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Addressed Learning Outcomes

Explain the main principles behind a modern Finite Volume
CFD code and such concepts as explicit/implicit time
stepping, CFL number, conservation, handling of
compression shocks, and boundary conditions

Explain the limitations in fluid flow simulation software

time for CFD!
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The Time-Marching Technique

Note:

Anderson’s text is here rather out-of-date, it was written during
the 70’s and has not really been updated since then.

The additional material covered in this lecture is an attempt to
amend this.



The Time-Marching Technique

The problems that we like to investigate numerically within the
field of compressible flows can be categorized as

steady-state unsteady
compressible flows compressible flows

The Time-marching method is a solver framework that addresses
both problem categories



The Time-Marching Technique

The time-marching approach is a good alternative for simulating
flows where there are both supersonic and subsonic regions

supersonic/hyperbolic:
perturbations propagate in preferred directions
zone of influence/zone of dependence
PDEs can be transformed into ODEs

subsonic/elliptic:
perturbations propagate in all directions



Zone of Influence and Zone of Dependence

Moo > 1.0

A, B and C at the same axial position in the flow
D and E are located upstream of A, B and C

Mach waves generated at D will affect the flow in B but not in
Aand C

Mach waves generated at E will affect the flow in C but not in
Aand B

The flow in A is unaffected by the both D and E



Zone of Influence and Zone of Dependence
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Moo > 1.0

9

zone of dependence

The zone of dependence for point A and the zone of
influence of point A are defined by C™ and C~ characteristic
lines



The Time-Marching Technique

Steady-state problems:
define simple initial solution
apply specified boundary conditions
march in time until steady-state solution is reached

Unsteady problems:
apply specified initial solution
apply specified boundary conditions

march in time for specified total time to reach a desired
unsteady solution

establish fully developed flow before initiating data sampling



Characterization of CFD Methods - Discretization

Discretization in space and time:
most common approach: Method of Lines
discretize in space =
system of ordinary differential equations (ODEs)
discretize in time =
time-stepping scheme for system of ODEs

Spatial discretization techniques:
Finite-Difference Method (FDM)
Finite-Volume Method (FVM)
Finite-Element Method (FEM)



Characterization of CFD Methods - Time Stepping

Temporal discretization techniques:

Explicit
mostly for transonic/supersonic steady-state and unsteady
flows
short time steps
usually very stable

Implicit
mostly for subsonic/transonic steady-state flows
longer time steps possible

for high-supersonic flows, explicit solvers may very well
outperform implicit solvers



Characterization of CFD Methods - Equations

Equations solved:

Density-based
solve for density in the continuity equation
mostly for transonic/supersonic steady-state and unsteady
flows

Pressure-based
the continuity and momentum equations are combined to
form a pressure correction equation
mostly for subsonic/transonic steady-state flows



Characterization of CFD Methods - Solver Approach

Solution procedure:

Fully coupled
all equations (continuity, momentum, energy, ...) are solved
simultaneously
mostly for transonic/supersonic steady-state and unsteady
flows

Segregated
solve the equations in sequence
mostly for subsonic steady-state flows
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Explicit Finite-Volume
Method



Governing Equations



Quasi-One-Dimensional Flow - Conceptual |dea

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

" Q  control volume

N Sy left boundary (area Aq)
S, right boundary (area As)
I'  perimeter boundary

0N =S, UI'USy



Quasi-One-Dimensional Flow - Governing Equations

Governing equations (general form):

i JJJ pd”/—k@pv ndS =0

o0

o’z‘JJJ p“dy“F@ v n)u+p(n-e)dS=0
o0

= ﬂjpeod7+ﬁpho v-n)dS =0

o0



Example: Nozzle Simulation (Back Pressure Sweep)

P - 160
Po 1.20 [bar] ~
2 140
De 0.50 [bar] >
RS
Po/Pe 240 120
o
m 145.6 [kg/s] b
@ 100
Mmax ~ 2.26 £
(N J
809
1 15 2 25

I
|
I
1
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0 1 2 3
axial coordinate (x [m]) axial coordinate (x [m])
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Spatial Discretization



Quasi-One-Dimensional Flow - Spatial Discretization

Let’s look at a small tube segment with length Ax

Streamtube with area A(x)

\ A/—é :A(X/_é)
A/+% _A(X/'Jr%)
> AX; = X X;
A * A : ! i+3 i-3
i—1 1
2 i+35

Q) - control volume enclosed
"*%E’X’*% byAiié,Al-Jr%,andF/

= gpatial discretization



Quasi-One-Dimensional Flow - Spatial Discretization

ke
T
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T
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Integer indices (i, + 1, ...):
control volumes or cells

. o .1, 3
Fractional indices ( + =, i + =, ...):

interfaces between control volumes or cell faces

Apply control volume formulations for mass, momentum,
energy to control volume €);



Quasi-One-Dimensional Flow

cell-averaged quantity
face-averaged quantity

Conservation of mass:

X,_%
\—/—’
d 5
VOL; 4 pi 7(pu)i 1A/,l
2
where

VOL; = jfj dv

Q

B 1
f"‘:VOL,-fo pd ¥

0
(p ),-+% il
— 1
Py = 2 H puas
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2
— 1
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Quasi-One-Dimensional Flow

cell-averaged quantity
face-averaged quantity
source term

Conservation of momentum: ey e

rJJJ PUC’MJJ (v-m)u+p(n-e)dS+

’*é
—,_/
ppu—
VOL,; 5 (pu);

~(pu+p),_ 141

+JJ (v-n)u-+p(n-e) dS+JJ v-n)u+p(n-e)]dS =0

/+2

T SN —[[~. pdA
(pu2+p)i+%A/,+% JJ‘F/



Quasi-One-Dimensional Flow

cell-averaged quantity
face-averaged quantity

Conservation of energy:

0 JJJ peod? + ﬂ pho(v - n)dS +

%/—/ :
\/OL/ ot €o); _(PUhO),',%A,-,

1
2

+JJ pho (v - ndS+JJphov n)dS = 0

/+2

0
(pUho)/+%A/v+%



Quasi-One-Dimensional Flow

Lower order term due to varying stream tube area:

[[poAxp Ay -Ay)

L

where p; is calculated from cell-averaged quantities (DOFs)

as

pi=(y—1) <(/)90)/ - ;:5/“/) , U= @



Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity
face-averaged quantity
source term

d_ I
VOL; i — (pu)i_sAi_1 + (pU)i 1Ai L = 0
VOLg( u); — (pu? +p);, 1A, 1 + (pu? +p);, 1A
dt p p P)i—1 1 p P i+37N L =
=01 (Ay —Ay)
d-—
VOLI&(PGO)/ - (PUho)i—%A/;% + (puho),+%A,+% =0
Application of these equations to all cells i € {1, 2, .....,N} of the

computational domain results in a system of ODEs



Spatial Discretization - Summary

Steps to achieve spatial discretization:

Choose primary variables (Degrees of Freedom or DOFs)
Approximate all other quantities in terms of DOFs

= System of ordinary differential equations (ODEs)

Degrees of freedom:

Choose {ﬁ, (pu), (peo)} in all control volumes €;,
!

i€{1,2,...,N} as degrees of freedom, or primary variables
Note that these are cell-averaged quantities

What about the face values?
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Numerical Schemes



Flux Term Approximation

(pu) p p
(pu* +p) =79 () ¢, (pu)
(puho) /+% (ﬂeo) i (Peo) i+1
cell face values cell-averaged values

Simple example:




Flux Term Approximation

More complex approximations usually needed

High-order schemes:

increased accuracy
more cell values involved (wider flux molecule)
boundary conditions more difficult to implement

Optimized numerical dissipation:
upwind type of flux scheme

Shock handling:

non-linear treatment needed (e.g. TVD schemes)
artificial damping



Flux Term Approximation

Q(x) = A+ Bx + Cx* 4+ Dx?

Assume constant area: A(x) = 1.0



Flux Term Approximation

_ 1 1
Q= VOL, /2 Q(X)dX

VOLy = A1 Ax; = {A; = 1.0, Ax; = 1.0} = 1.0

—1
= Q= / Q(x)dx
-2



Flux Term Approximation

_ -1 1 . .
“ / Qo= {AX + 5B+ 20 DA
_9 2 3 1

-2

Q= /0 Q(x)dx =
J-1

1o 1.4 1_, 0
AX + =Bx* + -Cx* + —Dx
2 3 4 .

al 1 . .
S, / Qx)ax = {AX 2B 420K+ Dxﬂ

_ 2 . o ,
Q4= / Q(x)dx = |:AX + 58)(2 + gCXS i 4DX4:|
1

1



Flux Term Approximation

— 3 7 15
—A-°B+-C-—D
Q 5 +3C 1
— 1 1 1
—A--B+-C--D
Qs 5 +3C 1
— 1 1 1

— 3 7 15



Flux Term Approximation

1

A= —
12

[—61 +7Qq + 763 — 64}
B-— %2 [61 —15Qy + 15Qs — 64}

CZ%{61—62—63+G4}

1

D=
6

[*61 + 362 — 363 + 64}



Flux Term Approximation

Qo = Q(0) + 6Q"(0) = Qo = A + 65D

6 = 0 = fourth-order central scheme
d = 1/12 = third-order upwind scheme

d = 1/96 = third-order low-dissipation upwind scheme



Flux Term Approximation

1— 5— 1—
Qo=A+6D={6=1/12} = *6Q1 + 6@2+ §Q3

1= 5— 1=
QO/eft = Q1+ EQZ + -Q3

6 3

1— 5=
Qorfght - _604 + 6Q3 + QQ

method of characteristics used in order to decide whether
left- or right-upwinded flow quantities should be used



Flux Term Approximation

High-order numerical schemes:

low numerical dissipation (smearing due to amplitudes errors)

low dispersion errors (wiggles due to phase errors)



Conservative Scheme

mass conservation:

=0

\ d — —
cell (): VOL; Eﬁf + (/Ju),+%A/+1§ = (pu);_ 1 A/7%

2

. d _ I J—
cell (i + 1): VOLj 41 &p,_*_l + (pu)/+%A/+% - (pu)er%AiJr% =

(similarly for momentum and energy conservation)



Conservative Scheme

mass conservation:

d
cell (7): VOL; — p;
() /dt/’/
. \ d _ —
cell (i + 1): VOL,+1&p,+1+(pU)/+%A/+%

(similarly for momentum and energy conservation)



Conservative Scheme

Conservative scheme

“The flux leaving one control volume equals the flux
entering neighbouring control volume”

Conservation property for mass, momentum and energy is crucial
for the correct prediction of shocks*

* correct prediction of shocks:
strength

position
velocity




Spatial Discretization - Summary

Primary variables defined for all cells

{ﬁv @-/ (Peo)}i, i€ {1, 2, ...,/\/}
Flux terms and lower-order terms may be computed

Temporal derivatives of the primary variables are defined for
all cells




Spatial Discretization - Summary

cell-averaged quantity
face-averaged quantity
source term

%ﬁ ’ VéL/ (oA~ T,
ot i = VéL,-

oi (As ~Acy) |

j;(ﬂeo)/ = VéL,- {(puho),_%A/_% _
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