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Addressed Learning Outcomes

6 Define the special cases of calorically perfect gas, thermally

perfect gas and real gas and explain the implication of each

of these special cases

A deep dive into the theory behind the definitions of

calorically perfect gas, thermally perfect gas, and other

models
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Properties of High-Temperature Gases

Applications:

I Rocket nozzle flows

I Reentry vehicles

I Shock tubes / Shock tunnels

I Internal combustion engines
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Properties of High-Temperature Gases

Example: Reentry vehicle

Mach 32.5

Air

Calorically perfect gas

T∞ = 283

Table A.2 ⇒ Ts/T∞ = 206

T∞ = 283 ⇒ Ts = 58 300 K

A more correct value is Ts = 11 600 K

Something is fishy here!
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Chapter 16.2

Microscopic Description of

Gases
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Microscopic Description of Gases

I Hard to make measurements

I Accurate, reliable theoretical models needed

I Available models do work quite well

Niklas Andersson - Chalmers 11 / 83



Molecular Energy

Vx

Vy

Vz

Translational kinetic energy

thermal degrees of freedom: 3

x

y

z

Rotational kinetic energy

thermal degrees of freedom:

2 for diatomic gases

2 for linear polyatomic gases

3 for non-linear polyatomic gases

Vibrational energy

(kinetic energy + potential energy)

thermal degrees of freedom: 2

Electronic energy of electrons in orbit

(kinetic energy + potential energy)

O C O

CO2
linear polyatomic molecule

H

O

H

H2O

non-linear polyatomic molecule

I Translational energy

I Rotational energy

(only for molecules - not for mono-atomic gases)

I Vibrational energy

I Electronic energy
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Molecular Energy

The energy for one molecule can be described by

ε′ = ε′trans + ε′rot + ε′vib + ε′el

Results of quantum mechanics have shown that each

energy is quantized i.e. they can exist only at discrete values

Not continuous! Might seem unintuitive
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Molecular Energy

The lowest quantum numbers defines the zero-point energy
for each mode

I for rotational energy the zero-point energy is exactly zero

I ε′otrans is very small but finite - at absolute zero, molecules still

moves but not much

εjtrans = ε′jtrans − ε′otrans

εkrot = ε′krot

εlvib = ε′lvib − ε′ovib

εmel
= ε′mel

− ε′oel
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Energy States

I three cases with the same rotational energy

I different direction of angular momentum

I quantum mechanics ⇒ different distinguishable states

I a finite number of possible states for each energy level

Niklas Andersson - Chalmers 15 / 83



Macrostates and Microstates

Macrostate:

I molecules collide and exchange energy ⇒ the Nj distribution

(the macrostate) will change over time

I some macrostates are more probable than other

I most probable macrostates (distribution) ⇒ thermodynamic

equilibrium

Microstate:

I same number of molecules in each energy level but different

states

I the most probable macrostate is the one with the most

possible microstates ⇒ possible to find the most probable

macrostate by counting microstates
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Macrostates and Microstates

ε
′
o :

ε
′
1 :

ε
′
2 :

.

.

.

ε
′
j :

(No = 2, go = 5)

(N1 = 5, g1 = 6)

(N2 = 3, g2 = 5)

(Nj = 2, gj = 3)

Macrostate I Microstate I
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Macrostates and Microstates

ε
′
o :

ε
′
1 :

ε
′
2 :

.

.

.

ε
′
j :

(No = 1, go = 5)

(N1 = 5, g1 = 6)

(N2 = 4, g2 = 5)

(Nj = 1, gj = 3)

Macrostate II Microstate I
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Macrostates and Microstates

N =
∑
j

Nj

E =
∑
j

ε′jNj
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Chapter 16.5

The Limiting Case:

Boltzmann Distribution
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Boltzmann Distribution

The Boltzmann distribution:

N∗
j = N

gje−εj/kT

Q

where Q = f(T ,V) is the state sum defined as

Q ≡
∑
j

gje−εj/kT

gj is the number of degenerate states, εj is the energy above
zero-level (εj = ε′j − εo), and k is the Boltzmann constant
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Boltzmann Distribution

The Boltzmann distribution:

N∗
j = N

gje−εj/kT

Q

For molecules or atoms of a given species, quantum

mechanics says that a set of well-defined energy levels

εj exists, over which the molecules or atoms can be

distributed at any given instant, and that each energy

level has a certain number of energy states, gj.

For a system of N molecules or atoms at a given T and

V, N∗
j are the number of molecules or atoms in each

energy level εj when the system is in thermodynamic

equilibrium.
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Boltzmann Distribution

P

E

Boltzmann distribution for a specific temperature

I At temperatures above ∼ 5K, molecules are distributed over

many energy levels, and therefore the states are generally

sparsely populated (Nj � gj )

I Higher energy levels become more populated as

temperature increases
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Chapter 16.6 - 16.8

Evaluation of Gas

Thermodynamic Properties
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Internal Energy

The internal energy is calculated as

E = NkT2

(
∂ lnQ

∂T

)
V

The internal energy per unit mass is obtained as

e =
E

M
=

NkT2

Nm

(
∂ lnQ

∂T

)
V

=

{
k

m
= R

}
= RT2

(
∂ lnQ

∂T

)
V
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Internal Energy - Translation

ε′trans =
h2

8m

(
n21
a21

+
n22
a22

+
n23
a23

)

n1 − n3 quantum numbers (1,2,3,...)

a1 − a3 linear dimensions that describes the size of the system

h Planck’s constant

m mass of the individual molecule

⇒ · · · ⇒

Qtrans =

(
2πmkT

h2

)3/2

V
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Internal Energy - Translation

Qtrans =

(
2πmkT

h2

)3/2

V

lnQtrans =
3

2
lnT +

3

2
ln 2πmk

h2
+ lnV ⇒

(
∂ lnQtrans

∂T

)
V

=
3

2

1

T
⇒

etrans = RT2

(
∂ lnQtrans

∂T

)
V

= RT2 3

2T
=

3

2
RT
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Internal Energy - Rotation

ε′rot =
h2

8π2I
J(J + 1)

J rotational quantum number (0,1,2,...)

I moment of inertia (tabulated for common molecules)

h Planck’s constant

⇒ · · · ⇒

Qrot =
8π2IkT

h2
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Internal Energy - Rotation

Qrot =
8π2IkT

h2

lnQrot = lnT + ln 8π2Ik

h2
⇒

(
∂ lnQrot

∂T

)
V

=
1

T
⇒

erot = RT2

(
∂ lnQrot

∂T

)
V

= RT2 1

T
= RT
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Internal Energy - Vibration

ε′vib = hν

(
n+

1

2

)

n vibrational quantum number (0,1,2,...)

ν fundamental vibrational frequency (tabulated for common molecules)

h Planck’s constant

⇒ · · · ⇒

Qvib =
1

1− e−hν/kT
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Internal Energy - Vibration

Qvib =
1

1− e−hν/kT

lnQvib = − ln(1− e−hν/kT ) ⇒

(
∂ lnQvib

∂T

)
V

=
hν/kT2

ehν/kT − 1
⇒

evib = RT2

(
∂ lnQvib

∂T

)
V

= RT2 hν/kT2

ehν/kT − 1
=

hν/kT

ehν/kT − 1
RT

lim
T→∞

hν/kT

ehν/kT − 1
= 1 ⇒ evib ≤ RT
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Specific Heat

e = etrans + erot + evib + eel

e =
3

2
RT + RT +

hν/kT

ehν/kT−1
RT + eel

Cv ≡
(
∂e

∂T

)
V
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Specific Heat

Molecules with only translational and rotational energy

e =
3

2
RT + RT =

5

2
RT ⇒ Cv =

5

2
R

Cp = Cv + R =
7

2
R

γ =
Cp

Cv

=
7

5
= 1.4
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Specific Heat

Mono-atomic gases with only translational and rotational energy

e =
3

2
RT ⇒ Cv =

3

2
R

Cp = Cv + R =
5

2
R

γ =
Cp

Cv

=
5

3
= 1

2

3
' 1.67
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Calorically Perfect Gas

I In general, only translational and rotational modes of

molecular excitation

I Translational and rotational energy levels are sparsely

populated, according to Boltzmann distribution (the

Boltzmann limit)

I Vibrational energy levels are practically unpopulated (except

for the zero level)

I Characteristic values of γ for each type of molecule, e.g.
mono-atomic gas, di-atomic gas, tri-atomic gas, etc

I He, Ar, Ne, ... - mono-atomic gases (γ = 5/3)
I H2, O2, N2, ... - di-atomic gases (γ = 7/5)
I H2O (gaseous), CO2, ... - tri-atomic gases (γ < 7/5)
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Calorically Perfect Gas

p = ρRT e = CvT

h = CpT

h = e+ p/ρ

Cp − Cv = R

γ = Cp/Cv

Cv =
R

γ − 1

Cp =
γR

γ − 1

γ, R, Cv, and Cp are constants

a =

√
γp

ρ
=
√
γRT
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Thermally Perfect Gas

I In general, only translational, rotational and vibrational modes

of molecular excitation

I Translational and rotational energy levels are sparsely

populated, according to Boltzmann distribution (the

Boltzmann limit)

I The population of the vibrational energy levels approaches

the Boltzmann limit as temperature increases

I Temperature dependent values of γ for all types of molecules

except mono-atomic (no vibrational modes possible)
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Thermally Perfect Gas

p = ρRT e = e(T) Cv = de/dT
h = h(T) Cp = dh/dT
h = e+ p/ρ

Cp − Cv = R

γ = Cp/Cv

Cv =
R

γ − 1

Cp =
γR

γ − 1

R is constant

γ, Cv, and Cp are variable (functions of T )

a =

√
γp

ρ
=
√
γRT
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High-Temperature Effects

Example: properties of air

50 K

600 K

2000 K

region of constant γ (γ=1.4)

region of variable γ

calorically perfect gas

thermally perfect gas

T

Thermally perfect gas:

e and h are non-linear functions of T

the temperatur range represents standard

atmospheric pressure (lower pressure gives

lower temperatures)
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High-Temperature Effects

For cases where the vibrational energy is not negligible (high

temperatures)

lim
T→∞

evib = RT ⇒ Cv =
7

2
R

However, chemical reactions and ionization will take place long

before that

I Translational and rotational energy fully excited above ∼5 K
I Vibrational energy is non-negligible above 600 K

I Chemical reactions begin to occur above ∼2000 K
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High-Temperature Effects

As temperature increase further vibrational energy becomes

less important

Why is that so?
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High-Temperature Effects

Example: properties of air (continued)

2500 K

4000 K

9000 K

no reactions

O2 → 2O (start of dissociation)

N2 → 2N (start of dissociation)

O → O
+

+ e
−

(start of ionization)

T

With increasing temperature, the gas becomes more and more

mono-atomic which means that vibrational modes becomes less

important
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Equilibrium Gas

For temperatures T >∼ 2500K

I Air may be described as being in thermodynamic and
chemical equilibrium (Equilibrium Gas)

I reaction rates (time scales) low compared to flow time scales
I reactions in both directions (example: O2 
 2O)

I Tables must be used (Equilibrium Air Data) or special

functions which have been made to fit the tabular data
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Equilibrium Gas

How do we obtain a thermodynamic description?

p = p(R,T) e = e(ν,T)

h = h(p,T)

h = e+
p

ρ

Cv =

(
∂e

∂T

)
ν

Cp =

(
∂h

∂T

)
p

a2e = γRT

1 +
1

p

(
∂e

∂ν

)
T

1− ρ

(
∂h

∂p

)
T

γ =
Cp

Cv

=

(
∂h

∂T

)
p(

∂e

∂T

)
ν

RT =
p

ρ

Note: R is not a constant here

i.e. this is not the ideal gas law
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Chapter 17.1

Thermodynamic and

Chemical Equilibrium
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Thermodynamic Equilibrium

Molecules are distributed among their possible energy states
according to the Boltzmann distribution (which is a statistical
equilibrium) for the given temperature of the gas

I extremely fast process (time and length scales of the

molecular processes)

I much faster than flow time scales in general (not true inside

shocks)
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Thermodynamic Equilibrium

Global thermodynamic equilibrium:

I there are no gradients of p, T , ρ, v, species concentrations

I ”true thermodynamic equilibrium”

Local thermodynamic equilibrium:

I gradients can be neglected locally

I this requirement is fulfilled in most cases (hard not to get)
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Chemical Equilibrium

Composition of gas (species concentrations) is fixed in time

I forward and backward rates of all chemical reactions are

equal

I zero net reaction rates

I chemical reactions may be either slow or fast in comparison

to flow time scale depending on the case studied
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Chemical Equilibrium

Global chemical equilibrium:

I there are no gradients of species concentrations

I together with global thermodynamic equilibrium ⇒
all gradients are zero

Local chemical equilibrium

I gradients of species concentrations can be neglected locally

I not always true - depends on reaction rates and flow time

scales
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Thermodynamic and Chemical Equilibrium

Most common cases:

Thermodynamic Equilibrium Chemical Equilibrium Gas Model

1 local thermodynamic equilibrium local chemical equilibrium equilibrium gas

2 local thermodynamic equilibrium chemical non-equilibrium finite rate chemistry

3 local thermodynamic equilibrium frozen composition frozen flow

4 thermodynamic non-equilibrium frozen composition vibrationally frozen flow

I length and time scales of flow decreases from 1 to 4

I Frozen composition ⇒ no (or slow) reactions

I vibrationally frozen flow gives the same gas relations as
calorically perfect gas!

I no chemical reactions and unchanged vibrational energy
I example: small nozzles with high-speed flow
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Chapter 17.2

Equilibrium Normal Shock

Wave Flows
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Equilibrium Normal Shock Wave Flows

Question: Is the equilibrium gas assumption OK?

Answer:

I for hypersonic flows with very little ionization in the shock

region, it is a fair approximation

I not perfect, since the assumption of local thermodynamic

and chemical equilibrium is not really true around the shock

I however, it gives a significant improvement compared to the

calorically perfect gas assumption
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Equilibrium Normal Shock Wave Flows

Basic relations (for all gases), stationary normal shock:

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1
1

2
u21 = h2 +

1

2
u22

For equilibrium gas we have:
ρ = ρ(p, h)

T = T(ρ, h)

(we are free to choose any two states as independent variables)
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Equilibrium Normal Shock Wave Flows

Assume that ρ1, u1, p1, T1, and h1 are known

u2 =
ρ1u1
ρ2

⇒ ρ1u
2
1 + p1 = ρ2

(
ρ1
ρ2

u1

)2

+ p2 ⇒

p2 = p1 + ρ1u
2
1

(
1− ρ1

ρ2

)
Also

h1 +
1

2
u21 = h2 +

1

2

(
ρ1
ρ2

u1

)2

⇒

h2 = h1 +
1

2
u21

(
1−

(
ρ1
ρ2

)2
)
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Equilibrium Normal Shock Wave Flows

initial guess
ρ1

ρ2

calculate

p2 and h2

ρ2 = ρ(p2, h2)update
ρ1

ρ2

‖ρ2 − ρ2old
‖ < ε

stop

no

yes

when converged:

ρ2 = ρ(p2, h2)

T2 = T(ρ2, h2)

⇒

ρ2, u2, p2, T2, h2 known
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Equilibrium Air - Normal Shock

Tables of thermodynamic properties for different conditions are

available

For a very strong shock case (M1 = 32), the table below (Table

17.1) shows some typical results for equilibrium air

calorically perfect gas equilibrium air

(γ = 1.4)

p2/p1 1233 1387

ρ2/ρ1 5.97 15.19

h2/h1 206.35 212.80

T2/T1 206.35 41.64
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Equilibrium Air - Normal Shock

Analysis:

I Pressure ratio is comparable

I Density ratio differs by factor of 2.5

I Temperature ratio differs by factor of 5

Explanation:

I Using equilibrium gas means that vibration, dissociation and

chemical reactions are accounted for

I The chemical reactions taking place in the shock region lead
to an ”absorption” of energy into chemical energy

I drastically reducing the temperature downstream of the

shock
I this also explains the difference in density after the shock
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Equilibrium Air - Normal Shock

Additional notes:

I For a normal shock in an equilibrium gas, the pressure ratio,

density ratio, enthalpy ratio, temperature ratio, etc all depend

on three upstream variables, e.g. u1, p1, T1

I For a normal shock in a thermally perfect gas, the pressure

ratio, density ratio, enthalpy ratio, temperature ratio, etc all

depend on two upstream variables, e.g. M1, T1

I For a normal shock in a calorically perfect gas, the pressure

ratio, density ratio, enthalpy ratio, temperature ratio, etc all

depend on one upstream variable, e.g. M1
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Equilibrium Gas - Detached Shock

M = 20

calorically perfect gas

M = 20

equilibrium gas

shock moves closer to body

What’s the reason for the difference in predicted shock

position?
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Equilibrium Gas - Detached Shock

Calorically perfect gas:

I all energy ends up in translation and rotation ⇒ increased

temperature

Equilibrium gas:

I energy is absorbed by reactions ⇒ does not contribute to the

increase of gas temperature
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Chapter 17.3

Equilibrium

Quasi-One-Dimensional

Nozzle Flows
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Equilibrium Quasi-1D Nozzle Flows

First question: Is chemically reacting gas also isentropic

(for inviscid and adiabatic case)?

entropy equation: Tds = dh− νdp

Quasi-1D equations in differential form (all gases):

momentum equation: dp = −ρudu

energy equation: dh+ udu = 0
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Equilibrium Quasi-1D Nozzle Flows

udu = −dp

ρ
= −νdp

Tds = −udu− νdp = −udu+ udu = 0 ⇒

ds = 0

Isentropic flow!
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Equilibrium Quasi-1D Nozzle Flows

Second question: Does the area-velocity relation also hold for a

chemically reacting gas?

Isentropic process gives

dA

A
= (M2 − 1)

du

u

M = 1 at nozzle throat still holds
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Equilibrium Quasi-1D Nozzle Flows

For general gas mixture in thermodynamic and chemical

equilibrium, we may find tables or graphs describing relations

between state variables.

Example: Mollier diagram

T = constant

p = constant

for any point (h, s), we may find p, T , ρ, a, …

h

s
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Equilibrium Quasi-1D Nozzle Flows

ho

T2

p2

2

T1

p1

1

To

po

h

s

isentropic process

assume ho is known

For steady-state inviscid

adiabatic nozzle flow we have:

h1 +
1

2
u21 = h2 +

1

2
u22 = ho

where ho is the reservoir

enthalpy
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Equilibrium Quasi-1D Nozzle Flows

At point 1 in Mollier diagram we have:

1

2
u21 = ho − h1 ⇒ u1 =

√
2(ho − h1)

Assume that u1 = a1 (sonic conditions) gives

ρ1u1A1 = ρ∗a∗A∗

At any point along isentropic line, we have u =
√

2(ho − h) and ρ,
p, T , a etc are all given which means that ρu is given

A

A∗ =
ρ∗a∗

ρu

may be computed for any point along isentropic line
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Equilibrium Quasi-1D Nozzle Flows

I Equilibrium gas gives higher T and more thrust

I During the expansion chemical energy is released due to

shifts in the equilibrium composition

equilibrium gas

calorically perfect gas

T

A/A
∗

1

I Chemical and vibrational energy transfered to translation and

rotation ⇒ increased temperature
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Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:

equilibrium gas

real case

calorically perfect gas

T

A/A
∗

1

I Space nozzle applications: ue ≈ 4000 m/s

I Required prediction accuracy 5 m/s
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Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Equilibrium gas:

I very fast chemical reactions
I local thermodynamic and chemical equilibrium

Vibrationally frozen gas:

I very slow chemical reactions

(no chemical reactions ⇒ frozen gas)
I vibrational energy of molecules have no time to change
I calorically perfect gas!
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Large Nozzles

High To, high po, high reactivity

Real case is close to equilibrium gas results

Example: Ariane 5 launcher, main engine (Vulcain 2)

I H2 +O2 → H2O in principle, but many different radicals and

reactions involved (at least ∼10 species, ∼20 reactions)
I To ∼ 3600 K, po ∼ 120 bar

I Length scale ∼ a few meters

I Gas mixture is quite close to equilibrium conditions all the

way through the expansion
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Ariane 5

Ariane 5 space launcher

extreme high temperature and

high speed flow regime
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Vulcain Engine

Vulcain engine:

first stage of the Ariane 5

launcher
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Space Shuttle Launcher - SSME
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Space Shuttle Launcher - SSME
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Small Nozzles

Low To, low po, lower reactivity

Real case is close to frozen flow results

Example:

Small rockets on satellites (for maneuvering, orbital adjustments,

etc)
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Small Nozzles
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Roadmap - High Temperature Effects

Thermodynamic and

chemical equilibrium

Gas models:

Calorically perfect gas

Thermally perfect gas

Equilibrium gas

Thermodynamic properties

Boltzmann distribution

Microscopic description of gases

Equilibrium gas:

practical examples

Normal shock

Nozzle flow
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