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Chapter 6
Differential Conservation
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Addressed Learning Outcomes

Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

the governing equations for compressible flows on
differential form - finally ...



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on conservation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

. —>[ PDE:s on non-conservation form

‘ The entropy equation

'

[ Crocco’s theorem ]




Chapter 6.2
Differential Equations in
Conservation Form



Differential Equations in Conservation Form

Basic principle to derive PDE:s in conservation form:

Start with control volume formulation
Convert to volume integral via Gauss Theorem

Arbitrary control volume implies that integrand equals to zero
everywhere



Continuity Equation

Mass conservation:
Control volume formulation
d dV asS =0
gt JJJ a7+ {f v -mas =
Q o0
where Q is a fixed control volume
Applying Gauss Theorem gives

@ pv -ndS = fff V- (pv)d¥
o9 Q

Also,

aJf v0r = Jff 5o



Continuity Equation

Therefore

Jif v ] ar =0

Q) is an arbitrary control volume, can be made infinitesimally small
and thus

{gi‘)JrV(pv):O}

which is the continuity equation




Momentum Equation

Momentum conservation:
Control volume formulation
d
p jjj pvd? + @ [p(v-n)v+pn]dS = jjj pfdv
Q o Q
where € is a fixed control volume

Applying Gauss Theorem gives

ﬁp(v -n)vadS = fjf V- (pvv)d? ﬁpndS = ffj Vpdy
0Q Q 0Q Q

Also,

d 9
X jgﬂ ovd ¥ = gf o (V)Y



Momentum Equation

Therefore

I [;(PV) +V - (pvv) +Vp - pf} av =0
Q

Q) is an arbitrary control volume, can be made infinitesimally small
and thus

{ g(pV)+V‘(pVV)+VD=pf}

which is the momentum equation



Momentum Equation

In cartesian form (v = uey + ve, + wey):

ot

ot

ot

Q(pU) + V- (puv) + o

D+ (o) +

ox

oy

= pr

) 0
(W) +V - (pwv) + aiz) = pfy

J




Momentum Equation

or expanded:

&(PU) + o (puu) + ay (puv) + @WW) + = = pfy

0 0 0 ap

&(pv) + Ix (pVU) + aiy(p\/\/) + g(PVW) + 87)/ = pfy
0 0 0 o op B
&(PW) + o (pwu) + 6—y(pwv) + E(pww) +5 = ol




Momentum Equation

0
—(pv) + V- (pvv) + Vp = pf

ot
(puu +p) puv pUW
pvu (pw +p) pYw = pvv +pl
pWU PWV (pww + p)

SIS

|

(pv) + V- (pvv +pI) = pf ]




Energy Equation

Energy conservation:
Control volume formulation
d .
= Jﬂ peod¥ + ﬁﬁ pho(v - n)dS = jﬂ of - vd ¥
Q Bly) Q
where Q is a fixed control volume
Applying Gauss Theorem gives

@ pho(v - 1n)dS = ﬂj V - (phov)d ¥V
o0 Q

Also,

% ([ peoar = [[[ %peow
Q Q



Energy Equation

Therefore

jjf [gt(peo) + V- (phov) — p(f- V)} dv =0
Q

Q) is an arbitrary control volume, can be made infinitesimally small
and thus

{ ;(Peo) + V- (phov) = p(f-v) }

which is the energy equation



Partial Differential Equations in Conservation Form

op B
E +V. (pV) =0
0
;) + V- (pvv) + Vp = pf
o
57 (PEo) + V- (phov) = p(f - v)

(. J

These equations are referred to as PDE:s on conservation form
since they stem directly from the integral conservation equations
applied to a fixed control volume



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

, —>[ PDE:s on non-conservation form ]
== +v-V l

‘ The entropy equation

'

[ Crocco’s theorem ]




Chapter 6.4
Differential Equations in
Non-Conservation Form



The Substantial Derivative

Introducing the substantial derivative operator

D 0

”... the time rate of change of any quantity associated with a particular moving fluid element is given by
the substantial derivative ...”

”... the properties of the fluid element are changing as it moves past a point in a flow because the
flowfield itself may be fluctuating with time (the local derivative) and because the fluid element is simply
on its way to another point in the flowfield where the properties are different (the convective derivative)



Non-Conservation Form of Continuity Equation

Applying the substantial derivative operator to density gives

Dp p

Continuity equation:

ap dp B
E+V~(pv)—g+v Vp+p(V-v)=0=

Dp




Non-Conservation Form of Continuity Equation

Dp
Dt‘i‘p(V'V)—O}

”... the mass of a fluid element made up of a fixed set of
particles (molecules or atoms) is constant as the fluid
element moves through space ...”



Non-Conservation Form of Momentum Equation
d
at(pv) + V- (pvv +pl) = pf =

op
pat +v§+pv-VV+V(V-pv)—|—Vp—pf:>

ov dp
{at—i-v VV] +v{8t+v pv} +Vp = pf

Dv =0

=Dt




Non-Conservation Form of Energy Equation

Q(peo) + V- (phov) = p(f-v) + pq

ot
ho =€ + P =
p
0 .
&(peo) + V- (peov)+ V- (pv)=p(f-v)+ pg =
680 6p

pWJreoEerv-VeoqLeoV-(pv)+V~(,Ov) =p(f-v)+pg =

0 0 )
p{ae;%—v-Veo} +€o {8—/;4-V-(pv)} +V - (pv) =p(f-v)+ pq

_Deo =0
Dt




Non-Conservation Form of Energy Equation

De .
pop TV (Pt v)=pf-v+pd

1
eo:e+§v~vi

De

D )
pﬁ+pV~l+V~(DV):pf~V+pq

Dt

D 1
Using the momentum equation, <D‘t/ + -Vp = f>, gives
p

e .
pE—V-V,O+pf'v+v-V,O+p(V'V):pf~v+pq:>

De p

Dter(V'V)C'/}




Non-Conservation Form of Energy Equation

De ,o(
Dt

From the continuity equation we get

V-v)=qg

gt+p(v v)=0=V-.v —%%é
[E))f%%_ gf+th<1>—q
De . Dv
{Dt_q Dt
where v = 1/p

Compare with first law of thermodynamics: de = 6qg — éW



Non-Conservation Form of Energy Equation

If we instead express the energy equation in terms of enthalpy:

De . D (1\_De D(1\_.
bt~ 97 Ppor ) bt Pbr p —

p _Dh De 1D—’O+ D(1>

h = — - = _ = = —_ | =
et 7ot ~ ot T opt TPoi\,

%7+1D7,O
pt 9 p Dt




Non-Conservation Form of Energy Equation
and total enthalpy ...

Po=htiv.ys Do DN, DV
o=NF VY= T o TV o

From the momentum equation we get




Non-Conservation Form of Energy Equation

Dh, . 1 [Dp
-0 _ - v f.
Dt Q+p[Dt VV,O]Jr \4
. . ... Dp .
Expanding the substantial derivative i gives
Do dp
D o +v-Vp =
Dho 10p .
{ ﬁ = pat‘FQ‘l-fV}

Let’s examine the above relation ...



Non-Conservation Form of Energy Equation

Dh, 10p
Dt p Ot

The total enthalpy of a moving fluid element in an inviscid flow
can change due to

unsteady flow: dp/dt # 0

heat transfer: g # 0
body forces: f-v #£ 0



Non-Conservation Form of Energy Equation

Adiabatic flow without body forces =

Dho 19p

Dt pot

Steady-state adiabatic flow without body forces =

Dh,

ot 0

ho is constant along streamlines!



Additional Form of Energy Equation

Start from
e . D1
Dt q le‘ P

Calorically perfect gas:

R
e=0C,T; Cvz—l;p:pF?T; ~v,R = const
N —

Dt ‘Dt  ~N—1Dt\pR) ~—1Dt\p



Additional Form of Energy Equation



Additional Form of Energy Equation

Continuity:

Dp

D 1 Dp



Additional Form of Energy Equation

D .
2+ PV V) = (7= Dpd

Adiabatic flow (no added heat):

{%;ﬂLvD(V'V):O}

Non-conservation form (calorically perfect gas)



Conservation Form

o0Q OE OF 0G

v Ty T

where Q(x,y,z,t), E(x,y,z,t), ... may be scalar or vector fields

Example: the continuity equation
dp 0 0 0 B
T &(Pu) + @(PV) + &(PW) =0

If an equation cannot be written in this form, it is said to be in
non-conservation form



Euler Equations - Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no
added heat)

p 9 9

0
T a(ﬁu) + @(PV) + &(PW) =0

0 0 0 0
&(PU) + &(/JUU +p) + @(PUV) + E(PUW) =0

0 0 0 0
a7 (V) + o (pvu) + @(pvv +p) + o (pw) =0

(ow) + 2 (owa) + 2 (o) + -2 (pww + p) = 0

ot ox oy 0z

0 0
&(Peo) + 7(Phou> + 5




Euler Equations - Non-Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no
added heat), calorically perfect gas

%+u@+va—+w@+ %Jr@Jra—W =0
ot "ax oy T Vaz TP \ax Tay Tz ) T

ou ou ou ou 10p
U v +w -

at TYax TVay TWar T ax T

ap op op op ou ov ow\
ar“’a +vay+ g +’yp<a +8y+6z>0




Conservation and Non-Conservation Form

The governing equations on non-conservation form are not,
although the name might give that impression, less physically
accurate than the equations on conservation form. The
nomenclature comes from CFD where the equations on
conservation form are preferred.



Conservation and Non-Conservation Form

Conservation forms are useful for:

Numerical methods for compressible flow

Theoretical understanding of non-linear waves (shocks etc)
Provide link between integral forms (control volume
formulations) and PDE:s

Non-conservation forms are useful for:
Theoretical understanding of behavior of numerical methods
Theoretical understanding of boundary conditions
Analysis of linear waves (aero-acoustics)



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

D V —>[ PDE:s on nonwservation form ]

‘ The entropy equation

'

[ Crocco’s theorem ]




Chapter 6.5
The Entropy Equation



The Entropy Equation

From the first and second law of thermodynamics we have

De . Ds D (1
bt~ 'Df Por P

which is called the entropy equation



The Entropy Equation
Compare the entropy equation
De .Ds D1
bt ot Por\,

with the energy equation (inviscid flow):

be . D1
ot 9 Ppor P
we see that

Ds
Dt



The Entropy Equation
If § = 0 (adiabatic flow) then

Ds_

E—O

i.e., entropy is constant for moving fluid element

Furthermore, if the flow is steady we have

Ds  0Os

— =—+(v-V)s=(v-V)s=0

Dt ot

i.e., entropy is constant along streamlines



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

D V —>[ PDE:s on nonwservation form ]

‘ The ent equation ]

'

[ Crocco’s theorem ]




Chapter 6.6
Crocco’s Theorem



Crocco’s Theorem

”... a relation between gradients of total enthalpy,
gradients of entropy, and flow rotation ...”



Crocco’s Theorem
Momentum equation (no body forces)

Dv
Ppr = -Vp

Writing out the substantial derivative gives

ov ov 1
pa+pv-VV——Vp:>E+v-VV——;V,O

First and second law of thermodynamics (energy equation)
1
dh =Tds + ;dp
Replace differentials with a gradient operator

1 1
Vh=TVs+ ;Vp:> TVs =Vh— ;Vp



Crocco’s Theorem

With pressure derivative from the momentum equation inserted in
the energy equation we get

TVS—VfH—aa‘;—i-v-Vv

1 1

1
V(§V-v):v><(V><v)+v-Vv

V(A-B)=(A- V) B+ (B:- V) A+ A X (VXxB)+Bx(VxA)
A=B=v=>

V(v:-v)=2[v:-Vv+vx(VxvV)




Crocco’s Theorem

TVS—Vho—vx(va)—v-Vv—i—i);tf—i—v'Vv

TVS:VhO—I—%—‘;—VX(VXV)

Note: V x v is the vorticity of the fluid

1
the rotational motion of the fluid is described by the angular velocity w = 5 (V X v)



Crocco’s Theorem

TVS:Vho—I—%—VX(VXV)

i

.. When a steady flow field has gradients of total
enthalpy and/or entropy Crocco’s theorem dramatically
shows that it is rotational ...”



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo constant shock

ho constant
s constant

v

S is constant upstream of shock
jump in s across shock depends on local shock angle

v

v

s will vary from streamline to streamline downstream of shock

v

Vs # 0 downstream of shock



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo constant shock

ho constant
s constant

[

Total enthalpy upstream of shock

ho is constant along streamlines
ho is uniform

Total enthalpy downstream of shock
ho is uniform

Vho:()



Crocco’s Theorem - Example

Crocco’s equation for steady-state flow:

TVs =Vhy —v x (V xv)

v x (V x v) # 0 downstream of a curved shock
the rotation V x v # 0 downstream of a curved shock

Explains why it is difficult to solve such problems by analytic
means!



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

D V —>[ PDE:s on nonwservation form ]

‘ The ent equation ]

!
[ Croccweorem ]
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