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Literature

This lecture series is based on the book Modern Compressible

Flow; With Historical Perspective by John D. Anderson

Course Literature:

John D. Anderson

Modern Compressible Flow; With Historical Perspective

Third Edition (International Edition 2004)

McGraw-Hill, ISBN 007-124136-1

Niklas Andersson - Chalmers 3 / 732





Literature

Content:

I Chapter 1-7: All
I Chapter 8-11: Excluded
I Chapter 12: Included, supplemented by lecture notes
I Chapter 13-15: Excluded
I Chapter 16-17: Some parts included (see lecture notes)

With the exception of the lecture notes supplementing

chapter 12, all lecture notes are based on the book.
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Learning Outcomes

1 Define the concept of compressibility for flows

2 Explain how to find out if a given flow is subject to significant compressibility effects

3 Describe typical engineering flow situations in which compressibility effects are more or less predominant (e.g. Mach number regimes

for steady-state flows)

4 Present at least two different formulations of the governing equations for compressible flows and explain what basic conservation

principles they are based on

5 Explain how thermodynamic relations enter into the flow equations

6 Define the special cases of calorically perfect gas, thermally perfect gas and real gas and explain the implication of each of these

special cases

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for classical gas dynamics

a 1D isentropic flow*

b normal shocks*

c 1D flow with heat addition*

d 1D flow with friction*

e oblique shocks in 2D*

f shock reflection at solid walls*

g contact discontinuities

h Prandtl-Meyer expansion fans in 2D

i detached blunt body shocks, nozzle flows

j unsteady waves and discontinuities in 1D

k basic acoustics

9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)

10 Explain how the incompressible flow equations are derived as a limiting case of the compressible flow equations

11 Explain how the equations for aero-acoustics and classical acoustics are derived as limiting cases of the compressible flow equations

12 Explain the main principles behind a modern Finite Volume CFD code and such concepts as explicit/implicit time stepping, CFL

number, conservation, handling of compression shocks, and boundary conditions

13 Apply a given CFD code to a particular compressible flow problem

14 Analyze and verify the quality of the numerical solution

15 Explain the limitations in fluid flow simulation software

16 Report numerical analysis work in form of a technical report

a Describe a numerical analysis with details such that it is possible to redo the work based on the provided information

b Write a technical report (structure, language)

17 Search for literature relevant for a specific physical problem and summarize the main ideas and concepts found

18 Present engineering work in the form of oral presentations
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Compressible Flow

”Compressible flow (gas dynamics) is a branch of fluid

mechanics that deals with flows having significant

changes in fluid density”

Wikipedia
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Gas Dynamics

”... the study of motion of gases and its effects on

physical systems ...”

”... based on the principles of fluid mechanics and

thermodynamics ...”

”... gases flowing around or within physical objects at

speeds comparable to the speed of sound ...”

Wikipedia
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Chapter 1

Compressible Flow
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Addressed Learning Outcomes

1 Define the concept of compressibility for flows

2 Explain how to find out if a given flow is subject to significant

compressibility effects

3 Describe typical engineering flow situations in which

compressibility effects are more or less predominant (e.g.

Mach number regimes for steady-state flows)

6 Define the special cases of calorically perfect gas, thermally

perfect gas and real gas and explain the implication of each

of these special cases

in this lecture we will find out what compressibility means

and do a brief review of thermodynamics
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Roadmap - Introduction to Compressible Flow

Introduction

Compressible Flow: Applications

Historical milestones

Compressibility

Flow regimes

Review of thermodynamics

Gas properties

First and second law of

thermodynamics

Isentropic relations
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Applications - Classical

I Treatment of calorically perfect gas

I Exact solutions of inviscid flow in 1D

I Shock-expansion theory for steady-state 2D flow

I Approximate closed form solutions to linearized equations in

2D and 3D

I Method of Characteristics (MOC) in 2D and axi-symmetric

inviscid supersonic flows
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Applications - Modern

I Computational Fluid Dynamics (CFD)

I Complex geometries (including moving boundaries)

I Complex flow features (compression shocks, expansion

waves, contact discontinuities)

I Viscous effects

I Turbulence modeling

I High temperature effects (molecular vibration, dissociation,

ionization)

I Chemically reacting flow (equilibrium & non-equilibrium

reactions)
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Applications - Examples

Turbo-machinery flows:
I Gas turbines, steam turbines, compressors
I Aero engines (turbojets, turbofans, turboprops)

Aeroacoustics:
I Flow induced noise (jets, wakes, moving surfaces)
I Sound propagation in high speed flows

External flows:
I Aircraft (airplanes, helicopters)
I Space launchers (rockets, re-entry vehicles)

Internall flows:
I Nozzle flows
I Inlet flows, diffusers
I Gas pipelines (natural gas, bio gas)

Free-shear flows:
I High speed jets

Combustion:
I Internal combustion engines (valve flow, in-cylinder flow, exhaust pipe flow,

mufflers)
I Combustion induced noise (turbulent combustion)
I Combustion instabilities

Niklas Andersson - Chalmers 16 / 732





Applications - Stirling Engine

gas cooler

regenerator

gas heater

compression passage

compression cylinderexpansion cylinder

feed tube

feed tube

manifold

manifold
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Applications - Siemens GT750
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Applications - Rolls-Royce Trent XWB
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Applications - Airbus A380
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Applications - Vulcain Nozzle
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Historical Milestones

1893 C.G.P. de Laval, first steam turbine with

supersonic nozzles

(convergent-divergent). At this time, the

significance was not fully understood,

but it worked!

1947 Charles Yeager, flew first supersonic

aircraft (XS-1), M 1.06
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Historical Milestones - C.G.P. de Laval (1893)
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Historical Milestones - Charles Yeager (1947)
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Modern Compressible Flow

Screeching rectangular supersonic jet
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Chapter 1.2

Compressibility
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Compressibility

τ = −1

ν

∂ν

∂p
, (ν =

1

ρ
)

Not really precise!

Is T held constant during the compression or not?

dV

V

dp
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Compressibility

Two fundamental cases:

Constant temperature

I Heat is cooled off to keep T constant inside the cylinder
I The piston is moved slowly

Adiabatic process

I Thermal insulation prevents heat exchange
I The piston is moved fairly rapidly (gives negligible flow losses)
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Compressibility

Isothermal process:

τT = −1

ν

(
∂ν

∂p

)
T

Adiabatic reversible (isentropic) process:

τS = −1

ν

(
∂ν

∂p

)
S

Air at normal conditions: τT ≈ 1.0× 10−5 [m2/N]

Water at normal conditions: τT ≈ 5.0× 10−10 [m2/N]
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Compressibility

τ = −1

ν

∂ν

∂p

but

ν =
1

ρ

which gives

τ = −ρ
∂

∂p

(
1

ρ

)
= −ρ

(
− 1

ρ2

)
∂ρ

∂p
=

1

ρ

∂ρ

∂p

Similarly:

τT =
1

ρ

(
∂ρ

∂p

)
T

, τS =
1

ρ

(
∂ρ

∂p

)
S
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Compressibility

Definition of compressible flow:

I If p changes with amount ∆p over a characteristic length

scale of the flow, such that the corresponding change in

density, given by ∆ρ ∼ ρτ∆ p, is too large to be neglected,

the flow is compressible (typically, if ∆ρ/ρ > 0.05)

Important note:

I Bernoulli´s equation is restricted to incompressible flow, i.e. it

is not valid for compressible flow!
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Chapter 1.3

Flow Regimes
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Flow Regimes

The freestream Mach number is defined as

M∞ =
U∞
a∞

where U∞ is the freestream flow speed and a∞ is the speed of

sound at freestream conditions
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Flow Regimes

Assume first incompressible flow and estimate the max pressure

difference using

∆p ≈ 1

2
ρ∞U2

∞

For air at normal conditions we have

τT =
1

ρ

(
∂ρ

∂p

)
T

=
1

ρRT
=

1

p

(ideal gas law for perfect gas p = ρRT )
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Flow Regimes

Using the relations on previous slide we get

∆ρ

ρ
≈ τT∆p ≈ 1

p∞

1

2
ρ∞U2

∞ =

1

2
ρ∞U2

∞

ρ∞RT∞

for a calorically perfect gas we have

a =
√
γRT

which gives us

∆ρ

ρ
≈ γU2

∞
2a2∞

now, using the definition of Mach number we get

∆ρ

ρ
≈ γ

2
M2

∞
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Flow Regimes

Incompressible

Subsonic

Transonic

Supersonic

Hypersonic

M∞ < 0.1

M∞ < 1 and M < 1 everywhere

case 1: M∞ < 1 and M > 1 locally
case 2: M∞ > 1 and M < 1 locally

M∞ > 1 and M > 1 everywhere

supersonic flow with high-

temperature effects

C
o
m
p
re
s
s
ib
le

Local Mach number M is based on local flow speed, U = |U|, and local speed of sound, a
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Chapter 1.4

Review of Thermodynamics
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Thermodynamic Review

Compressible flow:

... strong interaction between flow and

thermodynamics ...
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Perfect Gas

All intermolecular forces negligible

Only elastic collitions between molecules

pν = RT

or
p

ρ
= RT

where R is the gas constant [R] = J/kgK

Also, R = Runiv/M where M is the molecular weight of gas

molecules (in kg/kmol) and Runiv = 8314 J/kmol K
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Internal Energy and Enthalpy

Internal energy e ([e] = J/kg)

Enthalpy h ([h] = J/kg)

h = e+ pν = e+
p

ρ
(valid for all gases)

For any gas in thermodynamic equilibrium, e and h are

functions of only two thermodynamic variables (any two

variables may be selected) e.g.

e = e(T , ρ)
h = h(T ,p)

Niklas Andersson - Chalmers 44 / 732





Internal Energy and Enthalpy

Special cases:

Thermally perfect gas:

e = e(T) and h = h(T)

OK assumption for air at near atmospheric conditions and

100K < T < 2500K

Calorically perfect gas:

e = CvT and h = CpT (Cv and Cp are constants)

OK assumption for air at near atmospheric pressure and

100K < T < 1000K
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Specific Heat

For thermally perfect (and calorically perfect) gas

Cp =

(
∂h

∂T

)
p

, Cv =

(
∂e

∂T

)
v

since h = e+ p/ρ = e+ RT we obtain:

Cp = Cv + R

The ratio of specific heats, γ, is defined as:

γ ≡ Cp

Cv
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Specific Heat

Important!

calorically perfect gas:

Cv, Cp, and γ are constants

thermally perfect gas:

Cv, Cp, and γ will depend on temperature
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Specific Heat

Cp − Cv = R

divide by Cv

γ − 1 =
R

Cv

Cv =
R

γ − 1

Cp − Cv = R

divide by Cp

1− 1

γ
=

γ − 1

γ
=

R

Cp

Cp =
γR

γ − 1
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Specific Heat

Cp − Cv = R

divide by Cv

γ − 1 =
R

Cv

Cv =
R

γ − 1

Cp − Cv = R

divide by Cp

1− 1

γ
=

γ − 1

γ
=

R

Cp

Cp =
γR

γ − 1

valid for both thermally perfect and calorically perfect gas!
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First Law of Thermodynamics

A fixed mass of gas, separated from its surroundings by an

imaginary flexible boundary, is defined as a ”system”. This system

obeys the relation

de = δq− δw

where

de is a change in internal energy of system

δq is heat added to the system

δw is work done by the system (on its surroundings)

Note: de only depends on starting point and end point of the process

while δq and δw depend on the actual process also
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First Law of Thermodynamics

Examples:

Adiabatic process:

δq = 0.

Reversible process:

no dissipative phenomena (no flow losses)

Isentropic process:

a process which is both adiabatic and reversible
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First Law of Thermodynamics

Reversible process:

δw = pdν = pd(1/ρ)

de = δq− pd(1/ρ)

Adiabatic & reversible process:

δq = 0.

de = −pd(1/ρ)
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Entropy

Entropy s is a property of all gases, uniquely defined by any two

thermodynamic variables, e.g.

s = s(p,T) or s = s(ρ,T) or s = s(ρ,p) or s = s(e, h) or ...
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Second Law of Thermodynamics

Concept of entropy s:

ds =
δqrev
T

=
δq

T
+ dsir , (dsir > 0.)

or

ds ≥ δq

T

Niklas Andersson - Chalmers 54 / 732





Second Law of Thermodynamics

Concept of entropy s:

ds =
δqrev
T

=
δq

T
+ dsir , (dsir > 0.)

or

ds ≥ δq

T

ρ

T

s

s + ds

(δq)rev

δq
δq 6= (δq)rev
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Second Law of Thermodynamics

In general:

ds ≥ δq

T

For adiabatic processes:

ds ≥ 0.

Niklas Andersson - Chalmers 55 / 732





Second Law of Thermodynamics

”In this house, we obey the laws of

thermodynamics!”

Homer Simpson, after Lisa constructs a perpetual motion machine whose energy

increases with time
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Calculation of Entropy

For reversible processes (δw = pd(1/ρ) and δq = Tds):

de = Tds− pd

(
1

ρ

)
or

Tds = de+ pd

(
1

ρ

)
from before we have h = e+ p/ρ ⇒

dh = de+ pd

(
1

ρ

)
+

(
1

ρ

)
dp ⇔ de = dh− pd

(
1

ρ

)
−
(
1

ρ

)
dp
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Calculation of Entropy

For thermally perfect gases, p = ρRT and dh = CpdT ⇒

ds = Cp

dT

T
− R

dp

p

Integration from starting point (1) to end point (2) gives:

s2 − s1 =

ˆ 2

1
Cp

dT

T
− R ln

(
p2

p1

)
and for calorically perfect gases

s2 − s1 = Cp ln
(
T2

T1

)
− R ln

(
p2

p1

)
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Calculation of Entropy

If we instead use de = CvdT we get

for thermally perfect gases

s2 − s1 =

ˆ 2

1
Cv

dT

T
− R ln

(
ρ2
ρ1

)

and for calorically perfect gases

s2 − s1 = Cv ln
(
T2

T1

)
− R ln

(
ρ2
ρ1

)
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Isentropic Relations

For calorically perfect gases, we have

s2 − s1 = Cp ln
(
T2

T1

)
− R ln

(
p2

p1

)

For adiabatic reversible processes:

ds = 0. ⇒ s1 = s2 ⇒ Cp ln
(
T2

T1

)
− R ln

(
p2

p1

)
= 0 ⇒

ln
(
p2

p1

)
=

Cp

R
ln
(
T2

T1

)
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Isentropic Relations

Cp

R
=

Cp

Cp − Cv

=
γ

γ − 1
⇒

p2

p1
=

(
T2

T1

) γ
γ−1
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Isentropic Relations

Alternatively

s2 − s1 = 0 = Cv ln
(
T2

T1

)
− R ln

(
ρ2
ρ1

)
⇒

ρ2
ρ1

=

(
T2

T1

) 1
γ−1
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Isentropic Relations - Summary

For an isentropic process and a calorically perfect gas we have

p2

p1
=

(
ρ2
ρ1

)γ

=

(
T2

T1

) γ
γ−1

A.K.A. the isentropic relations
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Chapter 2

Integral Forms of the

Conservation Equations for

Inviscid Flows
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

5 Explain how thermodynamic relations enter into the flow

equations

7 Explain why entropy is important for flow discontinuities

equations, equations and more equations
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Roadmap - Integral Relations

Aerodynamic forces Governing equations

(integral form)

Continuity equation

Momentum equation

Energy equation

Control volume example
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Chapter 1.5

Aerodynamic Forces
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Aerodynamic Forces

n

Ω

∂Ω

Ω region occupied by body

∂Ω surface of body

n outward facing unit normal vector
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Aerodynamic Forces

Overall forces on the body du to the flow

F =
{

(−pn + τ · n)dS

where p is static pressure and τ is a stress tensor
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Aerodynamic Forces

Drag is the component of F which is parallel with the freestream

direction:

D = Dp + Df

where Dp is drag due to pressure and Df is drag due to friction

Lift is the component of F which is normal to the free stream

direction:

L = Lp + Lf

(Lf is usually negligible)
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Aerodynamic Forces

Inviscid flow around slender body (attached flow)

I subsonic flow: D = 0
I transonic or supersonic flow: D > 0

Explanation: Wave drag

M∞ < 1 M∞ > 1
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Aerodynamic Forces

I Wave drag is an inviscid phenomena, connected to the

formation of compression shocks and entropy increase

I Viscous effects are present in all Mach regimes

I At transonic and supersonic conditions a particular
phenomena named ”shock/boundary-layer interaction” may
appear

I shocks trigger flow separation
I usually leads to unsteady flow
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Roadmap - Integral Relations

Aerodynamic forces Governing equations

(integral form)

Continuity equation

Momentum equation

Energy equation

Control volume example
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Integral Forms of the Conservation Equations

Conservation principles:

I conservation of mass

I conservation of momentum (Newton’s second law)

I conservation of energy (first law of thermodynamics)
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Integral Forms of the Conservation Equations

The control volume approach:

Ω

∂Ω

n

Notation:

Ω: fixed control volume

∂Ω: boundary of Ω

n: outward facing unit normal vector

v: fluid velocity

v = |v|
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Chapter 2.3

Continuity Equation
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Continuity Equation

Conservation of mass:

d

dt

y

Ω

ρdV︸ ︷︷ ︸+
{

∂Ω

ρv · ndS︸ ︷︷ ︸ = 0

rate of change of

total mass in Ω
net mass flow out

from Ω

Note: notation in the text book n · dS = dS
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Chapter 2.4

Momentum Equation
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Momentum Equation

Conservation of momentum:

d

dt

y

Ω

ρvdV︸ ︷︷ ︸+
{

∂Ω

[ρ(v · n)v + pn]dS︸ ︷︷ ︸ =
y

Ω

ρfdV︸ ︷︷ ︸
rate of change of total

momentum in Ω

net momentum flow out from

Ω plus surface force on ∂Ω
due to pressure

rate of momentum

generation due to

forces inside Ω

Note: friction forces due to viscosity are not included here. To account for these forces, the term −(τ · n) must be
added to the surface integral term.

Note: the body force, f , is force per unit mass.
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Chapter 2.5

Energy Equation

Niklas Andersson - Chalmers 84 / 732





Energy Equation

Conservation of energy:

d

dt

y

Ω

ρeodV︸ ︷︷ ︸+
{

∂Ω

[ρeo(v · n) + pv · n]dS︸ ︷︷ ︸ =
y

Ω

ρf · vdV︸ ︷︷ ︸
rate of change of total

internal energy in Ω

net flow of total internal energy

out from Ω plus work due to

surface pressure on ∂Ω

work due to forces

inside Ω

where

ρeo = ρ

(
e+

1

2
v · v

)
= ρ

(
e+

1

2
v2
)

is the total internal energy
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Energy Equation

The surface integral term may be rewritten as follows:

{

∂Ω

[
ρ

(
e+

1

2
v2
)
(v · n) + pv · n

]
dS

⇔

{

∂Ω

[
ρ

(
e+

p

ρ
+

1

2
v2
)
(v · n)

]
dS

⇔

{

∂Ω

[
ρ

(
h+

1

2
v2
)
(v · n)

]
dS
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Energy Equation

Introducing total enthalpy

ho = h+
1

2
v2

we get

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n]dS =
y

Ω

ρf · vdV
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Energy Equation

Note 1: to include friction work on ∂Ω, the energy equation is
extended as

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n−(τ · n) · v]dS =
y

Ω

ρf · vdV

Note 2: to include heat transfer on ∂Ω, the energy equation is
further extended

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n−(τ · n) · v+q · n]dS =
y

Ω

ρf·vdV

where q is the heat flux vector
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Energy Equation

Note 3: the force f inside Ω may be a distributed body force field

Examples:

I gravity
I Coriolis and centrifugal acceleration terms in a rotating frame

of reference
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Energy Equation

Note 4: there may be objects inside Ω which we choose to

represent as sources of momentum and energy.

For example, there may be a solid object inside Ω which acts on

the fluid with a force F and performs work Ẇ on the fluid

Momentum equation:

d

dt

y

Ω

ρvdV +
{

∂Ω

[ρ(v · n)v + pn]dS =
y

Ω

ρfdV + F

Energy equation:

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n]dS =
y

Ω

ρf · vdV + Ẇ
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Roadmap - Integral Relations

Aerodynamic forces Governing equations

(integral form)

Continuity equation

Momentum equation

Energy equation

Control volume example
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Integral Equations - Applications

How can we use control volume formulations of conservation

laws?

I Let Ω → 0: In the limit of vanishing volume the control volume
formulations give the Partial Differential Equations (PDE:s) for

mass, momentum and energy conservation (see Chapter 6)

I Apply in a ”smart” way ⇒ Analysis tool for many practical

problems involving compressible flow (see Chapter 2,

Section 2.8)
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Integral Equations - Applications

Example: Steady-state adiabatic inviscid flow

C3

C4

C2

C1

control volume where the sur-

faces C1 and C2 are normal to

the flow and C3 and C4 are par-

allel to the stream lines
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Integral Equations - Applications

Conservation of mass:

d

dt

y

Ω

ρdV︸ ︷︷ ︸+
{

∂Ω

ρv · ndS︸ ︷︷ ︸ = 0

= 0 −ρ1v1A1 + ρ2v2A2

Conservation of energy:

d

dt

y

Ω

ρeodV︸ ︷︷ ︸+
{

∂Ω

[ρhov · n]dS︸ ︷︷ ︸ = 0

= 0 −ρ1ho1 v1A1 + ρ2ho2 v2A2
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Integral Equations - Applications

Conservation of mass:

ρ1v1A1 = ρ2v2A2

Conservation of energy:

ρ1ho1v1A1 = ρ2ho2v2A2

⇔

ho1 = ho2

Total enthalpy ho is conserved along streamlines in steady-state

adiabatic inviscid flow
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Roadmap - Integral Relations

Aerodynamic forces Governing equations

(integral form)

Continuity equation

Momentum equation

Energy equation

Control volume example
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

5 Explain how thermodynamic relations enter into the flow

equations

6 Define the special cases of calorically perfect gas, thermally

perfect gas and real gas and explain the implication of each

of these special cases

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*

b normal shocks*

one-dimensional flows - isentropic and non-isentropic
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Roadmap - One-dimensional Flow

Speed of sound

Auxiliary relations

Alternative forms of

the energy equation

Total and critical conditions

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)
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Chapter 3.2

One-Dimensional Flow

Equations
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One-Dimensional Flow Equations

1

u1

ρ1, p1 T1

2

u2

ρ2, p2 T2

shock

x

Assumptions:

I all flow variables only depend on x

I velocity aligned with x-axis
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One-Dimensional Flow Equations

shock

x

1 2

∂Ω

Ω s
u
rf
a
c
e
a
re
a
A

n

Control volume approach:

Define a rectangular control volume around shock, with upstream

conditions denoted by 1 and downstream conditions by 2
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One-Dimensional Flow Equations

Conservation of mass:

d

dt

y

Ω

ρdV = 0

{

∂Ω

ρv · ndS = ρ2u2A− ρ1u1A

ρ1u1 = ρ2u2

Conservation of momentum:

d

dt

y

Ω

ρvdV = 0

{

∂Ω

[ρ(v · n)v + pn]dS =

(ρ2u
2
2 + p2)A− (ρ1u

2
1 + p1)A

ρ1u
2
1 + p1 = ρ2u

2
2 + p2
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One-Dimensional Flow Equations

Conservation of energy:

d

dt

y

Ω

ρeodV = 0

{

∂Ω

[ρhov · n]dS =

ρ2ho2u2A− ρ1ho1u1A

ρ1u1ho1 = ρ2u2ho2

Using the continuity equation this reduces to

ho1 = ho2

or

h1 +
1

2
u21 = h2 +

1

2
u22
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One-Dimensional Flow Equations

Summary:

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

Valid for all gases!

General gas ⇒ Numerical solution necessary

Calorically perfect gas ⇒ analytical solution exists

Note: These equations are valid regardless of whether there is a shock or not inside the control volume
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Roadmap - One-dimensional Flow
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Chapter 3.3

Speed of Sound and Mach

Number
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Speed of Sound

Sound waves are small perturbations in ρ, v, p, T (with constant
entropy s) propagating through gas with speed a

It can be shown that sound waves propagate with a velocity

given by

a2 =

(
∂p

∂ρ

)
s

(valid for all gases)
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Speed of Sound

Compressibility and speed of sound:

from before we have

τs =
1

ρ

(
∂ρ

∂p

)
s

insert in relation for speed of sound

a2 =

(
∂p

∂ρ

)
s

=
1

ρτs

or

a =

√
1

ρτs

(valid for all gases)
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Speed of Sound

Calorically perfect gas:

Isentropic process ⇒ p = Cργ (where C is a constant)

a2 =

(
∂p

∂ρ

)
s

= γCργ−1 =
γp

ρ

which implies

a =

√
γp

ρ

or

a =
√
γRT
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Mach Number

The mach number, M, is a local variable

M =
v

a

where

v = |v|

and a is the local speed of sound

In the free stream, far away from solid objects, the flow is

undisturbed and denoted by subscript ∞

M∞ =
v∞
a∞
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Physical Consequences of Speed of Sound

I Sound waves is the way gas molecules convey information

about what is happening in the flow

I In subsonic flow, sound waves are able to travel upstream,

since v < a

I In supersonic flow, sound waves are unable to travel

upstream, since v > a

v = 0 v < a v > a
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Physical Consequences of Speed of Sound

M∞ < 1

M∞ > 1

compression shock

compression shock

oblique

shock

oblique

shocknormal

shock
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Roadmap - One-dimensional Flow
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Auxiliary relations

Alternative forms of

the energy equation

Total and critical conditions

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)

 

Niklas Andersson - Chalmers 116 / 732





Chapter 3.4

Some Conveniently Defined

Flow Parameters
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Stagnation Flow Properties

Assumption: Steady inviscid flow

If the flow is slowed down isentropically (without flow losses) to

zero velocity we get the so-called total conditions

(total pressure po, total temperature To, total density ρo)

Since the process is isentropic, we have (for calorically perfect

gas)

po

p
=

(
ρo
ρ

)γ

=

(
To

T

) γ
γ−1

Note that vo = 0 and Mo = 0 by definition
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Critical Conditions

If we accelerate the flow adiabatically to the sonic point, where

v = a, we obtain the so-called critical conditions, e.g. p∗, T∗, ρ∗,
a∗

where, by definition, v∗ = a∗

As for the total conditions, if the process is also reversible (entropy

is preserved) we obtain the relations (for calorically perfect gas)

p∗

p
=

(
ρ∗

ρ

)γ

=

(
T∗

T

) γ
γ−1
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Total and Critical Conditions

For any given steady-state flow and location, we may think of an

imaginary isentropic stagnation process or an imaginary

isentropic sonic flow process

I We can compute total and critical conditions at any point

I They represent conditions realizable under an isentropic

deceleration or acceleration of the flow

I Some variables like po and To will be conserved along

streamlines if the flow is isentropic, but po is not conserved if

entropy changes along the streamlines (due to viscous

losses or shocks)
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Total and Critical Conditions

Note: The actual flow does not have to be adiabatic or isentropic

from point to point, the total and critical conditions are results of

an imaginary isentropic/adiabatic process at one point in the flow.

If the flow is not isentropic:

ToA 6= ToB , poA 6= poB , ...

However, with isentropic flow To, po, ρo, etc are constants
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Roadmap - One-dimensional Flow
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Chapter 3.5

Alternative Forms of the

Energy Equation
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Alternative Forms of the Energy Equation

For steady-state adiabatic flow, we have already shown that

conservation of energy gives that total enthalpy, ho, is constant

along streamlines

For a calorically perfect gas we have h = CpT which implies

CpT +
1

2
v2 = CpTo

To

T
= 1 +

v2

2CpT

Inserting Cp =
γR

γ − 1
and a2 = γRT we get

To

T
= 1 +

1

2
(γ − 1)M2
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Alternative Forms of the Energy Equation

For calorically perfect gas (1D/2D/3D flows):

To

T
= 1 +

1

2
(γ − 1)M2

ρo
ρ

=

(
To

T

) 1
γ−1

po

p
=

(
To

T

) γ
γ−1

(
a∗

ao

)2

=
T∗

To
=

2

γ + 1

ρ∗

ρo
=

(
2

γ + 1

) 1
γ−1

p∗

po
=

(
2

γ + 1

) γ
γ−1

Note: tabulated values for these relations can be found in Appendix A.1
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Alternative Forms of the Energy Equation

M∗ ≡ v

a∗

For a calorically perfect gas (1D/2D/3D flows)

M2 =
2[

(γ + 1)/M∗2
]
− (γ − 1)

This relation between M and M∗ gives:

M∗ = 0 ⇔M = 0

M∗ = 1 ⇔M = 1

M∗ < 1 ⇔M < 1

M∗ > 1 ⇔M > 1

M∗ →
√

γ + 1

γ − 1
when M → ∞
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Chapter 3.6

Normal Shock Relations
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One-Dimensional Flow Equations

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

Niklas Andersson - Chalmers 129 / 732





Normal Shock Relations

Calorically perfect gas

h = CpT , p = ρRT

with constant Cp

Assuming that state 1 is known and state 2 is unknown

5 unknown variables: ρ2, u2, p2, h2, T2

5 equations

⇒ solution can be found (see pages 88-90 for derivation)
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Normal Shock Relations

Normal shock relations for calorically perfect gas:

To1 = To2

ao1 = ao2

a∗1 = a∗2 = a∗

u1u2 = a∗2

(the Prandtl relation)

M∗
2 =

1

M∗
1

M2
2 =

1 +
1

2
(γ − 1)M2

1

γM2
1 −

1

2
(γ − 1)

p2

p1
= 1 +

2γ

γ + 1
(M2

1 − 1)

ρ2
ρ1

=
u1

u2
=

(γ + 1)M2
1

2 + (γ − 1)M2
1

T2

T1
=

p2

p1

ρ1
ρ2

see table A.2 and figure 3.10 on p. 94
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Normal Shock Relations

Normal shock ⇒ M1 > 1

M1 > 1 ⇒ M∗
1 > 1

M∗
2 =

1

M∗
1

⇒ M∗
2 < 1

M∗
2 < 1 ⇒ M2 < 1

After a normal shock the Mach number must be lower than 1.0
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Normal Shock Relations

M2
2 =

1 +
1

2
(γ − 1)M2

1

γM2
1 −

1

2
(γ − 1)

I M1 = 1.0 ⇒ M2 = 1.0

I M1 > 1.0 ⇒ M2 < 1.0

I M1 → ∞ ⇒ M2 →
√

(γ − 1)/(2γ) = {γ = 1.4} = 0.378
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Normal Shock Relations

Are the normal shock relations valid for M1 < 1.0?

Mathematically - yes!

Physically - ?
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Normal Shock Relations

Let’s have a look at the 2nd law of thermodynamics

s2 − s1 = Cp ln T2

T1
− R ln p2

p1

We get the ratios (T2/T1) and (p2/p1) from the normal shock

relations

s2 − s1 = Cp ln
[(

1 +
2γ

γ + 1
(M2

1 − 1)

)(
2 + (γ − 1)M2

1

(γ + 1)M2
1

)]
+

− R ln
(
1 +

2γ

γ + 1
(M2

1 − 1)

)

M1 = 1 ⇒ ∆s = 0 (Mach wave)

M1 < 1 ⇒ ∆s < 0 (not physical)

M1 > 1 ⇒ ∆s > 0
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Normal Shock Relations

M1 > 1.0 gives M2 < 1.0, ρ2 > ρ1, p2 > p1, and T2 > T1

What about To and po?

Energy equation:

CpT1 +
u21
2

= CpT2 +
u22
2

CpTo1 = CpTo2

calorically perfect gas ⇒

To1 = To2
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Normal Shock Relations

2nd law of thermodynamics and isentropic deceleration to zero

velocity (∆s unchanged since isentropic) gives

s2 − s1 = Cp ln To2
To1

− R ln po2
po1

= {To1 = To2} = −R ln po2
po1

po2
po1

= e−(s2−s1)/R

i.e. the total pressure decreases over a normal shock
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Normal Shock Relations

As the flow passes a stationary normal shock, the following

changes will take place discontinuously across the shock:

ρ increases

p increases

u decreases

M decreases (from M > 1 to M < 1)
T increases

po decreases (due to shock loss)

s increases (due to shock loss)

To unaffected
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Normal Shock Relations

The normal shock relations for calorically perfect gases are valid

for M1 ≤ 5 (approximately) for air at standard conditions

Calorically perfect gas ⇒ Shock depends on M1 only

Thermally perfect gas ⇒ Shock depends on M1 and T1

General real gas (non-perfect) ⇒ Shock depends on M1,p1,

and T1
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Chapter 3.7

Hugoniot Equation
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Hugoniot Equation

Starting point: governing equations for normal shocks

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

Eliminate u1 and u2 gives:

h2 − h1 =
p2 − p1

2

(
1

ρ1
+

1

ρ2

)
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Hugoniot Equation

Now, insert h = e+ p/ρ gives

e2 − e1 =
p2 + p1

2

(
1

ρ1
− 1

ρ2

)
=

p2 + p1

2
(ν1 − ν2)

which is the Hugoniot relation
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Stationary Normal Shock in One-Dimensional Flow

Normal shock:

e2 − e1 = −p2 + p1

2
(ν2 − ν1)

I More effective than

isentropic process

I Gives entropy increase

Isentropic process:

de = −pdν

I More efficient than normal

shock process

see figure 3.11 p. 100

Niklas Andersson - Chalmers 143 / 732



TITLE

LECTURE 4





Chapter 3

One-Dimensional Flow

Niklas Andersson - Chalmers 145 / 732



Overview

Compressible flow

Basic

Concepts

Com-

pressibility

flow

regimes

speed of

sound

Thermo-

dynamics

thermally

perfect

gas

calorically

perfect

gas

entropy
1:st and

2:nd law

High tem-

perature

effects

molecular

motion
internal

energy

Boltzmann

distribution

equilibrium

gas

CFD
Spatial

dis-

cretization

Numerical

schemes

Time

integration

Shock

handling

Boundary

conditions

PDE:s

traveling

waves

method

of char-

acteristics

finite

non-linear

waves

acoustic

waves

shock

reflection

moving

shocks

governing

equations
Crocco’s

equation

entropy

equation

substantial

derivative
noncon-

servation

form

conser-

vation

form

Conservation

laws

integral form

Quasi

1D Flow
diffusers

nozzles

governing

equations

2D Flow

shock

expansion

theory

expansion

fansshock

reflection

oblique

shocks

1D Flow

friction

heat

addition

normal

shocks

isentropic

flow

governing

equations
energy

mo-

mentum
continuity

Niklas Andersson - Chalmers 146 / 732





Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

5 Explain how thermodynamic relations enter into the flow

equations

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

c 1D flow with heat addition*

d 1D flow with friction*

inviscid flow with friction?!
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Roadmap - One-dimensional Flow

Speed of sound

Auxiliary relations

Alternative forms of

the energy equation

Total and critical conditions

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)
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Chapter 3.8

One-Dimensional Flow with

Heat Addition
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One-Dimensional Flow with Heat Addition

1 2control volume Ω

q

q

x

Pipe flow:

I no friction

I 1D steady-state ⇒ all variables depend on x only

I q is the amount of heat per unit mass added between 1 and

2

I analyze by setting up a control volume between station 1

and 2
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One-Dimensional Flow with Heat Addition

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 + q = h2 +

1

2
u22

Valid for all gases!

General gas ⇒ Numerical solution necessary

Calorically perfect gas ⇒ analytical solution exists
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One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = CpT ):

CpT1 +
1

2
u21 + q = CpT2 +

1

2
u22

q =

(
CpT2 +

1

2
u22

)
−
(
CpT1 +

1

2
u21

)
CpTo = CpT +

1

2
u2 ⇒

q = Cp(To2 − To1)

i.e. heat addition increases To downstream
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

T2

T1
=

[
1 + γM2

1

1 + γM2
2

]2(
M2

M1

)2

ρ2
ρ1

=

[
1 + γM2

2

1 + γM2
1

](
M1

M2

)2

p2

p1
=

1 + γM2
1

1 + γM2
2

Niklas Andersson - Chalmers 153 / 732





One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

po2
po1

=

[
1 + γM2

1

1 + γM2
2

](
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

) γ
γ−1

To2
To1

=

[
1 + γM2

1

1 + γM2
2

](
M2

M1

)2
(
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

) γ
γ−1
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One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)
I the Mach number, M, increases as more heat (per unit mass)

is added to the gas
I for some limiting heat addition q∗, the flow will eventually

become sonic M = 1

Initially supersonic flow (M > 1)
I the Mach number, M, decreases as more heat (per unit mass)

is added to the gas
I for some limiting heat addition q∗, the flow will eventually

become sonic M = 1

Note: The (*) condition in this context is not the same as the ”critical” condition discussed for isentropic flow!!!
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One-Dimensional Flow with Heat Addition

T

T∗ =

[
1 + γ

1 + γM2

]2
M2

ρ

ρ∗
=

[
1 + γM2

1 + γ

](
1

M2

)

p

p∗
=

1 + γ

1 + γM2

po

p∗o
=

[
1 + γ

1 + γM2

](
2 + (γ − 1)M2

(γ + 1)

) γ
γ−1

To

T∗
o

=
(γ + 1)M2

(1 + γM2)2
(2 + (γ − 1)M2)

see Table A.3
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One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

q∗ = Cp(T
∗
o − To) = CpTo

(
T∗
o

To
− 1

)
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One-Dimensional Flow with Heat Addition

M1

p1

T1
ρ1

M2

p2

T2
ρ2

q

M1

p1

T1
ρ1

M
∗

p
∗

T
∗

ρ
∗

q
∗
1

M2

p2

T2
ρ2

M
∗

p
∗

T
∗

ρ
∗

q
∗
2

1 2 ∗

q
∗
2 = q

∗
1 − q For a given flow, the starred quantities are constant values

identical values!
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One-Dimensional Flow with Heat Addition

Rayleigh curve

Lord Rayleigh 1842-1919

Nobel prize in physics 1904

Note: it is theoretically possible to

heat an initially subsonic flow to reach

sonic conditions and then continue to

accelerate the flow by cooling

s

h

sonic point (M = 1)

in
cr
ea
sin
g
q
fo
r M

<
1

in
c
re
a
si
n
g
q
fo
r
M

>
1

see Figure 3.13
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One-Dimensional Flow with Heat Addition

M < 1: Adding heat will

I increase M

I decrease p

I increase To

I decrease po

I increase s

I increase u

I decrease ρ

M > 1: Adding heat will

I decrease M

I increase p

I increase To

I decrease po

I increase s

I decrease u

I increase ρ

Flow loss - not isentropic process
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One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (q) and heat per unit

surface area and unit time (q̇wall )

L

x

b

Pipe with arbitrary cross section (constant in x):

mass flow through pipe ṁ

axial length of pipe L

circumference of pipe b = 2πr

q =
Lbq̇wall

ṁ
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One-Dimensional Flow with Heat Addition - RM12
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Roadmap - One-dimensional Flow

Speed of sound

Auxiliary relations

Alternative forms of

the energy equation

Total and critical conditions

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)
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Chapter 3.9

One-Dimensional Flow with

Friction
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One-Dimensional Flow with Friction

1 2control volume Ω

Thermally insulated walls

x

Pipe flow:

I adiabatic (q = 0)

I cross section area A is constant

I average all variables in each cross-section ⇒ only

x-dependence

I analyze by setting up a control volume between station 1

and 2
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One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

{

∂Ω

τwdS = τ̄wLb

where L is the tube length and b is the circumference
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One-Dimensional Flow with Friction

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 − τ̄w

Lb

A
= ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22
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One-Dimensional Flow with Friction

If the tube has a round cross-section with diameter D:

τ̄w
Lb

A
=

4L

D
τ̄w

For small L = ∆x, the momentum equation becomes

ρ1u
2
1 + p1 − τ̄w

4

D
∆x = ρ2u

2
2 + p2

Now, let ∆x → 0 ⇒

d

dx
(ρu2 + p) = − 4

D
τw
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One-Dimensional Flow with Friction

Form mass conservation we get

ρ1u1 = ρ2u2 ⇒
d

dx
(ρu) = 0

Writing out all terms in the momentum equation gives

d

dx
(ρu2 + p) = ρu

du

dx
+ u

d

dx
(ρu)︸ ︷︷ ︸
=0

+
dp

dx
= − 4

D
τw

and thus

ρu
du

dx
+

dp

dx
= − 4

D
τw

Common approximation for τw:

τw = f
1

2
ρu2 ⇒ ρu

du

dx
+

dp

dx
= − 2

D
ρu2f
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One-Dimensional Flow with Friction

Energy conservation:

ho1 = ho2 ⇒ d

dx
ho = 0

Niklas Andersson - Chalmers 170 / 732





One-Dimensional Flow with Friction

Summary:

d

dx
(ρu) = 0

ρu
du

dx
+

dp

dx
= − 2

D
ρu2f

d

dx
ho = 0

Valid for all gases!

General gas ⇒ Numerical solution necessary

Calorically perfect gas ⇒ analytical solution exists (for constant f )
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One-Dimensional Flow with Friction

Calorically perfect gas:

ˆ x2

x1

4f

D
dx =

− 1

γM2
− γ + 1

2γ
ln

 M2

1 +
γ − 1

2
M2



M2

M1

Niklas Andersson - Chalmers 172 / 732





One-Dimensional Flow with Friction

Calorically perfect gas:

T2

T1
=

2 + (γ − 1)M2
1

2 + (γ − 1)M2
2

p2

p1
=

M1

M2

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

]1/2

ρ2
ρ1

=
M1

M2

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

]−1/2

po2
po1

=
M1

M2

[
2 + (γ − 1)M2

2

2 + (γ − 1)M2
1

] γ+1
2(γ−1)
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One-Dimensional Flow with Friction

Initially subsonic flow (M1 < 1)
I M2 will increase as L increases
I for a critical length L∗, the flow at point 2 will reach sonic

conditions, i.e. M2 = 1

Initially supersonic flow (M1 > 1)
I M2 will decrease as L increases
I for a critical length L∗, the flow at point 2 will reach sonic

conditions, i.e. M2 = 1

Note: The (*) condition in this context is not the same as the ”critical” condition discussed for isentropic flow!!!
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One-Dimensional Flow with Friction

T

T∗ =
(γ + 1)

2 + (γ − 1)M2

p

p∗
=

1

M

[
γ + 1

2 + (γ − 1)M2

]1/2

ρ

ρ∗
=

1

M

[
2 + (γ − 1)M2

γ + 1

]1/2

po

p∗o
=

1

M

[
2 + (γ − 1)M2

γ + 1

] γ+1
2(γ−1)

see Table A.4
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One-Dimensional Flow with Friction

and

ˆ L∗

0

4f

D
dx =

− 1

γM2
− γ + 1

2γ
ln

 M2

1 +
γ − 1

2
M2



1

M

where L∗ is the tube length needed to change current state to

sonic conditions

Let f̄ be the average friction coefficient over the length L∗ ⇒

4f̄ L∗

D
=

1−M2

γM2
+

γ + 1

2γ
ln
(

(γ + 1)M2

2 + (γ − 1)M2

)
Turbulent pipe flow → f̄ ∼ 0.005 (Re > 10

5
, roughness ∼ 0.001D)
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One-Dimensional Flow with Friction

Fanno curve

s

h

sonic point (M = 1)

M < 1

M > 1

see Figure 3.15
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One-Dimensional Flow with Friction

M < 1: Friction will

I increase M

I decrease p

I decrease T

I decrease po

I increase s

I increase u

I decrease ρ

M > 1: Friction will

I decrease M

I increase p

I increase T

I decrease po

I increase s

I decrease u

I increase ρ

Flow loss - non-isentropic flow
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One-Dimensional Flow with Friction - Pipeline
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Roadmap - One-dimensional Flow

Speed of sound

Auxiliary relations

Alternative forms of

the energy equation

Total and critical conditions

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)
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Oblique Shocks and
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

b normal shocks*

e oblique shocks in 2D*

f shock reflection at solid walls*

g contact discontinuities

i detached blunt body shocks, nozzle flows

why do we get normal shocks in some cases and oblique

shocks in other?
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Roadmap - Oblique Shocks and Expansion Waves

Oblique shocks Expansion waves

Mach reflection

Shock intersection

Detached shocks

Shock systems Pressure-deflection diagram

Solid boundary reflection

Oblique shock relations The θ − β −M relation

Prandtl-Meyer expansion

Shock-expansion theory
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Oblique Shocks and Expansion Waves
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Oblique Shocks and Expansion Waves
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Mach Waves

A Mach wave is an infinitely weak oblique shock

B
A

Vt

at

subsonic

V < a

B
A

Vt

at

supersonic

V > a

µ

sinµ =
at

Vt
=

a

V
=

1

M
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Oblique Shocks and Expansion Waves

compression corner expansion corner

Supersonic two-dimensional steady-state inviscid flow

(no wall friction)

In real flow, viscosity is non-zero ⇒ boundary layers

For high-Reynolds-number flows, boundary layers are thin ⇒
inviscid theory still relevant!
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Oblique Shocks

Two-dimensional steady-state flow

β > µ

Flow condition

1

Flow condition

2

Stationary shock

M > 1

x

y
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Oblique Shocks

Stationary oblique shock

x

β

θ

β − θ

v1

w1

u1

w2

u2

v2
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Roadmap - Oblique Shocks and Expansion Waves

Oblique shocks Expansion waves

Mach reflection

Shock intersection

Detached shocks

Shock systems Pressure-deflection diagram

Solid boundary reflection

Oblique shock relations The θ − β −M relation

Prandtl-Meyer expansion

Shock-expansion theory
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Chapter 4.3

Oblique Shock Relations
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Oblique Shock Relations

I Two-dimensional steady-state flow

I Control volume aligned with flow stream lines

A

A

Ω

x

β

θ

β − θ

v1

w1

u1

w2

u2

v2
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Oblique Shock Relations

Velocity notations:

Mn1 =
u1

a1
= M1 sin(β)

Mn2 =
u2

a2
= M2 sin(β − θ)

M1 =
v1

a1

M2 =
v2

a2

A

A

Ω

x

β

θ

β − θ

v1

w1

u1

w2

u2

v2
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Oblique Shock Relations

Conservation of mass:

d

dt

y

Ω

ρdV +
{

∂Ω

ρv · ndS = 0

Mass conservation for control volume Ω:

0− ρ1u1A+ ρ2u2A = 0 ⇒

ρ1u1 = ρ2u2
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Oblique Shock Relations

Conservation of momentum:

d

dt

y

Ω

ρvdV +
{

∂Ω

[ρ(v · n)v + pn]dS =
y

Ω

ρfdV

Momentum in shock-normal direction:

0− (ρ1u
2
1 + p1)A+ (ρ2u

2
2 + p2)A = 0 ⇒

ρ1u
2
1 + p1 = ρ2u

2
2 + p2
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Oblique Shock Relations

Momentum in shock-tangential direction:

0− ρ1u1w1A+ ρ2u2w2A = 0 ⇒

w1 = w2
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Oblique Shock Relations

Conservation of energy:

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n]dS =
y

Ω

ρf · vdV

Energy equation applied to the control volume Ω:

0− ρ1u1[h1 +
1

2
(u21 +w2

1)]A+ ρ2u2[h2 +
1

2
(u22 +w2

2)]A = 0 ⇒

h1 +
1

2
u21 = h2 +

1

2
u22
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Oblique Shock Relations

We can use the equations as for normal shocks if we replace M1

with Mn1 and M2 with Mn2

M2
n2

=
M2

n1
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n1 − 1

Ratios such as ρ2/ρ1, p2/p1, and T2/T1 can be calculated using

the relations for normal shocks with M1 replaced by Mn1

OBS! Do not not use ratios involving total quantities, e.g. po2/po1 ,
To2/To1 , obtained from formulas or tables for normal shock
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Roadmap - Oblique Shocks and Expansion Waves

Oblique shocks Expansion waves

Mach reflection

Shock intersection

Detached shocks

Shock systems Pressure-deflection diagram

Solid boundary reflection

Oblique shock relations The θ − β −M relation

Prandtl-Meyer expansion

Shock-expansion theory
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The θ-β-M Relation

It can be shown that

tan θ = 2 cotβ
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)

which is the θ-β-M relation

Does this give a complete specification of flow state 2 as function

of flow state 1?
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The θ-β-M Relation

In general there are two solutions for a given M1 (or none)
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Oblique shock properties (the θ-β-M relation for γ = 1.4)
s
h
o
c
k
-w
a
v
e
a
n
g
le
β
(d
e
g
re
e
s
)

deflection angle θ (degrees)

strong shock/weak shock dividing curve

(M2 < 1)/(M2 > 1) dividing curve

M1

tan θ = 2 cot β
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)
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The θ-β-M Relation

Example: Wedge flow

θ

β
M1 > 1

Two solution case:

Weak solution:

I smaller β, M2 > 1 (except in some cases)

Strong solution:

I larger β, M2 < 1

Note: In Chapter 3 we learned that the mach number always reduces to subsonic values behind a shock. This is true

for normal shocks (shocks that are normal to the flow direction). It is also true for oblique shocks if looking in the

shock-normal direction.

tan θ = 2 cot β
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)
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The θ-β-M Relation

No solution case: Detached curved shock

θM1 > 1

tan θ = 2 cot β
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)
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The θ-β-M Relation - Skock Strength
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I There is a small region where we may find weak shock

solutions for which M2 < 1

I In most cases weak shock solutions have M2 > 1

I Strong shock solutions always have M2 < 1

I In practical situations, weak shock solutions are most

common

I Strong shock solution may appear in special situations due

to high back pressure, which forces M2 < 1
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The θ-β-M Relation - Wedge Flow

Summary for wedge flow:

1. θ-β-M relation ⇒ β for given M1 and θ

2. β gives Mn1 according to: Mn1 = M1 sin(β)
3. normal shock formula with Mn1 instead of M1 ⇒

Mn2 (instead of M2)

4. M2 given by M2 = Mn2/ sin(β − θ)

5. normal shock formula with Mn1 instead of M1 ⇒
ρ2/ρ1, p2/p1, etc

6. upstream conditions + ρ2/ρ1, p2/p1, etc ⇒
downstream conditions
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Chapter 4.4

Supersonic Flow over

Wedges and Cones
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Supersonic Flow over Wedges and Cones

I Similar to wedge flow, we do get a constant-strength shock

wave, attached at the cone tip (or else a detached curved

shock)

I The attached shock is also cone-shaped

What about cone flows?

M > 1
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Supersonic Flow over Wedges and Cones

I The flow condition immediately downstream of the shock is

uniform

I However, downstream of the shock the streamlines are

curved and the flow varies in a more complex manner (3D

relieving effect - as R increases there is more and more

space around cone for the flow)

I β for cone shock is always smaller than that for wedge

shock, if M1 is the same

What about cone flows?

M > 1
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Roadmap - Oblique Shocks and Expansion Waves

Oblique shocks Expansion waves

Mach reflection

Shock intersection

Detached shocks

Shock systems Pressure-deflection diagram

Solid boundary reflection

Oblique shock relations The θ − β −M relation

Prandtl-Meyer expansion

Shock-expansion theory
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Chapter 4.6

Regular Reflection from a

Solid Boundary
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Shock Reflection

Regular reflection of oblique shock at solid wall
(see example 4.10)

β1

θ

β2

θ

θ

M1 > 1 M2 > 1

M3 > 1

x

y

Assumptions:

I steady-state inviscid flow

I weak shocks

Niklas Andersson - Chalmers 213 / 732





Shock Reflection

first shock:
I upstream condition:

M1 > 1, flow in x-direction

I downstream condition:

weak shock ⇒ M2 > 1
deflection angle θ
shock angle β1

second shock:
I upstream condition:

same as downstream condition of first shock

I downstream condition:

weak shock ⇒ M3 > 1
deflection angle θ
shock angle β2
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Shock Reflection

Solution:

first shock:

I β1 calculated from θ-β-M relation for specified θ and M1

(weak solution)
I flow condition 2 according to formulas for normal shocks

(Mn1 = M1 sin(β1) and Mn2 = M2 sin(β1 − θ))

second shock:

I β2 calculated from θ-β-M relation for specified θ and M2

(weak solution)
I flow condition 3 according to formulas for normal shocks

(Mn2 = M2 sin(β2) and Mn3 = M3 sin(β2 − θ))

⇒ complete description of flow and shock waves

(angle between upper wall and second shock: Φ = β2 − θ)
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Roadmap - Oblique Shocks and Expansion Waves

Oblique shocks Expansion waves

Mach reflection

Shock intersection

Detached shocks

Shock systems Pressure-deflection diagram

Solid boundary reflection

Oblique shock relations The θ − β −M relation

Prandtl-Meyer expansion

Shock-expansion theory
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Chapter 4.7

Comments on Flow Through

Multiple Shock Systems

Niklas Andersson - Chalmers 217 / 732





Flow Through Multiple Shock Systems

Single-shock compression versus multiple-shock compression:

θ1

M1, s1
M2,

s2

θ2

M1, s1
M2,

s2 M3, s3
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Flow Through Multiple Shock Systems

We may find θ1 and θ2 (for same M1) which gives the same final

Mach number

In such cases, the multiple shock flow has smaller losses

Explanation: entropy generation at a shock is a very non-linear

function of shock strength
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Roadmap - Oblique Shocks and Expansion Waves

Oblique shocks Expansion waves
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Chapter 4.8

Pressure Deflection

Diagrams
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Pressure Deflection Diagrams

θ

β

M1

M2

⇒ relation between p2
and θ

θ

p2

weak shock

solution

strong shock

solution

normal shock

solution

infinitely weak

shock solution
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Pressure Deflection Diagrams - Shock Reflection

θ2

1
2

3

θ

p

3

1
2
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Pressure Deflection Diagrams - Shock Intersection

1

2

3

5

4

slip line

θ2

θ3

Φ

A slip line is a contact discontinuity

I discontinuity in ρ, T , s, v, and M
I continuous in p and flow angle
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Pressure Deflection Diagrams - Shock Intersection

θ

p

θ2θ3 Φ

1
2

3

4 5&
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Roadmap - Oblique Shocks and Expansion Waves

Oblique shocks Expansion waves

Mach reflection

Shock intersection

Detached shocks

Shock systems Pressure-deflection diagram

Solid boundary reflection

Oblique shock relations The θ − β −M relation

Prandtl-Meyer expansion

Shock-expansion theory
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Chapter 4.12

Detached Shock Wave in

Front of a Blunt Body
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Detached Shocks

M>1

M>1

M<1M>1

c2

c1

strong shock between c1
and c2, weak shock out-

side
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Detached Shocks

As we move along the detached shock form the centerline,
the shock will change in nature as

I right in front of the body we will have a normal shock
I strong oblique shock
I weak oblique shock
I far away from the body it will approach a Mach wave, i.e. an

infinitely weak oblique shock
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Detached Shocks
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Addressed Learning Outcomes

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

e oblique shocks in 2D*

f shock reflection at solid walls*

g contact discontinuities

h Prandtl-Meyer expansion fans in 2D

i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned

phenomena (8a-8k)

what is the opposite of a shock?
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Chapter 4.10

Intersection of Shocks of the

Same Family
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Mach Waves

Oblique shock, angle β, flow deflection θ:

M2
n2

=
M2

n1
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n1 − 1

where

Mn1 = M1 sin(β)

and

Mn2 = M2 sin(β − θ)

Now, let Mn1 → 1 and Mn2 → 1 ⇒ infinitely weak shock!

Such very weak shocks are called Mach waves
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Mach Waves

Mn1 = 1 ⇒ M1 sin(β) = 1 ⇒ β = arcsin(1/M1)

M1 M2

µ

Mach wave

I M2 ≈ M1

I θ ≈ 0

I µ = arcsin(1/M1)
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Mach Waves

βµ1

µ2

θ

x

y

A B C

Oblique shock (weak)

Mach wave

Mach wave

M1

M2
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Mach Waves

I Mach wave at A: sin(µ1) = 1/M1

I Mach wave at C: sin(µ2) = 1/M2

I Oblique shock at B: Mn1 = M1 sin(β) ⇒ sin(β) = Mn1/M1

I Existence of shock requires Mn1 > 1 ⇒ β > µ1

I Mach wave intercepts shock!

I Also, Mn2 = M2 sin(β − θ) ⇒ sin(β − θ) = Mn2/M2

I For finite shock strength Mn2 < 1 ⇒ (β − θ) < µ2

I Again, Mach wave intercepts shock
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Shock Intersection - Same Family

shock

reflected shock

(or expansion fan)

slip line

1

2

3

4

5

θ2

θ3
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Shock Intersection - Same Family

Case 1: Streamline going through regions 1, 2, 3, and 4

(through two oblique (weak) shocks)

Case 2: Streamline going through regions 1 and 5

(through one oblique (weak) shock)

Problem: Find conditions 4 and 5 such that

a. p4 = p5

b. flow angle in 4 equals flow angle in 5

Solution may give either reflected shock or expansion fan,

depending on actual conditions

A slip line usually appears, across which there is a

discontinuity in all variables except p and flow angle
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Chapter 4.11

Mach Reflection
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Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks

are âweakâ (see θ-β-M relation)

β1

θ

β2

θ

θ

M1 > 1 M2 > 1

M3 > 1

x

y
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Mach Reflection

θ

x

y

normal shock

slip line

incident oblique shock

reflected oblique shock

Mach reflection:

I appears when regular reflection is not possible
I more complex flow than for a regular reflection
I no analytic solution - numerical solution necessary
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Chapter 4.14

Prandtl-Meyer Expansion

Waves
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Prandtl-Meyer Expansion Waves

An expansion fan is a centered simple wave (also called

Prandl-Meyer expansion)

µ1

µ2

θ

M1

M2

expansion fan (Mach waves)

I M2 > M1 (the flow accelerates through the expansion fan)

I p2 < p1, ρ2 < ρ1, T2 < T1
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Prandtl-Meyer Expansion Waves

I Continuous expansion region

I Infinite number of weak Mach waves

I Streamlines through the expansion wave are smooth curved

lines

I ds = 0 for each Mach wave ⇒ the expansion process is

ISENTROPIC!
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Prandtl-Meyer Expansion Waves

I upstream of expansion M1 > 1, sin(µ1) = 1/M1

I flow accelerates as it curves through the expansion fan

I downstream of expansion M2 > M1, sin(µ2) = 1/M2

I flow is isentropic ⇒ s, po, To, ρo, ao, ... are constant along
streamlines

I flow deflection: θ
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Prandtl-Meyer Expansion Waves

It can be shown that dθ =
√
M2 − 1

dv

v
, where v = |v|

(valid for all gases)

Integration gives

ˆ θ2

θ1

dθ =

ˆ M2

M1

√
M2 − 1

dv

v

the term
dv

v
needs to be expressed in terms of Mach number

v = Ma ⇒ ln v = lnM + ln a ⇒

dv

v
=

dM

M
+

da

a
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Prandtl-Meyer Expansion Waves

Calorically perfect gas and adiabatic flow gives

To

T
= 1 +

1

2
(γ − 1)M2

{
a =

√
γRT , ao =

√
γRTo

}
⇒ To

T
=
(ao
a

)2
⇒

(ao
a

)2
= 1 +

1

2
(γ − 1)M2

or

a = ao

[
1 +

1

2
(γ − 1)M2

]−1/2
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Prandtl-Meyer Expansion Waves

Differentiation gives:

da = ao

[
1 +

1

2
(γ − 1)M2

]−3/2(
−1

2

)
(γ − 1)MdM

or

da = a

[
1 +

1

2
(γ − 1)M2

]−1(
−1

2

)
(γ − 1)MdM

which gives

dv

v
=

dM

M
+

da

a
=

dM

M
+

−1
2(γ − 1)MdM

1 + 1
2(γ − 1)M2

=
1

1 + 1
2(γ − 1)M2

dM

M

Niklas Andersson - Chalmers 254 / 732





Prandtl-Meyer Expansion Waves

Thus,

ˆ θ2

θ1

dθ = θ2 − θ1 =

ˆ M2

M1

√
M2 − 1

1 + 1
2(γ − 1)M2

dM

M
= ν(M2)− ν(M1)

where

ν(M) =

ˆ √
M2 − 1

1 + 1
2(γ − 1)M2

dM

M

is the so-called Prandtl-Meyer function
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Prandtl-Meyer Expansion Waves

Performing the integration gives:

ν(M) =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1)− tan−1

√
M2 − 1

We can now calculate the deflection angle ∆θ as:

∆θ = ν(M2)− ν(M1)

ν(M) is tabulated in Table A.5 for a range of Mach numbers (γ = 1.4)
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Prandtl-Meyer Expansion Waves

Example:

µ1

µ2

θ

M1

M2

expansion fan (Mach waves)

I θ1 = 0, M1 > 1 is given

I θ2 is given

I problem: find M2 such that θ2 = ν(M2)− ν(M1)

I ν(M) for γ = 1.4 can be found in Table A.5
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Prandtl-Meyer Expansion Waves

Since flow is isentropic, the usual isentropic relations apply:

(po and To are constant)

Calorically perfect gas:

po

p
=

[
1 +

1

2
(γ − 1)M2

] γ
γ−1

To

T
=

[
1 +

1

2
(γ − 1)M2

]
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Prandtl-Meyer Expansion Waves

since po1 = po2 and To1 = To2

p1

p2
=

po2
po1

p1

p2
=

(
po2
p2

)/(
po1
p1

)
=

[
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

] γ
γ−1

T1

T2
=

To2
To1

T1

T2
=

(
To2
T2

)/(
To1
T1

)
=

[
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

]
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Prandtl-Meyer Expansion Waves

Alternative solution:

1. determine M2 from θ2 = ν(M2)− ν(M1)

2. compute po1 and To1 from p1, T1, and M1 (or use Table A.1)

3. set po2 = po1 and To2 = To1

4. compute p2 and T2 from po2 , To2 , and M2 (or use Table A.1)
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Chapter 4.15

Shock Expansion Theory

Niklas Andersson - Chalmers 262 / 732





Diamond-Wedge Airfoil

L

ε
ε

ε
εt

1 2 3 4

M1 > 1

oblique shock oblique shock

expansion fan

symmetric airfoil

(both in x- and

y-planes
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Diamond-Wedge Airfoil

1-2 standard oblique shock calculation for flow deflection angle ε
and upstream Mach number M1

2-3 Prandtl-Meyer expansion for flow deflection angle 2ε and
upstream Mach number M2

3-4 standard oblique shock calculation for flow deflection angle ε
and upstream Mach number M3
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Diamond-Wedge Airfoil

I symmetric airfoil

I zero incidence flow (freestream aligned with flow axis)

gives:

I symmetric flow field

I zero lift force on airfoil
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Diamond-Wedge Airfoil

Drag force:

D = −
{

∂Ω

p(n · ex)dS

∂Ω airfoil surface

p surface pressure

n outward facing unit normal vector

ex unit vector in x-direction
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Diamond-Wedge Airfoil

Since conditions 2 and 3 are constant in their respective regions,

we obtain:

D = 2 [p2L sin(ε)− p3L sin(ε)] = 2(p2 − p3)
t

2
= (p2 − p3)t

For supersonic free stream (M1 > 1), with shocks and expansion

fans according to figure we will always find that p2 > p3

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)
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Flat-Plate Airfoil

1

2

3

4

5

expansion fan

oblique shock

expansion fan

oblique shock

slip lineΦ

α

incidence α

M1 > 1
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Flat-Plate Airfoil

I Flow states 4 and 5 must satisfy:

I p4 = p5

I flow direction 4 equals flow direction 5 (Φ)

I Shock between 2 and 4 as well as expansion fan between 3

and 5 will unjust themselves to comply with the requirements

I For calculation of lift and drag only states 2 and 3 are needed

I States 2 and 3 can be obtained using standard oblique

shock formulas and Prandtl-Meyer expansion
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Oblique Shocks and Expansion Waves

compression corner expansion corner

I M decrease

I ‖v‖ decrease
I p increase

I ρ increase

I T increase

I M increase

I ‖v‖ increase
I p decrease

I ρ decrease

I T decrease
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Oblique Shocks and Expansion Waves
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Quasi-One-Dimensional

Flow
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

6 Define the special cases of calorically perfect gas, thermally

perfect gas and real gas and explain the implication of each

of these special cases

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*

i detached blunt body shocks, nozzle flows

what does quasi-1D mean? either the flow is 1D or not, or?
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Roadmap - Quasi-One-Dimensional Flow

Basic concepts

Governing equations

Area-velocity relation

Nozzles

Diffusers

Numerical simulation

Free boundary reflection

Nozzle pressure ratio

Nozzle relations
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Quasi-One-Dimensional Flow

Chapter 3 - One-dimensional steady-state flow
I overall assumption:

one-dimensional flow

constant cross section area

I applications:

normal shock

one-dimensional flow with heat addition

one-dimensional flow with friction

Chapter 4 - Two-dimensional steady-state flow
I overall assumption:

two-dimensional flow

uniform supersonic freestream

I applications:

oblique shock

expansion fan

shock-expansion theory
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Quasi-One-Dimensional Flow

I Extension of one-dimensional flow to allow variations in

streamtube area

I Steady-state flow assumption still applied

streamtube area A(x)

x
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Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

cross-section area A(x)

x
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Quasi-One-Dimensional Flow - Nozzle Flow
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Quasi-One-Dimensional Flow - Stirling Engine
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Numerical Simulation of Stirling

Engines Using an Unsteady

Quasi-One-Dimensional

ApproachAn existing computer code for solving the quasi-one-dimensional (Q1D) flow equations

governing unsteady compressible flow in tubes with smoothly varying cross section areas

has been adapted to the simulation of the oscillatory flow in Stirling engines for engine

design purposes. By utilizing an efficient smoothing algorithm for the area function that

preserves the total volume of the tube, it has been possible to achieve a highly accurate

and fully conservative numerical scheme. Submodels for wall friction and heat transfer

have been added, enabling the simulation of gas heaters, gas coolers, and regenerators.

The code has been used for the modeling of an a-type Stirling engine and validated for a

range of operating conditions with good results. [DOI: 10.1115/1.4029396]

1 Introduction
The detailed oscillatory flow inside Stirling engines is challeng-

ing to simulate numerically due to the complex geometry and the

complex physics. For example, there are cylinders with cyclic vol-

ume changes, tubes with sudden area changes, heat exchangers,

regenerators, and unsteady flow effects. The working medium, an

enclosed gas, is usually helium or hydrogen, and part of the ther-

modynamic cycle often lies in a regime with real gas effects. The

flow is in general subsonic, but the large pressure fluctuations still

induce significant compressibility effects.

Traditional design or analysis tools for Stirling engines are

based on simplified modeling concepts, where the pressure is

determined by the overall volume of the system and the pipe flow

is regarded as being quasi-stationary [1–3]. This leads to very fast

methods, but their ability to predict correct trends is questionable.

There have been some attempts to model the pipe flow in a more

detailed manner, based on a Q1D approach [4–6]. However, the

discretizations used have been rather coarse and/or the treatment

of sudden area changes has not been satisfactory. Furthermore,

full compressibility effects have often not been taken into

account. A review of “low-order” methods can be found in Ref.

[7].
It is in principle possible to use currently available three-dimen-

sional (3D) computational fluid dynamics (CFD) solvers for this

type of problem. However, the cost of such a 3D simulation would

be quite high, and would mainly be of interest as a means of

increasing the understanding of some of the details of the flow,

detailed analyses of engine subsystems, or verification analyses

done at late design stages. There are quite a few examples in the

literature where 3D CFD has been used for investigation of the

flow in Stirling engines [7–11]. Chen et al. [8] did an in-depth

investigation of a c-type Stirling engine in order to gain under-

standing of the heat transfer characteristics using a 3D CFD

approach based on laminar compressible Navier–Stokes. Salazar

and Chen [9] studied a b-type engine using axisymmetric CFD.

Costa et al. [10] did a detailed study of the pressure drop and the

heat transfer processes in a wound-woven wire matrix regenerator.

Mahkamov [7] investigated the working process of a solar Stirling

engine using axisymmetric CFD solving the Reynolds-Averaged

Navier–Stokes equations with a k-e turbulence model. A compari-

son with “lower-order” methods was conducted and showed that

the chosen approach gave a more accurate prediction of the per-

formance of the engine.

For system design purposes, a 3D CFD tool is currently not fea-

sible due to demands for large computer resources. The aim of the

work reported in the present publication is to develop a numerical

tool that can be used for optimization purposes, which further

increases the demands for low computational cost. It should be

noted, however, that in contrast to a 3D CFD approach, a tech-

nique based on a quasi-1D assumption, by definition, lacks infor-

mation about cross section gradients and secondary flows and

relies on submodels to account for these effects.

In the present work, an a-type Stirling engine (Fig. 1) has been

modeled by means of a quasi-1D approach, but with significantly

higher resolution than that reported in earlier work and with a

fully conservative density-based flow solver. The small lengths of

the pipe segments (cells) used have made it possible to smooth

out all sudden area changes to the extent that the same numerical

scheme may be applied everywhere in the domain. This ensures

correct numerical treatment of all area changes and unsteady com-

pressibility effects. Losses induced by the sudden area changes

are instead introduced via submodels.

The Q1D solver, on which the new developed tool is based, is

designed for robust and stable operation and for delivering accu-

rate solutions of adiabatic and inviscid flow in tubes with

smoothly varying cross section area. This means that it is neces-

sary to add submodels to handle all physical phenomena such as,

for example, wall friction, heat transfer, flow losses related to for

example sudden area changes, and the porous material in the

regenerator. Similar approaches have been used in several previ-

ously reported investigations. Campbell and Davis [12] used a

quasi-1D solver for system-level, transient simulations of propul-

sion systems including heat transfer. Nguyen [13] developed a

numerical tool based on the unsteady 1D Euler equations for sim-

ulation of closed-loop compressible flows. The main reasons for

applying the above-described approach for simulating the flow in

Stirling engines are the following:

(1) The flow is unsteady and compressible.

(2) The flow between the cylinders is essentially a pipe flow

with variable cross section area.

(3) The Q1D approach is fast and efficient.
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Chapter 5.2

Governing Equations

Niklas Andersson - Chalmers 284 / 732





Governing Equations

Introduce cross-section-averaged flow quantities ⇒
all quantities depend on x only

A = A(x), ρ = ρ(x), u = u(x), p = p(x), ...

1

2

Ω

Γ

x

S1 S2

Ω control volume

S1 left boundary (area A1)

S2 right boundary (area A2)

Γ perimeter boundary

∂Ω = S1 ∪ Γ ∪ S2
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Governing Equations - Mass Conservation

I steady-state

I no flow through Γ

d

dt

y

Ω

ρdV︸ ︷︷ ︸
=0

+
{

∂Ω

ρv · ndS︸ ︷︷ ︸
−ρ1u1A1+ρ2u2A2

= 0

ρ1u1A1 = ρ2u2A2
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Governing Equations - Momentum Conservation

I steady-state

I no flow through Γ

d

dt

y

Ω

ρvdV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρ(v · n)v + pn]dS = 0

{

∂Ω

ρ(v · n)vdS = −ρ1u
2
1A1 + ρ2u

2
2A2

{

∂Ω

pndS = −p1A1 + p2A2 −
ˆ A2

A1

pdA

(ρ1u
2
1 + p1)A1 +

ˆ A2

A1

pdA = (ρ2u
2
2 + p2)A2
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Governing Equations - Energy Conservation

I steady-state

I no flow through Γ

d

dt

y

Ω

ρeodV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρho(v · n)]dS = 0

which gives

ρ1u1A1ho1 = ρ2u2A2ho2

from continuity we have that ρ1u1A1 = ρ2u2A2 ⇒

ho1 = ho2
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Governing Equations - Summary

ρ1u1A1 = ρ2u2A2

(ρ1u
2
1 + p1)A1 +

ˆ A2

A1

pdA = (ρ2u
2
2 + p2)A2

ho1 = ho2
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Governing Equations - Differential Form

Continuity equation:

ρ1u1A1 = ρ2u2A2

or

ρuA = c

where c is a constant ⇒

d(ρuA) = 0
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Governing Equations - Differential Form

Momentum equation:

(ρ1u
2
1 + p1)A1 +

ˆ A2

A1

pdA = (ρ2u
2
2 + p2)A2 ⇒

d
[
(ρu2 + p)A

]
= pdA ⇒

d(ρu2A) + d(pA) = pdA ⇒

ud(ρuA)︸ ︷︷ ︸
=0

+ρuAdu+ Adp+ pdA = pdA ⇒

ρuAdu+ Adp = 0 ⇒

dp = −ρudu Euler’s equation
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Governing Equations - Differential Form

Energy equation:

ho1 = ho2 ⇒

dho = 0

ho = h+
1

2
u2 ⇒

dh+ udu = 0
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Governing Equations - Differential Form

Summary (valid for all gases):

d(ρuA) = 0

dp = −ρudu

dh+ udu = 0

Assumptions:

I quasi-one-dimensional flow

I inviscid flow

I steady-state flow
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Chapter 5.3

Area-Velocity Relation
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Area-Velocity Relation

d(ρuA) = 0 ⇒ uAdρ+ ρAdu+ ρudA = 0

divide by ρuA gives

dρ

ρ
+

du

u
+

dA

A
= 0

Euler’s equation:

dp = −ρudu ⇒ dp

ρ
=

dp

dρ

dρ

ρ
= −udu

Assuming adiabatic, reversible (isentropic) process and the

definition of speed of sound gives

dp

dρ
=

(
∂p

∂ρ

)
s

= a2 ⇒ a2
dρ

ρ
= −udu ⇒ dρ

ρ
= −M2du

u
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Area-Velocity Relation

Now, inserting the expression for
dρ

ρ
in the rewritten continuity

equation gives

(1−M2)
du

u
+

dA

A
= 0

or

dA

A
= (M2 − 1)

du

u

which is the area-velocity relation
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Area-Velocity Relation

dA

A
= (M2 − 1)

du

u

M < 1: decreasing A correlated with increasing u

M > 1: increasing A correlated with increasing u

M = 1: dA = 0

M = 1

M < 1 M > 1

accelerating flow accelerating flow

throat

converging-diverging nozzle

only possibility to obtain

supersonic flow!
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Area-Velocity Relation

Alternative:

Slowing down from supersonic to subsonic flow

(supersonic diffuser)

M = 1

M > 1 M < 1

decelerating flow decelerating flow

throat

in practice:

difficult to obtain completely

shock-free flow in this case
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Area-Velocity Relation

M → 0 ⇒ dA

A
= −du

u

dA

A
+

du

u
= 0 ⇒

1

Au
[udA+ Adu] = 0 ⇒

d(uA) = 0 ⇒ Au = c

where c is a constant
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Area-Velocity Relation

Note 1: The area-velocity relation is only valid for isentropic flow

I not valid across a compression shock

(due to entropy increase)

Note 2: The area-velocity relation is valid for all gases
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Area-Velocity Relation Examples - Rocket Engine

combustion

chamber

M < 1
M > 1

fuel

ox
id
iz
er

high-velocity gas

High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical

figures for a LH
2
/LOx rocket engine: po ∼ 120 [bar], To ∼ 3600 [K], exit velocity ∼ 4000 [m/s]

Niklas Andersson - Chalmers 302 / 732





Area-Velocity Relation Examples - Wind Tunnel

M < 1 M > 1
M > 1 M = 1 M < 1

accelerating flow decelerating flowconstant velocity

nozzle diffusertest section
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Chapter 5.4

Nozzles
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Nozzle Flow - Relations

Calorically perfect gas assumed:

From Chapter 3:

To

T
=
(ao
a

)2
= 1 +

1

2
(γ − 1)M2

po

p
=

(
To

T

) γ
γ−1

ρo
ρ

=

(
To

T

) 1
γ−1
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Nozzle Flow - Relations

Critical conditions:

To

T∗ =
(ao
a∗

)2
=

1

2
(γ + 1)

po

p∗
=

(
To

T∗

) γ
γ−1

ρo
ρ∗

=

(
To

T∗

) 1
γ−1
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Nozzle Flow - Relations

M∗2 =
u2

a∗2
=

u2

a2
a2

a∗2
=

u2

a2
a2

a2o

a2o

a∗2
⇒

M∗2 = M2
1
2(γ + 1)

1 + 1
2(γ − 1)M2
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Nozzle Flow - Relations

For nozzle flow we have

ρuA = c

where c is a constant and therefore

ρ∗u∗A∗ = ρuA

or, since at critical conditions u∗ = a∗

ρ∗a∗A∗ = ρuA

which gives

A

A∗ =
ρ∗

ρ

a∗

u
=

ρ∗

ρo

ρo
ρ

a∗

u
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Nozzle Flow - Relations

A

A∗ =
ρ∗

ρo

ρo
ρ

a∗

u

ρo
ρ

=

(
To

T

) 1
γ−1

ρ∗

ρo
=

(
To

T∗

) −1
γ−1

a∗

u
=

1

M∗


⇒ A

A∗ =

[
1 + 1

2(γ − 1)M2
] 1
γ−1[

1
2(γ + 1)

] 1
γ−1 M∗
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Nozzle Flow - Relations

(
A

A∗

)2

=

[
1 + 1

2(γ − 1)M2
] 2
γ−1[

1
2(γ + 1)

] 2
γ−1 M∗2

M∗2 = M2
1
2(γ + 1)

1 + 1
2(γ − 1)M2


⇒

(
A

A∗

)2

=

[
1 + 1

2(γ − 1)M2
] γ+1
γ−1[

1
2(γ + 1)

] γ+1
γ−1 M2

which is the area-Mach-number relation
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Area-Mach-Number Relation

0 2 4 6 8 10
10

−1

10
0

Area ratio, A/A
∗

M
a
c
h
n
u
m
b
e
r,
M

Area-Mach-Number Relation

subsonic

supersonic

(
A

A∗

)2

=

[
1 + 1

2(γ − 1)M2
] γ+1
γ−1[

1
2(γ + 1)

] γ+1
γ−1 M2
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Area-Mach-Number Relation

Note 1: Critical conditions used here are those corresponding to

isentropic flow. Do not confuse these with the conditions

in the cases of one-dimensional flow with heat addition

and friction

Note 2: For quasi-one-dimensional flow, assuming inviscid

steady-state flow, both total and critical conditions are

constant along streamlines unless shocks are present

(then the flow is no longer isentropic)

Note 3: The derived area-Mach-number relation is only valid for

calorically perfect gas and for isentropic flow. It is not

valid across a compression shock
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*

b normal shocks*

i detached blunt body shocks, nozzle flows

12 Explain the main principles behind a modern Finite Volume

CFD code and such concepts as explicit/implicit time

stepping, CFL number, conservation, handling of

compression shocks, and boundary conditions

time for rocket science!
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Nozzle Flow

Assumptions:

I inviscid
I steady-state
I quasi-one-dimensional
I calorically perfect gas

x

A1

At

A2
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Nozzle Flow

Alt. 1: sub-critical (non-choked) nozzle flow

I M < 1 at nozzle throat

I At > A∗

I M1 < 1

I M2 < 1

0 2 4 6 8 10
10

−1

10
0

Area ratio, A/A
∗

M
a
c
h
n
u
m
b
e
r,
M

Area-Mach-Number Relation

subsonic

supersonic

2

1

throat
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Nozzle Flow

Alt. 2: critical (choked) nozzle flow

I M = 1 at nozzle throat

I At = A∗

I M1 < 1

I M2 > 1

0 2 4 6 8 10
10

−1

10
0

Area ratio, A/A
∗

M
a
c
h
n
u
m
b
e
r,
M

Area-Mach-Number Relation

subsonic

supersonic

2

1

throat

we assume that there are no

shocks between x1 and x2
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Nozzle Flow

Choked nozzle flow (no shocks):

I A∗ is constant throughout the nozzle

I At = A∗

M1 given by the subsonic solution of(
A1

A∗

)2

=

(
A1

At

)2

=
1

M2
1

[
2

γ + 1
(1 +

1

2
(γ − 1)M2

1)

] γ+1
γ−1

M2 given by the supersonic solution of(
A2

A∗

)2

=

(
A2

At

)2

=
1

M2
2

[
2

γ + 1
(1 +

1

2
(γ − 1)M2

2)

] γ+1
γ−1

M is uniquely determined everywhere in the nozzle, with subsonic flow upstream of throat and supersonic flow

downstream of throat
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Nozzle Mass Flow

For a choked nozzle:

ṁ = ρ1u1A1 = ρ∗u∗A∗ = ρ2u2A2

ρ∗ =
ρ∗

ρo
ρo =

(
2

γ + 1

) 1
γ−1 po

RTo

a∗ =
a∗

ao
ao =

(
2

γ + 1

) 1
2 √

γRTo


⇒

ṁ =
poAt√
To

√
γ

R

(
2

γ + 1

) γ+1
γ−1
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Nozzle Mass Flow

ṁ =
poAt√
To

√
γ

R

(
2

γ + 1

) γ+1
γ−1

I The maximum mass flow that can be sustained through the

nozzle

I Valid for quasi-one-dimensional, inviscid, steady-state flow

and calorically perfect gas

Note: The massflow formula is valid even if there are shocks

present downstream of throat!
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Nozzle Mass Flow

How can we increase mass flow through nozzle?

I increase po

I decrease To

I increase At

I decrease R
(increase molecular weight, without changing γ)
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Nozzle Flow with Varying Pressure Ratio

x
At

po pe

A(x) area function

At min{A(x)}
po inlet total pressure

pe outlet static pressure

(ambient pressure)

po/pe pressure ratio
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Nozzle Flow with Varying Pressure Ratio

x

M

1

throat

increasing po/pe

supersonic branch

subsonic branch

critical po/pe

For critical po/pe, a jump to supersonic solution will occur
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Nozzle Flow with Varying Pressure Ratio

x

p/po

throat

1

p∗

po
=

(
2

γ + 1

) γ
γ−1 increasing po/pe

supersonic branch

subsonic branch

critical po/pe

As the flow jumps to the supersonic branch downstream of the

throat, a normal shock will appear in order to match the ambient

pressure at the nozzle exit
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Nozzle Flow with Varying Pressure Ratio

x

M

1

throat

normal shock
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Nozzle Flow with Varying Pressure Ratio

x

p/po

throat

1

p∗

po
=

(
2

γ + 1

) γ
γ−1

normal shock
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Nozzle Flow with Varying Pressure Ratio (Summary)

(po/pe) < (po/pe)cr
I the flow remains entirely subsonic
I the mass flow depends on pe, i.e. the flow is not choked
I no shock is formed, therefore the flow is isentropic

throughout the nozzle

(po/pe) = (po/pe)cr
I the flow just achieves M = 1 at the throat
I the flow will then suddenly flip to the supersonic solution

downstream of the throat, for an infinitesimally small increase

in (po/pe)

(po/pe) > (po/pe)cr
I the flow is choked (fixed mass flow), i.e. it does not depend

on pe
I a normal shock will appear downstream of the throat, with

strength and position depending on (po/pe)
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Nozzle Flow with Varying Pressure Ratio

x

p/po

throat nozzle exit

1

p∗

po
=

(
2

γ + 1

) γ
γ−1

critical po/pe

supercritical po/peshock strength

p
o
/
p
e
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Nozzle Flow with Varying Pressure Ratio

Effects of changing the pressure ratio (po/pe) (where pe is the

back pressure and po is the total pressure at the nozzle inlet)

I critical value: po/pe = (po/pe)c
I nozzle flow reaches M = 1 at throat, flow becomes choked

I supercritical value: po/pe = (po/pe)sc
I nozzle flow is supersonic from throat to exit, without any

interior normal shock - isentropic flow

I normal shock at exit: (po/pe) = (po/pe)ne < (po/pe)sc
I normal shock is still present but is located just at exit -

isentropic flow inside nozzle
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Nozzle Flow with Varying Pressure Ratio

Normal shock at exit

x

p/po

throat nozzle exit

1 (po/pe)c

(po/pe)sc

(po/pe)ne
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Nozzle Flow with Varying Pressure Ratio

normal shock
po/pe = (po/pe)ne
normal shock at nozzle exit

oblique shock
(po/pe)ne < po/pe < (po/pe)sc
overexpanded nozzle flow

pressure matched
po/pe = (po/pe)sc
pressure matched nozzle flow

expansion fan
po/pe > (po/pe)sc
underexpanded nozzle flow
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Nozzle Flow with Varying Pressure Ratio

Quasi-one-dimensional theory

I When the interior normal shock is ”pushed out” through the

exit (by increasing (po/pe), i.e. lowering the back pressure), it
disappears completely.

I The flow through the nozzle is then shock free (and thus also

isentropic since we neglect viscosity).

Three-dimensional nozzle flow

I When the interior normal shock is ”pushed out” through the

exit (by increasing (po/pe)), an oblique shock is formed
outside of the nozzle exit.

I For the exact supercritical value of (po/pe) this oblique shock
disappears.

I For (po/pe) above the supercritical value an expansion fan is
formed at the nozzle exit.
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Chapter 5.6

Wave Reflection From a Free

Boundary
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Free-Boundary Reflection

Free boundary - shear layer, interface between different fluids, etc
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Free-Boundary Reflection - Shock Reflection

free boundary (p∞)

incident shock

reflected expansion

I No jump in pressure at the free boundary possible

I Incident shock reflects as expansion waves at the free

boundary

I Reflection results in net turning of the flow
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Free-Boundary Reflection - Expansion Wave Reflection

free boundary (p∞)

incident expansion wave reflected shock

I No jump in pressure at the free boundary possible

I Incident expansion waves reflects as compression waves at

the free boundary

I Finite compression waves coalesces into a shock

I Reflection results in net turning of the flow
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Free-Boundary Reflection - System of Reflections

free boundary

free bou
ndary

overexpanded nozzle flow
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Free-Boundary Reflection - System of Reflections

free boundary

free bou
ndary

shock reflection at jet centerline
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Free-Boundary Reflection - System of Reflections

free boundary

free bou
ndary

shock reflection at free boundary
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Free-Boundary Reflection - System of Reflections

free boundary

free bou
ndary

expansion wave reflection at jet centerline
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Free-Boundary Reflection - System of Reflections

free boundary

free bou
ndary

expansion wave reflection at free boundary
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Free-Boundary Reflection - System of Reflections

free boundary

free bou
ndary

repeated shock/expansion system
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Free-Boundary Reflection - System of Reflections





free boundary

free bou
ndary

shock diamonds
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Free-Boundary Reflection - System of Reflections

expansion fan

normal shock

oblique shock

underexpanded jet
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Free-Boundary Reflection - Summary

Solid-wall reflection

Compression waves reflects as compression waves

Expansion waves reflects as expansion waves

Free-boundary reflection

Compression waves reflects as expansion waves

Expansion waves reflects as compression waves
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Chapter 5.5

Diffusers
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Supersonic Wind Tunnel

po

M > 1

test section

(open)

pe = pamb

po/pe = (po/pe)sc

M = 3.0 in test section ⇒ po/pe = 36.7 !!!

wind tunnel with supersonic test section

open test section
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Supersonic Wind Tunnel

po

M > 1

test section

(closed)

pe
M < 1

pamb

normal shock

po/pamb = (po/pe)(pe/pamb) < (po/pe)sc

M = 3.0 in test section ⇒
po/pamb = 36.7/10.33 = 3.55

wind tunnel with supersonic test section

enclosed test section, normal shock at exit
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Supersonic Wind Tunnel

po

M > 1

test section

(closed)

pe
M < 1

p2

(
po2 = pamb

)

normal shock

po/pamb = (po/pe)(pe/p2)(p2/po2 )

M = 3.0 in test section ⇒
po/pamb = 36.7/10.33/1.17 = 3.04

Note: this corresponds exactly to total pressure

loss across normal shock

wind tunnel with supersonic test section

add subsonic diffuser after normal shock
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Supersonic Wind Tunnel

po

M > 1

test section

(closed)

pe

normal shock

oblique shocks

M < 1

p2

(
po2 = pamb

)

well-designed supersonic + subsonic diffuser ⇒

1. decreased total pressure loss

2. decreased po and power to drive wind tunnel

wind tunnel with supersonic test section

add supersonic diffuser before normal shock
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Supersonic Wind Tunnel

Main problems:

1. Design is extremely difficult due to complex 3D flow in
diffuser

I viscous effects
I oblique shocks
I separations

2. Starting requirements: second throat must be significantly

larger than first throat

solution:

I variable geometry diffuser
I second throat larger during startup procedure
I decreased second throat to optimum value after flow is

established
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Supersonic Wind Tunnel

p
re
s
s
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throat area (second throat)

o
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Quasi-One-Dimensional

Euler Equations
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Quasi-One-Dimensional Euler Equations

Example: choked flow through a convergent-divergent nozzle

x

A(x)

Assumptions: inviscid, Q = Q(x, t)
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Quasi-One-Dimensional Euler Equations

A(x)
∂

∂t
Q+

∂

∂x
[A(x)E] = A′(x)H

where A(x) is the cross section area and

Q =

 ρ
ρu
ρeo

 , E(Q) =

 ρu

ρu2 + p

ρhou

 , H(Q) =

0p
0
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Numerical Approach

I Finite-Volume Method

I Method of lines, three-stage Runge-Kutta time stepping

I 3rd-order characteristic upwinding scheme

I Subsonic inflow boundary condition at min(x)

I To, po given

I Subsonic outflow boundary condition at max(x)

I p given
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Finite-Volume Spatial Discretization

xcell j

x
j− 3

2
x
j− 1

2
x
j+1

2
x
j+3

2

(
∆xj = x

j+1
2

− x
j− 1

2

)

Integration over cell j gives:

1

2

[
A(xj− 1

2
) + A(xj+ 1

2
)
]
∆xj

d

dt
Q̄j+[

A(xj+ 1
2
)Êj+ 1

2
− A(xj− 1

2
)Êj− 1

2

]
=[

A(xj+ 1
2
)− A(xj− 1

2
)
]
Ĥj
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Finite-Volume Spatial Discretization

Q̄j =

ˆ x
j+1

2

x
j− 1

2

QA(x)dx

/ˆ x
j+1

2

x
j− 1

2

A(x)dx



Êj+ 1
2
≈ E

(
Q
(
xj+ 1

2

))

Ĥj ≈

ˆ x
j+1

2

x
j− 1

2

HA′(x)dx

/ˆ x
j+1

2

x
j− 1

2

A′(x)dx
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Modern Compressible Flow
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Chapter 7

Unsteady Wave Motion
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Compressible flow
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flow
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thermally

perfect

gas

calorically

perfect

gas

entropy
1:st and

2:nd law

High tem-

perature

effects

molecular

motion
internal

energy

Boltzmann

distribution

equilibrium

gas

CFD
Spatial

dis-

cretization

Numerical

schemes

Time

integration

Shock

handling

Boundary

conditions

PDE:s

traveling

waves

method

of char-

acteristics

finite

non-linear

waves

acoustic

waves

shock

reflection

moving

shocks

governing

equations
Crocco’s

equation

entropy

equation

substantial

derivative
noncon-

servation

form
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expansion

fansshock
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*

b normal shocks*

j unsteady waves and discontinuities in 1D

moving normal shocks - frame of reference seems to be the

key here?!
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel
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Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air

observer moving with the
bullet

I steady-state flow
I the detached shock

wave is stationary

observer at rest

I unsteady flow
I detached shock wave

moves through the air

(to the left)

detached shock
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Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air

oblique stationary shock

normal shock advancing

through stagnant air

shock system becomes stationary

only for observer moving with the

object

for stationary observer, both object

and shock system are moving

o
b
s
e
rv
e
r
m
o
v
in
g
w
it
h
o
b
je
c
t

s
ta
ti
o
n
a
ry
o
b
s
e
rv
e
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Unsteady Wave Motion - Example #2

Shock wave from explosion

I For observer at rest with respect to the surrounding air:

I the flow is unsteady

I the shock wave moves through the air
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Unsteady Wave Motion - Example #2

Shock wave from explosion

t = 0.0002 s t = 0.0036 s t = 0.0117 s t = 0.0212 s

t = 0.0308 s t = 0.0404 s t = 0.0499 s t = 0.0594 s

I normal shock moving spherically outwards

I Shock strength decreases with radius

I Shock speed decreases with radius
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Unsteady Wave Motion

inertial frames!

Physical laws are the same for both frame of references

Shock characteristics are the same for both observers

(shape, strength, etc)
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Unsteady Wave Motion

Is there a connection with stationary shock waves?

Answer: Yes!

Locally, in a moving frame of reference, the shock may be

viewed as a stationary normal shock
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel
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Chapter 7.2

Moving Normal Shock

Waves
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Moving Normal Shock Waves

Chapter 3: stationary normal shock

2 1

u2 u1

x
stationary normal shock

u1 > a1 (supersonic flow)

u2 < a2 (subsonic flow)

p2 > p1 (sudden compression)

s2 > s1 (shock loss)
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Moving Normal Shock Waves

2 1

observer
W

u2 u1

x
stationary normal shock

I Introduce observer moving to the left with speed W

I if W is constant the observer is still in an inertial system
I all physical laws are unchanged

I The observer sees a normal shock moving to the right with
speed W

I gas velocity ahead of shock: u′1 = W − u1
I gas velocity behind shock: u′2 = W − u2
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Moving Normal Shock Waves

Now, let W = u1 ⇒

u′1 = 0

u′2 = u1 − u2 > 0

The observer now sees the shock traveling to the right with

speed W = u1 into a stagnant gas, leaving a compressed gas

(p2 > p1) with velocity u
′
2 > 0 behind it

Introducing up:

up = u′2 = u1 − u2
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Moving Normal Shock Waves

2 1

stationary observer

u
′
2 = up > 0 u

′
1 = 0

x

W

moving normal shock

Analogy:

Case 1

I stationary normal shock
I observer moving with velocity W

Case 2

I normal shock moving with velocity W
I stationary observer
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Moving Normal Shock Waves - Governing Equations

2 1

stationary observer

u
′
2 = up > 0 u

′
1 = 0

x

W

moving normal shock

For stationary normal shocks

we have:

With (u1 = W) and
(u2 = W − up) we get:

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

ρ1W = ρ2(W − up)

ρ1W
2 + p1 = ρ2(W − up)

2 + p2

h1 +
1

2
W2 = h2 +

1

2
(W − up)

2
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Moving Normal Shock Waves - Relations

Starting from the governing equations

ρ1W = ρ2(W − up)

ρ1W
2 + p1 = ρ2(W − up)

2 + p2

h1 +
1

2
W2 = h2 +

1

2
(W − up)

2

and using h = e+
p

ρ

it is possible to show that

e2 − e1 =
p1 + p2

2

(
1

ρ1
+

1

ρ2

)
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Moving Normal Shock Waves - Relations

e2 − e1 =
p1 + p2

2

(
1

ρ1
+

1

ρ2

)

same Hugoniot equation as for stationary normal shock

This means that we will have same shock strength, i.e. same

jumps in density, velocity, pressure, etc

Niklas Andersson - Chalmers 391 / 732





Moving Normal Shock Waves - Relations

Starting from the Hugoniot equation one can show that

ρ2
ρ1

=

1 +
γ + 1

γ − 1

(
p2

p1

)
γ + 1

γ − 1
+

p2

p1

and

T2

T1
=

p2

p1


γ + 1

γ − 1
+

p2

p1

1 +
γ + 1

γ − 1

(
p2

p1

)
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Moving Normal Shock Waves - Relations

For calorically perfect gas and stationary normal shock:

p2

p1
= 1 +

2γ

γ + 1
(M2

s − 1)

same as eq. (3.57) in Anderson with M1 = Ms

where

Ms =
W

a1

I Ms is simply the speed of the shock (W ), traveling into the
stagnant gas, normalized by the speed of sound in this
stagnant gas (a1)

I Ms > 1, otherwise there is no shock!
I shocks always moves faster than sound - no warning before

it hits you ,
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Moving Normal Shock Waves - Relations

Re-arrange:

Ms =

√
γ + 1

2γ

(
p2

p1
− 1

)
+ 1

(speed of shock directly linked to pressure ratio)

Ms =
W

a1
⇒

W = a1Ms = a1

√
γ + 1

2γ

(
p2

p1
− 1

)
+ 1
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Moving Normal Shock Waves - Relations

From the continuity equation we get:

up = W

(
1− ρ1

ρ2

)
> 0

After some derivation we obtain:

up =
a1

γ

(
p2

p1
− 1

)
2γ

γ + 1
p2

p1
+

γ − 1

γ + 1


1/2
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Moving Normal Shock Waves - Relations

Induced Mach number:

Mp =
up

a2
=

up

a1

a1

a2
=

up

a1

√
T1

T2

inserting up/a1 and T1/T2 from relations on previous slides we

get:

Mp =
1

γ

(
p2

p1
− 1

)
2γ

γ + 1
γ − 1

γ + 1
+

p2

p1


1/2


1 +

(
γ + 1

γ − 1

)(
p2

p1

)
(
γ + 1

γ − 1

)(
p2

p1

)
+

(
p2

p1

)2


1/2
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Moving Normal Shock Waves - Relations

Note that

lim
p2
p1

→∞
Mp →

√
2

γ(γ − 1)

for air (γ = 1.4)

lim
p2
p1

→∞
Mp → 1.89
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Moving Normal Shock Waves - Relations

Moving normal shock with p2/p1 = 10

(p1 = 10 bar, T1 = 300 K, γ = 1.4)

⇒ Ms = 2.95 and W = 1024.2 m/s

The shock is advancing with almost three times the speed of

sound!

Behind the shock the induced velocity is up = 756.2 m/s ⇒
supersonic flow (a2 = 562.1 m/s)

May be calculated by formulas 7.13, 7.16, 7.10, 7.11 or by using Table A.2 for stationary normal shock (u1 = W ,

u2 = W − up )
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Moving Normal Shock Waves - Relations

Note that ho1 6= ho2

constant total enthalpy is only valid for stationary shocks!

shock is uniquely defined by pressure ratio p2/p1

u1 = 0

ho1 = h1 +
1

2
u21 = h1

ho2 = h2 +
1

2
u22

h2 > h1 ⇒ ho2 > ho1
2 4 6 8 10

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1.5

2

2.5

3

3.5

4

p2/p1

T2/T1 = h2/h1 (if Cp is constant)

γ
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Moving Normal Shock Waves - Relations

Gas/Vapor Ratio of specific heats Gas constant

(γ) R

Acetylene 1.23 319

Air (standard) 1.40 287

Ammonia 1.31 530

Argon 1.67 208

Benzene 1.12 100

Butane 1.09 143

Carbon Dioxide 1.29 189

Carbon Disulphide 1.21 120

Carbon Monoxide 1.40 297

Chlorine 1.34 120

Ethane 1.19 276

Ethylene 1.24 296

Helium 1.67 2080

Hydrogen 1.41 4120

Hydrogen chloride 1.41 230

Methane 1.30 518

Natural Gas (Methane) 1.27 500

Nitric oxide 1.39 277

Nitrogen 1.40 297

Nitrous oxide 1.27 180

Oxygen 1.40 260

Propane 1.13 189

Steam (water) 1.32 462

Sulphur dioxide 1.29 130
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Addressed Learning Outcomes

3 Describe typical engineering flow situations in which

compressibility effects are more or less predominant (e.g.

Mach number regimes for steady-state flows)

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

j unsteady waves and discontinuities in 1D

9 Solve engineering problems involving the above-mentioned

phenomena (8a-8k)

12 Explain the main principles behind a modern Finite Volume

CFD code and such concepts as explicit/implicit time

stepping, CFL number, conservation, handling of

compression shocks, and boundary conditions

what happens when a moving shock approaches a wall?
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Roadmap - Unsteady Wave Motion
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Chapter 7.3

Reflected Shock Wave
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Shock Reflection

x

t

1

5

2

3

initial moving shock,
dx

dt
= W

reflected shock,
dx

dt
= −Wr

contact surface,
dx

dt
= up

contact surface,
dx

dt
= 0

solid wall
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Shock Reflection - Particle Path

A fluid particle located at x0 at time t0 (a location ahead of the

shock) will be affected by the moving shock and follow the blue

path

time location velocity

t0 x0 0
t1 x0 up
t2 x1 up
t3 x1 0

x

t

x0 x1
t0

t1

t2

t3
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Shock Reflection Relations

I velocity ahead of reflected shock: Wr + up

I velocity behind reflected shock: Wr

Continuity:

ρ2(Wr + up) = ρ5Wr

Momentum:

p2 + ρ2(Wr + up)
2 = p5 + ρ5W

2
r

Energy:

h2 +
1

2
(Wr + up)

2 = h5 +
1

2
W2

r
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Shock Reflection Relations

Reflected shock is determined such that u5 = 0

Mr

M2
r − 1

=
Ms

M2
s − 1

√
1 +

2(γ − 1)

(γ + 1)2
(M2

s − 1)

(
γ +

1

M2
s

)

where

Mr =
Wr + up

a2
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Tailored v.s. Non-Tailored Shock Reflection

I The time duration of condition 5 is determined by what

happens after interaction between reflected shock and

contact discontinuity

I For special choice of initial conditions (tailored case), this

interaction is negligible, thus prolonging the duration of

condition 5
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Tailored v.s. Non-Tailored Shock Reflection

5

1

2

3

t

x

wall

under-tailored

5

1

2

3

t

x

wall

tailored

5

1

2

3

t

x

wall

over-tailored

shock wave

contact surface

expansion wave

Under-tailored conditions:

Mach number of incident wave lower than in tailored

conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored

conditions Niklas Andersson - Chalmers 412 / 732





Shock Reflection - Example

Shock reflection in shock tube (γ = 1.4)
(Example 7.1 in Anderson)

Incident shock (given data)

p2/p1 10.0

Ms 2.95

T2/T1 2.623

p1 1.0 [bar]

T1 300.0 [K]

Calculated data

Mr 2.09

Table A.2

p5/p2 4.978

T5/T2 1.77

p5 =

(
p5

p2

)(
p2

p1

)
p1 = 49.78

T5 =

(
T5

T2

)(
T2

T1

)
T1 = 1393
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Shock Reflection - Shock Tube

I Very high pressure and temperature conditions in a specified

location with very high precision (p5,T5)

I measurements of thermodynamic properties of various gases

at extreme conditions, e.g. dissociation energies, molecular

relaxation times, etc.

I measurements of chemical reaction properties of various gas

mixtures at extreme conditions
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Roadmap - Unsteady Wave Motion
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Shock Tunnel

I Addition of a convergent-divergent nozzle to a shock tube

configuration

I Capable of producing flow conditions which are close to
those during the reentry of a space vehicles into the earth’s
atmosphere

I high-enthalpy, hypersonic flows (short time)
I real gas effects

I Example - Aachen TH2:

I velocities up to 4 km/s
I stagnation temperatures of several thousand degrees
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Shock Tunnel

driver section driven section

test section

dump tank

Wr

diaphragm 2diaphragm 1

reflected shock

test object

1. High pressure in region 4 (driver section)

I diaphragm 1 burst
I primary shock generated

2. Primary shock reaches end of shock tube

I shock reflection

3. High pressure in region 5

I diaphragm 2 burst
I nozzle flow initiated
I hypersonic flow in test section
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Shock Tunnel

reflected expansion fan

incident shock wave

reflected shock wave

contact surface

1

2

3

4

5

t

x

4 1

driver section driven section

diaphragm location wall
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Shock Tunnel

By adding a compression tube to the shock tube a very high p4
and T4 may be achieved for any gas in a fairly simple manner

heavy piston compression tube diaphragm

pressurized air
driver gas

p, T

driven gas

p1, T1

pressurized air
driver gas

p4, T4

driven gas

p1, T1
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The Aachen Shock Tunnel - TH2

Shock tunnel built

1975

nozzle

end of shock tube

inspection window
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The Aachen Shock Tunnel - TH2

Shock tube specifications:

diameter 140 mm

driver section 6.0 m

driven section 15.4 m

diaphragm 1 10 mm stainless steel

diaphragm 2 copper/brass sheet

max operating (steady) pressure 1500 bar
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The Aachen Shock Tunnel - TH2

I Driver gas (usually helium):

I 100 bar < p4 < 1500 bar
I electrical preheating (optional) to 600 K

I Driven gas:

I 0.1 bar < p1 < 10 bar

I Dump tank evacuated before test
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The Aachen Shock Tunnel - TH2

initial conditions shock reservoir free stream

p4 T4 p1 Ms p2 p5 T5 M∞ T∞ u∞ p∞
[bar] [K] [bar] [bar] [bar] [K] [K] [m/s] [mbar]

100 293 1.0 3.3 12 65 1500 7.7 125 1740 7.6

370 500 1.0 4.6 26 175 2500 7.4 250 2350 20.0

720 500 0.7 5.6 50 325 3650 6.8 460 3910 42.0

1200 500 0.6 6.8 50 560 4600 6.5 700 3400 73.0

100 293 0.9 3.4 12 65 1500 11.3 60 1780 0.6

450 500 1.2 4.9 29 225 2700 11.3 120 2480 1.5

1300 520 0.7 6.4 46 630 4600 12.1 220 3560 1.2

26 293 0.2 3.4 12 15 1500 11.4 60 1780 0.1

480 500 0.2 6.6 50 210 4600 11.0 270 3630 0.7

100 293 1.0 3.4 12 65 1500 7.7 130 1750 7.3

370 500 1.0 5.1 27 220 2700 7.3 280 2440 26.3
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The Caltech Shock Tunnel - T5

Free-piston shock tunnel
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The Caltech Shock Tunnel - T5

I Compression tube (CT):

I length 30 m, diameter 300 mm
I free piston (120 kg)
I max piston velocity: 300 m/s
I driven by compressed air (80 bar - 150 bar)

I Shock tube (ST):

I length 12 m, diameter 90 mm
I driver gas: helium + argon
I driven gas: air
I diaphragm 1: 7 mm stainless steel
I p4 max 1300 bar
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The Caltech Shock Tunnel - T5

I Reservoir conditions:

I p5 1000 bar
I T5 10000 K

I Freestream conditions (design conditions):

I M∞ 5.2
I T∞ 2000 K
I p∞ 0.3 bar
I typical test time 1 ms
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Other Examples of Shock Tunnels
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection
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Riemann Problem

The shock tube problem is a special case of the general Riemann

Problem

”... A Riemann problem, named after Bernhard

Riemann, consists of an initial value problem composed

by a conservation equation together with piecewise

constant data having a single discontinuity ...”

Wikipedia
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Riemann Problem

May show that solutions to the shock tube problem have the

general form:

p = p(x/t)

ρ = ρ(x/t)

u = u(x/t)

T = T(x/t)

a = a(x/t)

where x = 0 denotes the
position of the initial jump

between states 1 and 4
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Riemann Problem - Shock Tube

Shock tube simulation:

I left side conditions (state 4):

I ρ = 2.4 kg/m3

I u = 0.0 m/s
I p = 2.0 bar

I right side conditions (state 1):

I ρ = 1.2 kg/m3

I u = 0.0 m/s
I p = 1.0 bar

I Numerical method

I Finite-Volume Method (FVM) solver
I three-stage Runge-Kutta time stepping
I third-order characteristic upwinding scheme
I local artificial damping
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Riemann Problem - Shock Tube
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Riemann Problem - Shock Tube
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Riemann Problem - Shock Tube
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Riemann Problem - Shock Tube
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Riemann Problem - Shock Tube
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Addressed Learning Outcomes

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

j unsteady waves and discontinuities in 1D

k basic acoustics

11 Explain how the equations for aero-acoustics and classical

acoustics are derived as limiting cases of the compressible

flow equations

method of characteristics - a central element in classic

compressible flow theory
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Roadmap - Unsteady Wave Motion
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Chapter 7.5

Elements of Acoustic Theory
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Sound Waves

I Weakest audible sound wave (0 dB): ∆p ∼0.00002 Pa
I Loud sound wave (94 dB): ∆p ∼1 Pa

I Threshold of pain (120 dB): ∆p ∼20 Pa

I Harmful sound wave (130 dB): ∆p ∼60 Pa

Example:

∆p ∼ 1 Pa gives ∆ρ ∼0.000009 kg/m3 and ∆u ∼0.0025 m/s
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Sound Waves

Schlieren flow visualization of

self-sustained oscillation of an

under-expanded free jet

A. Hirschberg

”Introduction to aero-acoustics of
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Sound Waves

Screeching rectangular supersonic jet
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Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in

Chapter 6:

conservation form non-conservation form

mass
∂ρ

∂t
+ ∇ · (ρv) = 0

Dρ

Dt
+ ρ(∇ · v) = 0

momentum
∂

∂t
(ρv) + ∇ · (ρvv + pI) = 0 ρ

Dv
Dt

+ ∇p = 0
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Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Ds

Dt
= 0

Assume one-dimensional flow

ρ = ρ(x, t)
v = u(x, t)ex
p = p(x, t)
...

⇒

continuity
∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

momentum ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
= 0

s=constant

can
∂p

∂x
be expressed in terms of density?
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Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely

defined by any tow other state variables

p = p(ρ, s) ⇒ dp =

(
∂p

∂ρ

)
s

dρ+

(
∂p

∂s

)
ρ

ds

s=constant gives

dp =

(
∂p

∂ρ

)
s

dρ = a2dρ

⇒


∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

ρ
∂u

∂t
+ ρu

∂u

∂x
+ a2

∂ρ

∂x
= 0
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Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

ρ = ρ∞ + ∆ρ p = p∞ + ∆p T = T∞ + ∆T u = u∞ + ∆u = {u∞ = 0} = ∆u

where ρ∞, p∞, and T∞ are constant

Now, insert ρ = (ρ∞ +∆ρ) and u = ∆u in the continuity and

momentum equations (derivatives of ρ∞ are zero)

⇒


∂

∂t
(∆ρ) + ∆u

∂

∂x
(∆ρ) + (ρ∞ + ∆ρ)

∂

∂x
(∆u) = 0

(ρ∞ + ∆ρ)
∂

∂t
(∆u) + (ρ∞ + ∆ρ)∆u

∂

∂x
(∆u) + a

2 ∂

∂x
(∆ρ) = 0
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Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

ρ = ρ∞ + ∆ρ p = p∞ + ∆p T = T∞ + ∆T u = u∞ + ∆u = {u∞ = 0} = ∆u

where ρ∞, p∞, and T∞ are constant

Now, insert ρ = (ρ∞ +∆ρ) and u = ∆u in the continuity and

momentum equations (derivatives of ρ∞ are zero)

⇒


∂

∂t
(∆ρ) + ∆u

∂

∂x
(∆ρ) + (ρ∞ + ∆ρ)

∂

∂x
(∆u) = 0

(ρ∞ + ∆ρ)
∂

∂t
(∆u) + (ρ∞ + ∆ρ)∆u

∂

∂x
(∆u) + a

2 ∂

∂x
(∆ρ) = 0
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Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable

⇒ a2 = a2(ρ, s). With entropy constant ⇒ a2 = a2(ρ)

Taylor expansion around a∞ with (∆ρ = ρ− ρ∞) gives

a2 = a2∞ +

(
∂

∂ρ
(a2)

)
∞
∆ρ+

1

2

(
∂2

∂ρ2
(a2)

)
∞
(∆ρ)2 + ...

⇒



∂

∂t
(∆ρ) + ∆u

∂

∂x
(∆ρ) + (ρ∞ + ∆ρ)

∂

∂x
(∆u) = 0

(ρ∞ + ∆ρ)
∂

∂t
(∆u) + (ρ∞ + ∆ρ)∆u

∂

∂x
(∆u) +

[
a
2
∞ +

(
∂

∂ρ
(a

2
)

)
∞

∆ρ + ...

]
∂

∂x
(∆ρ) = 0
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Elements of Acoustic Theory - Acoustic Equations

Since ∆ρ and ∆u are assumed to be small (∆ρ � ρ∞, ∆u � a)

I products of perturbations can be neglected

I higher-order terms in the Taylor expansion can be neglected

⇒


∂

∂t
(∆ρ) + ρ∞

∂

∂x
(∆u) = 0

ρ∞
∂

∂t
(∆u) + a2∞

∂

∂x
(∆ρ) = 0

Note: Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic

equations are linear
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Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage

of a sound wave ...”
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Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we

get

∂2

∂t2
(∆ρ) = a2∞

∂2

∂x2
(∆ρ)

(combine the time derivative of the continuity eqn. and the divergence of the momentum eqn.)

General solution:

∆ρ(x, t) = F(x − a∞t) + G(x + a∞t)

wave traveling in

positive x-direction

with speed a∞

wave traveling in

negative x-direction

with speed a∞

F and G may be arbitrary functions

Wave shape is determined by functions F and G
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Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to


∂F

∂t
=

∂F

∂(x − a∞t)

∂(x − a∞t)

∂t
= −a∞F ′

∂F

∂x
=

∂F

∂(x − a∞t)

∂(x − a∞t)

∂x
= F ′

spatial and temporal derivatives of G can of course be obtained in

the same way...
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Elements of Acoustic Theory - Wave Equation

with ∆ρ(x, t) = F(x − a∞t) + G(x + a∞t) and the derivatives of F

and G we get

∂2

∂t2
(∆ρ) = a2∞F ′′ + a2∞G′′

and

∂2

∂x2
(∆ρ) = F ′′ +G′′

which gives

∂2

∂t2
(∆ρ)− a2∞

∂2

∂x2
(∆ρ) = 0

i.e., the proposed solution fulfils the wave equation
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Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

∆ρ(x, t) = F(x − a∞t)

If ∆ρ is constant (constant wave amplitude), (x − a∞t) must be a
constant which implies

x = a∞t + c

where c is a constant

dx

dt
= a∞
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Elements of Acoustic Theory - Wave Equation

We want a relation between ∆ρ and ∆u

∆ρ(x, t) = F(x − a∞t) (wave in positive x direction) gives:

∂

∂t
(∆ρ) = −a∞F ′

and
∂

∂x
(∆ρ) = F ′

∂

∂t
(∆ρ)︸ ︷︷ ︸

−a∞F ′

+a∞
∂

∂x
(∆ρ)︸ ︷︷ ︸
F ′

= 0

or

∂

∂x
(∆ρ) = − 1

a∞

∂

∂t
(∆ρ)
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Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

ρ∞
∂

∂t
(∆u) = −a2∞

∂

∂x
(∆ρ) ⇒

∂

∂t
(∆u) = −a2∞

ρ∞

∂

∂x
(∆ρ) =

{
∂

∂x
(∆ρ) = − 1

a∞

∂

∂t
(∆ρ)

}
=

a∞
ρ∞

∂

∂t
(∆ρ)

∂

∂t

(
∆u− a∞

ρ∞
∆ρ

)
= 0 ⇒ ∆u− a∞

ρ∞
∆ρ = const

In undisturbed gas ∆u = ∆ρ = 0 which implies that the constant
must be zero and thus

∆u =
a∞
ρ∞

∆ρ
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Elements of Acoustic Theory - Wave Equation

Similarly, for ∆ρ(x, t) = G(x + a∞t) (wave in negative x direction)

we obtain:

∆u = −a∞
ρ∞

∆ρ

Also, since ∆p = a2∞∆ρ we get:

Right going wave (+x direction) ∆u =
a∞
ρ∞

∆ρ =
1

a∞ρ∞
∆p

Left going wave (-x direction) ∆u = −a∞
ρ∞

∆ρ = − 1

a∞ρ∞
∆p
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Elements of Acoustic Theory - Wave Equation

I ∆u denotes induced mass motion and is positive in the

positive x-direction

∆u = ±a∞∆ρ

ρ∞
= ± ∆p

a∞ρ∞

I condensation (the part of the sound wave where ∆ρ > 0):
∆u is always in the same direction as the wave motion

I rarefaction (the part of the sound wave where ∆ρ < 0):
∆u is always in the opposite direction as the wave motion
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Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we

get

∂2

∂t2
(∆ρ) = a2∞

∂2

∂x2
(∆ρ)

I Due to the assumptions made, the equation is not exact

I More and more accurate as the perturbations becomes

smaller and smaller

I How should we describe waves with larger amplitudes?
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel
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Chapter 7.6

Finite (Non-Linear) Waves
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Finite (Non-Linear) Waves

When ∆ρ, ∆u, ∆p, ... Become large, the linearized acoustic

equations become poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0
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Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

∂ρ

∂t
=

(
∂ρ

∂p

)
s

∂p

∂t
=

1

a2
∂p

∂t

∂ρ

∂x
=

(
∂ρ

∂p

)
s

∂p

∂x
=

1

a2
∂p

∂x

Inserted in the continuity equation this gives:

∂p

∂t
+ u

∂p

∂x
+ ρa2

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0
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Finite (Non-Linear) Waves

Add 1/(ρa) times the continuity equation to the momentum

equation:

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
= 0

If we instead subtraction 1/(ρa) times the continuity equation
from the momentum equation, we get:

[
∂u

∂t
+ (u− a)

∂u

∂x

]
− 1

ρa

[
∂p

∂t
+ (u− a)

∂p

∂x

]
= 0
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Finite (Non-Linear) Waves

Since u = u(x, t), we have:

du =
∂u

∂t
dt +

∂u

∂x
dx =

∂u

∂t
dt +

∂u

∂x

dx

dt
dt

Let
dx

dt
= u+ a gives

du =

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
dt

Interpretation: change of u in the direction of line
dx

dt
= u+ a
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Finite (Non-Linear) Waves

In the same way we get:

dp =
∂p

∂t
dt +

∂p

∂x

dx

dt
dt

and thus

dp =

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
dt
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Finite (Non-Linear) Waves

Now, if we combine[
∂u

∂t
+ (u+ a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
= 0

du =

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
dt

dp =

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
dt

we get

du

dt
+

1

ρa

dp

dt
= 0
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Characteristic Lines

Thus, along a line dx = (u+ a)dt we have

du+
dp

ρa
= 0

In the same way we get along a line where dx = (u− a)dt

du− dp

ρa
= 0
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Characteristic Lines

I We have found a path through a point (x1, t1) along which the
governing partial differential equations reduces to ordinary

differential equations

I These paths or lines are called characteristic lines

I The C+ and C− characteristic lines are physically the paths

of right- and left-running sound waves in the xt-plane
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Characteristic Lines

x

t

x1

t1

C
−

characteristic line:
dx

dt
= u − a

compatibility equation: du −
dp

ρa
= 0

C
+

characteristic line:
dx

dt
= u + a

compatibility equation: du +
dp

ρa
= 0
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Characteristic Lines

summary:

du

dt
+

1

ρa

dp

dt
= 0 along C+ characteristic

du

dt
− 1

ρa

dp

dt
= 0 along C− characteristic

or

du+
dp

ρa
= 0 along C+ characteristic

du− dp

ρa
= 0 along C− characteristic
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Riemann Invariants

Integration gives:

J+ = u+

ˆ
dp

ρa
= constant along C+ characteristic

J− = u−
ˆ

dp

ρa
= constant along C− characteristic

We need to rewrite
dp

ρa
to be able to perform the integrations
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Riemann Invariants

Isentropic processes:

p = c1T
γ/(γ−1) = c2a

2γ/(γ−1)

where c1 and c2 are constants

⇒ dp = c2

(
2γ

γ − 1

)
a[2γ/(γ−1)−1]da

Assume calorically perfect gas:

a2 =
γp

ρ
⇒ ρ =

γp

a2

with p = c2a
2γ/(γ−1) we get

ρ = c2γa
[2γ/(γ−1)−2]
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Riemann Invariants

J+ = u+

ˆ
dp

ρa
= u+

ˆ c2

(
2γ
γ−1

)
a[2γ/(γ−1)−1]

c2γa[2γ/(γ−1)−1]
da = u+

ˆ
2da

γ − 1

J+ = u+
2a

γ − 1

J− = u− 2a

γ − 1
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Riemann Invariants

If J+ and J− are known at some point (x, t), then


J+ + J− = 2u

J+ − J− =
4a

γ − 1

⇒


u =

1

2
(J+ + J−)

a =
γ − 1

4
(J+ − J−)

Flow state is uniquely defined!
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Method of Characteristics

t

x

tn

tn+1

flow state known

here

flow state may be

computed here

J
−

J
+

J
−

J
+

J
−

J
+

J
−

J
+

transfer J
+

along C
+

characteristics, and vice versa
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Summary

Acoustic waves

I ∆ρ, ∆u, etc - very small

I All parts of the wave

propagate with the same

velocity a∞

I The wave shape stays the

same

I The flow is governed by

linear relations

Finite (non-linear) waves

I ∆ρ, ∆u, etc - can be large

I Each local part of the

wave propagates at the

local velocity (u+ a)

I The wave shape changes

with time

I The flow is governed by

non-linear relations
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel
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Chapter 7.7

Incident and Reflected

Expansion Waves
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Expansion Waves

reflected expansion fan

incident shock wave

reflected shock wave

contact surface

1

2

3

4

5

t

x

4 1

driver section driven section

diaphragm location wall
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Expansion Waves

Properties of a left-running expansion wave

1. All flow properties are constant along C− characteristics

2. The wave head is propagating into region 4 (high pressure)

3. The wave tail defines the limit of region 3 (lower pressure)

4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

J+ = u+
2a

γ − 1
is constant along C+ lines

J− = u− 2a

γ − 1
is constant along C− lines
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Expansion Waves

x

t

C
−
C
−

C
−

C
−

4

3
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Expansion Waves

x

t

C
−
C
−

C
−

C
−

C
+

C
+

C
+

C
+

C
+

C
+

4

3
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Expansion Waves

β

β

β

x

t

a

c

e

b

d

fC
−
C
−

C
−

C
−

C
+

C
+

C
+

C
+

C
+

C
+

4

3

α α α

constant flow properties in region 4: J
+
a = J

+
b

J
+

invariants constant along C
+

characteristics:

J
+
a = J

+
c = J

+
e

J
+
b

= J
+
d

= J
+
f

since J
+
a = J

+
b

this also implies J
+
e = J

+
f

J
−

invariants constant along C
−

characteristics:

J
−
c = J

−
d

J
−
e = J

−
f
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Expansion Waves

β

β

β

x

t

a

c

e

b

d

fC
−
C
−

C
−

C
−

C
+

C
+

C
+

C
+

C
+

C
+

4

3

α α α

constant flow properties in region 4: J
+
a = J

+
b

J
+

invariants constant along C
+

characteristics:

J
+
a = J

+
c = J

+
e

J
+
b

= J
+
d

= J
+
f

since J
+
a = J

+
b

this also implies J
+
e = J

+
f

J
−

invariants constant along C
−

characteristics:

J
−
c = J

−
d

J
−
e = J

−
f

ue =
1

2
(J

+
e + J

−
e ), uf =

1

2
(J

+
f

+ J
−
f

), ⇒ ue = uf

ae =
γ − 1

4
(J

+
e − J

−
e ), af =

γ − 1

4
(J

+
f

− J
−
f

), ⇒ ae = af
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Expansion Waves

Along each C− line u and a are constants which means that

dx

dt
= u− a = const

C− characteristics are straight lines in xt-space
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Expansion Waves

The start and end conditions are the same for all C+ lines

J+ invariants have the same value for all C+ characteristics

C− characteristics are straight lines in xt-space

Simple expansion waves centered at (x, t) = (0, 0)
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Expansion Waves

In a left-running expansion fan:

I J+ is constant throughout expansion fan, which implies:

u+
2a

γ − 1
= u4 +

2a4
γ − 1

= u3 +
2a3
γ − 1

I J− is constant along C− lines, but varies from one line to the

next, which means that

u− 2a

γ − 1

is constant along each C− line
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Expansion Waves

Since u4 = 0 we obtain:

u+
2a

γ − 1
= u4 +

2a4
γ − 1

=
2a4
γ − 1

⇒

a

a4
= 1− 1

2
(γ − 1)

u

a4

with a =
√

γRT we get

T

T4
=

[
1− 1

2
(γ − 1)

u

a4

]2
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Expansion Wave Relations

Isentropic flow ⇒ we can use the isentropic relations

T

T4
=

[
1− 1

2
(γ − 1)

u

a4

]2

p

p4
=

[
1− 1

2
(γ − 1)

u

a4

] 2γ
γ−1

ρ

ρ4
=

[
1− 1

2
(γ − 1)

u

a4

] 2
γ−1

complete description in terms of u/a4
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Expansion Wave Relations

Since C− characteristics are straight lines, we have:

dx

dt
= u− a ⇒ x = (u− a)t

a

a4
= 1− 1

2
(γ − 1)

u

a4
⇒ a = a4 −

1

2
(γ − 1)u ⇒

x =

[
u− a4 +

1

2
(γ − 1)u

]
t =

[
1

2
(γ − 1)u− a4

]
t ⇒

u =
2

γ + 1

[
a4 +

x

t

]
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Expansion Wave Relations

u

x

u4 = 0

u3

expansion wave

p

x

p4

p3

expansion wave

I Expansion wave head is advancing

to the left with speed a4 into the

stagnant gas

I Expansion wave tail is advancing

with speed u3 − a3, which may be

positive or negative, depending on

the initial states
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel
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Chapter 7.8

Shock Tube Relations
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Shock Tube Relations

up = u2 =
a1

γ

(
p2

p1
− 1

)
2γ1

γ1 + 1
p2

p1
+

γ1 − 1

γ1 + 1


1/2

p3

p4
=

[
1− γ4 − 1

2

(
u3

a4

)]2γ4/(γ4−1)

solving for u3 gives

u3 =
2a4

γ4 − 1

[
1−

(
p3

p4

)(γ4−1)/(2γ4)
]
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Shock Tube Relations

But, p3 = p2 and u3 = u2 (no change in velocity and pressure

over contact discontinuity)

⇒ u2 =
2a4

γ4 − 1

[
1−

(
p2

p4

)(γ4−1)/(2γ4)
]

We have now two expressions for u2 which gives us

a1

γ

(
p2

p1
− 1

)
2γ1

γ1 + 1
p2

p1
+

γ1 − 1

γ1 + 1


1/2

=
2a4

γ4 − 1

[
1−

(
p2

p4

)(γ4−1)/(2γ4)
]
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Shock Tube Relations

Rearranging gives:

p4

p1
=

p2

p1

{
1− (γ4 − 1)(a1/a4)(p2/p1 − 1)√

2γ1 [2γ1 + (γ1 + 1)(p2/p1 − 1)]

}−2γ4/(γ4−1)

I p2/p1 as implicit function of p4/p1

I for a given p4/p1, p2/p1 will increase with decreased a1/a4

a =
√
γRT =

√
γ(Ru/M)T

I the speed of sound in a light gas is higher than in a heavy
gas

I driver gas: low molecular weight, high temperature
I driven gas: high molecular weight, low temperature
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel
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The Time-Marching
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Addressed Learning Outcomes

12 Explain the main principles behind a modern Finite Volume

CFD code and such concepts as explicit/implicit time

stepping, CFL number, conservation, handling of

compression shocks, and boundary conditions

15 Explain the limitations in fluid flow simulation software

time for CFD!
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Roadmap - The Time-Marching Technique

Basic concepts and definitions

Finite Volume Method (FVM)

Boundary conditions

Practical examples

Available CFD codes

Time integration

Numerical schemes

Spatial discretization

Governing equations
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The Time-Marching Technique

Note:

Anderson’s text is here rather out-of-date, it was written during

the 70’s and has not really been updated since then.

The additional material covered in this lecture is an attempt to

amend this.
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The Time-Marching Technique

The problems that we like to investigate numerically within the

field of compressible flows can be categorized as

steady-state

compressible flows

unsteady

compressible flows

The Time-marching method is a solver framework that addresses

both problem categories
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The Time-Marching Technique

The time-marching approach is a good alternative for simulating

flows where there are both supersonic and subsonic regions

supersonic/hyperbolic:

I perturbations propagate in preferred directions

I zone of influence/zone of dependence

I PDEs can be transformed into ODEs

subsonic/elliptic:

I perturbations propagate in all directions
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Zone of Influence and Zone of Dependence

M∞ > 1.0

B

A

C

µ
D

µ
E

I A, B and C at the same axial position in the flow

I D and E are located upstream of A, B and C

I Mach waves generated at D will affect the flow in B but not in

A and C

I Mach waves generated at E will affect the flow in C but not in

A and B

I The flow in A is unaffected by the both D and E
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Zone of Influence and Zone of Dependence

C
+

C
−

A

M∞ > 1.0

z
o
n
e
o
f
d
e
p
e
n
d
e
n
c
e

z
o
n
e
o
f
in
flu
e
n
c
e

The zone of dependence for point A and the zone of

influence of point A are defined by C+ and C− characteristic

lines
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The Time-Marching Technique

Steady-state problems:

1. define simple initial solution

2. apply specified boundary conditions

3. march in time until steady-state solution is reached

Unsteady problems:

1. apply specified initial solution

2. apply specified boundary conditions

3. march in time for specified total time to reach a desired

unsteady solution

establish fully developed flow before initiating data sampling
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Characterization of CFD Methods - Discretization

Discretization in space and time:
I most common approach: Method of Lines

1. discretize in space ⇒
system of ordinary differential equations (ODEs)

2. discretize in time ⇒
time-stepping scheme for system of ODEs

Spatial discretization techniques:

I Finite-Difference Method (FDM)
I Finite-Volume Method (FVM)
I Finite-Element Method (FEM)
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Characterization of CFD Methods - Time Stepping

Temporal discretization techniques:

1. Explicit

I mostly for transonic/supersonic steady-state and unsteady

flows
I short time steps
I usually very stable

2. Implicit

I mostly for subsonic/transonic steady-state flows
I longer time steps possible

for high-supersonic flows, explicit solvers may very well

outperform implicit solvers
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Characterization of CFD Methods - Equations

Equations solved:

1. Density-based

I solve for density in the continuity equation
I mostly for transonic/supersonic steady-state and unsteady

flows

2. Pressure-based

I the continuity and momentum equations are combined to

form a pressure correction equation
I mostly for subsonic/transonic steady-state flows
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Characterization of CFD Methods - Solver Approach

Solution procedure:

1. Fully coupled

I all equations (continuity, moentum, energy, ...) are solved

simultaneously
I mostly for transonic/supersonic steady-state and unsteady

flows

2. Segregated

I solve the equations in sequence
I mostly for subsonic steady-state flows
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Explicit Finite-Volume

Method
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Governing Equations
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Quasi-One-Dimensional Flow - Conceptual Idea

Introduce cross-section-averaged flow quantities ⇒
all quantities depend on x only

A = A(x), ρ = ρ(x), u = u(x), p = p(x), ...

1

2

Ω

Γ

x

S1 S2

Ω control volume

S1 left boundary (area A1)

S2 right boundary (area A2)

Γ perimeter boundary

∂Ω = S1 ∪ Γ ∪ S2
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Quasi-One-Dimensional Flow - Governing Equations

Governing equations (general form):

d

dt

y

Ω

ρdV +
{

∂Ω

ρv · ndS = 0

d

dt

y

Ω

ρudV +
{

∂Ω

[ρ(v · n)u+ p(n · ex)]dS = 0

d

dt

y

Ω

ρeodV +
{

∂Ω

ρho(v · n)dS = 0
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Example: Nozzle Simulation (Back Pressure Sweep)

1 1.5 2 2.5
80

100

120

140

160

0 1 2 3
0

0.5

1

1.5

2

2.5

0 1 2 3
0

0.2

0.4

0.6

0.8

1

po 1.20 [bar]

pe 0.50 [bar]

po/pe 2.40

ṁ 145.6 [kg/s]

Mmax 2.26

axial coordinate (x [m]) axial coordinate (x [m])

po/pe

M

p
/
p
o

m
a
s
s
flo
w

(ṁ
[k
g
/
s
])
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Spatial Discretization
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Quasi-One-Dimensional Flow - Spatial Discretization

Let’s look at a small tube segment with length ∆x

Ωi

Γi

x

A
i− 1

2
A
i+1

2

∆xi

x
i− 1

2
x
i+1

2

Streamtube with area A(x)

Ai− 1
2
= A(xi− 1

2
)

Ai+ 1
2
= A(xi+ 1

2
)

∆xi = xi+ 1
2
− xi− 1

2

Ωi - control volume enclosed

by Ai− 1
2
, Ai+ 1

2
, and Γi

⇒ spatial discretization
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Quasi-One-Dimensional Flow - Spatial Discretization

i − 1 i i + 1 i + 2

x
i− 3

2

x
i− 1

2

x
i+1

2

x
i+3

2

x
i+5

2

Ωi

I Integer indices (i, i + 1, ...):
control volumes or cells

I Fractional indices (i +
1

2
, i +

3

2
, ...):

interfaces between control volumes or cell faces

I Apply control volume formulations for mass, momentum,

energy to control volume Ωi
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Quasi-One-Dimensional Flow

cell-averaged quantity

face-averaged quantity

Conservation of mass:

d

dt

y

Ωi

ρdV

︸ ︷︷ ︸
VOLi

d
dt
ρ̄i

+
x

x
i− 1

2

ρv · ndS

︸ ︷︷ ︸
−(ρu)

i− 1
2
A
i− 1

2

+
x

x
i+1

2

ρv · ndS

︸ ︷︷ ︸
(ρu)

i+1
2
A
i+1

2

+
x

Γi

ρv · ndS

︸ ︷︷ ︸
0

= 0

where

VOLi =
y

Ωi

dV

ρ̄i =
1

VOLi

y

Ωi

ρdV

(ρu)i− 1
2
=

1

Ai− 1
2

x

x
i− 1

2

ρudS

(ρu)i+ 1
2
=

1

Ai+ 1
2

x

x
i+1

2

ρudS
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Quasi-One-Dimensional Flow

cell-averaged quantity

face-averaged quantity

source term

Conservation of momentum:

d

dt

y

Ωi

ρudV

︸ ︷︷ ︸
VOLi

d
dt
(ρu)i

+
x

x
i− 1

2

[ρ(v · n)u+ p(n · ex)]dS

︸ ︷︷ ︸
−(ρu2+p)

i− 1
2
A
i− 1

2

+

+
x

x
i+1

2

[ρ(v · n)u+ p(n · ex)]dS

︸ ︷︷ ︸
(ρu2+p)

i+1
2
A
i+1

2

+
x

Γi

[ρ(v · n)u+ p(n · ex)]dS︸ ︷︷ ︸
−

s
Γi

pdA

= 0
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Quasi-One-Dimensional Flow

cell-averaged quantity

face-averaged quantity

Conservation of energy:

d

dt

y

Ωi

ρeodV

︸ ︷︷ ︸
VOLi

d
dt
(ρeo)i

+
x

x
i− 1

2

ρho(v · n)dS

︸ ︷︷ ︸
−(ρuho)i− 1

2
A
i− 1

2

+

+
x

x
i+1

2

ρho(v · n)dS

︸ ︷︷ ︸
(ρuho)i+1

2
A
i+1

2

+
x

Γi

ρho(v · n)dS

︸ ︷︷ ︸
0

= 0
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Quasi-One-Dimensional Flow

Lower order term due to varying stream tube area:

x

Γi

pdA ≈ p̄i

(
Ai+ 1

2
− Ai− 1

2

)

where p̄i is calculated from cell-averaged quantities (DOFs)

{
ρ̄, (ρu), (ρeo)

}
i

as

p̄i = (γ − 1)

(
(ρeo)i −

1

2
ρ̄iūi

)
, ūi =

(ρu)i
ρ̄i
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

source term

VOLi
d

dt
ρ̄i − (ρu)i− 1

2
Ai− 1

2
+ (ρu)i+ 1

2
Ai+ 1

2
= 0

VOLi
d

dt
(ρu)i − (ρu2 + p)i− 1

2
Ai− 1

2
+ (ρu2 + p)i+ 1

2
Ai+ 1

2
=

= p̄i

(
Ai+ 1

2
− Ai− 1

2

)
VOLi

d

dt
(ρeo)i − (ρuho)i− 1

2
Ai− 1

2
+ (ρuho)i+ 1

2
Ai+ 1

2
= 0

Application of these equations to all cells i ∈ {1, 2, .....,N} of the
computational domain results in a system of ODEs
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Spatial Discretization - Summary

Steps to achieve spatial discretization:

1. Choose primary variables (Degrees of Freedom or DOFs)

2. Approximate all other quantities in terms of DOFs

⇒ System of ordinary differential equations (ODEs)

Degrees of freedom:

I Choose
{
ρ̄, (ρu), (ρeo)

}
i
in all control volumes Ωi,

i ∈ {1, 2, ...,N} as degrees of freedom, or primary variables
I Note that these are cell-averaged quantities
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Numerical Schemes
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Flux Term Approximation



(ρu)

(ρu2 + p)

(ρuho)


i+ 1

2

= f




ρ

(ρu)

(ρeo)


i

,


ρ

(ρu)

(ρeo)


i+1

, ...


cell face values cell-averaged values

Simple example:

(ρu)i+ 1
2
≈ 1

2

[
(ρu)i + (ρu)i+1

]
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Flux Term Approximation

More complex approximations usually needed

High-order schemes:

I increased accuracy
I more cell values involved (wider flux molecule)
I boundary conditions more difficult to implement

Optimized numerical dissipation:

I upwind type of flux scheme

Shock handling:

I non-linear treatment needed (e.g. TVD schemes)
I artificial damping
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q(x) = A+ Bx + Cx2 + Dx3
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q1 =
1

VOL1

ˆ −1

−2
Q(x)dx

VOL1 = A1∆x1 = {A1 = 1.0, ∆x1 = 1.0} = 1.0

⇒ Q1 =

ˆ −1

−2
Q(x)dx
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q1 =

ˆ −1

−2
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]−1

−2

Q2 =

ˆ 0

−1
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]0
−1

Q3 =

ˆ 1

0
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]1
0

Q4 =

ˆ 2

1
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]2
1
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q1 = A− 3

2
B+

7

3
C− 15

4
D

Q2 = A− 1

2
B+

1

3
C− 1

4
D

Q3 = A+
1

2
B+

1

3
C+

1

4
D

Q4 = A+
3

2
B+

7

3
C+

15

4
D
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

A =
1

12

[
−Q1 + 7Q2 + 7Q3 −Q4

]

B =
1

12

[
Q1 − 15Q2 + 15Q3 −Q4

]

C =
1

4

[
Q1 −Q2 −Q3 +Q4

]

D =
1

6

[
−Q1 + 3Q2 − 3Q3 +Q4

]
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q0 = Q(0) + δQ′′′(0) ⇒ Q0 = A+ 6δD

δ = 0 ⇒ fourth-order central scheme

δ = 1/12 ⇒ third-order upwind scheme

δ = 1/96 ⇒ third-order low-dissipation upwind scheme
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q0 = A+ 6δD = {δ = 1/12} = −1

6
Q1 +

5

6
Q2 +

1

3
Q3

Q0left = −1

6
Q1 +

5

6
Q2 +

1

3
Q3

Q0right = −1

6
Q4 +

5

6
Q3 +

1

3
Q2

method of characteristics used in order to decide whether

left- or right-upwinded flow quantities should be used
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Flux Term Approximation

High-order numerical schemes:

I low numerical dissipation (smearing due to amplitudes errors)

I low dispersion errors (wiggles due to phase errors)
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Conservative Scheme

i − 1 i i + 1 i + 2

x
i− 3

2

x
i− 1

2

x
i+1

2

x
i+3

2

x
i+5

2

Ωi

mass conservation:

cell (i):

cell (i + 1):

VOLi
d

dt
ρ̄i + (ρu)

i+1
2
A
i+1

2
− (ρu)

i− 1
2
A
i− 1

2
= 0

VOLi+1

d

dt
ρ̄i+1 + (ρu)

i+3
2
A
i+3

2
− (ρu)

i+1
2
A
i+1

2
= 0

(similarly for momentum and energy conservation)
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Conservative Scheme

i − 1 i i + 1 i + 2

x
i− 3

2

x
i− 1

2

x
i+1

2

x
i+3

2

x
i+5

2

Ωi

mass conservation:

cell (i):

cell (i + 1):

VOLi
d

dt
ρ̄i + (ρu)

i+1
2
A
i+1

2
− (ρu)

i− 1
2
A
i− 1

2
= 0

VOLi+1

d

dt
ρ̄i+1 + (ρu)

i+3
2
A
i+3

2
− (ρu)

i+1
2
A
i+1

2
= 0

(similarly for momentum and energy conservation)
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Conservative Scheme

Conservative scheme

”The flux leaving one control volume equals the flux

entering neighbouring control volume”

Conservation property for mass, momentum and energy is crucial

for the correct prediction of shocks∗

∗
correct prediction of shocks:

strength

position

velocity
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Addressed Learning Outcomes

12 Explain the main principles behind a modern Finite Volume

CFD code and such concepts as explicit/implicit time

stepping, CFL number, conservation, handling of

compression shocks, and boundary conditions

14 Analyze and verify the quality of the numerical solution

15 Explain the limitations in fluid flow simulation software

what about boundary conditions?
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Time Stepping
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Time Stepping

The system of ODEs obtained from the spatial discretization in

vector notation

d

dt
Q = F(Q)

I Q is a vector containing all DOFs in all cells

I F(Q) is the time derivative of Q resulting from above

mentioned flux approximations

non-linear vector-valued function
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Time Stepping

Three-stage Runge-Kutta - one example of many:

I Explicit time-marching scheme

I Second-order accurate
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Time Stepping - Three-stage Runge-Kutta

d

dt
Q = F(Q)

Let Qn = Q(tn) and Qn+1 = Q(tn+1)

I tn is the current time level and tn+1 is the next time level

I ∆t = tn+1 − tn is the solver time step

Algorithm:

1. Q∗ = Qn +∆tF(Qn)

2. Q∗∗ = Qn +
1

2
∆tF(Qn) +

1

2
∆tF(Q∗)

3. Qn+1 = Qn +
1

2
∆tF(Qn) +

1

2
∆tF(Q∗∗)

DOFs in all cells updated from time level tn to time level tn+1, repeat procedure for tn+2, tn+3, ...
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Time Stepping - Explicit Schemes

Properties of explicit time-stepping schemes:

+ Easy to implement in computer codes

+ Efficient execution on most computers

+ Easy to adapt for parallel execution on distributed memory

systems (e.g. Linux clusters)

- Time step limitation (CFL number)

- Convergence to steady-state often slow (there are, however,

some remedies for this)
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Time Stepping - Explicit Schemes

Courant-Friedrich-Levy (CFL) number - one-dimensional case:

CFLi =
∆t(|ui|+ ai)

∆xi
≤ 1

Interpretation: The fastest characteristic (C+ or C−) must not
travel longer than ∆x during one time step

t

x

∆
t

∆x ∆x

C
+

C
−

dx

dt
= u + a

dx

dt
= u − a

max(|u − a|, |u + a|)∆t = (|u| + a)∆t ≤ ∆x ⇒

(|u| + a)∆t

∆x
= CFL ≤ 1
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Time Stepping - Explicit Schemes

Steady-state problems:

I local time stepping
I each cell has an individual time step
I ∆ti maximum allowed value based on CFL criteria

Unsteady problems:

I time accurate
I all cells have the same time step
I ∆ti = min {∆t1, ...,∆tN}
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Explicit Finite-Volume Method - Summary

The described numerical scheme is an example of a

density-based, fully coupled scheme
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Explicit Finite-Volume Method - Summary

I density-based schemes

I solve for density in the continuity equation
I in general preferred for high-Mach-number flows and for

unsteady compressible flows

I pressure-based schemes

I the continuity and momentum equations are combined to

form a pressure correction equation
I were first used for incompressible flows but have been

adapted for compressible flows also
I quite popular for steady-state subsonic/transonic flows
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Explicit Finite-Volume Method - Summary

I fully-copuled schemes

I all equations (continuity, momentum, energy) are solved for

simultaneously

I segregated schemes

I alternate between the solution of the velocity field and the

pressure field (pressure-based solver)
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Explicit Finite-Volume Method - Summary

Spatial discretization:

I Control volume formulations of conservation equations are

applied to the âcellsâ of the discretized domain

I Cell-averaged flow quantities (ρ, ρu, ρeo) are chosen as
degrees of freedom (DOFs)

I Flux terms are approximated in terms of the chosen DOFs

I high-order, upwind type of flux approximation is used for

optimum results

I A fully conservative scheme is obtained

I the flux leaving one cell is identical to the flux entering the

neighboring cell

I The result of the spatial discretization is a system of ODEs
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Explicit Finite-Volume Method - Summary

Time marching:

I Three-stage, second-order accurate Runge-Kutta scheme

I Explicit time-stepping
I Time step length limited by the CFL condition (CFL ≤ 1)

Classification of numerical scheme:

I density-based

I includes the continuity equation

I fully coupled

I all equations are solved simultaneously
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Boundary Conditions

Niklas Andersson - Chalmers 560 / 732





Boundary Conditions

Boundary conditions are very important for numerical simulation

of compressible flows

Main reason: both flow and acoustics involved!

Example 1:

Finite-volume CFD code for Quasi-1D compressible flow

(Time-marching procedure)

What boundary conditions should be applied at the left and right

ends?

x1/2 x3/2 x5/2 xN−1/2

xN+1/2

computational domain

left boundary right boundary
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Boundary Conditions

three characteristics:

1. C+

2. C−

3. advection

C
+

C
−

dx

dt
= u + a

dx

dt
= u − a

dx

dt
= u

left boundary

C
+

C
−

dx

dt
= u + a

dx

dt
= u − a

dx

dt
= u

right boundary

t

x

computational domain

Niklas Andersson - Chalmers 562 / 732





Boundary Conditions

I C+ and C− characteristics describe the transport of

isentropic pressure waves (often referred to as acoustics)

I The advection characteristic simply describes the transport

of certain quantities with the fluid itself (for example entropy)

I In one space dimension and time, these three

characteristics, together with the quantities that are known

to be constant along them, give a complete description of

the time evolution of the flow

I We can use the characteristics as a guide to tell us what

information that should be specify at the boundaries
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Left Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

I Subsonic inflow: 0 < u < a

u− a < 0
u > 0
u+ a > 0

I one outgoing characteristic
I two ingoing characteristics

I Two variables should be specified at the boundary

I The third variable must be left free
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Left Boundary - Subsonic Outflow

we have three PDEs, and are solving for three unknowns

I Subsonic outflow: −a < u < 0

u− a < 0
u < 0
u+ a > 0

I two outgoing characteristics
I one ingoing characteristic

I One variable should be specified at the boundary

I The second and third variables must be left free
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Left Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

I Supersonic inflow: u > a

u− a > 0
u > 0
u+ a > 0

I no outgoing characteristics
I three ingoing characteristics

I All three variables should be specified at the boundary

I No variables must be left free
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Left Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

I Supersonic outflow: u < −a

u− a < 0
u < 0
u+ a < 0

I three outgoing characteristics
I no ingoing characteristics

I No variables should be specified at the boundary

I All variables must be left free
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Right Boundary - Subsonic Outflow

we have three PDEs, and are solving for three unknowns

I Subsonic outflow: 0 < u < a

u− a < 0
u > 0
u+ a > 0

I one ingoing characteristic
I two outgoing characteristics

I One variable should be specified at the boundary

I The second and third variables must be left free
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Right Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

I Subsonic inflow: −a < u < 0

u− a < 0
u < 0
u+ a > 0

I two ingoing characteristics
I one outgoing characteristic

I Two variables should be specified at the boundary

I The third variables must be left free
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Right Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

I Supersonic outflow: u > a

u− a > 0
u > 0
u+ a > 0

I no ingoing characteristics
I three outgoing characteristics

I No variables should be specified at the boundary

I All three variables must be left free
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Right Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

I Supersonic inflow: u < −a

u− a < 0
u < 0
u+ a < 0

I three ingoing characteristics
I no outgoing characteristics

I All three variables should be specified at the boundary

I No variables must be left free
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Subsonic Inflow (Left Boundary) - Example

Subsonic inflow: we should specify two variables

Alt specified specified well-posed non-reflective

variable 1 variable 2

1 po To X

2 ρu To X

3 s J+ X X

well posed:

I the problem has a solution

I the solution is unique

I the solution’s behaviour changes continuously with initial

conditions
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Subsonic Outflow (Left Boundary) - Example

Subsonic outflow: we should specify one variable

Alt specified well-posed non-reflective

variable

1 p X

2 ρu X

3 J+ X X
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Subsonic Inflow 2D/3D

nv

n unit normal vector

v fluid velocity at boundary

exterior

interior

Subsonic inflow

I Assumption:

−a < v · n < 0

I Four ingoing characteristics

I One outgoing characteristic

I Specify four variables at the
boundary:

I example: po, To, flow direction

(two angles)
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Subsonic Outflow 2D/3D

n

v

n unit normal vector

v fluid velocity at boundary

exterior

interior

Subsonic outflow

I Assumption:

0 < v · n < a

I One ingoing characteristics

I Four outgoing characteristic

I Specify one variables at the
boundary:

I example: p
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Supersonic Inflow 2D/3D

nv

n unit normal vector

v fluid velocity at boundary

exterior

interior

I Supersonic inflow

I Assumption:

v · n < −a

I Five ingoing characteristics

I No outgoing characteristics

I Specify five variables at the
boundary:

I all solver variables specified
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Supersonic Outflow 2D/3D

n

v

n unit normal vector

v fluid velocity at boundary

exterior

interior

Supersonic outflow

I Assumption:

v · n > a

I No ingoing characteristics

I Five outgoing characteristics

I No variables specified at the

boundary:
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Practical Examples:

Grid Resolution and

Numerical Schemes
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Numerical Approach

I Code: G3D::Flow (Chalmers in-house CFD code)

I Finite-Volume Method

I Method of lines

I Three-stage, second-order accurate Runge-Kutta time

stepping

I First-order, second-order, and third-order characteristic

upwinding scheme
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Grid Resolution: Compression Ramp

coarse mesh
71×21

density

Mach number

medium mesh
141×41

density

Mach number

fine mesh
281×81

density

Mach number
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Grid Resolution: Space Shuttle

coarse mesh
81×21

Mach number

medium mesh
161×41

Mach number

fine mesh
321×81

Mach number
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Grid Resolution: Axi-symmetric Slender Body

coarse mesh
31×21

density

Mach number

medium mesh
61×41

density

Mach number

fine mesh
121×81

density

Mach number
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Numerical Scheme: Compression Ramp

first-order upwind
density

Mach number

second-order upwind
density

Mach number

third-order upwind
density

Mach number
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Artificial Numerical Damping: Compression Ramp

Low artificial numerical damping
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Artificial Numerical Damping: Compression Ramp

High artificial numerical damping
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Available CFD Codes
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CFD Codes

List of free and commercial CFD codes:

http://www.cfd-online.com/Wiki/Codes

I Free codes are in general unsupported and poorly

documented

I Commercial codes are often claimed to be suitable for all

types of flows

The reality is that the user must make sure of this!

I Industry/institute/university in-house codes not listed

I non-commercial but proprietary
I part of design/analysis system
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CFD Codes - General Guidlines

Simulation of high-speed and/or unsteady compressible flows:

I Use correct solver options

otherwise you may obtain completely wrong solution!

I Use a high-quality grid

a poor grid will either not give you any solution at all (no

convergence) or at best a very inaccurate solution!
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ANSYS-FLUENTr - Typical Experiences

I Very robust solver - will almost always give you a solution

I Accuracy of solution depends a lot on grid quality

I Shocks are generally smeared more than in specialized

codes

I Solver is generally very efficient for steady-state problems

I Solver is less efficient for truly unsteady problems, where

both flow and acoustics must be resolved accurately
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ANSYS-FLUENTr - Solver Options

I Coupled or Density-based depends on version

I the continuity, momentum, energy equations are solved for

simultaneously

just like in the Quasi-1D code discussed previously

I Density = Ideal gas law

I the calorically perfect gas assumption is activated
I the energy equation is activated

I Explicit or Implicit time stepping

I Explicit recommended for unsteady compressible flows

CFL is set to 1 as default, but may be changed

I Implicit more efficient for steady-state compressible flows

CFL is set to 5 as default, but may be changed
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ANSYS-FLUENTr - Solver Features

Spatial discretization:

I Finite-Volume Method (FVM)

I Unstructured grids

I Fully conservative, density-based scheme

I Flux approximations:

first-order, second-order, upwind, ...

I Fully coupled solver approach

Explicit time stepping:

I Runge-Kutta time stepping

Implicit time stepping:

I Iterative solver based on Algebraic Multi-Grid (AGM)
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Addressed Learning Outcomes

6 Define the special cases of calorically perfect gas, thermally

perfect gas and real gas and explain the implication of each

of these special cases

A deep dive into the theory behind the definitions of

calorically perfect gas, thermally perfect gas, and other

models
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Properties of High-Temperature Gases

Applications:

I Rocket nozzle flows

I Reentry vehicles

I Shock tubes / Shock tunnels

I Internal combustion engines
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Properties of High-Temperature Gases

Example: Reentry vehicle

Mach 32.5

Air

Calorically perfect gas

T∞ = 283

Table A.2 ⇒ Ts/T∞ = 206

T∞ = 283 ⇒ Ts = 58 300 K

A more correct value is Ts = 11 600 K

Something is fishy here!
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Properties of High-Temperature Gases

Example: Reentry vehicle

Mach 32.5

Air

Calorically perfect gas

T∞ = 283

Table A.2 ⇒ Ts/T∞ = 206

T∞ = 283 ⇒ Ts = 58 300 K

A more correct value is Ts = 11 600 K

Something is fishy here!
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Chapter 16.2

Microscopic Description of

Gases
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Microscopic Description of Gases

I Hard to make measurements

I Accurate, reliable theoretical models needed

I Available models do work quite well
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Molecular Energy

Vx

Vy

Vz

Translational kinetic energy

thermal degrees of freedom: 3

x

y

z

Rotational kinetic energy

thermal degrees of freedom:

2 for diatomic gases

2 for linear polyatomic gases

3 for non-linear polyatomic gases

Vibrational energy

(kinetic energy + potential energy)

thermal degrees of freedom: 2

Electronic energy of electrons in orbit

(kinetic energy + potential energy)

O C O

CO2
linear polyatomic molecule

H

O

H

H2O

non-linear polyatomic molecule

I Translational energy

I Rotational energy

(only for molecules - not for mono-atomic gases)

I Vibrational energy

I Electronic energy
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Molecular Energy

The energy for one molecule can be described by

ε′ = ε′trans + ε′rot + ε′vib + ε′el

Results of quantum mechanics have shown that each

energy is quantized i.e. they can exist only at discrete values

Not continuous! Might seem unintuitive
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Molecular Energy

The lowest quantum numbers defines the zero-point energy
for each mode

I for rotational energy the zero-point energy is exactly zero

I ε′otrans is very small but finite - at absolute zero, molecules still

moves but not much

εjtrans = ε′jtrans − ε′otrans

εkrot = ε′krot

εlvib = ε′lvib − ε′ovib

εmel
= ε′mel

− ε′oel
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Energy States

I three cases with the same rotational energy

I different direction of angular momentum

I quantum mechanics ⇒ different distinguishable states

I a finite number of possible states for each energy level
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Macrostates and Microstates

Macrostate:

I molecules collide and exchange energy ⇒ the Nj distribution

(the macrostate) will change over time

I some macrostates are more probable than other

I most probable macrostates (distribution) ⇒ thermodynamic

equilibrium

Microstate:

I same number of molecules in each energy level but different

states

I the most probable macrostate is the one with the most

possible microstates ⇒ possible to find the most probable

macrostate by counting microstates
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Macrostates and Microstates

ε
′
o :

ε
′
1 :

ε
′
2 :

.

.

.

ε
′
j :

(No = 2, go = 5)

(N1 = 5, g1 = 6)

(N2 = 3, g2 = 5)

(Nj = 2, gj = 3)

Macrostate I Microstate I
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Macrostates and Microstates

ε
′
o :

ε
′
1 :

ε
′
2 :

.

.

.

ε
′
j :

(No = 2, go = 5)

(N1 = 5, g1 = 6)

(N2 = 3, g2 = 5)

(Nj = 2, gj = 3)

Macrostate I Microstate II
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Macrostates and Microstates

ε
′
o :

ε
′
1 :

ε
′
2 :

.

.

.

ε
′
j :

(No = 1, go = 5)

(N1 = 5, g1 = 6)

(N2 = 4, g2 = 5)

(Nj = 1, gj = 3)

Macrostate II Microstate I
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Macrostates and Microstates

N =
∑
j

Nj

E =
∑
j

ε′jNj
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Chapter 16.5

The Limiting Case:

Boltzmann Distribution
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Boltzmann Distribution

The Boltzmann distribution:

N∗
j = N

gje−εj/kT

Q

where Q = f(T ,V) is the state sum defined as

Q ≡
∑
j

gje−εj/kT

gj is the number of degenerate states, εj is the energy above
zero-level (εj = ε′j − εo), and k is the Boltzmann constant
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Boltzmann Distribution

The Boltzmann distribution:

N∗
j = N

gje−εj/kT

Q

For molecules or atoms of a given species, quantum

mechanics says that a set of well-defined energy levels

εj exists, over which the molecules or atoms can be

distributed at any given instant, and that each energy

level has a certain number of energy states, gj.

For a system of N molecules or atoms at a given T and

V, N∗
j are the number of molecules or atoms in each

energy level εj when the system is in thermodynamic

equilibrium.
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Boltzmann Distribution

P

E

Boltzmann distribution for a specific temperature

I At temperatures above ∼ 5K, molecules are distributed over

many energy levels, and therefore the states are generally

sparsely populated (Nj � gj )

I Higher energy levels become more populated as

temperature increases
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Chapter 16.6 - 16.8

Evaluation of Gas

Thermodynamic Properties
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Internal Energy

The internal energy is calculated as

E = NkT2

(
∂ lnQ

∂T

)
V

The internal energy per unit mass is obtained as

e =
E

M
=

NkT2

Nm

(
∂ lnQ

∂T

)
V

=

{
k

m
= R

}
= RT2

(
∂ lnQ

∂T

)
V
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Internal Energy - Translation

ε′trans =
h2

8m

(
n21
a21

+
n22
a22

+
n23
a23

)

n1 − n3 quantum numbers (1,2,3,...)

a1 − a3 linear dimensions that describes the size of the system

h Planck’s constant

m mass of the individual molecule

⇒ · · · ⇒

Qtrans =

(
2πmkT

h2

)3/2

V
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Internal Energy - Translation

Qtrans =

(
2πmkT

h2

)3/2

V

lnQtrans =
3

2
lnT +

3

2
ln 2πmk

h2
+ lnV ⇒

(
∂ lnQtrans

∂T

)
V

=
3

2

1

T
⇒

etrans = RT2

(
∂ lnQtrans

∂T

)
V

= RT2 3

2T
=

3

2
RT
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Internal Energy - Rotation

ε′rot =
h2

8π2I
J(J + 1)

J rotational quantum number (0,1,2,...)

I moment of inertia (tabulated for common molecules)

h Planck’s constant

⇒ · · · ⇒

Qrot =
8π2IkT

h2
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Internal Energy - Rotation

Qrot =
8π2IkT

h2

lnQrot = lnT + ln 8π2Ik

h2
⇒

(
∂ lnQrot

∂T

)
V

=
1

T
⇒

erot = RT2

(
∂ lnQrot

∂T

)
V

= RT2 1

T
= RT
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Internal Energy - Vibration

ε′vib = hν

(
n+

1

2

)

n vibrational quantum number (0,1,2,...)

ν fundamental vibrational frequency (tabulated for common molecules)

h Planck’s constant

⇒ · · · ⇒

Qvib =
1

1− e−hν/kT
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Internal Energy - Vibration

Qvib =
1

1− e−hν/kT

lnQvib = − ln(1− e−hν/kT ) ⇒

(
∂ lnQvib

∂T

)
V

=
hν/kT2

ehν/kT − 1
⇒

evib = RT2

(
∂ lnQvib

∂T

)
V

= RT2 hν/kT2

ehν/kT − 1
=

hν/kT

ehν/kT − 1
RT

lim
T→∞

hν/kT

ehν/kT − 1
= 1 ⇒ evib ≤ RT
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Specific Heat

e = etrans + erot + evib + eel

e =
3

2
RT + RT +

hν/kT

ehν/kT−1
RT + eel

Cv ≡
(
∂e

∂T

)
V
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Specific Heat

Molecules with only translational and rotational energy

e =
3

2
RT + RT =

5

2
RT ⇒ Cv =

5

2
R

Cp = Cv + R =
7

2
R

γ =
Cp

Cv

=
7

5
= 1.4
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Specific Heat

Mono-atomic gases with only translational and rotational energy

e =
3

2
RT ⇒ Cv =

3

2
R

Cp = Cv + R =
5

2
R

γ =
Cp

Cv

=
5

3
= 1

2

3
' 1.67
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Calorically Perfect Gas

I In general, only translational and rotational modes of

molecular excitation

I Translational and rotational energy levels are sparsely

populated, according to Boltzmann distribution (the

Boltzmann limit)

I Vibrational energy levels are practically unpopulated (except

for the zero level)

I Characteristic values of γ for each type of molecule, e.g.
mono-atomic gas, di-atomic gas, tri-atomic gas, etc

I He, Ar, Ne, ... - mono-atomic gases (γ = 5/3)
I H2, O2, N2, ... - di-atomic gases (γ = 7/5)
I H2O (gaseous), CO2, ... - tri-atomic gases (γ < 7/5)
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Calorically Perfect Gas

p = ρRT e = CvT

h = CpT

h = e+ p/ρ

Cp − Cv = R

γ = Cp/Cv

Cv =
R

γ − 1

Cp =
γR

γ − 1

γ, R, Cv, and Cp are constants

a =

√
γp

ρ
=
√
γRT
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Thermally Perfect Gas

I In general, only translational, rotational and vibrational modes

of molecular excitation

I Translational and rotational energy levels are sparsely

populated, according to Boltzmann distribution (the

Boltzmann limit)

I The population of the vibrational energy levels approaches

the Boltzmann limit as temperature increases

I Temperature dependent values of γ for all types of molecules

except mono-atomic (no vibrational modes possible)
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Thermally Perfect Gas

p = ρRT e = e(T) Cv = de/dT
h = h(T) Cp = dh/dT
h = e+ p/ρ

Cp − Cv = R

γ = Cp/Cv

Cv =
R

γ − 1

Cp =
γR

γ − 1

R is constant

γ, Cv, and Cp are variable (functions of T )

a =

√
γp

ρ
=
√
γRT
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High-Temperature Effects

Example: properties of air

50 K

600 K

2000 K

region of constant γ (γ=1.4)

region of variable γ

calorically perfect gas

thermally perfect gas

T

Thermally perfect gas:

e and h are non-linear functions of T

the temperatur range represents standard

atmospheric pressure (lower pressure gives

lower temperatures)
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High-Temperature Effects

For cases where the vibrational energy is not negligible (high

temperatures)

lim
T→∞

evib = RT ⇒ Cv =
7

2
R

However, chemical reactions and ionization will take place long

before that

I Translational and rotational energy fully excited above ∼5 K
I Vibrational energy is non-negligible above 600 K

I Chemical reactions begin to occur above ∼2000 K
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High-Temperature Effects

As temperature increase further vibrational energy becomes

less important

Why is that so?
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High-Temperature Effects

Example: properties of air (continued)

2500 K

4000 K

9000 K

no reactions

O2 → 2O (start of dissociation)

N2 → 2N (start of dissociation)

O → O
+

+ e
−

(start of ionization)

T

With increasing temperature, the gas becomes more and more

mono-atomic which means that vibrational modes becomes less

important
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Equilibrium Gas

For temperatures T >∼ 2500K

I Air may be described as being in thermodynamic and
chemical equilibrium (Equilibrium Gas)

I reaction rates (time scales) low compared to flow time scales
I reactions in both directions (example: O2 
 2O)

I Tables must be used (Equilibrium Air Data) or special

functions which have been made to fit the tabular data
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Equilibrium Gas

How do we obtain a thermodynamic description?

p = p(R,T) e = e(ν,T)

h = h(p,T)

h = e+
p

ρ

Cv =

(
∂e

∂T

)
ν

Cp =

(
∂h

∂T

)
p

a2e = γRT

1 +
1

p

(
∂e

∂ν

)
T

1− ρ

(
∂h

∂p

)
T

γ =
Cp

Cv

=

(
∂h

∂T

)
p(

∂e

∂T

)
ν

RT =
p

ρ

Note: R is not a constant here

i.e. this is not the ideal gas law
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Chapter 17.1

Thermodynamic and

Chemical Equilibrium
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Thermodynamic Equilibrium

Molecules are distributed among their possible energy states
according to the Boltzmann distribution (which is a statistical
equilibrium) for the given temperature of the gas

I extremely fast process (time and length scales of the

molecular processes)

I much faster than flow time scales in general (not true inside

shocks)
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Thermodynamic Equilibrium

Global thermodynamic equilibrium:

I there are no gradients of p, T , ρ, v, species concentrations

I ”true thermodynamic equilibrium”

Local thermodynamic equilibrium:

I gradients can be neglected locally

I this requirement is fulfilled in most cases (hard not to get)
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Chemical Equilibrium

Composition of gas (species concentrations) is fixed in time

I forward and backward rates of all chemical reactions are

equal

I zero net reaction rates

I chemical reactions may be either slow or fast in comparison

to flow time scale depending on the case studied
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Chemical Equilibrium

Global chemical equilibrium:

I there are no gradients of species concentrations

I together with global thermodynamic equilibrium ⇒
all gradients are zero

Local chemical equilibrium

I gradients of species concentrations can be neglected locally

I not always true - depends on reaction rates and flow time

scales
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Thermodynamic and Chemical Equilibrium

Most common cases:

Thermodynamic Equilibrium Chemical Equilibrium Gas Model

1 local thermodynamic equilibrium local chemical equilibrium equilibrium gas

2 local thermodynamic equilibrium chemical non-equilibrium finite rate chemistry

3 local thermodynamic equilibrium frozen composition frozen flow

4 thermodynamic non-equilibrium frozen composition vibrationally frozen flow

I length and time scales of flow decreases from 1 to 4

I Frozen composition ⇒ no (or slow) reactions

I vibrationally frozen flow gives the same gas relations as
calorically perfect gas!

I no chemical reactions and unchanged vibrational energy
I example: small nozzles with high-speed flow
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Chapter 17.2

Equilibrium Normal Shock

Wave Flows
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Equilibrium Normal Shock Wave Flows

Question: Is the equilibrium gas assumption OK?

Answer:

I for hypersonic flows with very little ionization in the shock

region, it is a fair approximation

I not perfect, since the assumption of local thermodynamic

and chemical equilibrium is not really true around the shock

I however, it gives a significant improvement compared to the

calorically perfect gas assumption
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Equilibrium Normal Shock Wave Flows

Basic relations (for all gases), stationary normal shock:

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1
1

2
u21 = h2 +

1

2
u22

For equilibrium gas we have:
ρ = ρ(p, h)

T = T(ρ, h)

(we are free to choose any two states as independent variables)
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Equilibrium Normal Shock Wave Flows

Assume that ρ1, u1, p1, T1, and h1 are known

u2 =
ρ1u1
ρ2

⇒ ρ1u
2
1 + p1 = ρ2

(
ρ1
ρ2

u1

)2

+ p2 ⇒

p2 = p1 + ρ1u
2
1

(
1− ρ1

ρ2

)
Also

h1 +
1

2
u21 = h2 +

1

2

(
ρ1
ρ2

u1

)2

⇒

h2 = h1 +
1

2
u21

(
1−

(
ρ1
ρ2

)2
)
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Equilibrium Normal Shock Wave Flows

initial guess
ρ1

ρ2

calculate

p2 and h2

ρ2 = ρ(p2, h2)update
ρ1

ρ2

‖ρ2 − ρ2old
‖ < ε

stop

no

yes

when converged:

ρ2 = ρ(p2, h2)

T2 = T(ρ2, h2)

⇒

ρ2, u2, p2, T2, h2 known
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Equilibrium Air - Normal Shock

Tables of thermodynamic properties for different conditions are

available

For a very strong shock case (M1 = 32), the table below (Table

17.1) shows some typical results for equilibrium air

calorically perfect gas equilibrium air

(γ = 1.4)

p2/p1 1233 1387

ρ2/ρ1 5.97 15.19

h2/h1 206.35 212.80

T2/T1 206.35 41.64
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Equilibrium Air - Normal Shock

Analysis:

I Pressure ratio is comparable

I Density ratio differs by factor of 2.5

I Temperature ratio differs by factor of 5

Explanation:

I Using equilibrium gas means that vibration, dissociation and

chemical reactions are accounted for

I The chemical reactions taking place in the shock region lead
to an ”absorption” of energy into chemical energy

I drastically reducing the temperature downstream of the

shock
I this also explains the difference in density after the shock
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Equilibrium Air - Normal Shock

Additional notes:

I For a normal shock in an equilibrium gas, the pressure ratio,

density ratio, enthalpy ratio, temperature ratio, etc all depend

on three upstream variables, e.g. u1, p1, T1

I For a normal shock in a thermally perfect gas, the pressure

ratio, density ratio, enthalpy ratio, temperature ratio, etc all

depend on two upstream variables, e.g. M1, T1

I For a normal shock in a calorically perfect gas, the pressure

ratio, density ratio, enthalpy ratio, temperature ratio, etc all

depend on one upstream variable, e.g. M1
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Equilibrium Gas - Detached Shock

M = 20

calorically perfect gas

M = 20

equilibrium gas

shock moves closer to body

What’s the reason for the difference in predicted shock

position?
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Equilibrium Gas - Detached Shock

Calorically perfect gas:

I all energy ends up in translation and rotation ⇒ increased

temperature

Equilibrium gas:

I energy is absorbed by reactions ⇒ does not contribute to the

increase of gas temperature
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Chapter 17.3

Equilibrium

Quasi-One-Dimensional

Nozzle Flows
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Equilibrium Quasi-1D Nozzle Flows

First question: Is chemically reacting gas also isentropic

(for inviscid and adiabatic case)?

entropy equation: Tds = dh− νdp

Quasi-1D equations in differential form (all gases):

momentum equation: dp = −ρudu

energy equation: dh+ udu = 0
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Equilibrium Quasi-1D Nozzle Flows

udu = −dp

ρ
= −νdp

Tds = −udu− νdp = −udu+ udu = 0 ⇒

ds = 0

Isentropic flow!

Niklas Andersson - Chalmers 661 / 732





Equilibrium Quasi-1D Nozzle Flows

Second question: Does the area-velocity relation also hold for a

chemically reacting gas?

Isentropic process gives

dA

A
= (M2 − 1)

du

u

M = 1 at nozzle throat still holds
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Equilibrium Quasi-1D Nozzle Flows

For general gas mixture in thermodynamic and chemical

equilibrium, we may find tables or graphs describing relations

between state variables.

Example: Mollier diagram

T = constant

p = constant

for any point (h, s), we may find p, T , ρ, a, …

h

s
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Equilibrium Quasi-1D Nozzle Flows

ho

T2

p2

2

T1

p1

1

To

po

h

s

isentropic process

assume ho is known

For steady-state inviscid

adiabatic nozzle flow we have:

h1 +
1

2
u21 = h2 +

1

2
u22 = ho

where ho is the reservoir

enthalpy
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Equilibrium Quasi-1D Nozzle Flows

At point 1 in Mollier diagram we have:

1

2
u21 = ho − h1 ⇒ u1 =

√
2(ho − h1)

Assume that u1 = a1 (sonic conditions) gives

ρ1u1A1 = ρ∗a∗A∗

At any point along isentropic line, we have u =
√

2(ho − h) and ρ,
p, T , a etc are all given which means that ρu is given

A

A∗ =
ρ∗a∗

ρu

may be computed for any point along isentropic line

Niklas Andersson - Chalmers 665 / 732





Equilibrium Quasi-1D Nozzle Flows

I Equilibrium gas gives higher T and more thrust

I During the expansion chemical energy is released due to

shifts in the equilibrium composition

equilibrium gas

calorically perfect gas

T

A/A
∗

1

I Chemical and vibrational energy transfered to translation and

rotation ⇒ increased temperature
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Equilibrium Quasi-1D Nozzle Flows

I Equilibrium gas gives higher T and more thrust

I During the expansion chemical energy is released due to

shifts in the equilibrium composition

equilibrium gas

calorically perfect gas

T

A/A
∗

1

I Chemical and vibrational energy transfered to translation and

rotation ⇒ increased temperature
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Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:

equilibrium gas

real case

calorically perfect gas

T

A/A
∗

1

I Space nozzle applications: ue ≈ 4000 m/s

I Required prediction accuracy 5 m/s
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Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:

equilibrium gas

real case

calorically perfect gas

T

A/A
∗

1

I Space nozzle applications: ue ≈ 4000 m/s

I Required prediction accuracy 5 m/s
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Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Equilibrium gas:

I very fast chemical reactions
I local thermodynamic and chemical equilibrium

Vibrationally frozen gas:

I very slow chemical reactions

(no chemical reactions ⇒ frozen gas)
I vibrational energy of molecules have no time to change
I calorically perfect gas!
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Large Nozzles

High To, high po, high reactivity

Real case is close to equilibrium gas results

Example: Ariane 5 launcher, main engine (Vulcain 2)

I H2 +O2 → H2O in principle, but many different radicals and

reactions involved (at least ∼10 species, ∼20 reactions)
I To ∼ 3600 K, po ∼ 120 bar

I Length scale ∼ a few meters

I Gas mixture is quite close to equilibrium conditions all the

way through the expansion

Niklas Andersson - Chalmers 669 / 732





Ariane 5

Ariane 5 space launcher

extreme high temperature and

high speed flow regime
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Vulcain Engine

Vulcain engine:

first stage of the Ariane 5

launcher
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Space Shuttle Launcher - SSME

Niklas Andersson - Chalmers 672 / 732





Space Shuttle Launcher - SSME
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Small Nozzles

Low To, low po, lower reactivity

Real case is close to frozen flow results

Example:

Small rockets on satellites (for maneuvering, orbital adjustments,

etc)
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Small Nozzles
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Differential Conservation

Equations for Inviscid Flows
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

the governing equations for compressible flows on

differential form - finally ...
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem
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Chapter 6.2

Differential Equations in

Conservation Form
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Differential Equations in Conservation Form

Basic principle to derive PDE:s in conservation form:

I Start with control volume formulation

I Convert to volume integral via Gauss Theorem

I Arbitrary control volume implies that integrand equals to zero

everywhere
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Continuity Equation

Mass conservation:

Control volume formulation

d

dt

y

Ω

ρdV +
{

∂Ω

ρv · ndS = 0

where Ω is a fixed control volume

Applying Gauss Theorem gives

{

∂Ω

ρv · ndS =
y

Ω

∇ · (ρv)dV

Also,

d

dt

y

Ω

ρdV =
y

Ω

∂ρ

∂t
dV
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Continuity Equation

Therefore

y

Ω

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0

Ω is an arbitrary control volume, can be made infinitesimally small

and thus

∂ρ

∂t
+∇ · (ρv) = 0

which is the continuity equation

Niklas Andersson - Chalmers 685 / 732





Momentum Equation

Momentum conservation:

Control volume formulation

d

dt

y

Ω

ρvdV +
{

∂Ω

[ρ(v · n)v + pn]dS =
y

Ω

ρfdV

where Ω is a fixed control volume

Applying Gauss Theorem gives

{

∂Ω

ρ(v · n)vdS =
y

Ω

∇ · (ρvv)dV ;
{

∂Ω

pndS =
y

Ω

∇pdV

Also,

d

dt

y

Ω

ρvdV =
y

Ω

∂

∂t
(ρv)dV
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Momentum Equation

Therefore

y

Ω

[
∂

∂t
(ρv) +∇ · (ρvv) +∇p− ρf

]
dV = 0

Ω is an arbitrary control volume, can be made infinitesimally small

and thus

∂

∂t
(ρv) +∇ · (ρvv) +∇p = ρf

which is the momentum equation
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Momentum Equation

In cartesian form (v = uex + vey +wez ):

∂

∂t
(ρu) +∇ · (ρuv) + ∂p

∂x
= ρfx

∂

∂t
(ρv) +∇ · (ρvv) + ∂p

∂y
= ρfy

∂

∂t
(ρw) +∇ · (ρwv) + ∂p

∂z
= ρfz
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Momentum Equation

or expanded:

∂

∂t
(ρu) +

∂

∂x
(ρuu) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) +

∂p

∂x
= ρfx

∂

∂t
(ρv) +

∂

∂x
(ρvu) +

∂

∂y
(ρvv) +

∂

∂z
(ρvw) +

∂p

∂y
= ρfy

∂

∂t
(ρw) +

∂

∂x
(ρwu) +

∂

∂y
(ρwv) +

∂

∂z
(ρww) +

∂p

∂z
= ρfz
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Momentum Equation

∂

∂t
(ρv) +∇ · (ρvv) +∇p = ρf

(ρuu+ p) ρuv ρuw
ρvu (ρvv + p) ρvw
ρwu ρwv (ρww + p)

 = ρvv + pI

∂

∂t
(ρv) +∇ · (ρvv + pI) = ρf
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Energy Equation

Energy conservation:

Control volume formulation

d

dt

y

Ω

ρeodV +
{

∂Ω

ρho(v · n)dS =
y

Ω

ρf · vdV

where Ω is a fixed control volume

Applying Gauss Theorem gives

{

∂Ω

ρho(v · n)dS =
y

Ω

∇ · (ρhov)dV

Also,

d

dt

y

Ω

ρeodV =
y

Ω

∂

∂t
(ρeo)dV
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Energy Equation

Therefore

y

Ω

[
∂

∂t
(ρeo) +∇ · (ρhov)− ρ(f · v)

]
dV = 0

Ω is an arbitrary control volume, can be made infinitesimally small

and thus

∂

∂t
(ρeo) +∇ · (ρhov) = ρ(f · v)

which is the energy equation
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Partial Differential Equations in Conservation Form

∂ρ

∂t
+∇ · (ρv) = 0

∂

∂t
(ρv) +∇ · (ρvv) +∇p = ρf

∂

∂t
(ρeo) +∇ · (ρhov) = ρ(f · v)

These equations are referred to as PDE:s on conservation form

since they stem directly from the integral conservation equations

applied to a fixed control volume
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem



Niklas Andersson - Chalmers 694 / 732





Chapter 6.4

Differential Equations in

Non-Conservation Form
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The Substantial Derivative

Introducing the substantial derivative operator

D

Dt
=

∂

∂t
+ v · ∇

”... the time rate of change of any quantity associated with a particular moving fluid element is given by

the substantial derivative ...”

”... the properties of the fluid element are changing as it moves past a point in a flow because the

flowfield itself may be fluctuating with time (the local derivative) and because the fluid element is simply

on its way to another point in the flowfield where the properties are different (the convective derivative)

...”
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Non-Conservation Form of Continuity Equation

Applying the substantial derivative operator to density gives

Dρ

Dt
=

∂ρ

∂t
+ v · ∇ρ

Continuity equation:

∂ρ

∂t
+∇ · (ρv) = ∂ρ

∂t
+ v · ∇ρ+ ρ(∇ · v) = 0 ⇒

Dρ

Dt
+ ρ(∇ · v) = 0
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Non-Conservation Form of Continuity Equation

Dρ

Dt
+ ρ(∇ · v) = 0

”... the mass of a fluid element made up of a fixed set of

particles (molecules or atoms) is constant as the fluid

element moves through space ...”
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Non-Conservation Form of Momentum Equation

∂

∂t
(ρv) +∇ · (ρvv + pI) = ρf ⇒

ρ
∂v
∂t

+ v∂ρ

∂t
+ ρv · ∇v + v(∇ · ρv) +∇p = ρf ⇒

ρ

[
∂v
∂t

+ v · ∇v
]

︸ ︷︷ ︸
=Dv

Dt

+v
[
∂ρ

∂t
+∇ · ρv

]
︸ ︷︷ ︸

=0

+∇p = ρf

Dv
Dt

+
1

ρ
∇p = f
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Non-Conservation Form of Energy Equation

∂

∂t
(ρeo) +∇ · (ρhov) = ρ(f · v) + ρq̇

ho = eo +
p

ρ
⇒

∂

∂t
(ρeo) +∇ · (ρeov) +∇ · (pv) = ρ(f · v) + ρq̇ ⇒

ρ
∂eo
∂t

+ eo
∂ρ

∂t
+ ρv · ∇eo+ eo∇ · (ρv)+∇· (pv) = ρ(f ·v)+ ρq̇ ⇒

ρ

[
∂eo
∂t

+ v · ∇eo

]
︸ ︷︷ ︸

=Deo
Dt

+eo

[
∂ρ

∂t
+∇ · (ρv)

]
︸ ︷︷ ︸

=0

+∇ · (pv) = ρ(f · v) + ρq̇
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Non-Conservation Form of Energy Equation

ρ
Deo

Dt
+∇ · (p+ v) = ρf · v + ρq̇

eo = e+
1

2
v · v ⇒

ρ
De

Dt
+ ρv · Dv

Dt
+∇ · (pv) = ρf · v + ρq̇

Using the momentum equation,

(
Dv
Dt

+
1

ρ
∇p = f

)
, gives

ρ
De

Dt
− v · ∇p+ ρf · v + v · ∇p+ p(∇ · v) = ρf · v + ρq̇ ⇒

De

Dt
+

p

ρ
(∇ · v) = q̇

Niklas Andersson - Chalmers 701 / 732





Non-Conservation Form of Energy Equation

De

Dt
+

p

ρ
(∇ · v) = q̇

From the continuity equation we get

Dρ

Dt
+ ρ(∇ · v) = 0 ⇒ ∇ · v = −1

ρ

Dρ

Dt
⇒

De

Dt
− p

ρ2
Dρ

Dt
= q̇ ⇒ De

Dt
+ p

D

Dt

(
1

ρ

)
= q̇

De

Dt
= q̇− p

Dν

Dt

where ν = 1/ρ

Compare with first law of thermodynamics: de = δq− δW
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Non-Conservation Form of Energy Equation

If we instead express the energy equation in terms of enthalpy:

De

Dt
= q̇− p

D

Dt

(
1

ρ

)
⇒ De

Dt
+ p

D

Dt

(
1

ρ

)
= q̇

h = e+
p

ρ
⇒ Dh

Dt
=

De

Dt
+

1

ρ

Dp

Dt
+ p

D

Dt

(
1

ρ

)
⇒

Dh

Dt
= q̇+

1

ρ

Dp

Dt
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Non-Conservation Form of Energy Equation

and total enthalpy ...

ho = h+
1

2
v · v ⇒ Dho

Dt
=

Dh

Dt
+ v · Dv

Dt

From the momentum equation we get

ρ
Dv
Dt

+∇p = f ⇒ Dv
Dt

= −1

ρ
∇p+ f ⇒

Dho

Dt
=

Dh

Dt︸︷︷︸
q̇+ 1

ρ
Dp

Dt

−1

ρ
v · ∇p+ f · v ⇒

Dho

Dt
= q̇+

1

ρ

[
Dp

Dt
− v · ∇p

]
+ f · v
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Non-Conservation Form of Energy Equation

Dho

Dt
= q̇+

1

ρ

[
Dp

Dt
− v · ∇p

]
+ f · v

Expanding the substantial derivative
Dp

Dt
gives

Dp

Dt
=

∂p

∂t
+ v · ∇p ⇒

Dho

Dt
=

1

ρ

∂p

∂t
+ q̇+ f · v

Let’s examine the above relation ...
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Non-Conservation Form of Energy Equation

Dho

Dt
=

1

ρ

∂p

∂t
+ q̇+ f · v

The total enthalpy of a moving fluid element in an inviscid flow

can change due to

I unsteady flow: ∂p/∂t 6= 0

I heat transfer: q̇ 6= 0

I body forces: f · v 6= 0
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Non-Conservation Form of Energy Equation

Adiabatic flow and without body forces ⇒

Dho

Dt
=

1

ρ

∂p

∂t

Steady-state adiabatic flow without body forces ⇒

Dho

Dt
= 0

ho is constant along streamlines!
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Additional Form of Energy Equation

Start from

De

Dt
= q̇− p

D

Dt

(
1

ρ

)

Calorically perfect gas:

e = CvT ; Cv =
R

γ − 1
; p = ρRT ; γ,R = const

De

Dt
= Cv

DT

Dt
=

R

γ − 1

D

Dt

(
p

ρR

)
=

1

γ − 1

D

Dt

(
p

ρ

)
⇒

1

γ − 1

D

Dt

(
p

ρ

)
= q̇− p

D

Dt

(
1

ρ

)
⇒
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Additional Form of Energy Equation

1

γ − 1

[
p
D

Dt

(
1

ρ

)
+

(
1

ρ

)
Dp

Dt

]
= q̇− p

D

Dt

(
1

ρ

)

p
D

Dt

(
1

ρ

)
+

(
1

ρ

)
Dp

Dt
= (γ − 1)q̇− (γ − 1)p

D

Dt

(
1

ρ

)

γp
D

Dt

(
1

ρ

)
+

(
1

ρ

)
Dp

Dt
= (γ − 1)q̇
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Additional Form of Energy Equation

Continuity:

Dρ

Dt
= −ρ(∇ · v) ⇒ D

Dt

(
1

ρ

)
= − 1

ρ2
Dρ

Dt
=

1

ρ
(∇ · v) ⇒

γp

ρ
(∇ · v) +

(
1

ρ

)
Dp

Dt
= (γ − 1)q̇
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Additional Form of Energy Equation

Dp

Dt
+ γp(∇ · v) = (γ − 1)ρq̇

Adiabatic flow (no added heat):

Dp

Dt
+ γp(∇ · v) = 0

Non-conservation form (calorically perfect gas)
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Conservation Form

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0

where Q(x, y, z, t), E(x, y, z, t), ... may be scalar or vector fields

Example: the continuity equation

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0

If an equation cannot be written in this form, it is said to be in

non-conservation form
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Euler Equations - Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v,w (no body forces, no

added heat)

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0

∂

∂t
(ρu) +

∂

∂x
(ρuu+ p) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = 0

∂

∂t
(ρv) +

∂

∂x
(ρvu) +

∂

∂y
(ρvv + p) +

∂

∂z
(ρvw) = 0

∂

∂t
(ρw) +

∂

∂x
(ρwu) +

∂

∂y
(ρwv) +

∂

∂z
(ρww + p) = 0

∂

∂t
(ρeo) +

∂

∂x
(ρhou) +

∂

∂y
(ρhov) +

∂

∂z
(ρhow) = 0
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Euler Equations - Non-Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v,w (no body forces, no

added heat), calorically perfect gas

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+w

∂ρ

∂z
+ ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
+

1

ρ

∂p

∂x
= 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
+

1

ρ

∂p

∂y
= 0

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
+

1

ρ

∂p

∂z
= 0

∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+w

∂p

∂z
+ γp

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
= 0

Niklas Andersson - Chalmers 714 / 732





Conservation and Non-Conservation Form

The governing equations on non-conservation form are not,

although the name might give that impression, less physically

accurate than the equations on conservation form. The

nomenclature comes from CFD where the equations on

conservation form are preferred.
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Conservation and Non-Conservation Form

Conservation forms are useful for:

1. Numerical methods for compressible flow

2. Theoretical understanding of non-linear waves (shocks etc)

3. Provide link between integral forms (control volume

formulations) and PDE:s

Non-conservation forms are useful for:

1. Theoretical understanding of behavior of numerical methods

2. Theoretical understanding of boundary conditions

3. Analysis of linear waves (aero-acoustics)
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem
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Chapter 6.5

The Entropy Equation
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The Entropy Equation

From the first and second law of thermodynamics we have

De

Dt
= T

Ds

Dt
− p

D

Dt

(
1

ρ

)

which is called the entropy equation
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The Entropy Equation

Compare the entropy equation

De

Dt
= T

Ds

Dt
− p

D

Dt

(
1

ρ

)

with the energy equation (inviscid flow):

De

Dt
= q̇− p

D

Dt

(
1

ρ

)

we see that

T
Ds

Dt
= q̇
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The Entropy Equation

If q̇ = 0 (adiabatic flow) then

Ds

Dt
= 0

i.e., entropy is constant for moving fluid element

Furthermore, if the flow is steady we have

Ds

Dt
=

∂s

∂t
+ (v · ∇)s = (v · ∇)s = 0

i.e., entropy is constant along streamlines
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem
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Chapter 6.6

Crocco’s Theorem
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Crocco’s Theorem

”... a relation between gradients of total enthalpy,

gradients of entropy, and flow rotation ...”
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Crocco’s Theorem

Momentum equation (no body forces)

ρ
Dv
Dt

= −∇p

Writing out the substantial derivative gives

ρ
∂v
∂t

+ ρv · ∇v = −∇p ⇒ ∂v
∂t

+ v · ∇v = −1

ρ
∇p

First and second law of thermodynamics (energy equation)

dh = Tds+
1

ρ
dp

Replace differentials with a gradient operator

∇h = T∇s+
1

ρ
∇p ⇒ T∇s = ∇h− 1

ρ
∇p
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Crocco’s Theorem

With pressure derivative from the momentum equation inserted in

the energy equation we get

T∇s = ∇h+
∂v
∂t

+ v · ∇v

h = ho −
1

2
v · v ⇒ ∇h = ∇ho −∇(

1

2
v · v)

∇(
1

2
v · v) = v × (∇× v) + v · ∇v

∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A)

A = B = v ⇒

∇(v · v) = 2[v · ∇v + v × (∇ × v)]
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Crocco’s Theorem

T∇s = ∇ho − v × (∇× v)− v · ∇v +
∂v
∂t

+ v · ∇v

T∇s = ∇ho +
∂v
∂t

− v × (∇× v)

Note: ∇× v is the vorticity of the fluid

the rotational motion of the fluid is described by the angular velocity ω =
1

2
(∇ × v)
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Crocco’s Theorem

T∇s = ∇ho +
∂v
∂t

− v × (∇× v)

”... when a steady flow field has gradients of total

enthalpy and/or entropy Crocco’s theorem dramatically

shows that it is rotational ...”
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Crocco’s Theorem - Example

shock
M∞ constant

ho constant

s constant

Curved stationary shock (steady-state flow)

I s is constant upstream of shock

I jump in s across shock depends on local shock angle

I s will vary from streamline to streamline downstream of shock

I ∇s 6= 0 downstream of shock
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Crocco’s Theorem - Example

shock
M∞ constant

ho constant

s constant

Curved stationary shock (steady-state flow)

I Total enthalpy upstream of shock

I ho is constant along streamlines
I ho is uniform

I Total enthalpy downstream of shock

I ho is uniform

∇ho = 0
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Crocco’s Theorem - Example

Crocco’s equation for steady-state flow:

T∇s = ∇ho − v × (∇× v)

I v × (∇× v) 6= 0 downstream of a curved shock

I the rotation ∇× v 6= 0 downstream of a curved shock

Explains why it is difficult to solve such problems by analytic

means!
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem
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