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Literature

This lecture series is based on the book Modern Compressible
Flow; With Historical Perspective by John D. Anderson

Compressible

Flow

Course Literature:
John D. Anderson
Modern Compressible Flow; With Historical Perspective
Third Edition (International Edition 2004)

McGraw-Hill, ISBN 007-124136-1



Literature

Content:

Chapter 1-7: All

Chapter 8-11: Excluded

Chapter 12: Included, supplemented by lecture notes
Chapter 13-15: Excluded

Chapter 16-17: Some parts included (see lecture notes)
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With the exception of the lecture notes supplementing
chapter 12, all lecture notes are based on the book.
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Define the concept of compressibility for flows

Explain how to find out if a given flow is subject to significant compressibility effects

Describe typical engineering flow situations in which compressibility effects are more or less predominant (e.g. Mach number regimes

for steady-state flows)

Present at least two different formulations of the governing equations for compressible flows and explain what basic conservation

principles they are based on

Explain how thermodynamic relations enter into the flow equations

Define the special cases of calorically perfect gas, thermally perfect gas and real gas and explain the implication of each of these

special cases

Explain why entropy is important for flow discontinuities

Derive (marked) and apply (all) of the presented mathematical formulae for classical gas dynamics

1D isentropic flow*

b normal shocks*

1D flow with heat addition®

1D flow with friction*

oblique shocks in 2D*

shock reflection at solid walls*

contact discontinuities

Prandtl-Meyer expansion fans in 2D

detached blunt body shocks, nozzle flows

unsteady waves and discontinuities in 1D

basic acoustics

Solve engineering problems involving the above-mentioned phenomena (8a-8k)

Explain how the incompressible flow equations are derived as a limiting case of the compressible flow equations

Explain how the equations for aero-acoustics and classical acoustics are derived as limiting cases of the compressible flow equations

Explain the main principles behind a modern Finite Volume CFD code and such concepts as explicit/implicit time stepping, CFL

number, conservation, handling of compression shocks, and boundary conditions

Apply a given CFD code to a particular compressible flow problem

Analyze and verify the quality of the numerical solution

Explain the limitations in fluid flow simulation software

Report numerical analysis work in form of a technical report
a Describe a numerical analysis with details such that it is possible to redo the work based on the provided information
b Write a technical report (structure, language)

Search for literature relevant for a specific physical problem and summarize the main ideas and concepts found

Present engineering work in the form of oral presentations
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Compressible Flow

"Compressible flow (gas dynamics) is a branch of fluid
mechanics that deals with flows having significant
changes in fluid density”

Wikipedia



Gas Dynamics

”... the study of motion of gases and its effects on
physical systems ...”

”... based on the principles of fluid mechanics and
thermodynamics ...”

”... gases flowing around or within physical objects at
speeds comparable to the speed of sound ...”

Wikipedia



Chapter 1
Compressible Flow
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Addressed Learning Outcomes

1
2

3

Define the concept of compressibility for flows

Explain how to find out if a given flow is subject to significant
compressibility effects

Describe typical engineering flow situations in which
compressibility effects are more or less predominant (e.g.
Mach number regimes for steady-state flows)

Define the special cases of calorically perfect gas, thermally
perfect gas and real gas and explain the implication of each
of these special cases

in this lecture we will find out what compressibility means
and do a brief review of thermodynamics
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Applications - Classical

v

Treatment of calorically perfect gas
Exact solutions of inviscid flow in 1D
Shock-expansion theory for steady-state 2D flow

Approximate closed form solutions to linearized equations in
2D and 3D

Method of Characteristics (MOC) in 2D and axi-symmetric
inviscid supersonic flows
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Applications - Modern

» Computational Fluid Dynamics (CFD)
» Complex geometries (including moving boundaries)

» Complex flow features (compression shocks, expansion
waves, contact discontinuities)

» Viscous effects

» Turbulence modeling

» High temperature effects (molecular vibration, dissociation,
ionization)

» Chemically reacting flow (equilibrium & non-equilibrium
reactions)



Applications - Examples

Turbo-machinery flows:
Gas turbines, steam turbines, compressors
Aero engines (turbojets, turbofans, turboprops)

Aeroacoustics:
Flow induced noise (jets, wakes, moving surfaces)
Sound propagation in high speed flows

External flows:
Aircraft (airplanes, helicopters)
Space launchers (rockets, re-entry vehicles)

Internall flows:
Nozzle flows
Inlet flows, diffusers
Gas pipelines (natural gas, bio gas)

Free-shear flows:
High speed jets

Combustion:
Internal combustion engines (valve flow, in-cylinder flow, exhaust pipe flow,
mufflers)
Combustion induced noise (turbulent combustion)
Combustion instabilities



Applications - Stirling Engine

feed tube

s
feed tube \ 38 ) gas cooler
3

compression passage

expansion cylinder compression cylinder




Applications - Siemens GT750




Applications - Rolls-Royce Trent XWB




Applications - Airbus A380




Applications - Vulcain Nozzle
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Historical Milestones

1893 C.G.P. de Laval, first steam turbine with
supersonic nozzles
(convergent-divergent). At this time, the
significance was not fully understood,
but it worked!

1947 Charles Yeager, flew first supersonic
aircraft (XS-1), M 1.06




Historical Milestones - C.G.P. de Laval (1893)




Historical Milestones - Charles Yeager (1947)




Modern Compressible Flow

Screeching rectangular supersonic jet
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Chapter 1.2
Compressibility



Compressibility

10v
7—_—;%7 (v=-)

1
P
Not really precisel!

Is T held constant during the compression or not?




Compressibility

Two fundamental cases:

Constant temperature

Heat is cooled off to keep T constant inside the cylinder
The piston is moved slowly

Adiabatic process

Thermal insulation prevents heat exchange
The piston is moved fairly rapidly (gives negligible flow losses)



Compressibility

Isothermal process:

__ 1o
=T op )+

Adiabatic reversible (isentropic) process:

__ 1o
s= op /g

Air at normal conditions: A~ 1.0x107°
Water at normal conditions: 77 ~ 5.0 x 10~*°

[m?/N]
[m?/N]



Compressibility

__lov
- vop
but
1
Vv =-
p
which gives
0 (1 1\ 0 10
() ()52
op \p p*) op  pdp
Similarly:



Compressibility

Definition of compressible flow:

If p changes with amount Ap over a characteristic length
scale of the flow, such that the corresponding change in
density, given by Ap ~ pTA p, is too large to be neglected,
the flow is compressible (typically, if Ap/p > 0.05)

Important note:

Bernoulli's equation is restricted to incompressible flow, i.e. it
is not valid for compressible flow!
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Chapter 1.3
Flow Regimes



Flow Regimes

The freestream Mach number is defined as

Moozuﬁ
doo

where Uy, is the freestream flow speed and a. is the speed of
sound at freestream conditions



Flow Regimes

Assume first incompressible flow and estimate the max pressure
difference using

1
Ap = ool

For air at normal conditions we have

1<8p> 1 1
T = — —_— = —_——= -
"“p\op); AT p

(ideal gas law for perfect gas p = pRT)



Flow Regimes

Using the relations on previous slide we get

for a calorically perfect gas we have
a=+/yRT

which gives us
Ap Vs
p 22

now, using the definition of Mach number we get

Ap
P

2
00

zl/\ﬂ
2



Flow Regimes

Incompressible Moo < 0.1

Subsonic My, < 1and M < 1 everywhere

Transonic case 1: My < 1and M > 1 locally
case 2: My, > 1 and M < 1 locally

Supersonic My > 1 and M > 1 everywhere

supersonic flow with high-
temperature effects

Hypersonic

Local Mach number M is based on local flow speed, U = |U|, and local speed of sound, a

Compressible
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Chapter 1.4
Review of Thermodynamics



Thermodynamic Review

Compressible flow:

... Strong interaction between flow and
thermodynamics ...



Perfect Gas

All intermolecular forces negligible

Only elastic collitions between molecules
pv =RT

or

P_pr
p

where R is the gas constant [R] = J/kgK

Also, R = Ryniv/M where M is the molecular weight of gas
molecules (in kg/kmol) and R, = 8314 J /kmol K



Internal Energy and Enthalpy

Internal energy e ([e] = J/kg)
Enthalpy h ([h] = J/k9)

h=e+pr=e+ P (valid for all gases)
P

For any gas in thermodynamic equilibrium, € and h are
functions of only two thermodynamic variables (any two
variables may be selected) e.g.



Internal Energy and Enthalpy

Special cases:

Thermally perfect gas:
e=e(T)andh=nh(T)

OK assumption for air at near atmospheric conditions and
100K < T < 2500K

Calorically perfect gas:

e=C,Tandh =C,T (C, and C, are constants)

OK assumption for air at near atmospheric pressure and
100K < T < 1000K



Specific Heat

For thermally perfect (and calorically perfect) gas

oh oe

o), -

P\aT ), Y\oaTr),
sinceh =e+p/p =e+ RT we obtain:
Cp:CV+R

The ratio of specific heats, ~, is defined as:

Cp

1%

y



Specific Heat

Important!

calorically perfect gas:

Cy, Cp, and v are constants

thermally perfect gas:

Cy, Cp, and ~ will depend on temperature



Specific Heat

Cp_CV:R
divide by C,

R

Tml=a

v

C\/Zi

Cp_CV:R

divide by C,,



Specific Heat

Cp_CV:R
divide by C,

R

’Y*l:C*

v

Cp_CV:R

divide by C,,

valid for both thermally perfect and calorically perfect gas!
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First Law of Thermodynamics

A fixed mass of gas, separated from its surroundings by an
imaginary flexible boundary, is defined as a "system”. This system
obeys the relation

de =6q — ow

where

de is a change in internal energy of system
0q is heat added to the system
ow is work done by the system (on its surroundings)

Note: de only depends on starting point and end point of the process
while g and ow depend on the actual process also



First Law of Thermodynamics

Examples:

Adiabatic process:
0q = 0.

Reversible process:
no dissipative phenomena (no flow losses)

Isentropic process:
a process which is both adiabatic and reversible



First Law of Thermodynamics

Reversible process:

ow = pdv = pd(1/p)
de = éq — pd(1/p)

Adiabatic & reversible process:



Entropy

Entropy s is a property of all gases, uniquely defined by any two
thermodynamic variables, e.g.

s=s(p,T)ors=s(p,T)ors=s(p,p)ors=s(eh)or...



Second Law of Thermodynamics

Concept of entropy s:

1) 1
= q%ev = 767 +dsi,  (dsi > 0.)

as

or

el
> -
dS—T



Second Law of Thermodynamics

Concept of entropy s:

ds = Jq%ev = 6%7 +dsjy, (dsy>0.)
or
Tﬂ
(Sq . S+ds
R

(6@)rev




Second Law of Thermodynamics

In general:

For adiabatic processes:

as > 0.



Second Law of Thermodynamics

“In this house, we obey the laws of
thermodynamics!”

Homer Simpson, after Lisa constructs a perpetual motion machine whose energy
increases with time




Calculation of Entropy

For reversible processes (5w = pd(1/p) and éq = Tds):

de = Tds — pd (;)

or
1
Tds = de + pd (p)

from before we have h =e +p/p =

1 1 1
dh = de + pd <1> + <> dp < de = dh — pd () — () dp
P p p p



Calculation of Entropy

For thermally perfect gases, p = pRT and dh = CpdT =

dS:Cpg —Rilf

Integration from starting point (1) to end point (2) gives:

SS9 —S1 = / Cpf—Rl (gi)

and for calorically perfect gases

T2> <,O2>
Sy —81=Cpl Rln
52 B n<T1 P1



Calculation of Entropy

If we instead use de = C,dT we get

for thermally perfect gases

Sy — 8] = /CV—RI ( >
P1

and for calorically perfect gases

T
So — 81 = Cvln< 2>—Rln<pz>
T 1
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Isentropic Relations

For calorically perfect gases, we have

B To P2
So — §q —Cp1n<T1> —RlIn <p1>

For adiabatic reversible processes:

ds—O.:>sl—sgz>Cpln<7T—2> —Rln(pz> =0=
1

P1
P2\ _Coy (2
m(ﬁl) R ln<71>



Isentropic Relations




Isentropic Relations

Alternatively

T
8281:0:CV1H<2> Rln<p2> =
T p1

02<T2)“
p1 \T1




Isentropic Relations - Summary

For an isentropic process and a calorically perfect gas we have

¥

()
P1 p1 Th

A.K.A. the isentropic relations
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Chapter 2

Integral Forms of the
Conservation Equations for
Inviscid Flows
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

5 Explain how thermodynamic relations enter into the flow
equations

7 Explain why entropy is important for flow discontinuities

equations, equations and more equations
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Chapter 1.5
Aerodynamic Forces



Aerodynamic Forces

n
(01
—_— Q

Q) region occupied by body
0€) surface of body
n outward facing unit normal vector




Aerodynamic Forces

Overall forces on the body du to the flow

F= @(7,OD+T -n)dS

where p is static pressure and 7 is a stress tensor



Aerodynamic Forces
Drag is the component of F which is parallel with the freestream
direction:

D =D, + Dy

where D, is drag due to pressure and Dy is drag due to friction

Lift is the component of F which is normal to the free stream
direction:

L="Lp+Ls
(Lf is usually negligible)



Aerodynamic Forces

Inviscid flow around slender body (attached flow)

subsonic flow: D =0
transonic or supersonic flow: D > 0

Explanation: Wave drag

S SN

Moo < 1 Moo > 1



Aerodynamic Forces

» Wave drag is an inviscid phenomena, connected to the
formation of compression shocks and entropy increase

» Viscous effects are present in all Mach regimes

» At transonic and supersonic conditions a particular
phenomena named "shock/boundary-layer interaction” may
appear

» shocks trigger flow separation
» usually leads to unsteady flow
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Integral Forms of the Conservation Equations

Conservation principles:

conservation of mass
conservation of momentum (Newton'’s second law)

conservation of energy (first law of thermodynamics)



Integral Forms of the Conservation Equations

The control volume approach:

Y

Notation:

Q. fixed control volume

0€2: boundary of 2

n: outward facing unit normal vector
v: fluid velocity

v =v|



Chapter 2.3
Continuity Equation



Continuity Equation

Conservation of mass:

%H]’pd%%jipv-ndszo
Q

o0
rate of change of net mass flow out
total mass in 2 from €

Note: notation in the text book n - dS = dS



Chapter 2.4
Momentum Equation



Momentum Equation

Conservation of momentum:

% {[[ pva? +{J lo(v - n)v +pn}aS = [[ ptar
Q o0 o

te of ch f total net momentum flow out from rate of momentum
ﬁoemgntjmar;geno ota Q plus surface force on 92 generation due to
due to pressure forces inside €

Note: friction forces due to viscosity are not included here. To account for these forces, the term — (7 - n) must be
added to the surface integral term.

Note: the body force, f, is force per unit mass.



Chapter 2.5
Energy Equation



Energy Equation

Conservation of energy:

ccfltﬂf peod ¥ + {J [peo(v - m) + pv-mldS = [[] pf-va¥
Q o0 £

net flow of total internal energy
out from Q plus work due to
surface pressure on 92

rate of change of total
internal energy in 2

work due to forces
inside 2

where

1 1,
Peo = p e+§v-v =p e+§v

is the total internal energy



Energy Equation

The surface integral term may be rewritten as follows:

@ [p<e+;v2> (v-n)—i—pv-n] ds

o0

&
g{p(eJriJr;vQ) (V~n)} ds
&



Energy Equation

Introducing total enthalpy

1
hO:h+§V2

we get

G JJJ pecd” -+ ff lohov -nlas =[] ot - var
¢ Ele! o



Energy Equation

Note 1: to include friction work on 92, the energy equation is
extended as

0 fﬂpeoc/7/+@ [phov - n—(7 - n) - v]dS = ijf va ¥

Note 2: to include heat transfer on 052, the energy equation is
further extended

i ffjpeod”//+gj§ [phov -n—(7-n)-v+q-n]dS = fffpfvd”//

o0

where q is the heat flux vector



Energy Equation

Note 3: the force finside €2 may be a distributed body force field

Examples:
gravity
Coriolis and centrifugal acceleration terms in a rotating frame
of reference



Energy Equation

Note 4: there may be objects inside 2 which we choose to
represent as sources of momentum and energy.

For example, there may be a solid object inside 2 which acts on
the fluid with a force F and performs work W on the fluid

Momentum equation:

% {[f eva7 + {J lo(v-n)v + pu]aS = [[[ pfcd? +F
Q o0 o

Energy equation:

S [[f oy + f o sl = [ v+
@ 50 J
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Integral Equations - Applications

How can we use control volume formulations of conservation
laws?

» Let Q — 0: In the limit of vanishing volume the control volume
formulations give the Partial Differential Equations (PDE:s) for
mass, momentum and energy conservation (see Chapter 6)

» Apply in a "smart” way = Analysis tool for many practical
problems involving compressible flow (see Chapter 2,
Section 2.8)



Integral Equations - Applications

Example: Steady-state adiabatic inviscid flow

control volume where the sur-
faces C1 and C» are normal to
the flow and C3 and C4 are par-
allel to the stream lines



Integral Equations - Applications

Conservation of mass:

%fjfpd“//+@pv~nd8:0
Q o0

=0 —p1v1A1 + pavaAa

Conservation of energy:

% fjf peod¥ + @ [phov - n]dS =0
¢ 50

=0 —p1hoy V1AL + p2hogyvaAs




Integral Equations - Applications

Conservation of mass:
P1V1AL = p2aVoAs
Conservation of energy:

p1ho,ViAL = p2ho,VoAs

hOl = h02

Total enthalpy h, is conserved along streamlines in steady-state
adiabatic inviscid flow
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Chapter 3
One-Dimensional Flow
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

5 Explain how thermodynamic relations enter into the flow
equations

6 Define the special cases of calorically perfect gas, thermally
perfect gas and real gas and explain the implication of each
of these special cases

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*
b normal shocks*

one-dimensional flows - isentropic and non-isentropic
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Chapter 3.2
One-Dimensional Flow
Equations



One-Dimensional Flow Equations

shock

—_— —_—
uq uz
p1, P1 T1 p2, P2 T2

Assumptions:
all flow variables only depend on x
velocity aligned with x-axis



One-Dimensional Flow Equations

surface area A

Control volume approach:

Define a rectangular control volume around shock, with upstream
conditions denoted by 1 and downstream conditions by 2



One-Dimensional Flow Equations

Conservation of mass:

% fsﬂ pd ¥ =0 i}f pv - ndS = palibA — prtnA
p1U1 = paUsz

Conservation of momentum:

d
— pvd? =0 4 [p(v -n)v +pn]dS =
(p2u3 + P2)A — (p1Ui + pP1)A

p1U; + D1 = pal3 + P2



One-Dimensional Flow Equations

Conservation of energy:

% J;{ }peod“// =0 ;%b [phov - n]dS =

p2h02U2A — plholulA
p1Utho, = pau2ho,

Using the continuity equation this reduces to

hO] == h02
or

1 1
hy + §U% =hy + §u§



One-Dimensional Flow Equations

Summary:

p1ur = palsz

p1U; +P1 = paU3 + P2

1 1

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = analytical solution exists

Note: These equations are valid regardless of whether there is a shock or not inside the control volume
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Chapter 3.3
Speed of Sound and Mach
Number



Speed of Sound

Sound waves are small perturbations in p, v, p, T (with constant
entropy S) propagating through gas with speed a

It can be shown that sound waves propagate with a velocity

given by
()
op)s

(valid for all gases)



Speed of Sound

Compressibility and speed of sound:

1<8p>
Te = —| —
* T p\ap/,

insert in relation for speed of sound

from before we have

or

(valid for all gases)



Speed of Sound

Calorically perfect gas:

Isentropic process = p = Cp” (where C is a constant)

82 — <8'O> — ,ycp’yfl — @
Ip ) P

which implies

or



Mach Number

The mach number, M, is a local variable
v
M= —
a
where

v=lv|

and a is the local speed of sound

In the free stream, far away from solid objects, the flow is
undisturbed and denoted by subscript oo

1%
My = —=
oo



Physical Consequences of Speed of Sound

» Sound waves is the way gas molecules convey information
about what is happening in the flow

» |In subsonic flow, sound waves are able to travel upstream,
sincev < a

» In supersonic flow, sound waves are unable to travel
upstream, since v > a




Physical Consequences of Speed of Sound

compression shock

:% P

oblique
normal oblique shock
shock shock
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Chapter 3.4
Some Conveniently Defined
Flow Parameters



Stagnation Flow Properties

Assumption: Steady inviscid flow
If the flow is slowed down isentropically (without flow losses) to
zero velocity we get the so-called total conditions

(total pressure p,, total temperature T,, total density po)

Since the process is isentropic, we have (for calorically perfect

gas)
5-()-(7)”
P P T

Note that vo = 0 and M, = 0 by definition



Critical Conditions

If we accelerate the flow adiabatically to the sonic point, where
v = a, we obtain the so-called critical conditions, e.g. p*, T*, p*,
a*

where, by definition, v* = a*

As for the total conditions, if the process is also reversible (entropy
is preserved) we obtain the relations (for calorically perfect gas)

25 -(5)”
p \p) \T



Total and Ciritical Conditions

For any given steady-state flow and location, we may think of an
imaginary isentropic stagnation process or an imaginary
isentropic sonic flow process
» We can compute total and critical conditions at any point
» They represent conditions realizable under an isentropic
deceleration or acceleration of the flow
» Some variables like p, and T, will be conserved along
streamlines if the flow is isentropic, but p, is not conserved if

entropy changes along the streamlines (due to viscous
losses or shocks)



Total and Ciritical Conditions

Note: The actual flow does not have to be adiabatic or isentropic
from point to point, the total and critical conditions are results of
an imaginary isentropic/adiabatic process at one point in the flow.

If the flow is not isentropic:

TOA 75 7-087 IOOA #IOOB7

However, with isentropic flow T,, po, po, €iC are constants
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Chapter 3.5
Alternative Forms of the
Energy Equation



Alternative Forms of the Energy Equation

For steady-state adiabatic flow, we have already shown that
conservation of energy gives that total enthalpy, hy, is constant
along streamlines

For a calorically perfect gas we have h = C, T which implies

1
CpT + §V2 = CDTO

To v2
A T
T =TT
R
Inserting Cp, = % and a* = yRT we get

_ 1 2
?—14—2(7 1)M



Alternative Forms of the Energy Equation

For calorically perfect gas (1D/2D/3D flows):

To 1 ,
T oM (a*>2_r*_ 2
1 ao _To_’y—i-l
po _ (To) "™
pooNT p* ( 2 )
P (To>m o AT
pNT p* < 2 >w71
po  \7+

Note: tabulated values for these relations can be found in Appendix A.1




Alternative Forms of the Energy Equation

v
* —
M :ai*

For a calorically perfect gas (1D/2D/3D flows)

, 2
(v +1)/M**] = (y = 1)

This relation between M and M* gives:

M =0=M=0

* _ 1
M =1eM=1 M*%,/’Y—Jr when M — oo
M* <1eM<1 v-1

M>1eM>1
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Chapter 3.6
Normal Shock Relations



One-Dimensional Flow Equations

p1ur = paUs

p1UT + P1 = paUis + P2

1 . 1 .
h1+§Uf:h2+§U§




Normal Shock Relations

Calorically perfect gas

h=C,T, p=pRT

with constant C,

Assuming that state 1 is known and state 2 is unknown

5 unknown variables: ps, Us, P2, ha, T2
5 equations

= solution can be found (see pages 88-90 for derivation)



Normal Shock Relations

Normal shock relations for calorically perfect gas:

1
T01 - TOQ 9 1 + 5(7 - ]‘)M%
M2 — Z(y—1
o, = 8o, TV 2('}’ )

2
P21y 22y
al=a,=a" p1 7+1

pr _ U1 _ (v +DME

9 — e S A
Uty =a* pr U 24 (y— 1M}
(the Prandtl relation)

T2 _P2p1

Y Ti pip2

Q_MT

see table A.2 and figure 3.10 on p. 94



Normal Shock Relations

Normal shock = M; > 1

Mi>1=M;>1

1
My =— =M, <1
2 MT 2
M; <1=M;<1

After a normal shock the Mach number must be lower than 1.0



Normal Shock Relations

1
1+ 5(7 — 1)M?

1
WE = (= 1)
2

M3 =

M1 =1.0 :>M2 =1.0
My >1.0= My <1.0
My = o0 = My — (’7—1)/(2’7):{’)/:1.4}:0.378



Normal Shock Relations

Are the normal shock relations valid for My < 1.07

Mathematically - yes!

Physically - ?



Normal Shock Relations

Let’s have a look at the 2@ law of thermodynamics

T2 P2
—s1=C,1In-—= —RInZ2
So — 84 Cp n 7_1 R o
We get the ratios (T2/T1) and (p2/p1) from the normal shock
relations

-1 208-0) (153

2y 2
—RIn(1+ = (M?—-1
n< +7+1( ! )>

M; =1 = As = 0 (Mach wave)
M; < 1 = As < 0 (not physical)
My >1=As>0



Normal Shock Relations

My > 1.0 gives My < 1.0, p2 > p1,p2 >p1,and Ty > T
What about T, and po?

Energy equation:

2 2
u u
%n+§=%5+§

Cp T01 — Cp T02

calorically perfect gas =

T01 == T02



Normal Shock Relations

279 Jaw of thermodynamics and isentropic deceleration to zero
velocity (As unchanged since isentropic) gives

To Po Po
So—81=Coln—=2—-RIn—=2={T,, =T,,} = —RIln—=
g ! P To, Po, o, o} Po,

Pos _ o=(s2-s1)/R
pol

i.e. the total pressure decreases over a normal shock



Normal Shock Relations

As the flow passes a stationary normal shock, the following
changes will take place discontinuously across the shock:

increases

increases

decreases

decreases (fromM > 1toM < 1)
increases

decreases (due to shock loss)
increases (due to shock loss)
unaffected



Normal Shock Relations

The normal shock relations for calorically perfect gases are valid
for M; < 5 (approximately) for air at standard conditions

Calorically perfect gas = Shock depends on M; only

Thermally perfect gas = Shock depends on M; and T,

General real gas (non-perfect) = Shock depends on My,p1,
and Ty



Chapter 3.7
Hugoniot Equation



Hugoniot Equation

Starting point: governing equations for normal shocks
piUy = pa2Uz
2 2
p]Ul er] — p2U2 +,02
1 1
hy + §U% =hy + §U%

Eliminate u; and u, gives:

p2—p1 (1 1
hy —hy = S
o 2 <01+P2>



Hugoniot Equation

Now, insert h = e + p/p gives

€2 — €1 =

P2 + P1 <1 B 1> _P2tp1

V1 — 9
2 p1 o p2 2 ( )

which is the Hugoniot relation



Stationary Normal Shock in One-Dimensional Flow

Normal shock:

_P2tp1

ey — €1 = 5

(v2 —11)

More effective than
isentropic process

Gives entropy increase

Isentropic process:

de = —pdv

More efficient than normal
shock process

see figure 3.11 p. 100






Chapter 3
One-Dimensional Flow



expansion

OVG er eW ieey governing
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2D Flow
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addition Quasi

1D Flow

Conservation

normal
shocks EWS]

integral form

isentropic
flow
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energy
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oW continuity
regimes S




Addressed Learning Outcomes

4 Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

5 Explain how thermodynamic relations enter into the flow
equations

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

¢ 1D flow with heat addition*
d 1D flow with friction*

inviscid flow with friction?!
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Chapter 3.8
One-Dimensional Flow with
Heat Addition



One-Dimensional Flow with Heat Addition

+Q
—> I'"""“““""“': —>
E @ : control volume €2 : @ E
—> L oo o o e e e e e e = — 1 —>
o
—
Pipe flow:
no friction

1D steady-state = all variables depend on x only

q is the amount of heat per unit mass added between 1 and
2

analyze by setting up a control volume between station 1
and 2



One-Dimensional Flow with Heat Addition

p1Ur = palsa

p1U; + P1 = pal3 + P2

1 1
h1+§U%+q:h2+§U%

A J

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = analytical solution exists



One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = CpT):

1 1
CoT1 + iuf +q=Cpla+ iug

1 1
q= (CpTg + 2u§> - (CpT1 + 2u%>
1 2
q= CD(TO2 - TO1)

i.e. heat addition increases T, downstream



One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

T [L+9M3]% (Mo
T _1—}—’}//\4%_ My

p2 [1+M3] <Ml>2
pr 1+ M7 ] \ My
P2 1+ M3
p1 1+~M3




One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

0
o [t (14l

Po, L1+ M) \ 1+ 5(y— M3

.
N [1+7M%} </\42>2 1+ 3¢y —1M3\ T
To, [1+yM2] \M 1+ iy — M2




One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)
the Mach number, M, increases as more heat (per unit mass)
is added to the gas
for some limiting heat addition g*, the flow will eventually
become sonic M =1

Initially supersonic flow (M > 1)
the Mach number, M, decreases as more heat (per unit mass)
is added to the gas
for some limiting heat addition g*, the flow will eventually
become sonic M =1

Note: The (*) condition in this context is not the same as the "critical” condition discussed for isentropic flow!!!



One-Dimensional Flow with Heat Addition

T _[ 1 Vg Po [ 147 ](2+(—DM>\7T
T [1+M?] o5 | 1+~M2 (v+1)

p o [1+M?] ( 1 ) To _ (v+1M? 2

= — 2= 2 — 1M

pr | 14y | \M? Ta (1+7M2)2( =DM

P 149

see Table A.3



One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

T*

o]



One-Dimensional Flow with Heat Addition

My
P1
Ty
P1

My
P1
T1
P1

M
P2
Ta
P2

a1

Mz
P2
T2
p2

*
" \

identical values!

M* /
/3*
T

For a given flow, the starred quantities are constant values



One-Dimensional Flow with Heat Addition

Rayleigh curve

Note: it is theoretically possible to
heat an initially subsonic flow to reach
sonic conditions and then continue to
accelerate the flow by cooling

sonic point (M = 1)

Lord Rayleigh 1842-1919

~
Nobel prize in physics 1904 1

see Figure 3.13



M < 1: Adding heat will

increase M
decrease p
increase T,
decrease po
increase s
increase u
decrease p

Flow loss - not isentropic process

One-Dimensional Flow with Heat Addition

M > 1: Adding heat will

decrease M
increase p
increase T,
decrease po
increase s
decrease u
increase p



One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (9) and heat per unit
surface area and unit time (Gya)

Pipe with arbitrary cross section (constant in x):
mass flow through pipe m Lbg
axial length of pipe L q= mwa//
circumference of pipe b = 2ar




One-Dimensional Flow with Heat Addition - RM12
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Chapter 3.9
One-Dimensional Flow with
Friction



One-Dimensional Flow with Friction

Thermally insulated walls

Pipe flow:
adiabatic (g = 0)
cross section area A is constant

average all variables in each cross-section = only
X-dependence

analyze by setting up a control volume between station 1
and 2



One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

@mw:mw
2Q

where L is the tube length and b is the circumference



One-Dimensional Flow with Friction

piuy = pauz

. _Lb
Pluf +P1 — Tw g = P2U% + P2

1. 1
h1—|—§uf:h2—|—§u%




One-Dimensional Flow with Friction

If the tube has a round cross-section with diameter D:

For small L = Ax, the momentum equation becomes

4
—AX = p2u§ + P2

p1Ui +p1 — ?WD

Now, let Ax — 0 =

[\

d .
&(ﬂuz +D) = —=5Tw



One-Dimensional Flow with Friction
Form mass conservation we get

d
Uy = polly = —(pu) =0
p1Ur = paUz dx(p )
Writing out all terms in the momentum equation gives

g(u2+ ) = ud—u+ud( )+d—p 2
ax PR = U P e = T
~—

=0

and thus
Jdu o 4
PPax Tax ~ D
Common approximation for 7, :

u do 2
f = y—+ 2 __Z
%A pu pud dx Dpu !



One-Dimensional Flow with Friction

Energy conservation:

hol = ho2 = ho — 0

dx



One-Dimensional Flow with Friction

Summary: , .
d
&(PU) =0
au dp 2
pud7 + ax —Dpu f
d
&ho =0

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = analytical solution exists (for constant f)



One-Dimensional Flow with Friction

Calorically perfect gas:

/X2 Af 1 y+1 M?
X

Ma



One-Dimensional Flow with Friction

Calorically perfect gas:

T2
T1

P2
P1

P2
P1

Po.

p01 B

1/2

—-1/2

v+l
2(v—1)



One-Dimensional Flow with Friction

Initially subsonic flow (M < 1)

M. will increase as L increases
for a critical length L*, the flow at point 2 will reach sonic
conditions, i.e. My =1

Initially supersonic flow (M1 > 1)

M, will decrease as L increases
for a critical length L*, the flow at point 2 will reach sonic
conditions, i.e. My =1

Note: The (*) condition in this context is not the same as the "critical” condition discussed for isentropic flow!!!



One-Dimensional Flow with Friction

T (v+1)
T 24 (y—1)M?

p_1[ a1 ]
p* M |24 (v — 1)M? |

p 124 (y -1 M2
p* M| v+1

po 1 [2+( 1)M2r<v 0
o5 M v+1

see Table A.4



One-Dimensional Flow with Friction

and

1

L* 2
4f 1 1
[ |l [
2 M

where L* is the tube length needed to change current state to
sonic conditions

Let f be the average friction coefficient over the length L* =

AfFL* 1-M? 441 (v + 1)M?
B + In
D ~M? 2 24+ (y — 1)M?

Turbulent pipe flow — 7 ~ 0.005 (Re > 107, roughness ~ 0.001D)




One-Dimensional Flow with Friction

Fanno curve

M <1

sonic point (M = 1)

see Figure 3.15



One-Dimensional Flow with Friction

M < 1: Friction will

increase M
decrease p
decrease T
decrease po
increase s
increase u
decrease p

Flow loss - non-isentropic flow

M > 1: Friction will

decrease M
increase p
increase T
decrease po
increase s
decrease u
increase p



One-Dimensional Flow with Friction - Pipeline
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Chapter 4
Obligue Shocks and
Expansion Waves



Overview

expansion
shock fans
reflection
shock
expansion

A=) governing

oblique equations

shocks
2D Flow
friction

heat A
addition Quasi

1D Flow
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normal
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flow




Addressed Learning Outcomes

4 Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

b normal shocks*
e oblique shocks in 2D*
f shock reflection at solid walls*
g contact discontinuities
I detached blunt body shocks, nozzle flows

why do we get normal shocks in some cases and oblique
shocks in other?



Roadmap - Oblique Shocks and Expansion Waves
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Detached shocks
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Solid boundary reflection

[}
Oblique shock relations 4—[ The 8 — 8 — M relation ]
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Obligue Shocks and Expansion Waves




Obligue Shocks and Expansion Waves




Mach Waves
A Mach wave is an infinitely weak oblique shock

subsonic supersonic
V<a




Obligue Shocks and Expansion Waves

\

compression corner expansion corner

Supersonic two-dimensional steady-state inviscid flow
(no wall friction)

In real flow, viscosity is non-zero = boundary layers

For high-Reynolds-number flows, boundary layers are thin =
inviscid theory still relevant!



Oblique Shocks

Two-dimensional steady-state flow

y Stationary shock

Flow condition

Flow condition




Oblique Shocks

Stationary oblique shock
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Oblique shocks ]—>O<—[ Expansion waves ’
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Chapter 4.3
Obligue Shock Relations



Obligue Shock Relations

Two-dimensional steady-state flow
Control volume aligned with flow stream lines



Obligue Shock Relations

wy ~ o
// Al
Velocity notations:
u .
Mp, = =L =M sin(3) M
a
u .
My, = —2 = My sin(3 — 6) My =

as



Obligue Shock Relations

Conservation of mass:
%jffpd”ﬁ—l—@pv-ndSZO
Q 00

Mass conservation for control volume €2:

0— plulA + PQUQA =0=

p1Ur = palsz



Obligue Shock Relations

Conservation of momentum:

% {[[ evar + {J lo(v - n)v + pu] aS = [[[ pfct¥
& Q

o

Momentum in shock-normal direction:

0 — (Ui +P1)A + (p2u3 + p2)A = 0 =

[ p1UT + P1 = pal3 + P2 ]




Obligue Shock Relations

Momentum in shock-tangential direction:

0— p1U1W1A + PQUQWQA =0=



Obligue Shock Relations

Conservation of energy:
S [ ooy + ff lphov -ulds = [[] - var
¢ o Q

Energy equation applied to the control volume €:

1 1
0 — prusfhy + i(uf + WA + pauslha + i(ug +WHA=0=

1 1




Obligue Shock Relations

We can use the equations as for normal shocks if we replace My
with M, and Ma with M,

o _ Ma +12/(v - 1)
" [2y/(y - DIME -1

Ratios such as pa/p1, p2/p1, and T, /T1 can be calculated using
the relations for normal shocks with M; replaced by Mp,

OBS! Do not not use ratios involving total quantities, e.g. po, /Po; ,
To,/To,, Obtained from formulas or tables for normal shock



Roadmap - Oblique Shocks and Expansion Waves

[ Shock-expansion theory ]

Oblique shocks ]—>O<—[ Expansion waves ’

f -

Mach reflection [ Prandtl-Meyer expansion ]

)
Shock intersection ]

*

Detached shocks

)
Shock systems 4—( Pressure-deflection diagram J

t

Solid boundary reflection

)
Oblique shock relations 4—[ The 0 — 8 — M relation ’

e N ek N cn N G




The 6-5-M Relation

[t can be shown that

22
tan@chotB( Misin"f — 1 >

M2(~ + cos 283) + 2

which is the 8-3-M relation

Does this give a complete specification of flow state 2 as function
of flow state 17
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The 6-5-M Relation

tan 6 = 2cot/ﬁ<

Mf sin2 8 —1
Mf(’Y + cos2B8) + 2

Example: Wedge flow

Two solution case:
Weak solution:
smaller 5, My > 1 (except in some cases)
Strong solution:
larger 5, My < 1

Note: In Chapter 3 we learned that the mach number always reduces to subsonic values behind a shock. This is true
for normal shocks (shocks that are normal to the flow direction). It is also true for oblique shocks if looking in the
shock-normal direction.



The 6-5-M Relation

tanf = 2cotf | (¥
M3 (~y + cos 28) + 2

Mfsinzﬁfl >

No solution case: Detached curved shock




The 6-5-M Relation - Skock Strength

There is a small region where we may find weak shock
solutions for which My < 1

In most cases weak shock solutions have My > 1
Strong shock solutions always have My < 1

In practical situations, weak shock solutions are most
common

Strong shock solution may appear in special situations due
to high back pressure, which forces My < 1



The 6-5-M Relation - Wedge Flow

Summary for wedge flow:

1. 0-5-M relation = 3 for given My and ¢

2. B gives My, according to: My, = M sin(3)

3. normal shock formula with M, instead of M; =
M, (instead of Ms)

4. My given by My = M, / sin(5 — 0)

5. normal shock formula with M, instead of M; =
p2/p1, P2/P1, etc

6. upstream conditions + p2/p1, P2/p1, etc =
downstream conditions



Chapter 4.4
Supersonic Flow over
Wedges and Cones



Supersonic Flow over Wedges and Cones

What about cone flows?

M>1
_—

Similar to wedge flow, we do get a constant-strength shock
wave, attached at the cone tip (or else a detached curved
shock)

The attached shock is also cone-shaped



Supersonic Flow over Wedges and Cones

What about cone flows?

M>1
_—

» The flow condition immediately downstream of the shock is
uniform

» However, downstream of the shock the streamlines are
curved and the flow varies in a more complex manner (3D
relieving effect - as R increases there is more and more
space around cone for the flow)

» [ for cone shock is always smaller than that for wedge
shock, if M is the same
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Chapter 4.6
Regular Reflection from a
Solid Boundary



Shock Reflection

Regular reflection of oblique shock at solid wall

(see example 4.10)

My >1

L=

X

Assumptions:
steady-state inviscid flow
weak shocks



Shock Reflection

first shock:
upstream condition:
My > 1, flow in x-direction
downstream condition:

weak shock = My > 1
deflection angle 6
shock angle /31

second shock:
upstream condition:
same as downstream condition of first shock
downstream condition:

weak shock = M3z > 1
deflection angle 6
shock angle B2



Shock Reflection

Solution:
first shock:

» (31 calculated from 6-5-M relation for specified 6 and M,
(weak solution)

» flow condition 2 according to formulas for normal shocks
(Mn, = My sin(B1) and M, = My sin(5; — 6))

second shock:

» [ calculated from 8-5-M relation for specified 6 and My
(weak solution)

» flow condition 3 according to formulas for normal shocks
(Mn2 = MQ Sin(ﬂg) and Mn3 = M3 sin(,BQ — 9))

= complete description of flow and shock waves
(angle between upper wall and second shock: ® = 35 — 6)
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Chapter 4.7
Comments on Flow Through
Multiple Shock Systems



Flow Through Multiple Shock Systems

Single-shock compression versus multiple-shock compression:

My, s3

My, s1




Flow Through Multiple Shock Systems

We may find 6, and 6, (for same M) which gives the same final
Mach number

In such cases, the multiple shock flow has smaller losses

Explanation: entropy generation at a shock is a very non-linear
function of shock strength



Roadmap - Oblique Shocks and Expansion Waves

[ Shock-expansion theory ]

Oblique shocks ]—>O<—[ Expansion waves ’

f -

Mach reflection [ Prandtl-Meyer expansion ]

)
Shock intersection ]

*

Detached shocks

)
Shock systems 4—( Pressure-deflection diagram J

t

Solid bouw reflection

*

Oblique w relations 4—[ The 0 — w relation ’

e N ek N cn N G




Chapter 4.8
Pressure Deflection
Diagrams



Pressure Deflection Diagrams

normal shock p2

solution strong shock

solution

= relation between p-

and 0 infinitely weak
shock solution ————

weak shock
solution

0




Pressure Deflection Diagrams - Shock Reflection




Pressure Deflection Diagrams - Shock Intersection

-~ .
slip line

A slip line is a contact discontinuity
discontinuity in p, T, s, v, and M
continuous in p and flow angle



Pressure Deflection Diagrams - Shock Intersection
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Chapter 4.12
Detached Shock Wave in
Front of a Blunt Body



Detached Shocks

CQL/
l‘\

strong shock between ¢y \

and co, weak shock out-

side

C

M<1




Detached Shocks

As we move along the detached shock form the centerline,
the shock will change in nature as
» right in front of the body we will have a normal shock
» strong oblique shock
» weak oblique shock
» far away from the body it will approach a Mach wave, .e. an
infinitely weak oblique shock



Detached Shocks







Chapter 4
Obligue Shocks and
Expansion Waves



Overview

expansion
shock fans
reflection
shock
expansion

A=) governing

oblique equations

shocks
2D Flow
friction

heat A
addition Quasi

1D Flow

1D Flow Conservation
shocks |aWS
integral form

normal

isentropic
flow




Addressed Learning Outcomes

7 Explain why entropy is important for flow discontinuities
8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

e oblique shocks in 2D*
f shock reflection at solid walls*
g contact discontinuities
h Prandtl-Meyer expansion fans in 2D
I detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned
phenomena (8a-8k)

what is the opposite of a shock?
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Chapter 4.10
Intersection of Shocks of the
Same Family



Mach Waves

Oblique shock, angle S, flow deflection #:

, _ M2/ 1))
" " 2 /(y — DIME, 1

where

Mp, = My sin(p)

and

Mp, = My sin( — 0)

Now, let M, — 1 and M, — 1 = infinitely weak shock!

Such very weak shocks are called Mach waves



Mach Waves

Mp, =1 = M;sin(f) =1 = = arcsin(1/M)

Mach wave

My ~ My

0~0

p = arcsin(1/My)




Mach Waves

Oblique shock (weak)

Mach wave




Mach Waves

v

Mach wave at A: sin(uq) = 1/M;

v

Mach wave at C: sin(uz) = 1/Mo

v

Oblique shock at B: M, = M sin(8) = sin(8) = My, /My
» Existence of shock requires M, > 1= 5> 1y
» Mach wave intercepts shock!

v

Also, My, = Masin(p — 6) = sin(5 — 0) = My, /M,
» For finite shock strength M, < 1= (5 —0) < p2
» Again, Mach wave intercepts shock



Shock Intersection - Same Family

shock @
% slip line

reflected shock
R (or expansion fan)




Shock Intersection - Same Family

Case 1: Streamline going through regions 1, 2, 3, and 4
(through two oblique (weak) shocks)

Case 2: Streamline going through regions 1 and 5
(through one oblique (weak) shock)

Problem: Find conditions 4 and 5 such that

a. Pg =Ps
b. flow angle in 4 equals flow angle in 5

Solution may give either reflected shock or expansion fan,
depending on actual conditions

A slip line usually appears, across which there is a
discontinuity in all variables except p and flow angle
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Chapter 4.11
Mach Reflection



Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks
are aweaka (see #-[3-M relation)

My >1




Mach Reflection

normal shock

/

slip line

reflected oblique shock
incident oblique shock

|— —

X

Mach reflection:
» appears when regular reflection is not possible
» more complex flow than for a regular reflection
» no analytic solution - numerical solution necessary
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Chapter 4.14
Prandtl-Meyer Expansion
Waves



Prandtl-Meyer Expansion Waves

An expansion fan is a centered simple wave (also called
Prandl-Meyer expansion)

expansion fan (Mach waves)

My > My (the flow accelerates through the expansion fan)
P2 < p1, p2 < p1, T2 < Ty



Prandtl-Meyer Expansion Waves

Continuous expansion region
Infinite number of weak Mach waves

Streamlines through the expansion wave are smooth curved
lines

ds = 0 for each Mach wave =- the expansion process is
ISENTROPIC!



Prandtl-Meyer Expansion Waves

upstream of expansion My > 1, sin(u1) = 1/M;
flow accelerates as it curves through the expansion fan
downstream of expansion My > My, sin(uz) = 1/Ms

flow is isentropic = s, pPo, 1o, po, Qo, -.. are constant along
streamlines

flow deflection: 6



Prandtl-Meyer Expansion Waves

It can be shown that df = /M? — 1%, where v = |v]|
(valid for all gases)

Integration gives

(22 Mo
ao = M2 — 1%
01 My

a
the term 7\/ needs to be expressed in terms of Mach number

v=Ma=Inv=InM+1lna =

@ _aM  da
v M a



Prandtl-Meyer Expansion Waves

Calorically perfect gas and adiabatic flow gives

or



Prandtl-Meyer Expansion Waves

Differentiation gives:

da = a, [1 + %('y - 1)/\//2} o <;> (v — 1)MaM

or

da = [1 4 %(7 - 1)/\42} - (-i) (v — 1)MaM

which gives

av dM da  dM —i(y—1)MdM 1 dM

VoM e T M iV 1l OME M




Prandtl-Meyer Expansion Waves

Thus,

b2 Mz M2—1 dMm
do =0y — 6, = —— = v(Ms) —v(M
J, 9= 0= ] e M )

where

W) VME=1  dM
1% f— JE—
1+ 1y 1M M

is the so-called Prandtl-Meyer function



Prandtl-Meyer Expansion Waves

Performing the integration gives:

,/Lﬁthl ﬁ(/\ﬂz—l)—tanflx//\ﬂz—l
- Y

We can now calculate the deflection angle A6 as:

Af = I/(Mg) - Z/(Ml)

v (M) is tabulated in Table A.5 for a range of Mach numbers (v = 1.4)



Prandtl-Meyer Expansion Waves

Example:

expansion fan (Mach waves)

My

/\M

0, =0, My > 1is given

0y is given

problem: find My such that 03 = v(Ms) — v(M;)
v(M) for v = 1.4 can be found in Table A.5



Prandtl-Meyer Expansion Waves

Since flow is isentropic, the usual isentropic relations apply:
(oo and T, are constant)

Calorically perfect gas:

Po [ 1 2-"_1
— =14+ =(y=—1)M
B _+2(’v ) |
TO I 1 2_
L1+ (y=1)M
- _+2(v ) |




Prandtl-Meyer Expansion Waves

Since Po, = Po, and To, = To,

P1 _ PorP1 _ <
P2 p01p2
L _ToTh _ (
To To, T2

Po,
P2

To,
Ty

)/
)/

Poy
P1

To,
T

)_
>_




Prandtl-Meyer Expansion Waves

Alternative solution:
determine My from 0y = v(Ms) — v(M;)
compute po, and T,, from py, T1, and M; (or use Table A.1)
set Po, = Po, and To, = To,
compute py and Ty from po,, To,, and My (or use Table A.1)
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Chapter 4.15
Shock Expansion Theory



Diamond-Wedge Airfoil

expansion fan
oblique shock oblique shock

symmetric airfoil
(both in x- and
y-planes



Diamond-Wedge Airfoil

1-2 standard oblique shock calculation for flow deflection angle ¢
and upstream Mach number My

2-3 Prandtl-Meyer expansion for flow deflection angle 2¢ and
upstream Mach number M,

3-4 standard oblique shock calculation for flow deflection angle
and upstream Mach number M3



Diamond-Wedge Airfoil

symmetric airfoil
zero incidence flow (freestream aligned with flow axis)

gives:

symmetric flow field
zero lift force on airfoil



Diamond-Wedge Airfoil

Drag force:

D=-{fp(n-e)as
0N

0f) airfoil surface

p surface pressure

n  outward facing unit normal vector
e, unit vector in x-direction




Diamond-Wedge Airfoil

Since conditions 2 and 3 are constant in their respective regions,
we obtain:
. . t
D = 2 [psL sin(e) — psLsin(e)] = 2(p2 — p3)§ = (p2 — p3)t

For supersonic free stream (M, > 1), with shocks and expansion
fans according to figure we will always find that ps > p3

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)



Flat-Plate Airfoil

expansion fan

oblique shock

My > 1
—_—

slip line

incidencex  ~ \ @ T~ ——""_""1___

oblique shock

expansion fan



Flat-Plate Airfoil

v

Flow states 4 and 5 must satisfy:

> P4 =Ps
» flow direction 4 equals flow direction 5 (®)

v

Shock between 2 and 4 as well as expansion fan between 3
and 5 will unjust themselves to comply with the requirements

v

For calculation of lift and drag only states 2 and 3 are needed

v

States 2 and 3 can be obtained using standard oblique
shock formulas and Prandtl-Meyer expansion



Obligue Shocks and Expansion Waves

\

compression corner expansion corner

M decrease M increase
||v|| decrease ||v|| increase
p increase p decrease
p increase p decrease

T increase T decrease



Obligue Shocks and Expansion Waves
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Chapter 5
Quasi-One-Dimensional
Flow



Overview

expansion
shock fans
reflection
shock
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1D Flow
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

6 Define the special cases of calorically perfect gas, thermally
perfect gas and real gas and explain the implication of each
of these special cases

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*
I detached blunt body shocks, nozzle flows

what does quasi-1D mean? either the flow is 1D or not, or?
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Quasi-One-Dimensional Flow

Chapter 3 - One-dimensional steady-state flow
overall assumption:
one-dimensional flow
constant cross section area
applications:
normal shock
one-dimensional flow with heat addition
one-dimensional flow with friction

Chapter 4 - Two-dimensional steady-state flow
overall assumption:
two-dimensional flow
uniform supersonic freestream
applications:
oblique shock
expansion fan
shock-expansion theory



Quasi-One-Dimensional Flow

Extension of one-dimensional flow to allow variations in
streamtube area

Steady-state flow assumption still applied

e

streamtube area A(x)




Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

S

cross-section area A(x)




Quasi-One-Dimensional Flow - Nozzle Flow




Quasi-One-Dimensional Flow - Stirling Engine

.
feed tube -2
«
manifold o, S
regenerator S

! Stiry;
g y

feed tube gas cooler e,

SR
. S
compression pas*%g%”gf SR
i R

&
S
! ey o

iz,
e

ey,

-

expansion cylinder

g,
m&%
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Chapter 5.2
Governing Equations



Governing Equations

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

A :A(X>7 p=pX), u= U(X)7 P :p(X)7

" Q  control volume

N Sy left boundary (area Aq)
S, right boundary (area As)
I'  perimeter boundary

0N =S, UI'USy



Governing Equations - Mass Conservation

steady-state
no flow through I"

%jf pdV + @pv~nd8 =0
Q o0

=0 —p1U1A1+p2u2As

[P1U1A1 = P2U2A2]




Governing Equations - Momentum Conservation

steady-state
no flow through I

% Hf pvav + @ [p(v-n)v+pn]dS =0
= 09

~—_——
=0
S@SP(V -n)vaS = —p1UiAL + paUisAs
o9
Ao
ﬁpno’s = —P1A1 + P2A2 — pPdA
0 A1

Ao

[(plu% +p1)A1L + . PAA = (pau3 + P2)As
1




Governing Equations - Energy Conservation

steady-state
no flow through I"

% JIJ’ peod” + ﬁ [pho(v - m)]dS =0
Q2 2Q

———
=0

which gives

p1U1A1ho, = pat2Asho,

from continuity we have that p1u1A1 = patsAs =



Governing Equations - Summary

p1UIAL = paU2A2

Az

(prUi + p1)AL + . PdA = (paU3 + P2)As
J AL

hOl = h02




Governing Equations - Differential Form

Continuity equation:

P1UIAL = paUaAsz

or
PUA =C

where ¢ is a constant =

d(puA) =0



Governing Equations - Differential Form

Momentum equation:
Aa

(p1u? + p1)A; +/ PdA = (paU3 + p2)Ag =
Aq

d [(pu* + p)A] = pdA =
d(pu?A) + d(pA) = pdA =

ud(puA) +puAdu + Adp + pdA = pdA =
=0

pUACU + Adp =0 =

dp — —pUdU Euler’s equation



Governing Equations - Differential Form

Energy equation:

hol — h02 =
dho — ()

1 .
hO:h+§u2:

dh+udu=20



Governing Equations - Differential Form

Summary (valid for all gases):

4 N\

d(puA) =0
dp = —pudu

dh+udu =0

(. J

Assumptions:
quasi-one-dimensional flow
inviscid flow
steady-state flow
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Chapter 5.3
Area-Velocity Relation



Area-Velocity Relation

d(puA) = 0 = uAdp + pAdu + pudA =0

divide by puA gives

dp du dA
o utal
Euler’s equation:
dp = —pudu = dp = d_p@ = —udu
p dpp

Assuming adiabatic, reversible (isentropic) process and the
definition of speed of sound gives

do _ <8p> :azﬁaz%:—udu:>@:—l\42d—u
dp op ) s p p u



Area-Velocity Relation

Now, inserting the expression for 2P in the rewritten continuity
p

equation gives

du dA
— 27 —_—
(1 M)U+A 0
or
dA 9 au
A~ M=

which is the area-velocity relation



Area-Velocity Relation

decreasing A correlated with increasing u
increasing A correlated with increasing u
dA=0

M< 1 —_— — M>1 only possibility to obtain

M=1 I
converging-diverging nozzle
supersonic flow!

accelerating flow T accelerating flow

throat



Area-Velocity Relation

Alternative:

Slowing down from supersonic to subsonic flow
(supersonic diffuser)

M=1 -
in practice:
M>1 — i — M1 difficult to obtain completely
shock-free flow in this case

decelerating flow T decelerating flow

throat



Area-Velocity Relation

M—>0:>%:—d—u

A u

%+d£_0:>
A u

1
A [UJA + Adu] = 0 =

dUuA)=0=Au=c

where ¢ is a constant



Area-Velocity Relation

The area-velocity relation is only valid for isentropic flow

not valid across a compression shock
(due to entropy increase)

The area-velocity relation is valid for all gases



Area-Velocity Relation Examples - Rocket Engine

combustion —

chamber M>1 — high-velocity gas
M<1

S
&; e
*}
o

High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical
figures for a LH2/LOx rocket engine: po ~ 120 [bar], To ~ 3600 [K], exit velocity ~ 4000 [m/s]



Area-Velocity Relation Examples - Wind Tunnel

nozzle test section diffuser
—_—>
W
EE——
M<1 i M > 1 e
_— M>1 M=1 M<1
—_—

accelerating flow constant velocity decelerating flow
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Chapter 5.4
Nozzles



Nozzle Flow - Relations

Calorically perfect gas assumed:

From Chapter 3:




Nozzle Flow - Relations

Critical conditions:

To
T*




Nozzle Flow - Relations




Nozzle Flow - Relations

For nozzle flow we have
PUA =C
where ¢ is a constant and therefore
P UTAT = puA

or, since at critical conditions v* = a*

prarA* = puA
which gives
A_pa _ppd
A  puU  pop U



Nozzle Flow - Relations

A _ PP

A* pop U




Nozzle Flow - Relations

* _2_
8 Sy +1)]7 M2

M*2 _ 2 %(ry + 1)
1+ (v — M2

(3 - et

which is the area-Mach-number relation



Area-Mach-Number Relation

~ ‘ 1
2 1/, 27 5—1
(A [T+ 3¢y =1)M?]7
A* B 1 % 2
[z(y+ D] M
Area-Mach-Number Relation
supersonic
s 10°
[
o
5
c
8
=
subsonic
-1 L L L
10 0 2 4 6

Area ratio, A/A™



Area-Mach-Number Relation

Note 1:

Note 2:

Note 3:

Critical conditions used here are those corresponding to
isentropic flow. Do not confuse these with the conditions
in the cases of one-dimensional flow with heat addition
and friction

For quasi-one-dimensional flow, assuming inviscid
steady-state flow, both total and critical conditions are
constant along streamlines unless shocks are present
(then the flow is no longer isentropic)

The derived area-Mach-number relation is only valid for
calorically perfect gas and for isentropic flow. It is not
valid across a compression shock
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Addressed Learning Outcomes

4

12

Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on
Explain why entropy is important for flow discontinuities
Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*

b normal shocks*

I detached blunt body shocks, nozzle flows

Explain the main principles behind a modern Finite Volume
CFD code and such concepts as explicit/implicit time
stepping, CFL number, conservation, handling of
compression shocks, and boundary conditions

time for rocket science!



Nozzle Flow

Assumptions:
inviscid
steady-state
quasi-one-dimensional
calorically perfect gas




Nozzle Flow

Alt. 1: sub-critical (hon-choked) nozzle flow

M < 1 at nozzle throat

* - -

Af > A ‘ Area: Maoh Number‘Re\ann
Ml <1 supersonic
My <1

s 10°

99

o

[S

>

(=

<

[$]

(0]

=

subsonic
10’1 L L

Area ratio, A/A™



Nozzle Flow

Alt. 2: critical (choked) nozzle flow

M =1 at nozzle throat

Area-Mach-Number Relation

throat

2

supersonic

we assume that there are no
shocks between x; and xo

subsonic

A =A"
My <1
My > 1
s 10°
E
g
10"0

Area ratio, A/A™



Nozzle Flow

Choked nozzle flow (no shocks):

» A*is constant throughout the nozzle
> At =A*

M given by the subsonic solution of

() - (5) - [0 30-e)

M given by the supersonic solution of

() = () - gl so- ]

M is uniquely determined everywhere in the nozzle, with subsonic flow upstream of throat and supersonic flow
downstream of throat

Q‘Q
==

2
-



Nozzle Mass Flow

For a choked nozzle:

m = p1U1A1 = p*U*A* = p2U2A2
_1
x p* o < 2 )ﬁ/l Po
T \5F1) R

1
ar 2 2
Ao ? (7+1> e

VL VR\y+1




Nozzle Mass Flow

1

rh_pOAt ’Y( 2 >Wl
VT, VR\y+1

The maximum mass flow that can be sustained through the
nozzle

2

Valid for quasi-one-dimensional, inviscid, steady-state flow
and calorically perfect gas

Note: The massflow formula is valid even if there are shocks
present downstream of throat!



Nozzle Mass Flow

How can we increase mass flow through nozzle?

increase pPo
decrease T,
increase A
decrease R

(increase molecular weight, without changing )



Roadmap - Quasi-One-Dimensional Flow

[

Baschepts

'

Governi%uations

!

Area—vew relation

:

Nozzles

.

]<—[ Free boundary reflection J

Diffusers

t

.

(

Nozzle pressure ratio ]

N

Numerical simulation

t

)

Nozz%ﬂons

)




Nozzle Flow with Varying Pressure Ratio

A(x) areafunction
Ar min{Ax)}
Do inlet total pressure
De outlet static pressure
(ambient pressure)

Po/Pe  Pressure ratio




Nozzle Flow with Varying Pressure Ratio

critical po /Pe

/

increasing po /pe

subsonic branch

throat X

For critical ps /pe, @ jump to supersonic solution will occur



Nozzle Flow with Varying Pressure Ratio

subsonic branch

p* ( 2 )Tzl I N increasing Po/Pe
Po y+1 i .

critical po /Pe el ~. supersonic branch

throat X

As the flow jumps to the supersonic branch downstream of the
throat, a normal shock will appear in order to match the ambient
pressure at the nozzle exit



Nozzle Flow with Varying Pressure Ratio

normal shock

throat



Nozzle Flow with Varying Pressure Ratio

ERLS
Po y+1 normal shock

throat



Nozzle Flow with Varying Pressure Ratio (Summary)

(Po/Pe) < (Po/Pe)cr
the flow remains entirely subsonic
the mass flow depends on pe, i.e. the flow is not choked
no shock is formed, therefore the flow is isentropic
throughout the nozzle

(Po/Pe) = (Po/Pe)cr
the flow just achieves M = 1 at the throat
the flow will then suddenly flip to the supersonic solution
downstream of the throat, for an infinitesimally small increase

in (Do /Pe)

(Po/Pe) > (Po/Pe)cr
the flow is choked (fixed mass flow), i.e. it does not depend
0N Pe
a normal shock will appear downstream of the throat, with
strength and position depending on (py/Pe)



Nozzle Flow with Varying Pressure Ratio

shock strength

: ~+—

critical po /pe

o
S
>~
S
@

supercritical po /Pe

throat

nozzle exit

X



Nozzle Flow with Varying Pressure Ratio

Effects of changing the pressure ratio (o, /pe) (Where pe is the
back pressure and po is the total pressure at the nozzle inlet)

» critical value: po/pPe = (Do/Pe)c
» nozzle flow reaches M = 1 at throat, flow becomes choked

» supercritical value: po/pPe = (Po/Pe)sc
» nozzle flow is supersonic from throat to exit, without any
interior normal shock - isentropic flow

» normal shock at exit: (Do/Pe) = (Po/Pe)ne < (Po/Pe)sc
» normal shock is still present but is located just at exit -
isentropic flow inside nozzle



Nozzle Flow with Varying Pressure Ratio

Normal shock at exit

\_/——> T e (Po/Pe)e
—/\

- <— (Po/Pe)ne
3“ (Po /Pe)sc

throat nozzle exit X




Nozzle Flow with Varying Pressure Ratio

ﬁ/—F

normal shock

oblique shock

J
pressure matched

_/\—>

expansion fan

Po/Pe = (Po/Pe)ne
normal shock at nozzle exit

(Po/Pe)ne < Po/Pe < (Po/Pe)sc
overexpanded nozzle flow

Po/Pe = (Po/Pe)sc
pressure matched nozzle flow

Po/Pe > (Po/Pe)sc
underexpanded nozzle flow



Nozzle Flow with Varying Pressure Ratio

Quasi-one-dimensional theory

When the interior normal shock is "pushed out” through the
exit (by increasing (po/Pe), i.€. lowering the back pressure), it
disappears completely.

The flow through the nozzle is then shock free (and thus also
isentropic since we neglect viscosity).

Three-dimensional nozzle flow

When the interior normal shock is "pushed out” through the
exit (by increasing (po/Pe)), @n oblique shock is formed
outside of the nozzle exit.

For the exact supercritical value of (p,/pe) this oblique shock
disappears.

For (po/pe) above the supercritical value an expansion fan is
formed at the nozzle exit.
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Chapter 5.6
Wave Reflection From a Free
Boundary



Free-Boundary Reflection

Free boundary - shear layer, interface between different fluids, etc



Free-Boundary Reflection - Shock Reflection

reflected expansion

incident shock

No jump in pressure at the free boundary possible

Incident shock reflects as expansion waves at the free
boundary

Reflection results in net turning of the flow



Free-Boundary Reflection - Expansion Wave Reflection

free boundary (poo )

incident expansion wave reflected shock

No jump in pressure at the free boundary possible

Incident expansion waves reflects as compression waves at
the free boundary

Finite compression waves coalesces into a shock
Reflection results in net turning of the flow



Free-Boundary Reflection - System of Reflections

overexpanded nozzle flow




Free-Boundary Reflection - System of Reflections

shock reflection at jet centerline




Free-Boundary Reflection - System of Reflections

shock reflection at free boundary




Free-Boundary Reflection - System of Reflections

expansion wave reflection at jet centerline

R fr\ee‘bougdary




Free-Boundary Reflection - System of Reflections

expansion wave reflection at free boundary




Free-Boundary Reflection - System of Reflections

repeated shock/expansion system

- = o6 boundary



Free-Boundary Reflection - System of Reflections

shock diamonds




Free-Boundary Reflection - System of Reflections

underexpanded jet




Free-Boundary Reflection - Summary

Solid-wall reflection

Compression waves reflects as compression waves
Expansion waves reflects as expansion waves

Free-boundary reflection

Compression waves reflects as expansion waves
Expansion waves reflects as compression waves
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Chapter 5.5
Diffusers



Supersonic Wind Tunnel

wind tunnel with supersonic test section

open test section

M>1

~
T~

test section
(open)

Po Pe = Pamb

Wi

Po/Pe = (Po/Pe)sc

M = 3.0 in test section = po /pe = 36.7 Il!




Supersonic Wind Tunnel

wind tunnel with supersonic test section

enclosed test section, normal shock at exit

normal shock

/

M <1
Po
Pamb

@uw&

test section
(closed)

Po/Pamb = (Po/Pe)(Pe/Pamb) < (Po/Pe)sc

M = 3.0 in test section =~
Po/Pamp = 36.7/10.33 = 3.55




Supersonic Wind Tunnel

wind tunnel with supersonic test section

add subsonic diffuser after normal shock

normal shock

wsi/

M <1

e P2 (p02 = pamb)

&wﬁ

test section
(closed)

Po/Pamb = (Po/Pe)(Pe/P2)(P2/Poy)

M = 3.0 in test section =
Po/Pamp = 36.7/10.33/1.17 = 3.04

Note: this corresponds exactly to total pressure
loss across normal shock




Supersonic Wind Tunnel

wind tunnel with supersonic test section

add supersonic diffuser before normal shock

oblique shocks

normal shock

M>1 /

M< 1
P2

Pe (DOQ = Damb)

test section
(closed)

well-designed supersonic + subsonic diffuser =-
1. decreased total pressure loss

2. decreased p, and power to drive wind tunnel




Supersonic Wind Tunnel
Main problems:

1. Design is extremely difficult due to complex 3D flow in
diffuser
» viscous effects
» oblique shocks
» separations

2. Starting requirements: second throat must be significantly
larger than first throat
solution:
» variable geometry diffuser
» second throat larger during startup procedure

» decreased second throat to optimum value after flow is
established



Supersonic Wind Tunnel

start conditions

pressure loss

throat area (second th‘roat)
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Quasi-One-Dimensional
Euler Equations



Quasi-One-Dimensional Euler Equations

Example: choked flow through a convergent-divergent nozzle

Assumptions: inviscid, Q = Q(x, t)



Quasi-One-Dimensional Euler Equations

0

P [AX)E] = A" (x)H

A(X)%Q-i-

where A(x) is the cross section area and

p pu
Q= |pu|,EQ=|p*+p|, HQ)
PE€o phou




Numerical Approach

Finite-Volume Method
Method of lines, three-stage Runge-Kutta time stepping

v

v

39-order characteristic upwinding scheme
Subsonic inflow boundary condition at min(x)
» To, po given
Subsonic outflow boundary condition at max(x)
> p given

v

v

v



Finite-Volume Spatial Discretization

‘ cell j ‘ ‘ X
N R
Integration over cell j gives:
1 d -
5 [AGG_1) + Al )| A 2O+
Ay —ACDE | =
Al 1) = Al )] A



Finite-Volume Spatial Discretization



Nozzle Simulation - Back Pressure Sweep

radial coordinate (r [m])

0.8

0.7

0.6

0.5

0.4

0.31

0.2

0.1

N

| | | | |
0 0.5 1 1.5 2 25 3

axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

P - 160
Po 1.20 [bar] e S
2 140
Pe 1.18 [bar] >
RS
Po/Pe  1.02 120
ke
m 81.61 [kg/s] b
@ 100
Mmax ~ 0.35 £
(N J
80
1 15 2 25
Po/Pe
25 ! 1 T
| F———————
I I
2 i 0.8 i
I I
1.5 1 . 06 1
s ! S L
L s T I < 04 !
I I
I I
0.5 i 0.2 i
L | !
0 L 0 L
0 1 2 3 0 1 2 3

axial coordinate (x [m]) axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

P - 160
Po 1.20 [bar] e S
2 140
Pe 1.16 [bar] >
S
Po/Pe  1.03 120
ke
m 106.27 [kg/s] b
@ 100
Mmax ~ 0.49 £
(N J
809
1 15 2 25
Po/Pe
25 T 1 T
!
2 ! 0.8
I : I
I I
15 1 . 06 1
s ! S L
L s T I < 04 !
I I
I I
0.5 0.2 i
m X
0 L 0 L
0 1 2 3 0 1 2 3

axial coordinate (x [m]) axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

P - 160
Po 1.20 [bar] e S
2 140
Pe 1.14 [bar] >
S
Po/Pe  1.05 120
ke
m 131.45 [kg/s] b
@ 100
Mmax ~ 0.69 £
(N J
809
1 15 2 25
Po/Pe
25 ! 1 T
I
I
2 \ 0.8
I I
1.5 1 . 06 1
s ! S L
L s T I < 04 !
I I
I
0.5 0.2 i
] ]
0 L 0 L
0 1 2 3 0 1 2 3

axial coordinate (x [m]) axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

P - 160
Po 1.20 [bar] ~ - === === — == — - — =
2 140
Pe 1.13 [bar] >
S
Po/Pe  1.06 120
ke
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@ 100
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I
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1.5 1 . 06
s ! S L
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] ]
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axial coordinate (x [m]) axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

p N 160
Po 1.20 [bar] ~ - - - === — - — -
2 140
De 1.10 [bar] >
RS
Po/Pe 1.09 < 120
ke
m 145.62 [kg/s] b
@ 100
Mmax 1.1 £
(N J
809
1 15 2 25

o
Q
Q

0.4 !

1

1
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1
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axial coordinate (x [m]) axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

p - 160
Po 1.20 [bar] ~ O - —-—-——-=———————— -
2 140
De 1.00 [bar] >
RS
Po/Pe 1.20 < 120
ke
m 145.6 [kg/s] b
@ 100
Mmax ~ 1.58 £
(N J
809
1 15 2 25

P/Po

]
|
I
0.2 i
|
1

0 1 2 3
axial coordinate (x [m]) axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

Po

Po/Pe
m

Mmax

1.20 [bar]
0.90 [par]
1.33

145.6 [kg/s]

1.77

axial coordinate (x [m])

mass flow (m [kg/s])

P/Po

160

N
o

n
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o
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axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

Po

Po/Pe
m

Mmax

1.20 [bar]
0.80 [par]
1.50

145.6 [kg/s]

1.94

axial coordinate (x [m])

mass flow (m [kg/s])

P/Po
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o
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axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

Po

Po/Pe
m

Mmax

1.20 [bar]
0.70 [bar]
1.71

145.6 [kg/s]

2.10

axial coordinate (x [m])

mass flow (m [kg/s])

P/Po
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axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

Po

Po/Pe
m

Mmax

1.20 [bar]
0.60 [par]
2.00

145.6 [kg/s]

2.24

axial coordinate (x [m])

mass flow (m [kg/s])

I
|
I
1
|
1

0 1 2 3

axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

Po

Po/Pe
m

Mmax

1.20 [bar]
0.50 [bar]
2.40

145.6 [kg/s]

2.26

axial coordinate (x [m])

mass flow (m [kg/s])

P/Po

0.8

0.6

0.4

0.2

I
|
I
1
|
1

0 1 2 3

axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

- N 121219 ; ‘ ‘ : :
Po 1.20 [bar]
Pe 1.10 [bar] 1.2
Po/Pe 1.09 ~ 1.19}
@
i 145.62 [kg/s] %
< 118
Mmax ~ 1.31 o
5
. J 2
O 117F
Q
s
L
1.16f
1.15F
114 . . . . .
0 0.5 1 15 2 25

axial coordinate (x [m])



Nozzle Simulation - Back Pressure Sweep

Pe

Po/Pe

Mmax

1.20 [bar]
1.10 [bar]
1.09

145.62 [kg/s]

1.31

3.02

3.01

(%)

N
©
®

total enthalpy (ho [J/kg])
n
©
©

297

2.96

x 10

1 1.5 2 25

axial coordinate (x [m])




Modern Compressible Flow




Roadmap - Quasi-One-Dimensional Flow

[ BasiYcepts

‘ Governwuaﬁons

‘ Area—ve% relation
[ !\fs ]<—[ Free bouY reflection J
[ Dwrs ] { Nozzle VUre ratio ]
[

: t
Numerivmulation ] [ Nozz%ﬂons ]







Chapter 7
Unsteady Wave Motion
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finite
non-linear
waves

method
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*
b normal shocks*
| unsteady waves and discontinuities in 1D

moving normal shocks - frame of reference seems to be the
key here?!



Roadmap - Unsteady Wave Motion

[ Basic concepts ]

‘ Moving normal shocks ]4—0—»[ Elements of acoustic theory ]

[ Shock reflection ] [ Finite non-linear waves ]
[ Shock tube relations ]4—[ Expansion waves ]

Shock tube ]—»[ Shock tunnel ]

‘ Riemann problem ]




Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air

observer moving with the
bullet
» steady-state flow
» the detached shock
wave is stationary

observer at rest

» unsteady flow

» detached shock wave
moves through the air
(to the left)




Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air

B

(0]

8 oblique stationary shock shock system becomes stationary
£ only for observer moving with the
2 object
o))

£

=

o

1S

&

c

Q

@

Qo

[

-

9]

2

Q

@

Q

[

el

©

c

kel

©

7]

for stationary observer, both object

normal shock: advancing and shock system are moving

through stagnant air



Unsteady Wave Motion - Example #2

Shock wave from explosion

YD - Al Tx®esens Qecrn 0O Txpiesion

For observer at rest with respect to the surrounding air:

the flow is unsteady

the shock wave moves through the air



Unsteady Wave Motion - Example #2

Shock wave from explosion

t = 0.0002s t = 0.0036 s t =0.0212s

t = 0.0308 s t = 0.0404s t =0.0499s t =0.0594 s

normal shock moving spherically outwards
Shock strength decreases with radius
Shock speed decreases with radius



Unsteady Wave Motion

inertial frames!
Physical laws are the same for both frame of references

Shock characteristics are the same for both observers
(shape, strength, etc)



Unsteady Wave Motion

Is there a connection with stationary shock waves?

Answer: Yes!

Locally, in a moving frame of reference, the shock may be
viewed as a stationary normal shock



Roadmap - Unsteady Wave Motion

[ Basioggfftepts ]

‘ Moving normal shocks ]<—O—>[ Elements of acoustic theory ]

[ Shock reflection ] [ Finite non-linear waves ]
[ Shock tube relations ]4—[ Expansion waves ]
[ Shock tube ]—»[ Shock tunnel ]
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‘ Riemann problem ]




Chapter 7.2
Moving Normal Shock
Waves



Moving Normal Shock Waves

Chapter 3: stationary normal shock

® ®

us U
D -~

stationary normal shock

uy >ap; (supersonic flow)

U < as (subsonic flow)

p2 > p1  (sudden compression)
(

So >3S1  (shock loss)




Moving Normal Shock Waves

w
<+——@ observer

® O,
us U
D -

stationary normal shock x

Introduce observer moving to the left with speed W

if W is constant the observer is still in an inertial system
all physical laws are unchanged

The observer sees a normal shock moving to the right with
speed W

gas velocity ahead of shock: Uy = W — uy

gas velocity behind shock: vy = W — uy



Moving Normal Shock Waves

Now, let W = u; =

U1:0
Uy =up — Uy >0

The observer now sees the shock traveling to the right with
speed W = u; into a stagnant gas, leaving a compressed gas
(02 > p1) with velocity v > 0 behind it

Introducing up:

Up = Uy = Uy — Us



Moving Normal Shock Waves
@ stationary observer

® O,

U;:Up>0 up =0

Analogy: —

moving normal shock

Case 1

stationary normal shock
observer moving with velocity W

Case 2

normal shock moving with velocity W
stationary observer



Moving Normal Shock Waves - Governing Equations

@ stationary observer

w
@ O]
ufz =up >0 u'1 =0
5 .
moving normal shock x
For stationary normal shocks With (uy = W) and
we have: (Uug =W — up) we get:
p1Uy = paUs piW = pa(W — up)
P1U% +p1 = PQU% + P2 p1W2 +p1 = p2(W — Up)2 + P2
1 1 1 1
h1+§u§:h2+§u§ h1+§W2:h2+§(W7up)2




Moving Normal Shock Waves - Relations

Starting from the governing equations

W = pa(W — Up)
pIW? +p1 = po(W — Up)® + P
1 1
hi + 5W2 =hy+ (W - Up)?

and usingh =e + P
P

it is possible to show that

p1+p2 (1 1
8y — €1 = — 4+ —
’ ' 2 <101+P2




Moving Normal Shock Waves - Relations

+ 1 1
9261:M<+>
PL P2

same Hugoniot equation as for stationary normal shock

This means that we will have same shock strength, i.e. same
jumps in density, velocity, pressure, etc



Moving Normal Shock Waves - Relations

Starting from the Hugoniot equation one can show that

P2 _ y—1\p1

p1 v+l _ P2
y—1 p1

and
v+l P
To P2 y—1 D1

T p 1+v+1<m>
v —1\p1




Moving Normal Shock Waves - Relations

For calorically perfect gas and stationary normal shock:

where

My is simply the speed of the shock (W), traveling into the
stagnant gas, normalized by the speed of sound in this
stagnant gas (a;)

Ms > 1, otherwise there is no shock!

shocks always moves faster than sound - no warning before

it hits you ®



Moving Normal Shock Waves - Relations

Re-arrange:

Ms: M(DQ_1>+1
2y \p1

(speed of shock directly linked to pressure ratio)

W
M. = —
s a

=

1
W =a Mg =a; H<p2—1>+1
2y P1



Moving Normal Shock Waves - Relations

From the continuity equation we get:

upvv(1—p1>>0
P2

After some derivation we obtain:

%y 1/2

P v\ @+7_1

pr1 y+1



Moving Normal Shock Waves - Relations

Induced Mach number:

v, U _Upat U |Th
b = - —
ay aia Ty
inserting up/a; and Ty /T, from relations on previous slides we
get:

1/2



Moving Normal Shock Waves - Relations

Note that

for air (y = 1.4)



Moving Normal Shock Waves - Relations

Moving normal shock with pa/p; = 10
(,Ol =10bar, T1 =300K, v = 1.4)
= Ms =2.95and W = 1024.2 m/s

The shock is advancing with almost three times the speed of
sound!

Behind the shock the induced velocity is up = 756.2 m/s =
supersonic flow (@ = 562.1 m/s)

May be calculated by formulas 7.13, 7.16, 7.10, 7.11 or by using Table A.2 for stationary normal shock (v = W,
us =W —up)



Moving Normal Shock Waves - Relations
Note that ho, # ho,
constant total enthalpy is only valid for stationary shocksl!

shock is uniquely defined by pressure ratio pa/p;

To/T1 = ha/hy (if Cp is constant)

up =0
1 2
hol :/’71+§U1:h1

1
ho, = ha + 5ug

hy > hy :>h02 >/’Io1




Moving Normal Shock Waves - Relations

Gas/Vapor Ratio of specific heats Gas constant
") R

Acetylene 1.23 319
Air (standard) 1.40 287
Ammonia 1.31 530
Argon 1.67 208
Benzene 1.12 100
Butane 1.09 143
Carbon Dioxide 1.29 189
Carbon Disulphide 1.21 120
Carbon Monoxide 1.40 297
Chlorine 1.34 120
Ethane 1.19 276
Ethylene 1.24 296
Helium 1.67 2080
Hydrogen 1.41 4120
Hydrogen chloride 1.41 230
Methane 1.30 518
Natural Gas (Methane) 1.27 500
Nitric oxide 1.39 277
Nitrogen 1.40 297
Nitrous oxide 1.27 180
Oxygen 1.40 260
Propane 1.13 189
Steam (water) 1.32 462
Sulphur dioxide 1.29 130
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Unsteady Wave Motion
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Addressed Learning Outcomes

3

12

Describe typical engineering flow situations in which
compressibility effects are more or less predominant (e.g.
Mach number regimes for steady-state flows)
Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

| unsteady waves and discontinuities in 1D
Solve engineering problems involving the above-mentioned
phenomena (8a-8k)
Explain the main principles behind a modern Finite Volume
CFD code and such concepts as explicit/implicit time
stepping, CFL number, conservation, handling of
compression shocks, and boundary conditions

what happens when a moving shock approaches a wall?
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Chapter 7.3
Reflected Shock Wave



Shock Reflection

ax
contact surface, — = 0
at

ta \ solid wall
ax
reflected shock, E =-W

/

N~

ax o ‘ ax
contact surface, p =Up initial moving shock, o =W




Shock Reflection - Particle Path

A fluid particle located at x( at time t; (a location ahead of the

shock) will be affected by the moving shock and follow the blue

path
time location velocity
) X0 0
ty X0 Up
ty X1 Up
ty X1 0

Xo




Shock Reflection Relations

velocity ahead of reflected shock: W, + up,
velocity behind reflected shock: W,

Continuity:
p2(Wr +up) = psWr
Momentum:
P2 + pa(Wr + Up)? = p5 + psW?
Energy:

1 1
Py + 5 (Wr +Up)* = hs + 5W7



Shock Reflection Relations

Reflected shock is determined such that us = 0

M; My 2(y — 1) 1
= 1 M2 —1 s
M2 —1 M§1\/ +(wl)2< sl LY

where



Tailored v.s. Non-Tailored Shock Reflection

The time duration of condition 5 is determined by what
happens after interaction between reflected shock and
contact discontinuity

For special choice of initial conditions (tailored case), this
interaction is negligible, thus prolonging the duration of
condition 5



Tailored v.s. Non-Tailored Shock Reflection

shock wave
contact surface
expansion wave

®

under-tailored

®
0]

wall

®

Under-tailored conditions:

X

tailored

wall

Y

over-tailored

wall

Mach number of incident wave lower than in tailored
conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored
conditions



Shock Reflection - Example

Shock reflection in shock tube (v = 1.4)

(Example 7.1 in Anderson)

Incident shock (given data) Calculated data
M, 2.09
p2/p1 100 '
M, 295 Table A.2
To/T1 2.623 ps/p2  4.978
P1 1.0 [bar] T5/To 1.77
T 300.0 [K]

Ps P2
= — — =49.78
- (/02> <p1> .
Ts5 = (7_2> <7_1> Ty = 1393



Shock Reflection - Shock Tube

» Very high pressure and temperature conditions in a specified
location with very high precision (o5, T5)

» measurements of thermodynamic properties of various gases
at extreme conditions, e.g. dissociation energies, molecular
relaxation times, etc.

» measurements of chemical reaction properties of various gas
mixtures at extreme conditions
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Shock Tunnel

» Addition of a convergent-divergent nozzle to a shock tube
configuration

» Capable of producing flow conditions which are close to
those during the reentry of a space vehicles into the earth’s
atmosphere

» high-enthalpy, hypersonic flows (short time)
» real gas effects

» Example - Aachen TH2:

» velocities up to 4 km/s
» stagnation temperatures of several thousand degrees



Shock Tunnel

test object

diaphragm 1 diaphragm 2

dump tank

test section
reflected shock

High pressure in region 4 (driver section)

diaphragm 1 burst
primary shock generated

Primary shock reaches end of shock tube
shock reflection

High pressure in region 5
diaphragm 2 burst

nozzle flow initiated
hypersonic flow in test section



Shock Tunnel

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

®

incident shock wave

Lo | @

driver section driven section




Shock Tunnel

By adding a compression tube to the shock tube a very high py
and T4 may be achieved for any gas in a fairly simple manner

heavy piston compression tube diaphragm

|

pressurized air driver gas driven gas

P T p1, T1

i i driver gas driven gas
pressurized air

: s T4 P1, Tl




The Aachen Shock Tunnel - TH2

Shock tunnel built
1975

nozzle
end of shock tube \ =
inspection windOW:
>

A
"—'ﬂ ( 7. .::P»:-
/

o U=
e
,;‘-‘ ~ - &




The Aachen Shock Tunnel - TH2

Shock tube specifications:

diameter

driver section

driven section

diaphragm 1

diaphragm 2

max operating (steady) pressure

140 mm

6.0m

154 m

10 mm stainless steel
copper/brass sheet
1500 bar



The Aachen Shock Tunnel - TH2

Driver gas (usually helium):

100 bar < p4 < 1500 bar
electrical preheating (optional) to 600 K

Driven gas:
0.1 bar < p; < 10 bar

Dump tank evacuated before test



The Aachen Shock Tunnel - TH2

initial conditions shock reservoir free stream

Pa Ty P1 Ms P2 Ps Ts Moo Too Uso Poo
[bar] K] [bar] [bar] [bar] K] K] [m/s] [mbar]
100 293 1.0 3.3 12 65 1500 7.7 125 1740 7.6
370 500 1.0 4.6 26 175 2500 7.4 250 2350 20.0
720 500 0.7 5.6 50 325 3650 6.8 460 3910 42.0
1200 500 0.6 6.8 50 560 4600 6.5 700 3400 73.0
100 293 0.9 3.4 12 65 1500 1.3 60 1780 0.6
450 500 1.2 4.9 29 225 2700 1.3 120 2480 1.5
1300 520 0.7 6.4 46 630 4600 12.1 220 3560 1.2
26 293 0.2 3.4 12 15 1500 1.4 60 1780 0.1
480 500 0.2 6.6 50 210 4600 1.0 270 3630 0.7
100 293 1.0 3.4 12 65 15600 7.7 130 1750 7.3
370 500 1.0 5.1 27 220 2700 7.3 280 2440 26.3




The Caltech Shock Tunnel - T5

Free-piston shock tunnel

Secondary Diaphragm

=

/
7/ =

TestSection  Shock tube (ST) Compression Tube (CT) Secondary Reservoir (2R)

Piston

Primary Diaphragm

CT-8T Junction




The Caltech Shock Tunnel - T5

» Compression tube (CT):
» length 30 m, diameter 300 mm
» free piston (120 kg)
» max piston velocity: 300 m/s
» driven by compressed air (80 bar - 150 bar)

» Shock tube (ST):

length 12 m, diameter 90 mm
driver gas: helium + argon

driven gas: air

diaphragm 1: 7 mm stainless steel
P4 Max 1300 bar

vV V.V VvV vV



The Caltech Shock Tunnel - T5

Reservoir conditions:

ps 1000 bar
T5 10000 K

Freestream conditions (design conditions):
My, 5.2
Too 2000 K
Poo 0.3 bar
typical test time 1 ms



Other Examples of Shock Tunnels
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Riemann Problem

The shock tube problem is a special case of the general Riemann
Problem

”... A Riemann problem, named after Bernhard
Riemann, consists of an initial value problem composed
by a conservation equation together with piecewise
constant data having a single discontinuity ...”

Wikipedia



Riemann Problem

May show that solutions to the shock tube problem have the
general form:

p =p(x/t) Whgrg x=0 dgngteg the

p = plx/t) position of the initial jump
between states 1 and 4

u=u(x/t)

T =T(x/t)

a=a(x/t)



Riemann Problem - Shock Tube

Shock tube simulation:

» left side conditions (state 4):
> p=24kg/m?
» u=00m/s
» p=2.0bar

» right side conditions (state 1):
» p=12kg/m?
» u=00m/s
» p=1.0bar

» Numerical method
» Finite-Volume Method (FVM) solver
» three-stage Runge-Kutta time stepping
» third-order characteristic upwinding scheme
» local artificial damping



Riemann Problem - Shock Tube

density

velocity

pressure

t = 0.0000s

t =0.0010s

t =0.0025s

2 2 E
15 15} 14}
s 5 B 25 05 0 s 25 3 s B 25
&) ool o0
& eof &of
a« aof “of
2 20f 2|
05 T 75 B 25 08 0 s 25 05 T 5 B 25
10 0
2} 2
15 15 15
l 1
o5} o3| o5}
s T 5 B 25 s 7 75 25 3 T 75 B 25




Riemann Problem - Shock Tube

t = 0.0000s t =0.0010s t =0.0025s

e ] T

density
T

a5 EEEE [ I PR 0 R
L
w ol ol
- ol ol
= expansion fan
5 o contact discontinuity o e
4 moving shock wave
2 2| 2|
Do COE I s A [ ER— 0 R
0° 10° 10°
5 s s = Ir
?
g ! !
03 os| 03




Riemann Problem - Shock Tube

density {p = p(x/t)}

25

p lkg/m?]

1 | | | | | | |
-2000 -1500 -1000 -500 0 500 1000 1500 2000
x/t[m/s]



Riemann Problem - Shock Tube

velocity {u = u(x/t)}
100 ! !

t =0.0010s
80l t =0.0025s

601 : : B 4

401 : : B 4

u[m/s]

|

2 I I I I I I
—2%00 -1500 -1000 -500 0 500 1000 1500 2000

x/t[m/s]




Riemann Problem - Shock Tube

pressure {p = p(x/t)}
x10°
25
ol ]
1.5r q
g
Q
i ]
0.5r q
0 ; ; ; ; ; ; ;
-2000 -1500 -1000 -500 0 500 1000 1500 2000

x/t [m/s]






Chapter 7
Unsteady Wave Motion



Overview

governing

nozzles

diffusers

conser-
vation
form

noncon-
servation
form

derivative

entropy
equation

governing
equations

Crocco’s
equation

moving
shocks

fSiglelel
reflection

traveling
WEVEH]

acoustic
waves

finite
non-linear
waves

method
of char-
acteristics



Addressed Learning Outcomes

8 Derive (marked) and apply (all) of the presented

11

mathematical formulae for classical gas dynamics

| unsteady waves and discontinuities in 1D

k basic acoustics
Explain how the equations for aero-acoustics and classical
acoustics are derived as limiting cases of the compressible
flow equations

method of characteristics - a central element in classic
compressible flow theory
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Chapter 7.5
Elements of Acoustic Theory



Sound Waves

v

Weakest audible sound wave (0 dB): Ap ~0.00002 Pa
Loud sound wave (94 dB): Ap ~1 Pa

Threshold of pain (120 dB): Ap ~20 Pa

Harmful sound wave (130 dB): Ap ~60 Pa

v

v

v

Example:

Ap ~ 1 Pagives Ap ~0.000009 kg/m? and Au ~0.0025 m/s



Sound Waves

Schlieren flow visualization of
self-sustained oscillation of an
under-expanded free jet




Sound Waves

Screeching rectangular supersonic jet

Niklas Ande




Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in
Chapter 6:

conservation form non-conservation form
20 49 (v =0 % p(v v =0
mass — - (pv) = — J SV) =
ot ! ot °
o Dv
momentum 5 (pv) +V - (pvv+pI) =0 pa +Vp=0




Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Ds
—
Dt
Assume one-dimensional flow
- ap ap ou
b= plx,1) continuity a + U& + p87 =0
v =u(x,t)ex N 5 5 5
_ u u 0
p  =px,t i — 4 = =
(x,1) momentum pat +puax + o 0
s=constant
op )

can I be expressed in terms of density?



Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely
defined by any tow other state variables

op op
— do=(=—=") d — ] d
p=p(p,s)=dp <3P>s p+(8s>p s

s=constant gives

dp = (8{3) dp =a’dp
op)s
dp dp ou
E—i—ua—irpafo



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P=pPoo+Ap P=pPoc+Ap T=Tew+AT U=Uso + AU={Uco =0} =AU
where poo, Poo, and T, are constant

Now, insert p = (poo + Ap) and u = Au in the continuity and
momentum equations (derivatives of ps, are zero)

9 12} %}
—(a Au—(A Ap)—(Au) =0
51 (AP) + AU (Ap) + (poo + Ap) o (AU)

o o 5 O
(Poo + Ap) — (AU) + (poo + Ap)Au——(AU) +a° —(Ap) =0
ot Ox Ox



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P=pPoo+Ap P=pPoc+Ap T=Tew+AT U=Uso + AU={Uco =0} =AU
where poo, Poo, and T, are constant

Now, insert p = (poo + Ap) and u = Au in the continuity and
momentum equations (derivatives of ps, are zero)

5] o 5]
—(A Au— (A Ap)—(AU) =0
0[( p) + UDX( p) + (poo + p)ax( u)

=
) ) 5 0
(poo + Ap) — (AU) + (poo + Ap)Au—(AY) +a" —(Ap) =0
ot ox ox



Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable
= a® = a*(p,s). With entropy constant = a* = a*(p)

Taylor expansion around a, with (Ap = p — ps) gives

a’=a’ + (;p(82)>ooﬁﬂ+ <§22( )>OO(AP)2+

15} 15} e}
—(Ap) + Au—(Ap) + (po + Ap) —(Au) =0
ot ox ox

=

( +A>3(Au)+( +A)Au3(Au)+ a2 +(3<a2)) Ap + g(A):o
Poo Pl 5 Poc P o o op _ Pl (B



Elements of Acoustic Theory - Acoustic Equations

Since Ap and Au are assumed to be small (Ap < poo, AU <K Q)

products of perturbations can be neglected
higher-order terms in the Taylor expansion can be neglected

2(Au) =0

0
7(Ap) + Poo Ox

ot

2 (an) =0

8
Au +a

Poo bt

Note: Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic
equations are linear



Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage
of a sound wave ...”



Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we

get

2
P (Ap) = a? %(Ap)

(combine the time derivative of the continuity egn. and the divergence of the momentum eqn.)
General solution:

Ap(x,t) = F(X — asol) + G(X + acol)
wave traveling in wave traveling in

positive x-direction

with speed aoo

negative x-direction
with speed aoo

F and G may be arbitrary functions
Wave shape is determined by functions F and G



Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to

OF  OF  dx—axt) A F
ot O(X — asot) ot -
OF _ OF  dx—axt)

X O(X—axt) X

Spatial and temporal derivatives of G can of course be obtained in
the same way...



Elements of Acoustic Theory - Wave Equation

with Ap(x, t) = F(X — axt) + G(X 4 axt) and the derivatives of £
and G we get

82
pre) (Ap) =a> F" +a*.G"
and
82
@(Ap) — F// _|_ G//
which gives
0?2 6‘2

s (Ar) —a 8—(Ap) =0

i.e., the proposed solution fulfils the wave equation



Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

Ap(x,t) = F(X — asct)

If Ap is constant (constant wave amplitude), (x — ast) must be a
constant which implies

X =axl+cC
where ¢ is a constant

ax

=a
dt o



Elements of Acoustic Theory - Wave Equation
We want a relation between Ap and Au

Ap(x,t) = F(x — axt) (wave in positive x direction) gives:

0 _ ’ 0 o
51 (Ap) = —axcF and e (AP) =F
0 0
&(AP) +aoo a(AP) =0
—— ~——
—acoF’ F!
or
%, 19



Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

2 (Bu) = ~a% 2 (Ap) >

Poo bt
0 a’, o 0 1 0 )
a0 = 2= 2 — {2 ap) = - L 280 | = =2 )

0 Au ——Ap :0:>Au—a¥°°Ap:const
82‘ Poo Poo

In undisturbed gas Au = Ap = 0 which implies that the constant
must be zero and thus

Au

%% Ap
Poo




Elements of Acoustic Theory - Wave Equation

Similarly, for Ap(x,t) = G(x + ast) (wave in negative x direction)
we obtain:

a
Au=—""Ap
Poo

Also, since Ap = a?,Ap we get:

o 1
Right going wave (+x direction) Au = a—Ap = Ap
Poo oo Poo
, ) . Ao 1
Left going wave (-x direction) Au=-——Ap=— Ap



Elements of Acoustic Theory - Wave Equation

Au denotes induced mass motion and is positive in the
positive x-direction

Ao Ap _ 4 Ap
Poo oo Poo

Au =+

condensation (the part of the sound wave where Ap > 0):
Au is always in the same direction as the wave motion

rarefaction (the part of the sound wave where Ap < 0):
Au is always in the opposite direction as the wave motion



Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we
get

0? 0?
@(AP) = ago@(Ap)

Due to the assumptions made, the equation is not exact

More and more accurate as the perturbations becomes
smaller and smaller

How should we describe waves with larger amplitudes?
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Chapter 7.6
Finite (Non-Linear) Waves



Finite (Non-Linear) Waves

When Ap, Au, Ap, ... Become large, the linearized acoustic
equations become poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations

dp 8p ou
at TVax TPax TV

ou ou 10p

ot TV T oax Y




Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

ot \op), ot aot ox  \op

Inserted in the continuity equation this gives:

o Lou
E%—ua—x—l—pa a—

ou, v 10p
ot ox  pox

0

0

9 _ (99 0o _ 1p 9 _ (o) & _10p
L Ox  azox



Finite (Non-Linear) Waves

Add 1/(pa) times the continuity equation to the momentum
equation:

ou ou 1 [op op|
[at—k(u%-a) :|+p|:+(u+a)a)<:|—0

If we instead subtraction 1/(pa) times the continuity equation
from the momentum equation, we get:

[g;’Jr(u—a)gﬂ - [%Jr(u—a)ap} =0



Finite (Non-Linear) Waves
Since u = u(x,t), we have:

_ou 6u ou 8u ax

ax .
Let i =Uu+agives

au

ou ou
[at -+ (U +a)8x} at

. . o e
Interpretation: change of u in the direction of line di)t( =u+a



Finite (Non-Linear) Waves

In the same way we get:

_Op op dx
dp = Edt + 5&dt

and thus
op

~ Ip
dap = {81‘ + (u+a)ax] dt



Finite (Non-Linear) Waves

Now, if we combine

Ip

ou ou ap B
+ (u+ a)a} =0

[m+(u+a)8x} +p—a [E

ou ou
du = [ + (u+a)ax} dt

ot
~|op op
dp = {81‘ +(u+a)ax] at
we get

au 1 dp




Characteristic Lines

Thus, along a line dx = (u + a)dt we have

{o’qude}
pa

In the same way we get along a line where dx = (u — a)dt




Characteristic Lines

» We have found a path through a point (x1, ;) along which the
governing partial differential equations reduces to ordinary
differential equations

» These paths or lines are called characteristic lines

» The CT and C~ characteristic lines are physically the paths
of right- and left-running sound waves in the xt-plane



Characteristic Lines

_ o ax
C™ characteristic line: — =u-—a
- . dp
compatibility equation: du— — =0
pa

/

+ ax
C™ characteristic line: E =u+a
. dp
compatibility equation: du+ — =0
pa
'X

X1



Characteristic Lines

summary:

s

Z—L; - ;z',(; =0 along C" characteristic
((jj—l: — pla(Zﬁ =0 along C™ characteristic
or
au + CZZ =0 along C' characteristic
au — dp =0 along C™ characteristic

pa




Riemann Invariants

Integration gives:

Ko/ .
JT=u+ / —g = constant along C* characteristic
P

a .
J =u-— / —Z = constant along C~ characteristic
p

e/ . .
We need to rewrite —g to be able to perform the integrations
p



Riemann Invariants
Isentropic processes:

D= CIT’Y/('Yfl) — CQ&Q’Y/(’Yil)

where ¢, and ¢y are constants

S dp=cy <2’Y1> 27/ (1)1l 4

Assume calorically perfect gas:

2P, _ P

a —
p T

with p = c2a27/=1) we get

p= 0273[27/("/—1)_2]



Riemann Invariants

27\ gl2v/(v-1)-1] :

“dp = (’yfl)a 2da
+ p— — p— E—

J —u+/ e —u+/ Comyal21 /-1 da u+/ o




Riemann Invariants

If JT and J~ are known at some point (x, t), then

It 4 d =2 u:%(ﬁw—)

=
4a

—+ — —

JT—dJ —’\/7_1 a:u(J+*J7)

Flow state is uniquely defined!



Method of Characteristics

transfer J™ along C™ characteristics, and vice versa

flow state may be
computed here

flow state known
here

X



Summary

Acoustic waves

Ap, Au, etc - very small
All parts of the wave
propagate with the same
velocity as

The wave shape stays the
same

The flow is governed by
linear relations

Finite (non-linear) waves

Ap, Au, etc - can be large
Each local part of the
wave propagates at the
local velocity (U + a)

The wave shape changes
with time

The flow is governed by
non-linear relations
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Chapter 7.7
Incident and Reflected
Expansion Waves



Expansion Waves

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

®

incident shock wave

Lo | @

driver section driven section




Expansion Waves

Properties of a left-running expansion wave

1. All flow properties are constant along C~ characteristics

2. The wave head is propagating into region 4 (high pressure)
3. The wave tail defines the limit of region 3 (lower pressure)
4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

is constant along C™ lines

is constant along C™ lines




Expansion Waves

o=
o=




Expansion Waves

C~ @ ct
o
cx ct
o
C+
@
ct ct ct




Expansion Waves

[N @ ct
o=
C B ct
C'~ f
B
e
® d ot
C
b « a « «
ct ct ct

constant flow properties in region 4: J: = J;r

J¥ invariants constant along C™ characteristics:
+ _ g+t
Ji =dg =4
+ _ gt
Jb - Jd 7‘J/

since JT = J this also implies gt =uf
a b e f

J ™ invariants constant along C~ characteristics:
Jo =Jy

Jy =



Expansion Waves

A
inregion 4: y+ — J+
constant flow properties in region 4: J;~ = Jb
N @ ¢
c= J¥ invariants constant along C™ characteristics:
+ _ g+t
c= B C+ Ja - Jc *Je
C™ f g =dF =4t
B
i + _ + _ +
e since J; = J,; this also implies J;~ = J;
d ot
@ S 5
J ™ invariants constant along C~ characteristics:
b @ a «@ «@ — —
> Jo =,
X c d
ct ct ct
Jo =
1, o
ue:E(Je +Jg ),uf:E(Jl, +J; ), = Ue = Ur
Y14 — y—1 4 —
e = 1 (Je — e )ar = 1 (" —Ji ), = ae =g




Expansion Waves

Along each C™ line u and a are constants which means that

X _ i —a = const
at B

C™ characteristics are straight lines in xt-space



Expansion Waves

The start and end conditions are the same for all C™ lines
JT invariants have the same value for all C™ characteristics
C™ characteristics are straight lines in xt-space

Simple expansion waves centered at (x,t) = (0,0)




Expansion Waves

In a left-running expansion fan;

» J*1 is constant throughout expansion fan, which implies:

2a 2a, n 2as

Usg + = U3

u =
+7—1 v—1 v—1

» J~ is constant along C™ lines, but varies from one line to the
next, which means that

is constant along each C™ line



Expansion Waves

Since uys = 0 we obtain:

U 2a o 2a4  2a4
1 YTy 4o
a u
=1 (=1 =
a (v )a4

with a = /~yRT we get

To[i-ta-n2]



Expansion Wave Relations

Isentropic flow = we can use the isentropic relations

complete description in terms of u/ay



Expansion Wave Relations

Since C~ characteristics are straight lines, we have:

d

d—j:u—a:x:(u—a)t
a u
—=1l——(y—-1)—=a=a1—-(y—1)u
a; (v )a4 4 2(7 u =



Expansion Wave Relations

Expansion wave head is advancing
- to the left with speed a, into the

/ stagnant gas
us =0 ! >

T expansion wave | «

Expansion wave tail is advancing

with speed uz — az, which may be

positive or negative, depending on
a— the initial states

T expansion wave ' ¥
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Chapter 7.8
Shock Tube Relations



Shock Tube Relations

2 1/2

a
Up:U2:1<le) Lll
Y \P1 ,O2+71—

p1 m+1

03 v —1 fuz\ ]/ e
kA T e
P4 { 2 <a4>}

solving for us gives

b 2ay - (:QS) (ya—1)/(2v4)
vq— 1 P4




Shock Tube Relations

But, p3 = p2 and us = U, (no change in velocity and pressure
over contact discontinuity)

(ya=1)/(2v4)
o[ ()
va—1 P4

We have now two expressions for us which gives us

271 12

A (pg — 1) . m+1l _2a - <pQ>(v4—1)/(2v4>
7 \P1 P2 4 L_l Y4 —1 D4




Shock Tube Relations

Rearranging gives:

Po_pP2 )y (u—D(@/as)p2/pr— 1) 21/ (1)
P1 P1 \/2"}/1 [271 + (’Yl + 1)(,02/01 — 1)]

» pa/p1 as implicit function of p4/p1
» for a given ps/pi1, p2/p1 will increase with decreased a; /a4

a = \/RT = /4(Ry/M)T
» the speed of sound in a light gas is higher than in a heavy
gas

» driver gas: low molecular weight, high temperature
» driven gas: high molecular weight, low temperature
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Addressed Learning Outcomes

Explain the main principles behind a modern Finite Volume
CFD code and such concepts as explicit/implicit time
stepping, CFL number, conservation, handling of
compression shocks, and boundary conditions

Explain the limitations in fluid flow simulation software

time for CFD!
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The Time-Marching Technique

Note:

Anderson’s text is here rather out-of-date, it was written during
the 70’s and has not really been updated since then.

The additional material covered in this lecture is an attempt to
amend this.



The Time-Marching Technique

The problems that we like to investigate numerically within the
field of compressible flows can be categorized as

steady-state unsteady
compressible flows compressible flows

The Time-marching method is a solver framework that addresses
both problem categories



The Time-Marching Technique

The time-marching approach is a good alternative for simulating
flows where there are both supersonic and subsonic regions

supersonic/hyperbolic:
perturbations propagate in preferred directions
zone of influence/zone of dependence
PDEs can be transformed into ODEs

subsonic/elliptic:
perturbations propagate in all directions



Zone of Influence and Zone of Dependence

Moo > 1.0

A, B and C at the same axial position in the flow
D and E are located upstream of A, B and C

Mach waves generated at D will affect the flow in B but not in
Aand C

Mach waves generated at E will affect the flow in C but not in
Aand B

The flow in A is unaffected by the both D and E



Zone of Influence and Zone of Dependence

O
T

soUBNUI JO BUOZ

Moo > 1.0

9

zone of dependence

The zone of dependence for point A and the zone of
influence of point A are defined by C™ and C~ characteristic
lines



The Time-Marching Technique

Steady-state problems:
define simple initial solution
apply specified boundary conditions
march in time until steady-state solution is reached

Unsteady problems:
apply specified initial solution
apply specified boundary conditions

march in time for specified total time to reach a desired
unsteady solution

establish fully developed flow before initiating data sampling



Characterization of CFD Methods - Discretization

Discretization in space and time:
most common approach: Method of Lines
discretize in space =
system of ordinary differential equations (ODEs)
discretize in time =
time-stepping scheme for system of ODEs

Spatial discretization techniques:
Finite-Difference Method (FDM)
Finite-Volume Method (FVM)
Finite-Element Method (FEM)



Characterization of CFD Methods - Time Stepping

Temporal discretization techniques:

Explicit
mostly for transonic/supersonic steady-state and unsteady
flows
short time steps
usually very stable

Implicit
mostly for subsonic/transonic steady-state flows
longer time steps possible

for high-supersonic flows, explicit solvers may very well
outperform implicit solvers



Characterization of CFD Methods - Equations

Equations solved:

Density-based
solve for density in the continuity equation
mostly for transonic/supersonic steady-state and unsteady
flows

Pressure-based
the continuity and momentum equations are combined to
form a pressure correction equation
mostly for subsonic/transonic steady-state flows



Characterization of CFD Methods - Solver Approach

Solution procedure:

Fully coupled
all equations (continuity, moentum, energy, ...) are solved
simultaneously
mostly for transonic/supersonic steady-state and unsteady
flows

Segregated
solve the equations in sequence
mostly for subsonic steady-state flows
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Explicit Finite-Volume
Method



Governing Equations



Quasi-One-Dimensional Flow - Conceptual |dea

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

" Q  control volume

N Sy left boundary (area Aq)
S, right boundary (area As)
I'  perimeter boundary

0N =S, UI'USy



Quasi-One-Dimensional Flow - Governing Equations

Governing equations (general form):

i JJJ pd”/—k@pv ndS =0

o0

o’z‘JJJ p“dy“F@ v n)u+p(n-e)dS=0
o0

= ﬂjpeod7+ﬁpho v-n)dS =0

o0



Example: Nozzle Simulation (Back Pressure Sweep)

P - 160
Po 1.20 [bar] ~
2 140
De 0.50 [bar] >
RS
Po/Pe 240 120
o
m 145.6 [kg/s] b
@ 100
Mmax ~ 2.26 £
(N J
809
1 15 2 25

I
|
I
1
|
1

0 1 2 3
axial coordinate (x [m]) axial coordinate (x [m])
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Spatial Discretization



Quasi-One-Dimensional Flow - Spatial Discretization

Let’s look at a small tube segment with length Ax

Streamtube with area A(x)

\ A/—é :A(X/_é)
A/+% _A(X/'Jr%)
> AX; = X X;
A * A : ! i+3 i-3
i—1 1
2 i+35

Q) - control volume enclosed
"*%E’X’*% byAiié,Al-Jr%,andF/

= gpatial discretization



Quasi-One-Dimensional Flow - Spatial Discretization

ke
T
"
T
I

Integer indices (i, + 1, ...):
control volumes or cells

. o .1, 3
Fractional indices ( + =, i + =, ...):

interfaces between control volumes or cell faces

Apply control volume formulations for mass, momentum,
energy to control volume €);



Quasi-One-Dimensional Flow

cell-averaged quantity
face-averaged quantity

Conservation of mass:

X,_%
\—/—’
d 5
VOL; 4 pi 7(pu)i 1A/,l
2
where

VOL; = jfj dv

Q

B 1
f"‘:VOL,-fo pd ¥

0
(p ),-+% il
— 1
Py = 2 H puas
TIX 1
2
— 1
()isy = 5 ) ouas
+3 0



Quasi-One-Dimensional Flow

cell-averaged quantity
face-averaged quantity
source term

Conservation of momentum: ey e

rJJJ PUC’MJJ (v-m)u+p(n-e)dS+

’*é
—,_/
ppu—
VOL,; 5 (pu);

~(pu+p),_ 141

+JJ (v-n)u-+p(n-e) dS+JJ v-n)u+p(n-e)]dS =0

/+2

T SN —[[~. pdA
(pu2+p)i+%A/,+% JJ‘F/



Quasi-One-Dimensional Flow

cell-averaged quantity
face-averaged quantity

Conservation of energy:

0 JJJ peod? + ﬂ pho(v - n)dS +

%/—/ :
\/OL/ ot €o); _(PUhO),',%A,-,

1
2

+JJ pho (v - ndS+JJphov n)dS = 0

/+2

0
(pUho)/+%A/v+%



Quasi-One-Dimensional Flow

Lower order term due to varying stream tube area:

[[poAxp Ay -Ay)

L

where p; is calculated from cell-averaged quantities (DOFs)

as

pi=(y—1) <(/)90)/ - ;:5/“/) , U= @



Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity
face-averaged quantity
source term

d_ I
VOL; i — (pu)i_sAi_1 + (pU)i 1Ai L = 0
VOLg( u); — (pu? +p);, 1A, 1 + (pu? +p);, 1A
dt p p P)i—1 1 p P i+37N L =
=01 (Ay —Ay)
d-—
VOLI&(PGO)/ - (PUho)i—%A/;% + (puho),+%A,+% =0
Application of these equations to all cells i € {1, 2, .....,N} of the

computational domain results in a system of ODEs



Spatial Discretization - Summary

Steps to achieve spatial discretization:

Choose primary variables (Degrees of Freedom or DOFs)
Approximate all other quantities in terms of DOFs

= System of ordinary differential equations (ODEs)

Degrees of freedom:

Choose {ﬁ, (pu), (peo)}‘ in all control volumes £,

/
i€ {l1,2,..,N} as degrees of freedom, or primary variables
Note that these are cell-averaged quantities
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Numerical Schemes



Flux Term Approximation

(pu) p p
(pu* +p) =79 () ¢, (pu)
(puho) /+% (ﬂeo) i (Peo) i+1
cell face values cell-averaged values

Simple example:




Flux Term Approximation

More complex approximations usually needed

High-order schemes:

increased accuracy
more cell values involved (wider flux molecule)
boundary conditions more difficult to implement

Optimized numerical dissipation:
upwind type of flux scheme

Shock handling:

non-linear treatment needed (e.g. TVD schemes)
artificial damping



Flux Term Approximation

Q(x) =A + Bx + Cx* + Dx?



Flux Term Approximation

_ 1 1
Q= VOL, /2 Q(X)dX

VOLy = A1 Ax; = {A; = 1.0, Ax; = 1.0} = 1.0

—1
= Q= / Q(x)dx
-2



Flux Term Approximation

_ -1 1 . .
“ / Qo= {AX + 5B+ 20 DA
_9 2 3 1

-2

Q= /0 Q(x)dx =
J-1

1o 1.4 1_, 0
AX + =Bx* + -Cx* + —Dx
2 3 4 .

al 1 . .
S, / Qx)ax = {AX 2B 420K+ Dxﬂ

_ 2 . o ,
Q4= / Q(x)dx = |:AX + 58)(2 + gCXS i 4DX4:|
1

1



Flux Term Approximation

— 3 7 15
—A-°B+-C-—D
Q 5 +3C 1
— 1 1 1
—A--B+-C--D
Qs 5 +3C 1
— 1 1 1

— 3 7 15



Flux Term Approximation

1

A= —
12

[—61 +7Qq + 763 — 64}
B-— %2 [61 —15Qy + 15Qs — 64}

CZ%{61—62—63+G4}

1

D=
6

[*61 + 362 — 363 + 64}



Flux Term Approximation

Qo = Q(0) + 6Q"(0) = Qo = A + 65D

6 = 0 = fourth-order central scheme
d = 1/12 = third-order upwind scheme

d = 1/96 = third-order low-dissipation upwind scheme



Flux Term Approximation

1— 5— 1—
Qo=A+6D={6=1/12} = *6Q1 + 6@2+ §Q3

1= 5— 1=
QO/eft = Q1+ EQZ + -Q3

6 3

1— 5=
Qorfght - _604 + 6Q3 + QQ

method of characteristics used in order to decide whether
left- or right-upwinded flow quantities should be used



Flux Term Approximation

High-order numerical schemes:

low numerical dissipation (smearing due to amplitudes errors)

low dispersion errors (wiggles due to phase errors)



Conservative Scheme

mass conservation:

=0

\ d — —
cell (): VOL; Eﬁf + (/Ju),+%A/+1§ = (pu);_ 1 A/7%

2

. d _ I J—
cell (i + 1): VOLj 41 &p,_*_l + (pu)/+%A/+% - (pu)er%AiJr% =

(similarly for momentum and energy conservation)



Conservative Scheme

mass conservation:

d
cell (7): VOL; — p;
() /dt/’/
. \ d _ —
cell (i + 1): VOL,+1&p,+1+(pU)/+%A/+%

(similarly for momentum and energy conservation)



Conservative Scheme

Conservative scheme

“The flux leaving one control volume equals the flux
entering neighbouring control volume”

Conservation property for mass, momentum and energy is crucial
for the correct prediction of shocks*

* correct prediction of shocks:
strength

position
velocity
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Addressed Learning Outcomes

12 Explain the main principles behind a modern Finite Volume
CFD code and such concepts as explicit/implicit time
stepping, CFL number, conservation, handling of
compression shocks, and boundary conditions

14 Analyze and verify the quality of the numerical solution
15 Explain the limitations in fluid flow simulation software

what about boundary conditions?
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Time Stepping



Time Stepping

The system of ODEs obtained from the spatial discretization in
vector notation

d

&Q - F(Q)

» Q is a vector containing all DOFs in all cells

» F(Q) is the time derivative of Q resulting from above
mentioned flux approximations
non-linear vector-valued function



Time Stepping

Three-stage Runge-Kutta - one example of many:
Explicit time-marching scheme

Second-order accurate



Time Stepping - Three-stage Runge-Kutta

d
EQ - F(Q)

Let Qn - Q(tn) and Qn+1 - Q(thrl)
t, is the current time level and t,1 is the next time level
At =t — ty is the solver time step
Algorithm:
L. Q° =Q"+AF(Q")
1 1
2. Q7 =Q"+ JAF(Q") + JAF(QY)
1 1
3. QM = Q7+ JAIF(Q) + SAF(Q™)

DOFs in all cells updated from time level t, to time level ¢, .1, repeat procedure for ty 2, th 13, -



Time Stepping - Explicit Schemes

Properties of explicit time-stepping schemes:

Easy to implement in computer codes
Efficient execution on most computers

Easy to adapt for parallel execution on distributed memory
systems (e.g. Linux clusters)

Time step limitation (CFL number)

Convergence to steady-state often slow (there are, however,
some remedies for this)



Time Stepping - Explicit Schemes

Courant-Friedrich-Levy (CFL) number - one-dimensional case:

CFL; =

At(|uj] + aj)

<1

Interpretation: The fastest characteristic (C™ or C™) must not
travel longer than Ax during one time step

ta ax

fom

At
9

max(|u — al, |u+ a|)At = (Ju] + a)At < Ax =

(lul +a)At

=CFL<1
Ax

AX AX




Time Stepping - Explicit Schemes

Steady-state problems:
» local time stepping
» each cell has an individual time step
» At maximum allowed value based on CFL criteria

Unsteady problems:
» time accurate

» all cells have the same time step
» Alj = min {Aty, ..., Aty}



Explicit Finite-Volume Method - Summary

The described numerical scheme is an example of a
density-based, fully coupled scheme




Explicit Finite-Volume Method - Summary

density-based schemes

solve for density in the continuity equation
in general preferred for high-Mach-number flows and for
unsteady compressible flows

pressure-based schemes

the continuity and momentum equations are combined to
form a pressure correction equation

were first used for incompressible flows but have been
adapted for compressible flows also

quite popular for steady-state subsonic/transonic flows



Explicit Finite-Volume Method - Summary

fully-copuled schemes

all equations (continuity, momentum, energy) are solved for
simultaneously

segregated schemes

alternate between the solution of the velocity field and the
pressure field (pressure-based solver)



Explicit Finite-Volume Method - Summary

Spatial discretization:

Control volume formulations of conservation equations are
applied to the acellsa of the discretized domain
Cell-averaged flow quantities (p, pu, p€o) are chosen as
degrees of freedom (DOFs)

Flux terms are approximated in terms of the chosen DOFs

high-order, upwind type of flux approximation is used for
optimum results

A fully conservative scheme is obtained
the flux leaving one cell is identical to the flux entering the
neighboring cell

The result of the spatial discretization is a system of ODEs



Explicit Finite-Volume Method - Summary

Time marching:

Three-stage, second-order accurate Runge-Kutta scheme
Explicit time-stepping
Time step length limited by the CFL condition (CFL < 1)

Classification of numerical scheme:

density-based
includes the continuity equation
fully coupled
all equations are solved simultaneously
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Boundary Conditions



Boundary Conditions

Boundary conditions are very important for numerical simulation
of compressible flows

Main reason: both flow and acoustics involved!
Example 1:
Finite-volume CFD code for Quasi-1D compressible flow

(Time-marching procedure)

What boundary conditions should be applied at the left and right
ends?

left boundary right boundary

computational domain



Boundary Conditions

three characteristics:
C+
o
advection

left boundary

computational domain

right boundary



Boundary Conditions

» C* and C~ characteristics describe the transport of
isentropic pressure waves (often referred to as acoustics)

» The advection characteristic simply describes the transport
of certain quantities with the fluid itself (for example entropy)

» In one space dimension and time, these three
characteristics, together with the quantities that are known
to be constant along them, give a complete description of
the time evolution of the flow

» We can use the characteristics as a guide to tell us what
information that should be specify at the boundaries



Left Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

Subsonic inflow: 0 < u < a
u—a<ao
u>0
u+a>a»0
one outgoing characteristic
two ingoing characteristics

Two variables should be specified at the boundary
The third variable must be left free



Left Boundary - Subsonic Outflow

we have three PDEs, and are solving for three unknowns

Subsonic outflow: —a <u < 0
u—a<ao
u<o
u+a>a»0
two outgoing characteristics
one ingoing characteristic

One variable should be specified at the boundary
The second and third variables must be left free



Left Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

Supersonic inflow: v > a
u—a>a»0
u>0
u+a>a»0
no outgoing characteristics
three ingoing characteristics

All three variables should be specified at the boundary
No variables must be left free



Left Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

Supersonic outflow: u < —a
u—a<ao
u<o
u+a<o
three outgoing characteristics
no ingoing characteristics

No variables should be specified at the boundary
All variables must be left free



Right Boundary - Subsonic Outflow

we have three PDEs, and are solving for three unknowns

Subsonic outflow: 0 < u < a
u—a<ao
u>0
u+a>a»0
one ingoing characteristic
two outgoing characteristics

One variable should be specified at the boundary
The second and third variables must be left free



Right Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

Subsonic inflow: —a < u < 0
u—a<ao
u<o
u+a>a»0
two ingoing characteristics
one outgoing characteristic

Two variables should be specified at the boundary
The third variables must be left free



Right Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

Supersonic outflow: v > a
u—a>a»0
u>0
u+a>a»0
no ingoing characteristics
three outgoing characteristics

No variables should be specified at the boundary
All three variables must be left free



Right Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

Supersonic inflow: u < —a
u—a<ao
u<o
u+a<o
three ingoing characteristics
no outgoing characteristics

All three variables should be specified at the boundary
No variables must be left free



Subsonic Inflow (Left Boundary) - Example

Subsonic inflow: we should specify two variables

Alt  specified  specified well-posed non-reflective
variable 1 variable 2

1 Do To X

2 pu To X

3 S Jt X X
well posed:

the problem has a solution
the solution is unique

the solution’s behaviour changes continuously with initial
conditions



Subsonic Outflow (Left Boundary) - Example

Subsonic outflow: we should specify one variable

Alt  specified well-posed non-reflective

variable
1 D X
2 pu X
3 Jt X X




Subsonic Inflow 2D/3D

Subsonic inflow
Assumption:

exterior

—a<v-n<0

interior

Four ingoing characteristics

[ ST —— ] One outgoing characteristic
v fluld velochy at boundary Specify four variables at the
boundary:

example: po, To, flow direction
(two angles)



Subsonic Outflow 2D/3D

exterior

interior

n unit normal vector
v fluid velocity at boundary

Subsonic outflow
Assumption:
O<v-n<a

One ingoing characteristics

Four outgoing characteristic

Specify one variables at the
boundary:

example: p



Supersonic Inflow 2D/3D

exterior

Supersonic inflow
Assumption:
v-n< -—a

interior

Five ingoing characteristics

[ n  unit nomalvector ] No outgoing characteristics
v fluid velocity at boundary . § .
Specify five variables at the
boundary:

all solver variables specified



Supersonic Outflow 2D/3D

exterior

Supersonic outflow
Assumption:
v-n>a

interior
No ingoing characteristics

[ v Rt ety at boundary ] Five outgoing characteristics
No variables specified at the
boundary:
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Practical Examples:
Grid Resolution and
Numerical Schemes



Numerical Approach

Code: G3D::Flow (Chalmers in-house CFD code)
Finite-Volume Method
Method of lines

Three-stage, second-order accurate Runge-Kutta time
stepping

First-order, second-order, and third-order characteristic
upwinding scheme



Grid Resolution: Compression Ramp

coarse mesh medium mesh fine mesh
71x21 141 x 41 281 x81

density density density
Mach number Mach number Mach number



: Space Shuttle

Grid Resolution

fine mesh

medium mesh

coarse mesh

81x21

R
QRS
LR

9]
Ko}
€
5
<
=
(9]
(o]
=

&
el
E
c
<
9]
5]
=

Mach number



Grid Resolution: Axi-symmetric Slender Body

coarse mesh medium mesh fine mesh
31x21 61x41 121 x81

density density density

Mach number Mach number Mach number




Numerical Scheme: Compression Ramp

first-order upwind second-order upwind third-order upwind
density density density

Mach number Mach number Mach number



Artificial Numerical Damping: Compression Ramp

Mach number along line 1

y1

Mach number along line 2

Low artificial numerical damping

Mach number along line 3

2. 25
2
1.8 —
1.6]
M M 15
1.4
12 |
1
0 2 4 6 0% 2 4 6 8 0% 2 4 6
X X X

first-order upwind scheme
second-order upwind scheme
third-order upwind scheme




Artificial Numerical Damping: Compression Ramp

High artificial numerical damping

y1ﬁ

0
0 1 2 3 4 5 6
X
Mach number along line 1 Mach number along line 2 Mach number along line 3
24 2. 25
22 2
2 18 2 ~—
1.8 1.6]
M M 1.5]
1.6 1.4
1.4 12 J
12 1
T 2 4 6 8 0% 2 4 6 8 0% 2 4 6
X X X

second-order upwind scheme

first-order upwind scheme
third-order upwind scheme
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Available CFD Codes



CFD Codes

List of free and commercial CFD codes:

http://www.cfd-online.com/Wiki/Codes

Free codes are in general unsupported and poorly
documented

Commercial codes are often claimed to be suitable for all

types of flows
The reality is that the user must make sure of this!

Industry/institute/university in-house codes not listed

non-commercial but proprietary
part of design/analysis system


http://www.cfd-online.com/Wiki/Codes

CFD Codes - General Guidlines

Simulation of high-speed and/or unsteady compressible flows:

Use correct solver options
otherwise you may obtain completely wrong solution!

Use a high-quality grid
a poor grid will either not give you any solution at all (no
convergence) or at best a very inaccurate solution!



ANSYS-FLUENT® - Typical Experiences

Very robust solver - will almost always give you a solution
Accuracy of solution depends a lot on grid quality

Shocks are generally smeared more than in specialized
codes

Solver is generally very efficient for steady-state problems

Solver is less efficient for truly unsteady problems, where
both flow and acoustics must be resolved accurately



ANSYS-FLUENT® - Solver Options

Coupled or Density-based depends on version

the continuity, momentum, energy equations are solved for
simultaneously
just like in the Quasi-1D code discussed previously

Density = Ideal gas law

the calorically perfect gas assumption is activated
the energy equation is activated

Explicit or Implicit time stepping
Explicit recommended for unsteady compressible flows
CFL is set to 1 as default, but may be changed

Implicit more efficient for steady-state compressible flows
CFL is set to 5 as default, but may be changed



ANSYS-FLUENT® - Solver Features

Spatial discretization:
Finite-Volume Method (FVM)
Unstructured grids
Fully conservative, density-based scheme

Flux approximations:
first-order, second-order, upwind, ...

Fully coupled solver approach

Explicit time stepping:
Runge-Kutta time stepping

Implicit time stepping:
lterative solver based on Algebraic Multi-Grid (AGM)
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Chapter 16
Properties of
High-Temperature Gases

Chapter 17
High-Temperature Flows:
Basic Examples
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Addressed Learning Outcomes

Define the special cases of calorically perfect gas, thermally
perfect gas and real gas and explain the implication of each
of these special cases

A deep dive into the theory behind the definitions of
calorically perfect gas, thermally perfect gas, and other
models
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Microscopic description of gases




Properties of High-Temperature Gases

Applications:
Rocket nozzle flows
Reentry vehicles
Shock tubes / Shock tunnels

Internal combustion engines



Properties of High-Temperature Gases

Example: Reentry vehicle

Mach 32.5

Air

Calorically perfect gas

Too =283

Table A2 = Ts/To =206

Teo =283 = T =58 300 K



Properties of High-Temperature Gases

Example: Reentry vehicle

Mach 32.5

Air

Calorically perfect gas

Too =283

Table A2 = Ts/To =206
Too =283 = T3 =58 300 K

A more correct value is Ty = 11 600 K

Something is fishy here!



Roadmap - High Temperature Effects

Thermodynamic and Equilibrium gas:
chemical equilibrium practical examples
Gas models: [ Normal shock
Calorically perfect gas l
Thermally perfect gas
Equilibrium gas Nozzle flow
Thermodynamic properties

f

Boltzmann distribution

f

Microscopic description of gases




Chapter 16.2
Microscopic Description of
Gases



Microscopic Description of Gases

Hard to make measurements
Accurate, reliable theoretical models needed

Available models do work quite well



Molecular Energy

O,

Electronic energy of electrons in orbit
(kinetic energy + potential energy)

vy y
Vx X [* Z4VAVAVAVAVAVAVAVAS |
Vz
Translational kinetic energy Rotational kinetic energy Vibrational energy
thermal degrees of freedom: 3 thermal degrees of freedom: (kinetic energy + potential energy)
2 for diatomic gases thermal degrees of freedom: 2
2 for linear polyatomic gases
3 for non-inear polyatomic gases
o C o
*—o—0 H H
COy Ha0 °/‘\°
linear polyatomic molecule non-linear polyatomic molecule
» Translational energy
» Rotational energy
(only for molecules - not for mono-atomic gases)
» Vibrational energy
» Electronic energy



Molecular Energy

The energy for one molecule can be described by

r_ / / /
€ = Etrans + Erot =+ Evib + el

Results of guantum mechanics have shown that each
energy is quantized i.e. they can exist only at discrete values

Not continuous! Might seem unintuitive



Molecular Energy

The lowest quantum numbers defines the zero-point energy
for each mode

» for rotational energy the zero-point energy is exactly zero

> &0, 1S Very small but finite - at absolute zero, molecules still
moves but not much

o o
[ gjffans o Eftrans Eotrans ] [ 6/V/b - 8/‘// 6ovib ]
o VA
kot = skrot Emey = Emel 509/




Energy States

R

three cases with the same rotational energy
different direction of angular momentum
guantum mechanics =- different distinguishable states

a finite number of possible states for each energy level



Macrostates and Microstates

Macrostate:

» molecules collide and exchange energy = the /N distribution
(the macrostate) will change over time

» some macrostates are more probable than other

» most probable macrostates (distribution) = thermodynamic
equilibrium

Microstate:

» same number of molecules in each energy level but different
states

» the most probable macrostate is the one with the most
possible microstates = possible to find the most probable
macrostate by counting microstates



Macrostates and Microstates

Macrostate | Microstate |

e ° ° o o o
e ° ° ° o .
ch ° ° ° o o
e o . .

(No = 2,90 = 5)

(N1 =5,91 = 6)

(N2 = 3,92 =5)

Ny = 2,9, =3)



Macrostates and Microstates

Macrostate | Microstate Il

A o} ° o} o °
4 . o . ] ]
b o o . ° ]
e o . .

(No = 2,90 = 5)

(N1 =5,91 = 6)

(N2 = 3,92 =5)

Ny = 2,9, =3)



Macrostates and Microstates

Macrostate Il Microstate |

e o ° o o o
e ° o ° ° .
ch ° o ° ° °
e o o .

(No=1,90 = 5)

(N1 =5,91 = 6)

(N2 = 4,92 =5)

Ny =1,g;, =3)



Macrostates and Microstates
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Chapter 16.5
The Limiting Case:
Boltzmann Distribution



Boltzmann Distribution

The Boltzmann distribution:

—&; /KT
x ge ”
N = =N a

where Q = f(T, V) is the state sum defined as

Q=Y ge o
J
g; is the number of degenerate states, ¢; is the energy above

zero-level (¢; = €/ — o), and k is the Boltzmann constant



Boltzmann Distribution

The Boltzmann distribution:

. /KT

/\/j* - /\/g/T
For molecules or atoms of a given species, quantum
mechanics says that a set of well-defined energy levels
g exists, over which the molecules or atoms can be
distributed at any given instant, and that each energy
level has a certain number of energy states, g;.

For a system of N molecules or atoms at a given T and
Vv, l\/j* are the number of molecules or atoms in each
energy level e; when the system is in thermodynamic
equilibrium.



Boltzmann Distribution

Boltzmann distribution for a specific temperature

» At temperatures above ~ 5K, molecules are distributed over
many energy levels, and therefore the states are generally
sparsely populated (N; < g))

» Higher energy levels become more populated as
temperature increases
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Chapter 16.6 - 16.8
Evaluation of Gas
Thermodynamic Properties



Internal Energy

The internal energy is calculated as

E = k2 (219
aT ),

The internal energy per unit mass is obtained as

E  NKT? (0InQ k 5 (0InQ
“TM T Nm < or )v_{m_R}_RT ( ar >v




Internal Energy - Translation

, h? (n? n3 n}
Etrans = g %+%+a§

ny —ns quantum numbers (1,2,3,...)

a; —as linear dimensions that describes the size of the system
h Planck’s constant
m mass of the individual molecule

2mmkT \ */?
Qirans = (f72> 4



Internal Energy - Translation

2rmkT\ %2
Qtrans - (ﬂ-> 4

h2

3 3. 2mmk

IIIQl‘rans — 5 lnT + 5 hl hT + ln\/ =
01n Qtrans _ §l N
or ), 2T
0 In Qrans 9 3 3
Etrans = RT? <> =RT7T*“— = -RT

=T oT )y 2T — 2



Internal Energy - Rotation

2

h
Erot = sl 1)

J rotational quantum number (0,1,2,...)
! moment of inertia (tabulated for common molecules)
h Planck’s constant

8m2IkT
Qrot - L



Internal Energy - Rotation

8m2IkT
Qrot = T
8m2lk
throt = lnT—I—ln 7/;72 =

athrot _1
( o7 )V_T:

0lnQ 1
ot = RT? ( aTmf)V — F»’TQT —RT




Internal Energy - Vibration

1
E\l/lb = hV (n + 2)

n vibrational quantum number (0,1,2,...)
v fundamental vibrational frequency (tabulated for common molecules)
h Planck’s constant

Qub = T



Internal Energy - Vibration

1
Quip = 1 — o—hv/kT

InQup = —In(1 — e ™) =

(a In Qv,b> hu /KT?

or ), ek —1

d1n Qup , hv/kT?

hv /KT

_ AT2 _ _
evp = AT ( oT )V_RT /KT 1~ kT 1

hv /KT

hIn —
ehl//kT -1

T—o0

=1=e <RT

RT



Specific Heat

€ = €trans + €rot + Eyip + E¢/

hv /KT
oI /KT—1

(%),

3
e= SRT +RT + RT + ey

Cy



Specific Heat

Molecules with only translational and rotational energy

3 ) )
e—iRT+RT—§RT:>CV—§F?



Specific Heat

Mono-atomic gases with only translational and rotational energy

3 3
= —RT =-R
e 5 = C, 5

5
Co 5 2
— —=1-~1.67
TTC, T3 3
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Calorically Perfect Gas

» In general, only translational and rotational modes of
molecular excitation

» Translational and rotational energy levels are sparsely
populated, according to Boltzmann distribution (the
Boltzmann limit)

» Vibrational energy levels are practically unpopulated (except
for the zero level)

» Characteristic values of ~ for each type of molecule, e.g.
mono-atomic gas, di-atomic gas, tri-atomic gas, etc
» He, Ar, Ne, ... - mono-atomic gases (y = 5/3)
» Ha, Oy, No, ... - di-atomic gases (y = 7/5)
» H-0 (gaseous), COs, ... - tri-atomic gases (y < 7/5)



Calorically Perfect Gas

p=pRT e=C,T
h=C,T
h=e+p/p

v, R, Cy, and C,, are constants



Thermally Perfect Gas

In general, only translational, rotational and vibrational modes
of molecular excitation

Translational and rotational energy levels are sparsely
populated, according to Boltzmann distribution (the
Boltzmann limit)

The population of the vibrational energy levels approaches
the Boltzmann limit as temperature increases

Temperature dependent values of ~ for all types of molecules
except mono-atomic (no vibrational modes possible)



Thermally Perfect Gas

p=pRT e=¢e(T) C, =de/dT
h=h(T) Cp =dh/dT

R is constant
7, Cv, and Cy, are variable (functions of T)

a = [ = VAT



High-Temperature Effects

Example: properties of air

Thermally perfect gas:
e and h are non-linear functions of T

T
A the temperatur range represents standard
atmospheric pressure (lower pressure gives
lower temperatures)
2000 K
region of variable ~ thermally perfect gas
4
600 K A
region of constant v (y=1.4) calorically perfect gas
50 K £




High-Temperature Effects
For cases where the vibrational energy is not negligible (high
temperatures)

lim ey = RT = C, = ZR
T—o0 2

However, chemical reactions and ionization will take place long
before that

» Translational and rotational energy fully excited above ~5 K
» Vibrational energy is non-negligible above 600 K
» Chemical reactions begin to occur above ~2000 K



High-Temperature Effects

As temperature increase further vibrational energy becomes
less important

Why is that so?



High-Temperature Effects

Example: properties of air (continued)

T A
9000 K o—ot + e~ (start of ionization)
4000 K No — 2N (start of dissociation)
2500 K Oo — 20 (start of dissociation)
no reactions

With increasing temperature, the gas becomes more and more
mono-atomic which means that vibrational modes becomes less
important



Equilibrium Gas

For temperatures T >~ 2500K

» Air may be described as being in thermodynamic and
chemical equilibrium (Equilibrium Gas)
» reaction rates (time scales) low compared to flow time scales
» reactions in both directions (example: Oy = 20)

» Tables must be used (Equilibrium Air Data) or special
functions which have been made to fit the tabular data



Equilibrium Gas

How do we obtain a thermodynamic description?

p=pR,T) e=e(T) o _ oe
Y\oar ),
h=h(p,T)
oh
%= (i)
h:e—l—8 . a1 p
p
() @)
p\ov)+ Cp oT o

my|

3

Il
< | O

Note: R is not a constant here
i.e. this is not the ideal gas law
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Chapter 17.1
Thermodynamic and
Chemical Equilibrium



Thermodynamic Equilibrium

Molecules are distributed among their possible energy states
according to the Boltzmann distribution (which is a statistical
equilibrium) for the given temperature of the gas

extremely fast process (time and length scales of the
molecular processes)

much faster than flow time scales in general (not true inside
shocks)



Thermodynamic Equilibrium

Global thermodynamic equilibrium:

there are no gradients of p, T, p, v, species concentrations

"true thermodynamic equilibrium”

Local thermodynamic equilibrium:

gradients can be neglected locally

this requirement is fulfilled in most cases (hard not to get)



Chemical Equilibrium

Composition of gas (species concentrations) is fixed in time

» forward and backward rates of all chemical reactions are
equal

» zero net reaction rates

» chemical reactions may be either slow or fast in comparison
to flow time scale depending on the case studied



Chemical Equilibrium

Global chemical equilibrium:

there are no gradients of species concentrations

together with global thermodynamic equilibrium =
all gradients are zero

Local chemical equilibrium

gradients of species concentrations can be neglected locally

not always true - depends on reaction rates and flow time
scales



Thermodynamic and Chemical Equilibrium

Most common cases:

Thermodynamic Equilibrium

Chemical Equilibrium

Gas Model

local thermodynamic equilibrium
local thermodynamic equilibrium
local thermodynamic equilibrium
thermodynamic non-equilibrium

B~ N =

local chemical equilibrium

chemical non-equilibrium
frozen composition
frozen composition

equilibrium gas
finite rate chemistry
frozen flow
vibrationally frozen flow

» length and time scales of flow decreases from 1 to 4

» Frozen composition = no (or slow) reactions
» vibrationally frozen flow gives the same gas relations as

calorically perfect gas!

» no chemical reactions and unchanged vibrational energy
» example: small nozzles with high-speed flow
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Chapter 17.2
Equilibrium Normal Shock
Wave Flows



Equilibrium Normal Shock Wave Flows

Question: Is the equilibrium gas assumption OK?

Answer:

for hypersonic flows with very little ionization in the shock
region, it is a fair approximation

not perfect, since the assumption of local thermodynamic
and chemical equilibrium is not really true around the shock

however, it gives a significant improvement compared to the
calorically perfect gas assumption



Equilibrium Normal Shock Wave Flows
Basic relations (for all gases), stationary normal shock:
p1UL = palz

p1U; +P1 = paU3 + P2

1 1
hy éuf =hy + §u§

For equilibrium gas we have:
p=p(p,h)

T =T(p,h)

(we are free to choose any two states as independent variables)



Equilibrium Normal Shock Wave Flows

Assume that p1, U1, p1, 71, and hy are known

2
1U1 1

Uy = N p1U; +P1 = p2 (pU1> + P2 =
p2 P2

p2 = P1+ p1Ui (1 - p1>
P2

Also

1 L /p1 ’
hi+=t=hy+ =520 | =
1+21 2+2<p2 1>

[ P1 ’
hy = hn 4+ Lu 1_<>
’ ! 21( P2 )



Equilibrium Normal Shock Wave Flows

P1 when converged:

initial guess —
p2 = p(P2,h2)
=

P2
Ty = T(p2,h2)

calculate
p2 and ha

r1 p2, Uz, P2, T2, ha known
update P p2 = p(p2,h2)

U

l yes

stop



Equilibrium Air - Normal Shock

Tables of thermodynamic properties for different conditions are
available

For a very strong shock case (M, = 32), the table below (Table
17.1) shows some typical results for equilibrium air

calorically perfect gas | equilibrium air

(y=14)
pg/pl 5.97 15.19
ha/hy 206.35 212.80

To/ Ty 206.35 41.64




Equilibrium Air - Normal Shock

Analysis:

» Pressure ratio is comparable
» Density ratio differs by factor of 2.5
» Temperature ratio differs by factor of 5

Explanation:

» Using equilibrium gas means that vibration, dissociation and
chemical reactions are accounted for
» The chemical reactions taking place in the shock region lead
to an "absorption” of energy into chemical energy
» drastically reducing the temperature downstream of the

shock
» this also explains the difference in density after the shock



Equilibrium Air - Normal Shock

Additional notes:

For a normal shock in an equilibrium gas, the pressure ratio,
density ratio, enthalpy ratio, temperature ratio, etc all depend
on three upstream variables, e.g. u1, p1, 71

For a normal shock in a thermally perfect gas, the pressure
ratio, density ratio, enthalpy ratio, temperature ratio, etc all
depend on two upstream variables, e.g. My, T,

For a normal shock in a calorically perfect gas, the pressure
ratio, density ratio, enthalpy ratio, temperature ratio, etc all
depend on one upstream variable, e.g. My



Equilibrium Gas - Detached Shock

calorically perfect gas equilibrium gas
M =20 M =20
—_— —_—

shock moves closer to body

What's the reason for the difference in predicted shock
position?



Equilibrium Gas - Detached Shock

Calorically perfect gas:

all energy ends up in translation and rotation = increased
temperature

Equilibrium gas:

energy is absorbed by reactions = does not contribute to the
increase of gas temperature
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Chapter 17.3
Equilibrium
Quasi-One-Dimensional
Nozzle Flows



Equilibrium Quasi-1D Nozzle Flows

First question: Is chemically reacting gas also isentropic
(for inviscid and adiabatic case)?

entropy equation: Tds = dh — vdp
Quasi-1D equations in differential form (all gases):
momentum equation: dp = —pudu

energy equation: dh+udu=0



Equilibrium Quasi-1D Nozzle Flows

o
udu = P —vap
P
Tds = —udu — vdp = —udu +udu =0 =

ds=0

Isentropic flow!



Equilibrium Quasi-1D Nozzle Flows

Second question: Does the area-velocity relation also hold for a
chemically reacting gas”?

Isentropic process gives

M = 1 at nozzle throat still holds



Equilibrium Quasi-1D Nozzle Flows

For general gas mixture in thermodynamic and chemical
equilibrium, we may find tables or graphs describing relations
between state variables.

Example: Mollier diagram

hﬂ

p = constant

T = constant

\

for any point (h, s), we may findp, T, p, a, ...




Equilibrium Quasi-1D Nozzle Flows

To

assume hp is known

P2
T2

2

<—— isentropic process

For steady-state inviscid
adiabatic nozzle flow we have:

1 1.
h1+§u%:h2+§u§:ho

where h, is the reservoir
enthalpy




Equilibrium Quasi-1D Nozzle Flows

At point 1 in Mollier diagram we have:

1
iu%:ho*fhiul: 2(ho*h1)

Assume that u; = ay (sonic conditions) gives

p1U1A1 = p*a*A*

At any point along isentropic line, we have u = /2(h, — h) and p,
p, T, a etc are all given which means that pu is given
A* pu

may be computed for any point along isentropic line



Equilibrium Quasi-1D Nozzle Flows

Equilibrium gas gives higher T and more thrust

During the expansion chemical energy is released due to
shifts in the equilibrium composition

T

A

A

equilibrium gas

calorically perfect gas

] AJA*



Equilibrium Quasi-1D Nozzle Flows

Equilibrium gas gives higher T and more thrust

During the expansion chemical energy is released due to
shifts in the equilibrium composition

T

A

A

equilibrium gas

calorically perfect gas

] AJA*

Chemical and vibrational energy transfered to translation and
rotation = increased temperature



Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:

equilibrium gas
real case
calorically perfect gas

] AJA*



Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:

equilibrium gas
real case
calorically perfect gas

] AJA*

Space nozzle applications: ug &~ 4000 m/s
Required prediction accuracy 5 m/s



Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Equilibrium gas:
very fast chemical reactions
local thermodynamic and chemical equilibrium

Vibrationally frozen gas:
very slow chemical reactions
(no chemical reactions = frozen gas)
vibrational energy of molecules have no time to change
calorically perfect gas!



Large Nozzles

High T,, high po, high reactivity
Real case is close to equilibrium gas results

Example: Ariane 5 launcher, main engine (Vulcain 2)

v

Hy + Oy — H5O in principle, but many different radicals and
reactions involved (at least ~10 species, ~20 reactions)

To ~ 3600 K, po ~ 120 bar
Length scale ~ a few meters

Gas mixture is quite close to equilibrium conditions all the
way through the expansion

v

v

v



Ariane 5

Ariane 5 space launcher

extreme high temperature and
high speed flow regime




Vulcain Engine

Vulcain engine:

first stage of the Ariane 5
launcher




Space Shuttle Launcher - SSME




Space Shuttle Launcher - SSME




Small Nozzles

Low Ty, low po, lower reactivity
Real case is close to frozen flow results
Example:

Small rockets on satellites (for maneuvering, orbital adjustments,
ete)




Small Nozzles
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Chapter 6
Differential Conservation
Equations for Inviscid Flows



Overview

governing
equations

nozzles

Quasi
1D Flow

diffusers

substantial
derivative

noncon-
servation
form

entropy

equation
conser-

vation
form governing
equations
Crocco’s
equation

moving
shocks

shock
reflection

traveling
waves

acoustic
waves




Addressed Learning Outcomes

Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

the governing equations for compressible flows on
differential form - finally ...



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on conservation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

. —>[ PDE:s on non-conservation form

‘ The entropy equation

'

[ Crocco’s theorem ]




Chapter 6.2
Differential Equations in
Conservation Form



Differential Equations in Conservation Form

Basic principle to derive PDE:s in conservation form:

Start with control volume formulation
Convert to volume integral via Gauss Theorem

Arbitrary control volume implies that integrand equals to zero
everywhere



Continuity Equation

Mass conservation:
Control volume formulation
d dV asS =0
gt JJJ a7+ {f v -mas =
Q o0
where Q is a fixed control volume
Applying Gauss Theorem gives

@ pv -ndS = fff V- (pv)d¥
o9 Q

Also,

aJf v0r = Jff 5o



Continuity Equation

Therefore

Jif v ] ar =0

Q) is an arbitrary control volume, can be made infinitesimally small
and thus

{gi‘)JrV(pv):O}

which is the continuity equation




Momentum Equation

Momentum conservation:
Control volume formulation
d
p jjj pvd? + @ [p(v-n)v+pn]dS = jjj pfdv
Q o Q
where € is a fixed control volume

Applying Gauss Theorem gives

ﬁp(v -n)vadS = fjf V- (pvv)d? ﬁpndS = ffj Vpdy
0Q Q 0Q Q

Also,

d 9
X jgﬂ ovd ¥ = gf o (V)Y



Momentum Equation

Therefore

I [;(PV) +V - (pvv) +Vp - pf} av =0
Q

Q) is an arbitrary control volume, can be made infinitesimally small
and thus

{ g(pV)+V‘(pVV)+VD=pf}

which is the momentum equation



Momentum Equation

In cartesian form (v = uey + ve, + wey):

ot

ot

ot

Q(pU) + V- (puv) + o

D+ (o) +

ox

oy

= pr

) 0
(W) +V - (pwv) + aiz) = pfy

J




Momentum Equation

or expanded:

&(PU) + o (puu) + ay (puv) + @WW) + = = pfy

0 0 0 ap

&(pv) + Ix (pVU) + aiy(p\/\/) + g(PVW) + 87)/ = pfy
0 0 0 o op B
&(PW) + o (pwu) + 6—y(pwv) + E(pww) +5 = ol




Momentum Equation

0
—(pv) + V- (pvv) + Vp = pf

ot
(puu +p) puv pUW
pvu (pw +p) pYw = pvv +pl
pWU PWV (pww + p)

SIS

|

(pv) + V- (pvv +pI) = pf ]




Energy Equation

Energy conservation:
Control volume formulation
d .
= Jﬂ peod¥ + ﬁﬁ pho(v - n)dS = jﬂ of - vd ¥
Q Bly) Q
where Q is a fixed control volume
Applying Gauss Theorem gives

@ pho(v - 1n)dS = ﬂj V - (phov)d ¥V
o0 Q

Also,

% ([ peoar = [[[ %peow
Q Q



Energy Equation

Therefore

jjf [gt(peo) + V- (phov) — p(f- V)} dv =0
Q

Q) is an arbitrary control volume, can be made infinitesimally small
and thus

{ ;(Peo) + V- (phov) = p(f-v) }

which is the energy equation



Partial Differential Equations in Conservation Form

op B
E +V. (pV) =0
0
;) + V- (pvv) + Vp = pf
o
57 (PEo) + V- (phov) = p(f - v)

(. J

These equations are referred to as PDE:s on conservation form
since they stem directly from the integral conservation equations
applied to a fixed control volume



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

, —>[ PDE:s on non-conservation form ]
== +v-V l

‘ The entropy equation

'

[ Crocco’s theorem ]




Chapter 6.4
Differential Equations in
Non-Conservation Form



The Substantial Derivative

Introducing the substantial derivative operator

D 0

”... the time rate of change of any quantity associated with a particular moving fluid element is given by
the substantial derivative ...”

”... the properties of the fluid element are changing as it moves past a point in a flow because the
flowfield itself may be fluctuating with time (the local derivative) and because the fluid element is simply
on its way to another point in the flowfield where the properties are different (the convective derivative)



Non-Conservation Form of Continuity Equation

Applying the substantial derivative operator to density gives

Dp p

Continuity equation:

ap dp B
E+V~(pv)—g+v Vp+p(V-v)=0=

Dp




Non-Conservation Form of Continuity Equation

Dp
Dt‘i‘p(V'V)—O}

”... the mass of a fluid element made up of a fixed set of
particles (molecules or atoms) is constant as the fluid
element moves through space ...”



Non-Conservation Form of Momentum Equation
d
at(pv) + V- (pvv +pl) = pf =

op
pat +v§+pv-VV+V(V-pv)—|—Vp—pf:>

ov dp
{at—i-v VV] +v{8t+v pv} +Vp = pf

Dv =0

=Dt




Non-Conservation Form of Energy Equation

Q(peo) + V- (phov) = p(f-v) + pq

ot
ho =€ + P =
p
0 .
&(peo) + V- (peov)+ V- (pv)=p(f-v)+ pg =
680 6p

pWJreoEerv-VeoqLeoV-(pv)+V~(,Ov) =p(f-v)+pg =

0 0 )
p{ae;%—v-Veo} +€o {8—/;4-V-(pv)} +V - (pv) =p(f-v)+ pq

_Deo =0
Dt




Non-Conservation Form of Energy Equation

De .
pop TV (Pt v)=pf-v+pd

1
eo:e+§v~vi

De

D )
pﬁ+pV~l+V~(DV):pf~V+pq

Dt

D 1
Using the momentum equation, <D‘t/ + -Vp = f>, gives
p

e .
pE—V-V,O+pf'v+v-V,O+p(V'V):pf~v+pq:>

De p

Dter(V'V)C'/}




Non-Conservation Form of Energy Equation

De ,o(
Dt

From the continuity equation we get

V-v)=qg

gt+p(v v)=0=V-.v —%%é
[E))f%%_ gf+th<1>—q
De . Dv
{Dt_q Dt
where v = 1/p

Compare with first law of thermodynamics: de = 6qg — éW



Non-Conservation Form of Energy Equation

If we instead express the energy equation in terms of enthalpy:

De . D (1\_De D(1\_.
bt~ 97 Ppor ) bt Pbr p —

p _Dh De 1D—’O+ D(1>

h = — - = _ = = —_ | =
et 7ot ~ ot T opt TPoi\,

%7+1D7,O
pt 9 p Dt




Non-Conservation Form of Energy Equation
and total enthalpy ...

Po=htiv.ys Do DN, DV
o=NF VY= T o TV o

From the momentum equation we get

Dv &

1
,ODT+V,O :>Dt pr+ =

Dho Dh 1
Dt Dt
~~




Non-Conservation Form of Energy Equation

Dh, . 1 [Dp
-0 _ - v f.
Dt Q+p[Dt VV,O]Jr \4
. . ... Dp .
Expanding the substantial derivative i gives
Do dp
D o +v-Vp =
Dho 10p .
{ ﬁ = pat‘FQ‘l-fV}

Let’s examine the above relation ...



Non-Conservation Form of Energy Equation

Dh, 10p
Dt p Ot

The total enthalpy of a moving fluid element in an inviscid flow
can change due to

unsteady flow: dp/dt # 0

heat transfer: g # 0
body forces: f-v #£ 0



Non-Conservation Form of Energy Equation

Adiabatic flow and without body forces =

Dho 19p

Dt pot

Steady-state adiabatic flow without body forces =

Dh,

ot 0

ho is constant along streamlines!



Additional Form of Energy Equation

Start from
e . D1
Dt q le‘ P

Calorically perfect gas:

R
e=0C,T; Cvz—l;p:pF?T; ~v,R = const
N —

Dt ‘Dt  ~N—1Dt\pR) ~—1Dt\p



Additional Form of Energy Equation



Additional Form of Energy Equation

Continuity:

Dp

D 1 Dp



Additional Form of Energy Equation

D .
2+ PV V) = (7= Dpd

Adiabatic flow (no added heat):

{%;ﬂLvD(V'V):O}

Non-conservation form (calorically perfect gas)



Conservation Form

o0Q OE OF 0G

v Ty T

where Q(x,y,z,t), E(x,y,z,t), ... may be scalar or vector fields

Example: the continuity equation
dp 0 0 0 B
T &(Pu) + @(PV) + &(PW) =0

If an equation cannot be written in this form, it is said to be in
non-conservation form



Euler Equations - Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no
added heat)

4 N\

p 9 9

0
T a(ﬁu) + @(PV) + &(PW) =0

0 0 0 0
&(Pu) + &(/JUU +p) + a*y(PUV) + E(PUW) =0

0 0 0 0
a7 (V) + o (pvu) + @(pvv +p) + o (pw) =0

(ow) + 2 (owa) + 2 (o) + -2 (pww + p) = 0

ot ox oy 0z

0 0
&(Peo) + 7(Phou> + 5




Euler Equations - Non-Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no
added heat), calorically perfect gas

%+u@+va—+w@+ %Jr@Jra—W =0
ot "ax oy T Vaz TP \ax Tay Tz ) T

ou ou ou ou 10p
U v +w -

at TYax TVay TWar T ax T

ap op op op ou ov ow\
ar“’a +vay+ g +’yp<a +8y+6z>0




Conservation and Non-Conservation Form

The governing equations on non-conservation form are not,
although the name might give that impression, less physically
accurate than the equations on conservation form. The
nomenclature comes from CFD where the equations on
conservation form are preferred.



Conservation and Non-Conservation Form

Conservation forms are useful for:

Numerical methods for compressible flow

Theoretical understanding of non-linear waves (shocks etc)
Provide link between integral forms (control volume
formulations) and PDE:s

Non-conservation forms are useful for:
Theoretical understanding of behavior of numerical methods
Theoretical understanding of boundary conditions
Analysis of linear waves (aero-acoustics)



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

D V —>[ PDE:s on nonwservation form ]

‘ The entropy equation

'

[ Crocco’s theorem ]




Chapter 6.5
The Entropy Equation



The Entropy Equation

From the first and second law of thermodynamics we have

De . Ds D (1
bt~ 'Df Por P

which is called the entropy equation



The Entropy Equation
Compare the entropy equation
De .Ds D1
bt ot Por\,

with the energy equation (inviscid flow):

be . D1
ot 9 Ppor P
we see that

Ds
Dt



The Entropy Equation
If § = 0 (adiabatic flow) then

Ds_

E—O

i.e., entropy is constant for moving fluid element

Furthermore, if the flow is steady we have

Ds  0Os

— =—+(v-V)s=(v-V)s=0

Dt ot

i.e., entropy is constant along streamlines



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

D V —>[ PDE:s on nonwservation form ]

‘ The ent equation ]

'

[ Crocco’s theorem ]




Chapter 6.6
Crocco’s Theorem



Crocco’s Theorem

”... a relation between gradients of total enthalpy,
gradients of entropy, and flow rotation ...”



Crocco’s Theorem
Momentum equation (no body forces)

Dv
Ppr = -Vp

Writing out the substantial derivative gives

ov ov 1
pa+pv-VV——Vp:>E+v-VV——;V,O

First and second law of thermodynamics (energy equation)
1
dh =Tds + ;dp
Replace differentials with a gradient operator

1 1
Vh=TVs+ ;Vp:> TVs =Vh— ;Vp



Crocco’s Theorem

With pressure derivative from the momentum equation inserted in
the energy equation we get

TVS—VfH—aa‘;—i-v-Vv

1 1

1
V(§V-v):v><(V><v)+v-Vv

V(A-B)=(A- V) B+ (B:- V) A+ A X (VXxB)+Bx(VxA)
A=B=v=>

V(v:-v)=2[v:-Vv+vx(VxvV)




Crocco’s Theorem

TVS—Vho—vx(va)—v-Vv—i—i);tf—i—v'Vv

TVS:VhO—I—%—‘;—VX(VXV)

Note: V x v is the vorticity of the fluid

1
the rotational motion of the fluid is described by the angular velocity w = 5 (V X v)



Crocco’s Theorem

TVS:Vho—I—%—VX(VXV)

i

.. When a steady flow field has gradients of total
enthalpy and/or entropy Crocco’s theorem dramatically
shows that it is rotational ...”



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo constant shock

ho constant
s constant

v

S is constant upstream of shock
jump in s across shock depends on local shock angle

v

v

s will vary from streamline to streamline downstream of shock

v

Vs # 0 downstream of shock



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo constant shock

ho constant
s constant

[

Total enthalpy upstream of shock

ho is constant along streamlines
ho is uniform

Total enthalpy downstream of shock
ho is uniform

Vho:()



Crocco’s Theorem - Example

Crocco’s equation for steady-state flow:

TVs =Vhy —v x (V xv)

v x (V x v) # 0 downstream of a curved shock
the rotation V x v # 0 downstream of a curved shock

Explains why it is difficult to solve such problems by analytic
means!



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

D V —>[ PDE:s on nonwservation form ]

‘ The ent equation ]

!
[ Croccweorem ]
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