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Chapter 7

Unsteady Wave Motion
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Addressed Learning Outcomes

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

j unsteady waves and discontinuities in 1D

k basic acoustics

11 Explain how the equations for aero-acoustics and classical

acoustics are derived as limiting cases of the compressible

flow equations

method of characteristics - a central element in classic

compressible flow theory
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel










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Chapter 7.5

Elements of Acoustic Theory
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Sound Waves

I Weakest audible sound wave (0 dB): ∆p ∼0.00002 Pa
I Loud sound wave (94 dB): ∆p ∼1 Pa

I Threshold of pain (120 dB): ∆p ∼20 Pa

I Harmful sound wave (130 dB): ∆p ∼60 Pa

Example:

∆p ∼ 1 Pa gives ∆ρ ∼0.000009 kg/m3 and ∆u ∼0.0025 m/s
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Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in

Chapter 6:

conservation form non-conservation form

mass
∂ρ

∂t
+ ∇ · (ρv) = 0

Dρ

Dt
+ ρ(∇ · v) = 0

momentum
∂

∂t
(ρv) + ∇ · (ρvv + pI) = 0 ρ

Dv
Dt

+ ∇p = 0
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Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Ds

Dt
= 0

Assume one-dimensional flow

ρ = ρ(x, t)
v = u(x, t)ex
p = p(x, t)
...

 ⇒

continuity
∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

momentum ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
= 0

s=constant

can
∂p

∂x
be expressed in terms of density?
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Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely

defined by any tow other state variables

p = p(ρ, s) ⇒ dp =

(
∂p

∂ρ

)
s

dρ+

(
∂p

∂s

)
ρ

ds

s=constant gives

dp =

(
∂p

∂ρ

)
s

dρ = a2dρ

⇒


∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

ρ
∂u

∂t
+ ρu

∂u

∂x
+ a2

∂ρ

∂x
= 0

Niklas Andersson - Chalmers 11 / 60



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

ρ = ρ∞ + ∆ρ p = p∞ + ∆p T = T∞ + ∆T u = u∞ + ∆u = {u∞ = 0} = ∆u

where ρ∞, p∞, and T∞ are constant

Now, insert ρ = (ρ∞ +∆ρ) and u = ∆u in the continuity and

momentum equations (derivatives of ρ∞ are zero)

⇒


∂

∂t
(∆ρ) + ∆u

∂

∂x
(∆ρ) + (ρ∞ + ∆ρ)

∂

∂x
(∆u) = 0

(ρ∞ + ∆ρ)
∂

∂t
(∆u) + (ρ∞ + ∆ρ)∆u

∂

∂x
(∆u) + a

2 ∂

∂x
(∆ρ) = 0
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Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable

⇒ a2 = a2(ρ, s). With entropy constant ⇒ a2 = a2(ρ)

Taylor expansion around a∞ with (∆ρ = ρ− ρ∞) gives

a2 = a2∞ +

(
∂

∂ρ
(a2)

)
∞
∆ρ+

1

2

(
∂2

∂ρ2
(a2)

)
∞
(∆ρ)2 + ...

⇒



∂

∂t
(∆ρ) + ∆u

∂

∂x
(∆ρ) + (ρ∞ + ∆ρ)

∂

∂x
(∆u) = 0

(ρ∞ + ∆ρ)
∂

∂t
(∆u) + (ρ∞ + ∆ρ)∆u

∂

∂x
(∆u) +

[
a
2
∞ +

(
∂

∂ρ
(a

2
)

)
∞

∆ρ + ...

]
∂

∂x
(∆ρ) = 0
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Elements of Acoustic Theory - Acoustic Equations

Since ∆ρ and ∆u are assumed to be small (∆ρ � ρ∞, ∆u � a)

I products of perturbations can be neglected

I higher-order terms in the Taylor expansion can be neglected

⇒


∂

∂t
(∆ρ) + ρ∞

∂

∂x
(∆u) = 0

ρ∞
∂

∂t
(∆u) + a2∞

∂

∂x
(∆ρ) = 0

Note: Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic

equations are linear
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Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage

of a sound wave ...”
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Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we

get

∂2

∂t2
(∆ρ) = a2∞

∂2

∂x2
(∆ρ)

(combine the time derivative of the continuity eqn. and the divergence of the momentum eqn.)

General solution:

∆ρ(x, t) = F(x − a∞t) + G(x + a∞t)

wave traveling in

positive x-direction

with speed a∞

wave traveling in

negative x-direction

with speed a∞

F and G may be arbitrary functions

Wave shape is determined by functions F and G
Niklas Andersson - Chalmers 16 / 60



Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to


∂F

∂t
=

∂F

∂(x − a∞t)

∂(x − a∞t)

∂t
= −a∞F ′

∂F

∂x
=

∂F

∂(x − a∞t)

∂(x − a∞t)

∂x
= F ′

spatial and temporal derivatives of G can of course be obtained in

the same way...
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Elements of Acoustic Theory - Wave Equation

with ∆ρ(x, t) = F(x − a∞t) + G(x + a∞t) and the derivatives of F

and G we get

∂2

∂t2
(∆ρ) = a2∞F ′′ + a2∞G′′

and

∂2

∂x2
(∆ρ) = F ′′ +G′′

which gives

∂2

∂t2
(∆ρ)− a2∞

∂2

∂x2
(∆ρ) = 0

i.e., the proposed solution fulfils the wave equation

Niklas Andersson - Chalmers 18 / 60



Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

∆ρ(x, t) = F(x − a∞t)

If ∆ρ is constant (constant wave amplitude), (x − a∞t) must be a
constant which implies

x = a∞t + c

where c is a constant

dx

dt
= a∞

Niklas Andersson - Chalmers 19 / 60



Elements of Acoustic Theory - Wave Equation

We want a relation between ∆ρ and ∆u

∆ρ(x, t) = F(x − a∞t) (wave in positive x direction) gives:

∂

∂t
(∆ρ) = −a∞F ′

and
∂

∂x
(∆ρ) = F ′

∂

∂t
(∆ρ)︸ ︷︷ ︸

−a∞F ′

+a∞
∂

∂x
(∆ρ)︸ ︷︷ ︸
F ′

= 0

or

∂

∂x
(∆ρ) = − 1

a∞

∂

∂t
(∆ρ)

Niklas Andersson - Chalmers 20 / 60



Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

ρ∞
∂

∂t
(∆u) = −a2∞

∂

∂x
(∆ρ) ⇒

∂

∂t
(∆u) = −a2∞

ρ∞

∂

∂x
(∆ρ) =

{
∂

∂x
(∆ρ) = − 1

a∞

∂

∂t
(∆ρ)

}
=

a∞
ρ∞

∂

∂t
(∆ρ)

∂

∂t

(
∆u− a∞

ρ∞
∆ρ

)
= 0 ⇒ ∆u− a∞

ρ∞
∆ρ = const

In undisturbed gas ∆u = ∆ρ = 0 which implies that the constant
must be zero and thus

∆u =
a∞
ρ∞

∆ρ

Niklas Andersson - Chalmers 21 / 60



Elements of Acoustic Theory - Wave Equation

Similarly, for ∆ρ(x, t) = G(x + a∞t) (wave in negative x direction)

we obtain:

∆u = −a∞
ρ∞

∆ρ

Also, since ∆p = a2∞∆ρ we get:

Right going wave (+x direction) ∆u =
a∞
ρ∞

∆ρ =
1

a∞ρ∞
∆p

Left going wave (-x direction) ∆u = −a∞
ρ∞

∆ρ = − 1

a∞ρ∞
∆p

Niklas Andersson - Chalmers 22 / 60



Elements of Acoustic Theory - Wave Equation

I ∆u denotes induced mass motion and is positive in the

positive x-direction

∆u = ±a∞∆ρ

ρ∞
= ± ∆p

a∞ρ∞

I condensation (the part of the sound wave where ∆ρ > 0):
∆u is always in the same direction as the wave motion

I rarefaction (the part of the sound wave where ∆ρ < 0):
∆u is always in the opposite direction as the wave motion

Niklas Andersson - Chalmers 23 / 60



Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we

get

∂2

∂t2
(∆ρ) = a2∞

∂2

∂x2
(∆ρ)

I Due to the assumptions made, the equation is not exact

I More and more accurate as the perturbations becomes

smaller and smaller

I How should we describe waves with larger amplitudes?
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel













Niklas Andersson - Chalmers 25 / 60



Chapter 7.6

Finite (Non-Linear) Waves
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Finite (Non-Linear) Waves

When ∆ρ, ∆u, ∆p, ... Become large, the linearized acoustic

equations become poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0

Niklas Andersson - Chalmers 27 / 60



Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

∂ρ

∂t
=

(
∂ρ

∂p

)
s

∂p

∂t
=

1

a2
∂p

∂t

∂ρ

∂x
=

(
∂ρ

∂p

)
s

∂p

∂x
=

1

a2
∂p

∂x

Inserted in the continuity equation this gives:

∂p

∂t
+ u

∂p

∂x
+ ρa2

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0

Niklas Andersson - Chalmers 28 / 60



Finite (Non-Linear) Waves

Add 1/(ρa) times the continuity equation to the momentum

equation:

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
= 0

If we instead subtraction 1/(ρa) times the continuity equation
from the momentum equation, we get:

[
∂u

∂t
+ (u− a)

∂u

∂x

]
− 1

ρa

[
∂p

∂t
+ (u− a)

∂p

∂x

]
= 0

Niklas Andersson - Chalmers 29 / 60



Finite (Non-Linear) Waves

Since u = u(x, t), we have:

du =
∂u

∂t
dt +

∂u

∂x
dx =

∂u

∂t
dt +

∂u

∂x

dx

dt
dt

Let
dx

dt
= u+ a gives

du =

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
dt

Interpretation: change of u in the direction of line
dx

dt
= u+ a
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Finite (Non-Linear) Waves

In the same way we get:

dp =
∂p

∂t
dt +

∂p

∂x

dx

dt
dt

and thus

dp =

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
dt

Niklas Andersson - Chalmers 31 / 60



Finite (Non-Linear) Waves

Now, if we combine[
∂u

∂t
+ (u+ a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
= 0

du =

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
dt

dp =

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
dt

we get

du

dt
+

1

ρa

dp

dt
= 0
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Characteristic Lines

Thus, along a line dx = (u+ a)dt we have

du+
dp

ρa
= 0

In the same way we get along a line where dx = (u− a)dt

du− dp

ρa
= 0

Niklas Andersson - Chalmers 33 / 60



Characteristic Lines

I We have found a path through a point (x1, t1) along which the
governing partial differential equations reduces to ordinary

differential equations

I These paths or lines are called characteristic lines

I The C+ and C− characteristic lines are physically the paths

of right- and left-running sound waves in the xt-plane
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Characteristic Lines

x

t

x1

t1

C
−

characteristic line:
dx

dt
= u − a

compatibility equation: du −
dp

ρa
= 0

C
+

characteristic line:
dx

dt
= u + a

compatibility equation: du +
dp

ρa
= 0

Niklas Andersson - Chalmers 35 / 60



Characteristic Lines

summary:

du

dt
+

1

ρa

dp

dt
= 0 along C+ characteristic

du

dt
− 1

ρa

dp

dt
= 0 along C− characteristic

or

du+
dp

ρa
= 0 along C+ characteristic

du− dp

ρa
= 0 along C− characteristic

Niklas Andersson - Chalmers 36 / 60



Riemann Invariants

Integration gives:

J+ = u+

ˆ
dp

ρa
= constant along C+ characteristic

J− = u−
ˆ

dp

ρa
= constant along C− characteristic

We need to rewrite
dp

ρa
to be able to perform the integrations

Niklas Andersson - Chalmers 37 / 60



Riemann Invariants

Isentropic processes:

p = c1T
γ/(γ−1) = c2a

2γ/(γ−1)

where c1 and c2 are constants

⇒ dp = c2

(
2γ

γ − 1

)
a[2γ/(γ−1)−1]da

Assume calorically perfect gas:

a2 =
γp

ρ
⇒ ρ =

γp

a2

with p = c2a
2γ/(γ−1) we get

ρ = c2γa
[2γ/(γ−1)−2]

Niklas Andersson - Chalmers 38 / 60



Riemann Invariants

J+ = u+

ˆ
dp

ρa
= u+

ˆ c2

(
2γ
γ−1

)
a[2γ/(γ−1)−1]

c2γa[2γ/(γ−1)−1]
da = u+

ˆ
2da

γ − 1

J+ = u+
2a

γ − 1

J− = u− 2a

γ − 1

Niklas Andersson - Chalmers 39 / 60



Riemann Invariants

If J+ and J− are known at some point (x, t), then


J+ + J− = 2u

J+ − J− =
4a

γ − 1

⇒


u =

1

2
(J+ + J−)

a =
γ − 1

4
(J+ − J−)

Flow state is uniquely defined!

Niklas Andersson - Chalmers 40 / 60



Method of Characteristics

t

x

tn

tn+1

flow state known

here

flow state may be

computed here

J
−

J
+

J
−

J
+

J
−

J
+

J
−

J
+

transfer J
+

along C
+

characteristics, and vice versa
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Summary

Acoustic waves

I ∆ρ, ∆u, etc - very small

I All parts of the wave

propagate with the same

velocity a∞

I The wave shape stays the

same

I The flow is governed by

linear relations

Finite (non-linear) waves

I ∆ρ, ∆u, etc - can be large

I Each local part of the

wave propagates at the

local velocity (u+ a)

I The wave shape changes

with time

I The flow is governed by

non-linear relations
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel














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Chapter 7.7

Incident and Reflected

Expansion Waves
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Expansion Waves

reflected expansion fan

incident shock wave

reflected shock wave

contact surface

1

2

3

4

5

t

x

4 1

driver section driven section

diaphragm location wall
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Expansion Waves

Properties of a left-running expansion wave

1. All flow properties are constant along C− characteristics

2. The wave head is propagating into region 4 (high pressure)

3. The wave tail defines the limit of region 3 (lower pressure)

4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

J+ = u+
2a

γ − 1
is constant along C+ lines

J− = u− 2a

γ − 1
is constant along C− lines
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Expansion Waves

x

t

C
−
C
−

C
−

C
−

4

3
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Expansion Waves

x

t

C
−
C
−

C
−

C
−

C
+

C
+

C
+

C
+

C
+

C
+

4

3
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Expansion Waves

β

β

β

x

t

a

c

e

b

d

fC
−
C
−

C
−

C
−

C
+

C
+

C
+

C
+

C
+

C
+

4

3

α α α

constant flow properties in region 4: J
+
a = J

+
b

J
+

invariants constant along C
+

characteristics:

J
+
a = J

+
c = J

+
e

J
+
b

= J
+
d

= J
+
f

since J
+
a = J

+
b

this also implies J
+
e = J

+
f

J
−

invariants constant along C
−

characteristics:

J
−
c = J

−
d

J
−
e = J

−
f
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Expansion Waves
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+

C
+

C
+

4

3

α α α

constant flow properties in region 4: J
+
a = J

+
b

J
+

invariants constant along C
+

characteristics:

J
+
a = J

+
c = J

+
e

J
+
b

= J
+
d

= J
+
f

since J
+
a = J

+
b

this also implies J
+
e = J

+
f

J
−

invariants constant along C
−

characteristics:

J
−
c = J

−
d

J
−
e = J

−
f

ue =
1

2
(J

+
e + J

−
e ), uf =

1

2
(J

+
f

+ J
−
f

), ⇒ ue = uf

ae =
γ − 1

4
(J

+
e − J

−
e ), af =

γ − 1

4
(J

+
f

− J
−
f

), ⇒ ae = af
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Expansion Waves

Along each C− line u and a are constants which means that

dx

dt
= u− a = const

C− characteristics are straight lines in xt-space
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Expansion Waves

The start and end conditions are the same for all C+ lines

J+ invariants have the same value for all C+ characteristics

C− characteristics are straight lines in xt-space

Simple expansion waves centered at (x, t) = (0, 0)
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Expansion Waves

In a left-running expansion fan:

I J+ is constant throughout expansion fan, which implies:

u+
2a

γ − 1
= u4 +

2a4
γ − 1

= u3 +
2a3
γ − 1

I J− is constant along C− lines, but varies from one line to the

next, which means that

u− 2a

γ − 1

is constant along each C− line
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Expansion Waves

Since u4 = 0 we obtain:

u+
2a

γ − 1
= u4 +

2a4
γ − 1

=
2a4
γ − 1

⇒

a

a4
= 1− 1

2
(γ − 1)

u

a4

with a =
√

γRT we get

T

T4
=

[
1− 1

2
(γ − 1)

u

a4

]2
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Expansion Wave Relations

Isentropic flow ⇒ we can use the isentropic relations

T

T4
=

[
1− 1

2
(γ − 1)

u

a4

]2

p

p4
=

[
1− 1

2
(γ − 1)

u

a4

] 2γ
γ−1

ρ

ρ4
=

[
1− 1

2
(γ − 1)

u

a4

] 2
γ−1

complete description in terms of u/a4
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Expansion Wave Relations

Since C− characteristics are straight lines, we have:

dx

dt
= u− a ⇒ x = (u− a)t

a

a4
= 1− 1

2
(γ − 1)

u

a4
⇒ a = a4 −

1

2
(γ − 1)u ⇒

x =

[
u− a4 +

1

2
(γ − 1)u

]
t =

[
1

2
(γ − 1)u− a4

]
t ⇒

u =
2

γ + 1

[
a4 +

x

t

]
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Expansion Wave Relations

u

x

u4 = 0

u3

expansion wave

p

x

p4

p3

expansion wave

I Expansion wave head is advancing

to the left with speed a4 into the

stagnant gas

I Expansion wave tail is advancing

with speed u3 − a3, which may be

positive or negative, depending on

the initial states
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel
















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Chapter 7.8

Shock Tube Relations
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Shock Tube Relations

up = u2 =
a1

γ

(
p2

p1
− 1

)
2γ1

γ1 + 1
p2

p1
+

γ1 − 1

γ1 + 1


1/2

p3

p4
=

[
1− γ4 − 1

2

(
u3

a4

)]2γ4/(γ4−1)

solving for u3 gives

u3 =
2a4

γ4 − 1

[
1−

(
p3

p4

)(γ4−1)/(2γ4)
]
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Shock Tube Relations

But, p3 = p2 and u3 = u2 (no change in velocity and pressure

over contact discontinuity)

⇒ u2 =
2a4

γ4 − 1

[
1−

(
p2

p4

)(γ4−1)/(2γ4)
]

We have now two expressions for u2 which gives us

a1

γ

(
p2

p1
− 1

)
2γ1

γ1 + 1
p2

p1
+

γ1 − 1

γ1 + 1


1/2

=
2a4

γ4 − 1

[
1−

(
p2

p4

)(γ4−1)/(2γ4)
]
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Shock Tube Relations

Rearranging gives:

p4

p1
=

p2

p1

{
1− (γ4 − 1)(a1/a4)(p2/p1 − 1)√

2γ1 [2γ1 + (γ1 + 1)(p2/p1 − 1)]

}−2γ4/(γ4−1)

I p2/p1 as implicit function of p4/p1

I for a given p4/p1, p2/p1 will increase with decreased a1/a4

a =
√
γRT =

√
γ(Ru/M)T

I the speed of sound in a light gas is higher than in a heavy
gas

I driver gas: low molecular weight, high temperature
I driven gas: high molecular weight, low temperature
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel
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