Solution to written examination 2004 – Gas Turbine Technology
Problem 1a 
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Figure 1 - alternative gas turbine configuration

The metallurgical limits of the heat exchanger will limit its operation to burner exit temperatures around 900 K (for stainless steel). See lecture 3 as well as page 64 in C.R.S.. For a stationary heat exchanger an effectiveness of 0.90 could perhaps be achieved (anything between 70-90% is ok). Polytropic efficiencies for the turbine and the compressors reaching 88% is realistic (anything between 80-90% is ok). 
Turbine entry temperatures below 900K (851.17 K see below) is very low and correspond to low optimal pressure ratios. See section 2.4 comparative performance of practical cycles.  Perhaps a pressure ratio of 3 is suitable. 

T01 = 288.15

P01 = 101325.0

After the compressor we achieve: 
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The heat exchanger effectiveness produces: 
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which produces a turbine entry temperature of  T03 = 851.17 K. Assume a three percent pressure drop in the heat-exchanger (2-10% ok) and a five percent pressure drop in the burner (2-10% ok). This gives the turbine exit pressure P04 = 109.96 kPa and turbine entry pressure equal to P03 = 294.86 kPa. The turbine exit temperature is obtained from 
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which yields T04 = 685.23 K. The power output from the cycle is (assuming a mechanical efficiency of 99%): 


[image: image5.wmf]kW

 

1

.

65

=

-

c

t

w

w


The fuel flow required in the burner will be (burner entry temperature is 685.23K and burner exit temperature is 900.0 K).

ftheoretical = 0.0055

With a combustion efficiency of 99% we get the cycle efficiency as:
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Problem 1b

Calculate the efficiency for three pressure ratios and interpolate.

	Rc
	Eta

	1.5
	15.8 %

	3.0
	27.2%

	5.0
	24.1%


 Table 1 - efficiencies for some pressure ratios

Plot and approximate the location of the optimal pressure ratio. Anything above 2.0 and less than 5.0 will give maximum score on the problem, assuming that the table values are correct. A detailed analysis would produce an optimum close to rc = 2.9. Access to a computer would allow the following plot to be drawn: 
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Problem 1c

Check page 6 in C.R.S. The cycle is useful when the products of combustion contain constituents which corrode or erode the turbine blades. Such a cycle would be considered only if a supply of “dirty” fuel was available at very low cost, e.g. pulverized coal.

Problem 2

This is problem 7.2 in C.R.S!
 

The turbine exit temperature is obtained from
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which produces T03 = 903.1K. With zero outlet swirl we obtain (at the root):
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Cw2, root = 562.2 m/s. Zero degree of reaction requires: 
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The free vortex design guarantees that Ca is constant over the entire blade length. Thus, C3,root = Ca3 = 275 m/s. We therefore get:
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where

C2,root = 642.6 m/s. 

we then get:
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and by determining the axial velocity in the root we get:
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Thus the blade angle in the root is: 
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Problem 3a

Follow the procedure outlined in Example 4.1b on page 158 in book!

Use Stanitz formula to estimate the slip factor: 
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The stagnation temperature increase is obtained from:



[image: image16.wmf]K

c

U

T

T

p

97

.

193

2

01

03

=

=

-

ys


P03 is determined using the isentropic efficiency:
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which yields P03 = 423.60 kPa. The annulus area of the impeller eye is determined using: 
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The area is A1= 0.0432 m2. Thus the density is required to determine Ca. You may follow the suggested approach in the book (page 158) to iterate in Ca1 or use:
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which yields the X-function = 0.3870. This corresponds to a Mach number of M = 0.352 (the evaluations and interpolation of M is ok).
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Ca1 is thus obtained from:
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The impeller eye angles can then be obtained:
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Problem 3b

Follow the procedure outlined in Example 4.1c on page 159 in book!

With
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and 
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we get the absolute velocity at the impeller exit as: 
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The radial and absolute Mach numbers are then
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T02 = 
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482.1 K. P02 is obtained using the isentropic efficiency as stated for the impeller: 


[image: image30.wmf] 

1

1

01

02

2

01

01

02

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

=

-

-

a

a

P

P

T

T

T

c

g

g

h


yielding the stagnation pressure P02 = 523.95 kPa. The required area is then obtained from: 
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A2 = 0.0226 m2. The corresponding impeller depth is h = 1.491 cm. You can also solve this using the gas density as well as the radial velocity as illustrated in C.R.S. page 159.
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