C illustrates the
mixed boundary condition: Line 199 to line 212 in
solidWallMixedTemperatureCoupledFvPatchScalarField.C.
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// We've got a degree of freedom in how to implement this in a mixed bc.

// (what gradient, what fixedValue and mixing coefficient)

// Two reasonable choices:

// 1. specify above temperature on one side (preferentially the high side)

// and above gradient on the other. So this will switch between pure

// fixedvalue and pure fixedgradient

// 2. specify gradient and temperature such that the equations are the

// same on both sides. This leads to the choice of

// - refGradient = zero gradient

// - refValue = neighbour value

// - mixFraction = nbrKappaDelta / (nbrKappaDelta + myKappaDelta())

The description denotes that user can choose the boundary condition between Dirichlet type
(pure fixedvalue, agree on refValue), Neumann type (pure fixedgradient, zero gradient) or a mixed
type agree on both temperature and its gradient. This is done by looking up for the keyword
refValue as shown in the box below: Line 100 to line 113 in
solidWallMixedTemperatureCoupledFvPatchScalarField.C.

if (dict.found("refValue"))

{

// Full restart

refValue() = scalarField("refValue", dict, p.size());

refGrad() = scalarField("refGradient", dict, p.size());

valueFraction() = scalarField("valueFraction", dict, p.size());

}

else

{

// Start from user entered data. Assume fixedValue.

refValue() = *this; //set the boundary condition in the time directory

refGrad() = 0.0;

valueFraction() = 1.0;

}

For pressure mapping between the regions, which we have mentioned in Chapter 1, only the
Dirichlet boundary condition needs to be specified because the pressure mapping is an agreement
between the neighbour patches on the pressure value only, which means

p1 = p2 (3.10)

The implementation of the pressure coupled boundary condition will be demonstrated in Chapter 6.



Chapter 4

Implementation of multiple time
steps

4.1 Two approaches of modification

The goal of the multi-region loop modification is to introduce an extra time step for the solid regions
in addition to the original time step for the fluid regions. The reason of such implementation was
discussed in the Chapter 1: to improve the efficiency of the whole system when the time step
requirements varies between different physical regions. From a physical point of view, in most of the
cases, the time step needed for the solid regions can be much larger than needed for the fluid region
while there is no displacement or solid deformation considered. For example, for the interaction
between wave and soil, if no deformation or failure of the soil is considered, the solid region time
step can be 10-100 times larger than the fluid region time step.

The loop modification with multiple time steps will prevent the solid solvers looping unnecessarily,
thus improve the efficiency of the whole system. To introduce multiple time steps into the system,
two ways of implementation were conducted and discussed in this report. Both methods have their
own pros and cons.

4.1.1 The first approach

The first approach to modify the loop is to introduce a time step for the solid regions (solidRegionDeltaT)
which is an integral multiple of the fluid region time step (deltaT), i.e.

solidRegionDeltaT = n · deltaT (4.1)

where n is an integer. In this way, we can specify the time step of the solid regions according to the
solid region property and the fluid region property. The n times of the deltaT indicates that the
solid regions will be solved once after every n times we solve the fluid regions.

However, for such implementation, an important thing needs to be done is that the switch of
‘adjustTimeStep’ for fluid regions must be turned off in the controlDict when setting a case. It
means that we will not allow the system to prolong the time step of the fluid regions according to
the Courant number. Otherwise, the solidRegionDeltaT will not remain the integral multiple of
the fluid region deltaT, which will cause an error to the system. Details upon this point will be
discussed in the next section.

The first approach of implementation enables a stable time step for the solid regions that can be
specified by the user. When doing the case setting, only one extra variable (solidRegionDeltaT)
needs to be specified. One shortcoming of such an implementation is that it might reduce the
efficiency of the fluid region computations, since the ‘adjustTimeStep’ switch is turned off.

28



CHAPTER 4. IMPLEMENTATION OF MULTIPLE TIME STEPS 29

4.1.2 The second approach

The second approach will allow the adjustment of the time step (set ’adjustTimeStep yes’ in the
controlDict) for the fluid regions. A solid region time step reference value solidRegionDeltaTRef

will be specified. This value is a reference that every time the runTime difference in equation 4.2
passes such a value, the solid regions will be solved, checked by

runTime(i)− solidRegionRunTime(j-1) > solidRegionDeltaTRef (4.2)

If that happens, also the solidRegionRunTime is updated to prepare for the next check by equation
4.2, as

solidRegionRunTime(j) = runTime(i) (4.3)

For example, set the solidRegionDeltaTRef = 0.01, and the fluid region original deltaT = 0.001.
Then, after running for a little while, let us assume current fluid region time step is at i = 0.0095421,
where i is the time step index for solving the fluid region. Since i is less than 0.01, we haven’t solved
the solid regions yet. Initial solidRegionRunTime is at j = 0, where j is the time step index for
solving the solid region. A detailed illustration from the time step i is presented as follows :

• time step i.

Current time step is i = 0.0095421: it is smaller than solidRegionDeltaTRef 0.01, so the
fluid regions will continually be solved for the next time step.

The solid regions have not been solved yet, j = 0.

• time step i+ 1.

Time step adjusted according to Courant number, current time step is i + 1 = 0.014511:
(i+1)−j = 0.014511−0 > 0.01. The time difference is larger than the solidRegionDeltaTRef.

Therefore, the solid regions are solved at j + 1 = 0.014511.

• time step i+ 2.

Time step adjusted according to Courant number, current time step is i + 2 = 0.019573: the
difference between current time step and the last time we solve the solid region is (i + 2) −
(j + 1) = 0.005062 < 0.01. The time difference is smaller than the solidRegionDeltaTRef.

Therefore, the solid regions are not solved at this time step.

• time step i+ 3.

current time step is i + 3 = 0.0201234, the difference between current time step and the last
time we solve the solid region is (i + 3) − (j + 1) = 0.024634 − 0.014511 = 0.010123 > 0.01.
The time difference is larger than the solidRegionDeltaTRef.

The solid regions should be solved at this time step j + 2 = 0.0201234.

The main benefit of doing in this way is to allow the adjustment of the time step for the fluid
regions. However, it is important to notice that, this approach of implementation is based on the
assumption that: the fluid region deltaT will not be adjusted too much according to the Courant
number, so that after it is subtracted by the last solidRegionRunTime, the time difference will not
be too large for solving the solid regions.

4.2 The first approach of modification

4.2.1 Modify the solver

The first step of the loop modification is to introduce an extra time step for the solid regions. Then
the PIMPLE loop is to be modified to achieve looping upon different time steps. The process of
implementing such modification is seen as follows:
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1. Rename the solver as chtMultiRegionMultiDeltaTFoam. We want to classify our new solver
as a multiphysics solver, so a multiphysics/ directory is created for it.

mkdir -p $WM_PROJECT_USER_DIR/applications/solvers/multiphysics/

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphysics/

cp -r $FOAM_SOLVERS/heatTransfer/chtMultiRegionFoam .

mv chtMultiRegionFoam chtMultiRegionMultiDeltaTFoam

cd chtMultiRegionMultiDeltaTFoam

mv chtMultiRegionFoam.C chtMultiRegionMultiDeltaTFoam.C

Make sure that the binary file ends up in the user directory, following modifications need to
be implemented in the Make/files,

sed -i s/chtMultiRegionFoam/chtMultiRegionMultiDeltaTFoam/g Make/files

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files

2. Now we need to create a new variable to control the solid region time step, let us call it
solidRegionDeltaT. The creating of this variable should be implemented in
solid/readSolidTimeControls.H. Add the following commands after the declaration of scalar
maxDi in the readSolidTimeControls.H file:

scalar solidRegionDeltaT =

runTime.controlDict().lookupOrDefault<scalar>("solidRegionDeltaT",

runTime.deltaT().value());

The command above indicates that, if the solidRegionDeltaT is not set in the controlDict

file in the case/system directory, it will be set equal to the original fluid region deltaT.

3. To our case, the solidRegionDeltaT should be set as an integral multiple of the fluid region
deltaT. Therefore, a checking sentence should be written to avoid wrong user setting. The
following commands need to be added after step 2, to see if the solidRegionDeltaT is integral
multiple of the deltaT. If not, the program will stop running instead of generating garbage
results.

if(fmod(solidRegionDeltaT, runTime.deltaT().value()) > SMALL)

{

Info<<"Error: solid region delta T is not an integral multiple of the \\

original delta T." << endl;

return 0;

}

Info << "Solid region deltaT set to: "

<< solidRegionDeltaT

<< " s."

<< endl;

See above, an Info line is also added for the convenience of future debugging. It is worthwhile
to mention that fmod() is a C++ function declared in math.h/cmath.h for calculating the
remainder between float or double type of numbers. The % operator in C++ only works for
calculating the remainder between integers.

4. Based on the modification of step 3, before the first command line of the
chtMultiRegionMultiDeltaTFoam.C, Add
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//for the computation of the remainder between two floating numbers.

#include <math.h>

5. Modify the PIMPLE loop. This is the main step of the modification. The PIMPLE loop in
the chtMultiRegionMultiDeltaTFoam.C needs to be replaced. The following is the original
loop in the chtMultiRegionFoam.C.

// --- PIMPLE loop

for (int oCorr=0; oCorr<nOuterCorr; oCorr++)

{

forAll(fluidRegions, i)

{

Info<< "\nSolving for fluid region "

<< fluidRegions[i].name() << endl;

#include "setRegionFluidFields.H"

#include "readFluidMultiRegionPIMPLEControls.H"

#include "solveFluid.H"

}

forAll(solidRegions, i)

{

Info<< "\nSolving for solid region "

<< solidRegions[i].name() << endl;

#include "setRegionSolidFields.H"

#include "readSolidMultiRegionPIMPLEControls.H"

#include "solveSolid.H"

}

}

The original loop code in the box above needs to be replaced by the modified code below:



CHAPTER 4. IMPLEMENTATION OF MULTIPLE TIME STEPS 32

// --- PIMPLE loop

for (int oCorr=0; oCorr<nOuterCorr; oCorr++)

{

forAll(fluidRegions, i)

{

Info<< "\nSolving for fluid region "

<< fluidRegions[i].name() << endl;

#include "setRegionFluidFields.H"

//Read correctors for the fluid regions.

#include "readFluidMultiRegionPIMPLEControls.H"

#include "solveFluid.H"

}

//To write the time variables for debugging purpose.

Info << "If statement remainder: "

<< fmod(runTime.value(), solidRegionDeltaT)

<< nl

<< "RunTime, solidDeltaT:" << nl

<< runTime.value() << ", " << solidRegionDeltaT

<< endl;

//To check if the solid solver is to be run.

if((fmod(runTime.value(), solidRegionDeltaT) < SMALL)||

<< (fmod(runTime.value(), solidRegionDeltaT)

<< - solidRegionDeltaT < SMALL))

{

forAll(solidRegions, i)

{

Info<< "\nSolving for solid region "

<< solidRegions[i].name() << endl;

#include "setRegionSolidFields.H"

#include "readSolidMultiRegionPIMPLEControls.H"

#include "solveSolid.H"

}

}

}

It is important to be aware of using the fmod() in C++. The float number calculation has
accuracy limitation. For example, it may return a 0.1 when we calculate the remainder between
1.5 and 0.1. The IF statement

if((fmod(runTime.value(), solidRegionDeltaT) < SMALL)||

<< (fmod(runTime.value(), solidRegionDeltaT)

<< - solidRegionDeltaT < SMALL))

is written to do multiple check in order to avoid C++ floating-point arithmetic error.

6. Compile the new solver.

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphysics/

cd chtMultiRegionMultiDeltaTFoam/

wmake

Then type the new solver name to check if it is compiled completely.
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4.2.2 Test the solver

Now, the new solver is ready to be applied. To test the new solver, we will do some modification
on the settings of a tutorial case, and then run the new solver. Copy the tutorial chtMultiRegion-
Foam/multiRegionHeater and rename it.

mkdir -p $WM_PROJECT_USER_DIR/run/tutorials/chtMultiRegionFoam

cd $WM_PROJECT_USER_DIR/run/tutorials/chtMultiRegionFoam

cp -r $FOAM_TUTORIALS/heatTransfer/chtMultiRegionFoam/multiRegionHeater .

mv multiRegionHeater multiRegionHeaterMultiDeltaT

cd multiRegionHeaterMultiDeltaT

In the system/controlDict, add the new created variable solidRegionDeltaT and set it to 0.0015;
(deltaT is 0.001, this setting is to check if the errors can be output.) Insert the following line into
the system/controlDict file.

solidRegionDeltaT 0.0015;

In the Allrun file, change the last command ’runApplicationAndReportOnError chtMultiRegion-
Foam’ to ’runApplicationAndReportOnError chtMultiRegionMultiDeltaTFoam’.

sed -i s/chtMultiRegionFoam/chtMultiRegionMultiDeltaTFoam/g Allrun

Then, type

./Allrun

The program will crash very fast after running and report errors. Then in the
log.chtMultiRegionMultiDeltaTFoam file, an error can be seen:

Error: solid region delta T is not an integral multiple of the original delta T.

This error is just as what we expected due to our setting!
Then we will try to run a successful case. In controlDict, change ’solidRegionDeltaT 0.0015’ to

’solidRegionDeltaT 0.01’ (10 times of the deltaT); then, run the solver by

sed -i 's/solidRegionDeltaT 0.0015/solidRegionDeltaT 0.01/g' system/controlDict

./Allclean

./Allrun

The case stopped running at 0.001 second and the same error occurred again. This error is not
what we expected:

Error: solid region delta T is not an integral multiple of the original delta T.

Check the log.chtMultiRegionMultiDeltaTFoam file, we can see that after adjustment of the time
step, the fluid region deltaT becomes 0.1 rather than keeping the original value 0.001. Therefore,
we understand that the solidRegionDeltaT is once again not the multiple of the deltaT.

To solve this error, we need to set the ’adjustTimeStep’ in the controlDict from ’yes’ to ’no’, this
is very important.

sed -i 's/adjustTimeStep yes/adjustTimeStep no/g' system/controlDict

./Allclean

./Allrun
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Then after a longer while, the case will finish running successfully with a stable time step. It
is shown in the log.chtMultiRegionMultiDeltaTFoam file that the solid regions are not solved until
the runtime is 0.01s. After every 0.01s, the solid regions are to be solved at 0.02s, 0.03s, 0.04s, etc.

Time = 0.01

Solving for fluid region bottomAir...

Solving for fluid region topAir...

If statement remainder: 1.734723e-18

RunTime, solidDeltaT:

0.01, 0.01

Solving for solid region heater...

Solving for solid region leftSolid...

Solving for solid region rightSolid...

The box above shows that at 0.01s, the solid regions were run after the remainder was checked
to be zero. Information regarding the calculation outputs were replaced by the ellipsis mark for
a better view of the structure. Note that, in C++ the remainder is calculated by floating point
computation with limited accuracy, the small number 1.734723e-18 is regarded as zero. Till now,
the first approach of loop modification was implemented and verified.

4.3 The second approach of modification

4.3.1 Modify the solver

In the second approach, the initial steps of the modification are similar to the first approach. The
detailed process to implement such modification is presented as follows:

1. Give the name to the new solver as chtMultiRegionMultiDeltaTRefFoam.

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphysics/

cp -r $FOAM_SOLVERS/heatTransfer/chtMultiRegionFoam .

mv chtMultiRegionFoam chtMultiRegionMultiDeltaTRefFoam

cd chtMultiRegionMultiDeltaTRefFoam

mv chtMultiRegionFoam.C chtMultiRegionMultiDeltaTRefFoam.C

Make sure that the binary file ends up in the user directory, following modifications need to
be implemented in the make/files,

sed -i s/chtMultiRegionFoam/chtMultiRegionMultiDeltaTRefFoam/g Make/files

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files
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2. Now two new variables need to be introduced. solidRegionDeltaTRef and solidRegionRunTime.
The latter one is used to store the last time step of solving the solid regions. The creation
of these variables should be done in solid/readSolidTimeControls.H. Add the following
commands after the declaration of scalar maxDi:

scalar solidRegionDeltaTRef = runTime.controlDict().

lookupOrDefault<scalar>("solidRegionDeltaTRef", runTime.deltaT().value());

scalar solidRegionRunTime;

Then, an Info statement was added to provide setting information in the running log file.

Info << "solidRegionDeltaTRef set to: "

<< solidRegionDeltaTRef

<< " s."

<< endl;

Now, we will move to the modification of the main source file chtMultiRegionMultiDeltaTRefFoam.C.

Before the line ’while (runTime.run())’, add

solidRegionRunTime=0.0;

This is to set the initial value of the solid region run time. The value of solidRegionRunTime
will be updated each time when the solid region is run. Then, before ’runTime.write();’, replace
the PIMPLE loop by the following:
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// --- PIMPLE loop

for (int oCorr=0; oCorr<nOuterCorr; oCorr++)

{

forAll(fluidRegions, i)

{

Info<< "\nSolving for fluid region "

<< fluidRegions[i].name() << endl;

#include "setRegionFluidFields.H"

#include "readFluidMultiRegionPIMPLEControls.H"

#include "solveFluid.H"

}

//To write the time step variables in the log file.

Info << "RunTime-solidRegionRunTime: "

<< runTime.value()-solidRegionRunTime

<< nl

<< "RunTime, solidRegionRunTime, solidRegionDeltaTRef:"

<< nl

<< runTime.value() << ", " << solidRegionRunTime

<< ", " << solidRegionDeltaTRef

<< endl;

//To check if the solid solver is to be run:

//if the difference between current runTime and the last

//solidRegionRunTime is larger than solidRegionDeltaTRef

if(runTime.value()-solidRegionRunTime > solidRegionDeltaTRef)

{

//set the current runTime as solidRegionRunTime and

//store it in the variable for the next comparison

solidRegionRunTime = runTime.value();

forAll(solidRegions, i)

{

Info<< "\nSolving for solid region "

<< solidRegions[i].name() << endl;

#include "setRegionSolidFields.H"

#include "readSolidMultiRegionPIMPLEControls.H"

#include "solveSolid.H"

}

}

}

3. Run wmake in the top-level of the new solver, and then type the new solver name to check if
it is compiled completely.

4.3.2 Test the solver

The commands below are to test the solver. Copy the tutorial case
chtMultiRegionFoam/multiRegionHeater into run directory and rename it as
multiRegionHeaterMultiDeltaTRef.
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cd $WM_PROJECT_USER_DIR/run/tutorials/chtMultiRegionFoam

cp -r $FOAM_TUTORIALS/heatTransfer/chtMultiRegionFoam/multiRegionHeater .

mv multiRegionHeater multiRegionHeaterMultiDeltaTRef

cd multiRegionHeaterMultiDeltaTRef

In the system/controlDict, add the new variable solidRegionDeltaTRef and set it to 0.01.
Add the following line in to the controlDict file:

solidRegionDeltaTRef 0.01;

In the Allrun file, change the last command ’runApplicationAndReportOnError chtMultiRegion-
Foam’ to ’runApplicationAndReportOnError chtMultiRegionMultiDeltaTRefFoam’.

sed -i s/chtMultiRegionFoam/chtMultiRegionMultiDeltaTRefFoam/g Allrun

Then, type

./Allrun

The case should be running faster with ’adjustTimeStep’ than without. Check the
log.chtMultiRegionMultiDeltaTRefFoam file. It shows that, the solid regions were run every time
when the difference between the runTime and solidRegionRunTime is larger than 0.01. For example,
at the first time step,

deltaT = 0.1

Time = 0.101

Solving for fluid region bottomAir...

Solving for fluid region topAir...

RunTime, solidRegionRunTime, solidRegionDeltaTRef:

0.101, 0, 0.01

RunTime-solidRegionRunTime: 0.101

Solving for solid region heater...

Solving for solid region leftSolid...

Solving for solid region rightSolid...

Calculation results were replaced by the symbol of ... for a better view of the structure. It
shows that at the first time step, the deltaT was adjusted to 0.101s, therefore, RunTime minus
solidRegionRunTime was 0.101, which was larger than solidRegionDeltaTRef(0.01), so the solid
regions were computed at this time step.

At the next time step,
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deltaT = 1.061063e-05

Time = 0.101011

Solving for fluid region bottomAir...

Solving for fluid region topAir...

RunTime, solidRegionRunTime, solidRegionDeltaTRef:

0.1010106, 0.101, 0.01

RunTime-solidRegionRunTime: 1.061063e-05

It is shown the difference between current run time and the last time solving the solid regions is
only 1.061063e-05, which is smaller than 0.01, therefore the solid regions will not be solved at this
time step. The fluid regions will be continually solved at the next time step.

Until now, the implementation of the multiple deltaTs for fluid regions and solid regions have
been done. In the next chapter, the graphical results will be compared between the modified solver
and the original solver based on the tutorial case multiRegionHeater in FOAM-extend-4.0.
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Visualization and comparison

5.1 Visualization

To the author’s knowledge, the multiRegionHeater tutorial case solved by chtMultiRegionFoam
does not work very well with paraview visualization in FOAM-extend-4.0. The current solution for
this problem is to use paraview in OpenFOAM-4.0 instead. After running the ./Allrun script, open
a new terminal, and source OpenFOAM-4.0 by:

OF4x

or other alias depending on the user setting in their machines.
Then create files for each region for paraview post-processing by:

touch multiRegionHeater{bottomAir}.OpenFOAM

touch multiRegionHeater{heater}.OpenFOAM

touch multiRegionHeater{leftSolid}.OpenFOAM

touch multiRegionHeater{rightSolid}.OpenFOAM

touch multiRegionHeater{topAir}.OpenFOAM

Then

paraview

In the paraview window, select File and Open. Then in the window find the option ’Files of
type’, drag the list to the end and select All files(*). Choose:

multiRegionHeater{bottomAir}.OpenFOAM

multiRegionHeater{heater}.OpenFOAM

multiRegionHeater{leftSolid}.OpenFOAM

multiRegionHeater{rightSolid}.OpenFOAM

multiRegionHeater{topAir}.OpenFOAM

Press OK and in the main window, press the green button Apply for each region. Note that for
the solid regions, only temperature T should be selected as a volume field, otherwise, paraview may
crash due to wrong volume fields selection.

In the window of paraview, the mesh of the multiRegionHeater is shown in Figure 5.1.
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The blue meshes form the top air region, the red meshes form the bottom air region. In the
middle, the white meshes are the solid regions including left solid, heater and right solid.

Figure 5.2 and 5.3 show the density and temperature distribution of the topAir at 180s for the
original tutorial case.

Figure 5.4 present the results of the modified cases: chtMultiRegionMultiDeltaT and
chtMultiRegionMultiDeltaTRef. The density distributions rho of the topAir at 180s are exactly
the same between the two modified cases and the original case, therefore, only one figure is presented
here. It indicates that the modification of the loop with multiple time steps does not change the
theory and the final results.

Figure 5.1: Meshes of the multiRegionHeater in paraview.

Figure 5.2: Temperature distribution of the topAir at 180s for MultiRegionHeater.

5.2 Comparison

Figures 5.5 and 5.6 compare the changes of maximum temperature in the air and solid regions along
time between three cases: the original multiRegionHeater tutorial case, the
multiRegionHeaterMultiDeltaT case calculated by the first approach (approach 1) and the
multiRegionHeaterMultiDeltaTRef case calculated by the second approach (approach 2).



CHAPTER 5. VISUALIZATION AND COMPARISON 41

Figure 5.3: Density distribution of the topAir at 180s of the MultiRegionHeater.

Figure 5.4: Density distribution of the topAir at 180s from modified cases: MultiRegionHeather-
MultiDeltaT and MultiRegionHeatherMultiDeltaTRef (Results are exactly the same between two
modified cases and the original case).

• Approach 1 provides exact the same result as the original case. It is because that in approach
1, the time step of the solid regions is set as 0.01, which is small enough to achieve a very
accurate result. However, since the adjustment of time step is not allowed in approach 1, the
computation time is longer than the approach 2. The computation time can be reduced by
increasing the time steps of the fluid regions and solid regions.

• Approach 2 provides a relatively accurate result. It has a small variance compared to the
original tutorial case in the initial time steps; after some time, it reaches the same result as
the others.

• Three curves merges at the end. The computational time of approach 2
(chtMultiRegionMultiDeltaTRefFoam) is the shortest among the three.
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Figure 5.5: Comparison of maximum temperature of the topAir along time.
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Figure 5.6: Comparison of maximum temperature of the leftSolid along time.



Chapter 6

Implementation of the pressure
coupled boundary condition

6.1 Boundary condition implementation

As we mentioned before, a pressure coupled boundary condition for multi-physics solver was devel-
oped. It was tested by a case but has not been verified at this stage. The steps of implementing the
pressure coupled boundary condition are presented in this chapter.

Get into the top-level directory of the chtMultiRegionFoam solver. In the folder of
derivedFvPatchFields, create a new boundary condition folder named solidWallPressureCoupled.
This step can be done by copying from the solidWallMixedTemperatureCoupled and modifying
upon it. We would like to call the new solver multiRegionPressureFoam.

Commands are as follows:

f40NR

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphysics/

cp -r $FOAM_SOLVERS/heatTransfer/chtMultiRegionFoam .

mv chtMultiRegionFoam multiRegionPressureFoam

cd multiRegionPressureFoam/derivedFvPatchFields

mkdir solidWallPressureCoupled

cp solidWallMixedTemperatureCoupled/* solidWallPressureCoupled

Rename the files:

cd solidWallPressureCoupled

mv *Temperature*.C solidWallPressureCoupledFvPatchScalarField.C

mv *Temperature*.H solidWallPressureCoupledFvPatchScalarField.H

Although for pressure coupling only the Dirichlet type boundary condition is needed, the Neu-
mann type and Dirichlet-Neumann partitioning strategy are still kept in case of future extension.

In solidWallPressureCoupledFvPatchScalarField.H and
solidWallPressureCoupledFvPatchScalarField.C files, replace all the ’MixedTemperature’ by
’Pressure’.

sed -i s/MixedTemperature/Pressure/g *.H

sed -i s/MixedTemperature/Pressure/g *.C

In chtMultiRegionFoam, the temperature coupling is conducted by mapping the variable Kappa.
The thermal conductivity Kappa is defined as a scalar in the solver, the same as pressure.
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In the declaration file solidWallPressureCoupledFvPatchScalarField.H, pressure field: pres-
sure and pressure gradient are used as mapping variables. Corresponding revision were implemented
in the source file solidWallPressureCoupledFvPatchScalarField.C. After some detailed revision,
a new boundary condition for pressure coupling was created.

The code of the new boundary condition solidWallPressureCoupled can be found in the at-
tachment. Since the code for such boundary condition is relatively long, it will not be presented in
this report.

Before compiling the new boundary condition in the solver, following steps need to be imple-
mented. Add the following line into Make/files:

derivedFvPatchFields/solidWallPressureCoupled/solidWallPressureCoupledFvPatchScalarField.C

Do not forget to do the following routines before compiling the solver by wmake.

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphysics/

cd multiRegionPressureFoam

mv chtMultiRegionFoam.C multiRegionPressureFoam.C

sed -i s/chtMultiRegionFoam/multiRegionPressureFoam/g Make/files

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files

The solver with the newly implemented boundary condition was renamed to multiRegionPressureFoam.
After compiling, it can be tested by a case: a small change was made in the case multiRegionHeater
by changing the pressure boundary condition of the bottomAir in
/system/bottomAir/changeDictionaryDict. Replace the following condition in the field p:

bottomAir_to_rightSolid

{

type buoyantPressure;

value uniform 1e+05;

}

by

bottomAir_to_rightSolid

{

type solidWallPressureCoupled;

neighbourRegionName rightSolid;

neighbourPatchName rightSolid_to_bottomAir;

neighbourFieldName p;

p p;

value uniform 1e+05;

}

Then in the Allrun, change the solver name to multiRegionPressureFoam.
However, after running, the case will stop with an error. It complains that:

request for volScalarField p from objectRegistry rightSolid failed

available objects of type volScalarField are

5

(

cp

Kappa

rho

T

rhosCps

)
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This is because a pressure field was not created for the solid regions. A volume field p needs to be
created in order to use the pressure coupled boundary condition.

In solid/createSolidFields.H, add the following line in the first part of initialising the solid
field pointer lists:

PtrList<volScalarField> ps(solidRegions.size());

In the solid filed pointer lists, add:

Info<< " Adding to ps\n" << endl;

ps.set

(

i,

new volScalarField

(

IOobject

(

"p",

runTime.timeName(),

solidRegions[i],

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

solidRegions[i]

)

);

In solid/setRegionSolidFields.H, add the follwing line at the end,

volScalarField& p = ps[i];

Then compile the solver again by wmake.

6.2 Test the boundary condition

Copy the tutorial case multiRegionHeater and rename it as multiRegionHeaterPressureCoupled.
Following changes were implemented. Since we have created a p field for the solid regions, the
boundary condition of the pressure needs to be specified in all the solid regions.

1. Add the boundary conditions of p in the system/solidRegions/changeDict. For each patch,
specify the interface boundary condition of p as follows:

type buoyantPressure;

value uniform 1e+05;

For example, in the leftSolid region, the boundary condition of p as follows should be added:



CHAPTER 6. IMPLEMENTATIONOF THE PRESSURE COUPLED BOUNDARY CONDITION46

p

{

boundaryField

{

minX

{

type buoyantPressure;

value uniform 1e+05;

}

maxX

{

type waveTransmissive;

field pd;

U U;

phi phi;

rho rho;

psi psi;

gamma 1.4; // cp/cv

fieldInf 0;

lInf 0.40; // double length of domain

inletOutlet off;

correctSupercritical off;

value uniform 1e+05;

}

minY

{

type buoyantPressure;

value uniform 1e+05;

}

minZ

{

type buoyantPressure;

value uniform 1e+05;

}

maxZ

{

type buoyantPressure;

value uniform 1e+05;

}

leftSolid_to_bottomAir

{

type buoyantPressure;

value uniform 1e+05;

}

leftSolid_to_heater

{

type buoyantPressure;

value uniform 1e+05;

}

leftSolid_to_topAir

{

type buoyantPressure;

value uniform 1e+05;

}

}

}
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2. To test the pressure coupled boundary condition, do following changes of p in
system/bottomAir/changeDict:

bottomAir_to_rightSolid

{

type solidWallPressureCoupled;

neighbourRegionName rightSolid;

neighbourPatchName rightSolid_to_bottomAir;

neighbourFieldName p;

p p;

value uniform 1e+05;

}

and in system/rightSolid/changeDict

rightSolid_to_bottomAir

{

type solidWallPressureCoupled;

neighbourRegionName bottomAir;

neighbourPatchName bottomAir_to_rightSolid;

neighbourFieldName p;

p p;

value uniform 1e+05;

}

3. Then in the top-level directory of the case, do

./Allclean

./Allrun

Now the case is able to run with the use of solidWallPressureCoupled boundary condition.
After running, we can check a time step in the case directory, for example:

ls 150.001/leftSolid/

It is shown that there are five files including: cp, Kappa, rho, T and p, instead of four files cp,
Kappa, rho, T in the original case. A p file is created in the solid region time directories, but without
any calculated values. This is because that current solid solver only solves temperature T.

Now the boundary condition has been successfully created. To verify such boundary condition,
the pressure field need to be computed and output by the solid solver.

However, the verification of such boundary condition has not been done at this stage. The solid
solver needs to be modified in order to solve the pressure/stress to verify the coupled pressure data.
This will leave to the future work.



Chapter 7

Summary and future work

7.1 Summary

The chtMultiRegionFoam solver has been studied and modified in this report. The structure of the
chtMultiRegionFoam solver was discussed elaborately. Two approaches of loop modifications were
implemented and verified. A new boundary condition for pressure coupling was implemented.

Here are some basic notes for doing solver modifications:

• Firstly, when modifying a solver, it is important to copy and rename the original solver at the
first step. It is a good habit to do the implementation of the new solver in the user directory
and make sure that the binary file ends up in the user directory.

• Secondly, when doing the modification, it is good to use Info statement to write the newly
defined variable and other relevant information into the log file. When the results turn to be
wrong or the case does not run properly, the information in the log file can be tracked for the
debugging purpose.

• Finally, after modification, case study needs be to performed for verifications.

7.2 Future work

The modification in this report is an initial step for a multi-physics solver. More work needs to be
done such as the verification of the pressure coupled boundary condition, the solid solver modification
in order to compute the displacement and stress and the fluid solver modification in order to solve
the incompressible two-phase fluids.
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Study questions

1. Why does the author choose to do the modification based on the chtMultiRegionFoam solver
for his/her purpose?

2. In the tutorial case multiRegionHeater, what is the function of the changeDictionaryDict

file? Is it required for running the solver?

3. In the case setup of the tutorial case multiRegionHeater, why there are fvSolution files in
both system directory and system/fluidRegionName/ directory? Are they redundant?

4. In which file has the coupled boundary condition been defined in the chtMultiRegionFoam

solver?

5. What modifications have been done for the new solvers?

6. What is the main difference between two approaches of implementing multiple time steps?
What are the pros and cons for each approach?

7. What is the reason for using multiple time steps in the multi-physics solver?
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