
CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Project work:

Acoustic streaming modeling

Developed for OpenFOAM-extended 3.2

Author:
Milad Setareh

Peer reviewed by:
Håkan Nilsson

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

December 4, 2016

Learning outcomes

The reader will learn:

• the theory of wave propagation into a fluid

• how to model acoustic streaming

• how to use the sonicLiquidFoam solver and develop it

• how to use the buoyantBoussinesqSimpleFoam solver and develop it

1

Chapter 1

Introduction

1.1 Introduction

This tutorial describes how to use the sonicLiquidFoam and buoyantBoussinesqSimpleFoam for
acoustic streaming modeling. sonicLiquidFoam is a transient compressible solver for modeling the
propagation of wave into a liquid and buoyantBoussinesqSimpleFoam is a steady–state solver for
buoyant, turbulent flow of incompressible fluids.

In order to do this, firstly, the sonicLiquidFoam solver is modified to calculate some source terms,
Then, they are used as source terms in buoyantBoussinesqSimpleFoam solver to observe acoustic
streaming. Also, it is possible to study heat transfer by using buoyantBoussinesqSimpleFoam solver.

1.2 Mathematical model

Some methods has been presented for modeling of acoustic streaming: slip velocity, perturbation
method and direct method. In this report, acoustic streaming is modeled by perturbation method. In
this method, the variables in the Navier–Stokes and continuity equations are written as a expansion
of equilibrium. The equilibrium value corresponds to zero order, represent constant in time and
space, in the absence of acoustic excitation. Therefore, the variables are expanded as:

ρ = ρ0 + ρ1 + ρ2

u = u0 + u1 + u2

p = p0 + p1 + p2
(1.1)

where (0) refers to zero order, (1) to first–order and (2) to second–order The components of third
and higher orders are neglected, since they are insignificant for describing the acoustic streaming
effects. The first–order variables represent the damped propagation of the acoustic wave, providing
analysis of the instantaneous acoustic flow, while the second–order variables describe the average
acoustic streaming effects.

1.2.1 First order equation

The first order continuity, momentum and sate equations are the following, respectively:

∂ρ1

∂t
+ ρ0∇ ·

(
u1

)
= 0 (1.2)

ρ0
∂u1

∂t
= −∇ · p1 + µ∇2u1 (1.3)

2

1.3. PRE-PROCESSING CHAPTER 1. INTRODUCTION

p1 = c2ρ1 (1.4)

Where ρ0 represents the equilibrium density, constant in time and space, ρ1 is the first–order
density, u2 is the first –order velocity and C is sound speed into domain. After solving the firstâorder
system for all the required time steps, it is calculated a time average driving force. The time
average value is obtained by integration of the driving force term during one wave period, after the
stabilization of the periodic solution, and posterior division by the period duration. This time average
driving force, described by Nyborg [1] can be applied as a source term to solve the second–order
system.

1.2.2 Second order equation

The second–order Navier Stokes system considers the first–order solution as known data. It includes
the second–order terms and describes the mass and body force sources. The time average values
determined above allow analyzing the acoustic streaming effects in a large time scale. Therefore,
solving the secondâorder system it is determined the mean global flow. The source term momentum
and continuity equations are described by the following equations, where the term into brackets in
equation represents the nonlinear driving force terms: (source terms for continuity equations is very
low, So we can ignore it)

∂ρ2

∂t
+ ρ0∇ ·

(
u2

)
=

〈
−∇ ·

(
ρ1u1

)〉
(1.5)

ρ0
∂u2

∂t
= −∇ · p2 + µ∇2u2 +

〈
−ρ1 ∂u

1

∂t
− ρ0

(
u1 · ∇

)
u1

〉
(1.6)

p2 = c2ρ2 (1.7)

1.3 Pre-processing

This section covers the necessary setup needed to modify sonicLiquidFoam and buoyantBoussi-
nesqSimpleFoam.

1.3.1 Getting started

We will now start to develop our new sonicLiquidFoam and buoyantBoussinesqSimpleFoam solvers
in the local solvers directory. Copy the original solvers there, change the corresponding file names,
and then compile the solver so that we make sure the basic setup is correct:

cd $WM_PROJECT_USER_DIR

mkdir -p applications/solvers/compressible/sonicLiquidFoam

cd applications/solvers/compressible

cp -r $FOAM_SOLVERS/compressible/sonicLiquidFoam .

cd sonicLiquidFoam

mv sonicLiquidFoam.C mySonicLiquidFoam.C

sed -i 's/sonicLiquidFoam/mySonicLiquidFoam/g' Make/files

sed -i 's/FOAM_APPBIN/FOAM_USER_APPBIN/g' Make/files

wclean

wmake

3

1.3. PRE-PROCESSING CHAPTER 1. INTRODUCTION

cd $WM_PROJECT_USER_DIR

mkdir -p applications/solvers/heatTransfer/buoyantBoussinesqSimpleFoam

cd applications/solvers/heatTransfer

cp -r $FOAM_SOLVERS/heatTransfer/buoyantBoussinesqSimpleFoam .

cd buoyantBoussinesqSimpleFoam

mv buoyantBoussinesqSimpleFoam.C myBuoyantBoussinesqSimpleFoam.C

sed -i 's/buoyantBoussinesqSimpleFoam/myBuoyantBoussinesqSimpleFoam/g' Make/files

sed -i 's/FOAM_APPBIN/FOAM_USER_APPBIN/g' Make/files

wclean

wmake

Once it compiles successfully, we can then start to modify the solvers for our own sake.
First, we modify the mySonicLiquidFoam solver. So, we should go to that directory and do all things
as below. to create source term fields, we should add below lines in the creatFields.H file.

volVectorField sumAcousticForce

(

IOobject

(

"sumAcousticForce",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

mesh,

dimensionedVector("meanAcousticForce", dimensionSet(0,1,-2,0,0,0,0),

vector(0,0,0))

);

volVectorField meanAcousticForce

(

IOobject

(

"meanAcousticForce",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

dimensionedVector("meanAcousticForce", dimensionSet(0,1,-2,0,0,0,0),

vector(0,0,0))

);

Also, we change the initial value of ρ to 1+psi*p in the createFields.H. For considering kine-
matic viscosity, it is better to change the word mu in readTransportProperties.H file to nu.

4

1.3. PRE-PROCESSING CHAPTER 1. INTRODUCTION

Now, we can modify the main mySonicLiquidFoam.C file to implement the first order governing
equation. First, we declare a float variable named iter before run.Time() looping and initialize it
with zero. Then, we change compressibleCourantNo.H to CourantNo.H everywhere in source code
by the following line:

sed -i 's/compressibleCourantNo.H/CourantNo.H/g' mySonicLiquidFoam.C

the incompressible momentum equation is considered for first order equations,Therefore it does not
need to solve density equation and we can remove it. for this purpose, delete the line: #include "rhoEqn.H".
it is located above UEqn in the source code. Now, we should implement first order equations. we
can change momentum and pressure equations line by line, but I think it is better to remove all
lines started fvVectorMatrix UEqn and ended with rho = rhoO + psi*p. Then, replace the below
code instead of everything has been removed.

fvVectorMatrix UEqn

(

fvm::ddt(U)

- fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

// --- PISO loop

for (int corr=0; corr<nCorr; corr++)

{

volScalarField rAU(1.0/UEqn.A());

U = rAU*UEqn.H();

surfaceScalarField phid

(

"phid",

psi

*(

(fvc::interpolate(U) & mesh.Sf())

// + fvc::ddtPhiCorr(rAU, rho, U, phi)

)

);

phi = (1/psi)*phid;

fvScalarMatrix pEqn

(

fvm::ddt(psi,p)

+ fvc::div(phi)

//+ fvm::div(phid, p)

- fvm::laplacian(rAU, p)

);

pEqn.solve();

phi += pEqn.flux();

5

1.3. PRE-PROCESSING CHAPTER 1. INTRODUCTION

#include "continuityErrs.H"

U -= rAU*fvc::grad(p);

U.correctBoundaryConditions();

}

rho = 1 + psi*p;

iter=iter+1.0;

The most important part is calculation of driving force. The formula of the momentum driving
force has been written in the previous sections. Now, we add the following lines at the end of
run.Time loop.

sumAcousticForce=sumAcousticForce+fvc::div(phi, U)+(rho-1)*fvc::ddt(U);

meanAcousticForce=sumAcousticForce/iter;

The momentum driving force is calculated at the first line of the above box. Because, we need
the its time average to import it in the second order equations, So at the second line of the above
box, the driving force has been divided by the number of iterations. when the solution becomes
converge, the meanAcousticForce variable expresses time averaging driving force for momentum
equation.

Now, we have completed the implementation of all new features that the mySonicLiquidFoam
solver should have. Type wmake in the terminal and compile the new solver. If everything is ok,
we can go to second part which is the modification of the myBuoyantBoussinesqSimpleFoam solver.

Now, go to the myBuoyantBoussinesqSimpleFoam solver directory. these are some files and we
just modify createFields.H and UEqn.H files.

it does nor need to do a lot of changes in these files, we just add some lines in these files, so that
the solver can recognize the driving momentum source. First, we define the verbmeanAcousticForce
in the createFields.H as follows:

volVectorField meanAcousticForce

(

IOobject

(

"meanAcousticForce",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Now, it’s time to add this source term to second order momentum equation. The formula of
second order equations is written in the previous sections. As you can see, the convection term was
ignored in that equations but for more accuracy, we consider it. we can ignore it just by removing
the fvm::div(phi, U) in the UEqn.H file.

To import the driving momentum source into U equation, we should add meanAcousticForce

in the UEqn as shown in the following:

6

1.3. PRE-PROCESSING CHAPTER 1. INTRODUCTION

tmp<fvVectorMatrix> UEqn

(

fvm::div(phi, U)

+ turbulence->divDevReff(U)

+meanAcousticForce

);

Finally, compile the solver by typing wmake. Now we can use these two solvers to study acoustic
streaming. the following report focuses on how to use these solvers and run a case.

7

Chapter 2

Test solvers and run a case

2.1 Domain and boundary condition

In this chapter, a simple case will be run and we will observe the results. To generate a wave in the
boundary, I considered harmonic pressure boundary at one of the walls. The groovyBC has been
used to implement that boundary condition. Note,groovyBC is a library in the swak4Foam package
which has many types of boundary conditions.

2.2 Mesh generation and transportProperties

It is recommended to use cavity tutorial. Therefore, copy the cavity directory to run directory and
change it in according to requirements. The below lines, copy the cavity tutorial to the local run
directory.

mkdir -p $FOAM_RUN/cavity

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity $FOAM_RUN/cavity

cd $FOAM_RUN/cavity

mv cavity cavityFirstOrder

Open blockMeshDict and create the mesh and set the boundary conditions as follows:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.0.1 |

| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * //

convertToMeters 0.0001;

8

2.2. MESH GENERATION AND TRANSPORTPROPERTIESCHAPTER 2. TEST SOLVERS AND RUN A CASE

vertices

(

(0 0 -0.1)//0

(10 0 -0.1)//1

(10 20 -0.1)//2

(0 20 -0.1)//3

(0 0 0.1)//4

(10 0 0.1)//5

(10 20 0.1)//6

(0 20 0.1)//7

(14 0 -0.1)//8

(14 20 -0.1)//9

(14 0 0.1)//10

(14 20 0.1)//11

(24 0 -0.1)//12

(24 20 -0.1)//13

(24 0 0.1)//14

(24 20 0.1)//15

);

blocks

(

hex (0 1 2 3 4 5 6 7) (400 700 1) simpleGrading (1 1 1)

hex (1 8 9 2 5 10 11 6) (400 700 1) simpleGrading (1 1 1)

hex (8 12 13 9 10 14 15 11) (400 700 1) simpleGrading (1 1 1)

);

boundary

(

walls

{

type wall;

faces

(

(0 4 7 3)

(12 13 15 14)

);

}

inlet_w1

{

type wall;

faces

(

(3 2 6 7)

);

}

acous

{

type wall;

faces

(

(2 9 11 6)

);

9

2.3. BOUNDARY CONDITIONS AND INITIAL FIELDSCHAPTER 2. TEST SOLVERS AND RUN A CASE

}

inlet_w2

{

type wall;

faces

(

(9 13 15 11)

);

}

outlet

{

type wall;

faces

(

(0 1 5 4)

(1 8 10 5)

(8 12 14 10)

);

}

frontAndBack

{

type empty;

faces

(

(0 3 2 1)

(1 2 9 8)

(8 9 13 12)

(4 7 6 5)

(5 6 11 10)

(10 11 15 14)

);

}

);

Now, we remove the transportProperties in the cavity and copy transportProperties from
one of the tutorial cases in the sonicLiquidFoam directory as follows:

rm -rf $FOAM_RUN/cavity/cavityFirstOrder/constant/transportProperties

cp -r $FOAM_TUTORIALS/compressible/sonicLiquidFoam/decompressionTank/constant/\

transportProperties $FOAM_RUN/cavity/cavityFirstOrder/constant

2.3 Boundary conditions and initial fields

The figure 2.1 shows boundary conditions for the first and second order system of equations.
Initial conditions set to zero for velocity and pressure for the first and second order equations. As
shown in the left figure, one of the walls at the top has been considered as a pressure source. This
means that a wave is generated at this boundary and propagate into domain. Also, It is assumed
pressure gradient at the other walls equals to zero and it means that wave will reflect at these walls.

10

2.4. PROPERTY OF FLUID AND SIMULATION PARAMETERCHAPTER 2. TEST SOLVERS AND RUN A CASE

Figure 2.1: Boundary condition for the first and second order equations

Parameter Value
Sound Speed 1440 m/s
Frequency 10 MHz
Pressure Amplitude 20 kPa
Density 998 kg/m3

Kinematic viscosity 89 e-08 m2/s
Time Step–1storder 10−9s
Simulation time–1storder O

(
10−5

)
s

Table 2.1: Property of fluid and some parameters for numerical modeling

2.4 Property of fluid and simulation parameter

Table 2.1 shows fluid properties and some simulation parameters that are used to simulate first order
equations. we should change the value of parameters in thermodynamicProperties as follows:

rho0 rho0 [1 -3 0 0 0 0 0] 997;

p0 p0 [1 -1 -2 0 0 0 0] 100000;

psi psi [0 -2 2 0 0 0 0] 4.44e-07;

Now, everything is ready to start the simulation. First, go to the case directory and use
blockMesh to create mesh, Then, write mySonicLiquidFoam to start running. It is noteworthy
to add "libOpenFOAM.so" and "libgroovyBC.so" at the end of controlDict. As you know, one
of them is the library which links the groovyBc to the this solver.

2.5 Result (frequency 10MHz)

2.5.1 First order

To validate the code, I simulated a problem with the same specifications in [2]. The value of ther-
mophysical properties and time step are shown in table 2.1. Figure 2.2 shows the result comparison

11

2.5. RESULT (FREQUENCY 10MHZ) CHAPTER 2. TEST SOLVERS AND RUN A CASE

between [2] and present work. In this figure, the average y-component momentum source has been
shown for 4 times (5e-07s, 5e-06s, 8e-06s and 10e-06s) by my code and [2]. Results show good
matching between [2] and present work. By comparing the results, I concluded that the average
value of momentum source became steady after so I will use the value of all parameters at this time
for next results

Figure 2.3 shows the comparison between instantaneous pressure contour in the present work
and [2]. Results show good matching between my work and [2]. The instantaneous pressure in the
fluid after simulation appears as high and low pressure stripes, as a result of the oscillatory vibration.
The propagation of pressure occurs in a semicircular shape with intensity decaying with the distance
to the acoustic source. In this case, viscous attenuation has the most important role to attenuate
wave intensity so most power of wave is attenuated by the viscosity of fluid before the wave reached
to the opposite wall. Also, it is important to note that the number of strips depends on the wave
frequency and the speed of wave in the propagation media. In this case, the wavelength is about
0.14 mm and the height of the enclosure is 2 mm therefore we can observe 24 strips by ignoring the
viscous attenuation but with considering viscosity we observe less than 24 strips.

Figure 2.2: average of y-component momentum source at various times

12

2.5. RESULT (FREQUENCY 10MHZ) CHAPTER 2. TEST SOLVERS AND RUN A CASE

(a) present work (b) [2]

Figure 2.3: Propagation of instantaneous pressure

2.5.2 Second order

Like first order case, it is better to use cavity cases and do all modifications on it. Therefore, copy
the cavity tutorial in the run directory and change its name to cavitySecondOrder.

mkdir -p $FOAM_RUN/cavity

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity $FOAM_RUN/cavity

cd $FOAM_RUN/cavity

mv cavity cavitySecondOrder

Now, change the blockMeshDict exactly the same as previous section. Also, we can copy this
file from cavityFirstOrder and use it for cavityFirstOrder case.

rm -rf $FOAM_RUN/cavity/cavitySecondOrder/constant/polyMesh

cp -r $FOAM_RUN/cavity/cavityFirstOrder/constant/polyMesh \

$FOAM_RUN/cavity/cavitySecondOrder/constant/polyMesh

Now, we remove the transportProperties in the cavitySecondOrder and copy transportProperties

from one of the tutorial cases in the buoyantBoussinesqSimpleFoam directory. Also, the g file(gravitational
acceleration) must be in the constant directory. By copying and pasting below lines, All told ex-
planations will be done automatically.

rm -rf $FOAM_RUN/cavity/cavitySecondOrder/constant/transportProperties

cp -p $FOAM_TUTORIALS/heatTransfer/buoyantBoussinesqSimpleFoam/hotRoom/constant\

/g $FOAM_RUN/cavity/cavitySecondOrder/constant

cp -p $FOAM_TUTORIALS/heatTransfer/buoyantBoussinesqSimpleFoam/hotRoom/constant/\

transportProperties $FOAM_RUN/cavity/cavitySecondOrder/constant

buoyantBoussinesqSimpleFoam solver is used for modeling the buoyancy flow with Boussinesq
approximation. Because, we do not want to model this kind of flow, therefore we should assign the
gravity (g) and beta equals to zero.

Figure 2.4 shows the acoustic streaming in the domain. As you see, there are two large vor-
texes which cause more fluid mixing and decrease the effect of the boundary layer near solid walls.
Therefore, we expect that heat transfer enhances due to acoustic streaming.

13

2.5. RESULT (FREQUENCY 10MHZ) CHAPTER 2. TEST SOLVERS AND RUN A CASE

X

Y

0 0.0005 0.001 0.0015 0.002
0

0.0005

0.001

0.0015

0.002

Temperature

380

370

360

350

340

330

320

310

300

Figure 2.4: Acoustic streaming

14

Bibliography

[1] W. L. Nyborg Acoustic streaming, Academic Press, San Diego 1998

[2] Catarino, Susana O. and Miranda, Joao M. and Lanceros-Mendez, Senentxu and Minas, Graca,
Numerical prediction of acoustic streaming in a microcuvette, The Canadian Journal of Chemical
Engineering, Vol, 92, no, 11, 2014

15

