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Addressed Learning Outcomes

12 Explain the main principles behind a modern Finite Volume

CFD code and such concepts as explicit/implicit time

stepping, CFL number, conservation, handling of

compression shocks, and boundary conditions

14 Analyze and verify the quality of the numerical solution

15 Explain the limitations in fluid flow simulation software

what about boundary conditions?
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Spatial Discretization - Summary

1. Primary variables defined for all cells

{
ρ̄, (ρu), (ρeo)

}
i
, i ∈ {1, 2, ...,N}

2. Flux terms and lower-order terms may be computed

3. Temporal derivatives of the primary variables are defined for

all cells

{
d

dt
ρ̄,

d

dt
(ρu),

d

dt
(ρeo)

}
i
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Spatial Discretization - Summary

cell-averaged quantity

face-averaged quantity

source term

d

dt
ρ̄i =

1

VOLi

{
(ρu)i− 1

2
Ai− 1

2
− (ρu)i+ 1

2
Ai+ 1

2

}
d

dt
(ρu)i =

1

VOLi

{
(ρu2 + p)i− 1

2
Ai− 1

2
− (ρu2 + p)i+ 1

2
Ai+ 1

2
+

p̄i

(
Ai+ 1

2
− Ai− 1

2

)}
d

dt
(ρeo)i =

1

VOLi

{
(ρuho)i− 1

2
Ai− 1

2
− (ρuho)i+ 1

2
Ai+ 1

2

}
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Roadmap - The Time-Marching Technique

Basic concepts and definitions

Finite Volume Method (FVM)

Boundary conditions

Practical examples

Available CFD codes

Time integration

Numerical schemes

Spatial discretization

Governing equations
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Time Stepping
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Time Stepping

The system of ODEs obtained from the spatial discretization in

vector notation

d

dt
Q = F(Q)

I Q is a vector containing all DOFs in all cells

I F(Q) is the time derivative of Q resulting from above

mentioned flux approximations

non-linear vector-valued function
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Time Stepping

Three-stage Runge-Kutta - one example of many:

I Explicit time-marching scheme

I Second-order accurate
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Time Stepping - Three-stage Runge-Kutta

d

dt
Q = F(Q)

Let Qn = Q(tn) and Qn+1 = Q(tn+1)

I tn is the current time level and tn+1 is the next time level

I ∆t = tn+1 − tn is the solver time step

Algorithm:

1. Q∗ = Qn +∆tF(Qn)

2. Q∗∗ = Qn +
1

2
∆tF(Qn) +

1

2
∆tF(Q∗)

3. Qn+1 = Qn +
1

2
∆tF(Qn) +

1

2
∆tF(Q∗∗)

DOFs in all cells updated from time level tn to time level tn+1, repeat procedure for tn+2, tn+3, ...
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Time Stepping - Explicit Schemes

Properties of explicit time-stepping schemes:

+ Easy to implement in computer codes

+ Efficient execution on most computers

+ Easy to adapt for parallel execution on distributed memory

systems (e.g. Linux clusters)

- Time step limitation (CFL number)

- Convergence to steady-state often slow (there are, however,

some remedies for this)
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Time Stepping - Explicit Schemes

Courant-Friedrich-Levy (CFL) number - one-dimensional case:

CFLi =
∆t(|ui|+ ai)

∆xi
≤ 1

Interpretation: The fastest characteristic (C+ or C−) must not
travel longer than ∆x during one time step

t

x

∆
t

∆x ∆x

C
+

C
−

dx

dt
= u + a

dx

dt
= u − a

max(|u − a|, |u + a|)∆t = (|u| + a)∆t ≤ ∆x ⇒

(|u| + a)∆t

∆x
= CFL ≤ 1
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Time Stepping - Explicit Schemes

Steady-state problems:

I local time stepping
I each cell has an individual time step
I ∆ti maximum allowed value based on CFL criteria

Unsteady problems:

I time accurate
I all cells have the same time step
I ∆ti = min {∆t1, ...,∆tN}
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Explicit Finite-Volume Method - Summary

The described numerical scheme is an example of a

density-based, fully coupled scheme
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Explicit Finite-Volume Method - Summary

I density-based schemes

I solve for density in the continuity equation
I in general preferred for high-Mach-number flows and for

unsteady compressible flows

I pressure-based schemes

I the continuity and momentum equations are combined to

form a pressure correction equation
I were first used for incompressible flows but have been

adapted for compressible flows also
I quite popular for steady-state subsonic/transonic flows
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Explicit Finite-Volume Method - Summary

I fully-copuled schemes

I all equations (continuity, momentum, energy) are solved for

simultaneously

I segregated schemes

I alternate between the solution of the velocity field and the

pressure field (pressure-based solver)
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Explicit Finite-Volume Method - Summary

Spatial discretization:

I Control volume formulations of conservation equations are

applied to the cells of the discretized domain

I Cell-averaged flow quantities (ρ, ρu, ρeo) are chosen as
degrees of freedom (DOFs)

I Flux terms are approximated in terms of the chosen DOFs

I high-order, upwind type of flux approximation is used for

optimum results

I A fully conservative scheme is obtained

I the flux leaving one cell is identical to the flux entering the

neighboring cell

I The result of the spatial discretization is a system of ODEs
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Explicit Finite-Volume Method - Summary

Time marching:

I Three-stage, second-order accurate Runge-Kutta scheme

I Explicit time-stepping
I Time step length limited by the CFL condition (CFL ≤ 1)

Classification of numerical scheme:

I density-based

I includes the continuity equation

I fully coupled

I all equations are solved simultaneously
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Roadmap - The Time-Marching Technique

Basic concepts and definitions

Finite Volume Method (FVM)
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Time integration
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Boundary Conditions
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Boundary Conditions

Boundary conditions are very important for numerical simulation

of compressible flows

Main reason: both flow and acoustics involved!

Example 1:

Finite-volume CFD code for Quasi-1D compressible flow

(Time-marching procedure)

What boundary conditions should be applied at the left and right

ends?

x1/2 x3/2 x5/2 xN−1/2

xN+1/2

computational domain

left boundary right boundary
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Boundary Conditions

three characteristics:

1. C+

2. C−

3. advection

C
+

C
−

dx

dt
= u + a

dx

dt
= u − a

dx

dt
= u

left boundary

C
+

C
−

dx

dt
= u + a

dx

dt
= u − a

dx

dt
= u

right boundary

t

x

computational domain
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Boundary Conditions

I C+ and C− characteristics describe the transport of

isentropic pressure waves (often referred to as acoustics)

I The advection characteristic simply describes the transport

of certain quantities with the fluid itself (for example entropy)

I In one space dimension and time, these three

characteristics, together with the quantities that are known

to be constant along them, give a complete description of

the time evolution of the flow

I We can use the characteristics as a guide to tell us what

information that should be specify at the boundaries
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Left Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

I Subsonic inflow: 0 < u < a

u− a < 0
u > 0
u+ a > 0

I one outgoing characteristic
I two ingoing characteristics

I Two variables should be specified at the boundary

I The third variable must be left free
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Left Boundary - Subsonic Outflow

we have three PDEs, and are solving for three unknowns

I Subsonic outflow: −a < u < 0

u− a < 0
u < 0
u+ a > 0

I two outgoing characteristics
I one ingoing characteristic

I One variable should be specified at the boundary

I The second and third variables must be left free
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Left Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

I Supersonic inflow: u > a

u− a > 0
u > 0
u+ a > 0

I no outgoing characteristics
I three ingoing characteristics

I All three variables should be specified at the boundary

I No variables must be left free
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Left Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

I Supersonic outflow: u < −a

u− a < 0
u < 0
u+ a < 0

I three outgoing characteristics
I no ingoing characteristics

I No variables should be specified at the boundary

I All variables must be left free
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Right Boundary - Subsonic Outflow

we have three PDEs, and are solving for three unknowns

I Subsonic outflow: 0 < u < a

u− a < 0
u > 0
u+ a > 0

I one ingoing characteristic
I two outgoing characteristics

I One variable should be specified at the boundary

I The second and third variables must be left free
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Right Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

I Subsonic inflow: −a < u < 0

u− a < 0
u < 0
u+ a > 0

I two ingoing characteristics
I one outgoing characteristic

I Two variables should be specified at the boundary

I The third variables must be left free
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Right Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

I Supersonic outflow: u > a

u− a > 0
u > 0
u+ a > 0

I no ingoing characteristics
I three outgoing characteristics

I No variables should be specified at the boundary

I All three variables must be left free
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Right Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

I Supersonic inflow: u < −a

u− a < 0
u < 0
u+ a < 0

I three ingoing characteristics
I no outgoing characteristics

I All three variables should be specified at the boundary

I No variables must be left free
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Subsonic Inflow (Left Boundary) - Example

Subsonic inflow: we should specify two variables

Alt specified specified well-posed non-reflective

variable 1 variable 2

1 po To X

2 ρu To X

3 s J+ X X

well posed:

I the problem has a solution

I the solution is unique

I the solution’s behaviour changes continuously with initial

conditions
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Subsonic Outflow (Left Boundary) - Example

Subsonic outflow: we should specify one variable

Alt specified well-posed non-reflective

variable

1 p X

2 ρu X

3 J+ X X
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Subsonic Inflow 2D/3D

nv

n unit normal vector

v fluid velocity at boundary

exterior

interior

Subsonic inflow

I Assumption:

−a < v · n < 0

I Four ingoing characteristics

I One outgoing characteristic

I Specify four variables at the
boundary:

I example: po, To, flow direction

(two angles)
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Subsonic Outflow 2D/3D

n

v

n unit normal vector

v fluid velocity at boundary

exterior

interior

Subsonic outflow

I Assumption:

0 < v · n < a

I One ingoing characteristics

I Four outgoing characteristic

I Specify one variables at the
boundary:

I example: p
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Supersonic Inflow 2D/3D

nv

n unit normal vector

v fluid velocity at boundary

exterior

interior

I Supersonic inflow

I Assumption:

v · n < −a

I Five ingoing characteristics

I No outgoing characteristics

I Specify five variables at the
boundary:

I all solver variables specified
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Supersonic Outflow 2D/3D

n

v

n unit normal vector

v fluid velocity at boundary

exterior

interior

Supersonic outflow

I Assumption:

v · n > a

I No ingoing characteristics

I Five outgoing characteristics

I No variables specified at the

boundary:
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Practical Examples:

Grid Resolution and

Numerical Schemes
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Numerical Approach

I Code: G3D::Flow (Chalmers in-house CFD code)

I Finite-Volume Method

I Method of lines

I Three-stage, second-order accurate Runge-Kutta time

stepping

I First-order, second-order, and third-order characteristic

upwinding scheme
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Grid Resolution: Compression Ramp

coarse mesh
71×21

density

Mach number

medium mesh
141×41

density

Mach number

fine mesh
281×81

density

Mach number
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Grid Resolution: Space Shuttle

coarse mesh
81×21

Mach number

medium mesh
161×41

Mach number

fine mesh
321×81

Mach number
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Grid Resolution: Axi-symmetric Slender Body

coarse mesh
31×21

density

Mach number

medium mesh
61×41

density

Mach number

fine mesh
121×81

density

Mach number
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Numerical Scheme: Compression Ramp

first-order upwind
density

Mach number

second-order upwind
density

Mach number

third-order upwind
density

Mach number
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Artificial Numerical Damping: Compression Ramp

Low artificial numerical damping
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Artificial Numerical Damping: Compression Ramp

High artificial numerical damping
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Available CFD Codes
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CFD Codes

List of free and commercial CFD codes:

http://www.cfd-online.com/Wiki/Codes

I Free codes are in general unsupported and poorly

documented

I Commercial codes are often claimed to be suitable for all

types of flows

The reality is that the user must make sure of this!

I Industry/institute/university in-house codes not listed

I non-commercial but proprietary
I part of design/analysis system
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CFD Codes - General Guidlines

Simulation of high-speed and/or unsteady compressible flows:

I Use correct solver options

otherwise you may obtain completely wrong solution!

I Use a high-quality grid

a poor grid will either not give you any solution at all (no

convergence) or at best a very inaccurate solution!
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ANSYS-FLUENTr - Typical Experiences

I Very robust solver - will almost always give you a solution

I Accuracy of solution depends a lot on grid quality

I Shocks are generally smeared more than in specialized

codes

I Solver is generally very efficient for steady-state problems

I Solver is less efficient for truly unsteady problems, where

both flow and acoustics must be resolved accurately
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ANSYS-FLUENTr - Solver Options

I Coupled or Density-based depends on version

I the continuity, momentum, energy equations are solved for

simultaneously

just like in the Quasi-1D code discussed previously

I Density = Ideal gas law

I the calorically perfect gas assumption is activated
I the energy equation is activated

I Explicit or Implicit time stepping

I Explicit recommended for unsteady compressible flows

CFL is set to 1 as default, but may be changed

I Implicit more efficient for steady-state compressible flows

CFL is set to 5 as default, but may be changed
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ANSYS-FLUENTr - Solver Features

Spatial discretization:

I Finite-Volume Method (FVM)

I Unstructured grids

I Fully conservative, density-based scheme

I Flux approximations:

first-order, second-order, upwind, ...

I Fully coupled solver approach

Explicit time stepping:

I Runge-Kutta time stepping

Implicit time stepping:

I Iterative solver based on Algebraic Multi-Grid (AGM)
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