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Chapter 7
Unsteady Wave Motion
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Addressed Learning Outcomes

8 Derive (marked) and apply (all) of the presented

11

mathematical formulae for classical gas dynamics

| unsteady waves and discontinuities in 1D

k basic acoustics
Explain how the equations for aero-acoustics and classical
acoustics are derived as limiting cases of the compressible
flow equations

method of characteristics - a central element in classic
compressible flow theory
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Chapter 7.5
Elements of Acoustic Theory



Sound Waves

v

Weakest audible sound wave (0 dB): Ap ~0.00002 Pa
Loud sound wave (94 dB): Ap ~1 Pa

Threshold of pain (120 dB): Ap ~20 Pa

Harmful sound wave (130 dB): Ap ~60 Pa

v

v

v

Example:

Ap ~ 1 Pagives Ap ~0.000009 kg/m? and Au ~0.0025 m/s



Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in
Chapter 6:

conservation form non-conservation form
20 49 (v =0 % p(v v =0
mass — - (pv) = — J SV) =
ot ! ot °
o Dv
momentum 5 (pv) +V - (pvv+pI) =0 pa +Vp=0




Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Ds
—
Dt
Assume one-dimensional flow
- ap ap ou
b= plx,1) continuity a + U& + p87 =0
v =u(x,t)ex N 5 5 5
_ u u 0
p  =px,t i — 4 = =
(x,1) momentum pat +puax + o 0
s=constant
op )

can I be expressed in terms of density?



Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely
defined by any tow other state variables

op op
— do=(=—=") d — ] d
p=p(p,s)=dp <3P>s p+(8s>p s

s=constant gives

dp = (8{3) dp =a’dp
op)s
dp dp ou
E—i—ua—irpafo



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P=pPoo+Ap P=pPoc+Ap T=Tew+AT U=Uso + AU={Uco =0} =AU
where poo, Poo, and T, are constant

Now, insert p = (poo + Ap) and u = Au in the continuity and
momentum equations (derivatives of ps, are zero)

9 12} %}
—(a Au—(A Ap)—(Au) =0
51 (AP) + AU (Ap) + (poo + Ap) o (AU)

o o 5 O
(Poo + Ap) — (AU) + (poo + Ap)Au——(AU) +a° —(Ap) =0
ot Ox Ox



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P=pPoo+Ap P=pPoc+Ap T=Tew+AT U=Uso + AU={Uco =0} =AU
where poo, Poo, and T, are constant

Now, insert p = (poo + Ap) and u = Au in the continuity and
momentum equations (derivatives of ps, are zero)

5] o 5]
—(A Au— (A Ap)—(AU) =0
0[( p) + UDX( p) + (poo + p)ax( u)

=
) ) 5 0
(poo + Ap) — (AU) + (poo + Ap)Au—(AY) +a" —(Ap) =0
ot ox ox



Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable
= a® = a*(p,s). With entropy constant = a* = a*(p)

Taylor expansion around a, with (Ap = p — ps) gives

a’=a’ + (;p(82)>ooﬁﬂ+ <§22( )>OO(AP)2+

15} 15} e}
—(Ap) + Au—(Ap) + (po + Ap) —(Au) =0
ot ox ox

=

( +A>3(Au)+( +A)Au3(Au)+ a2 +(3<a2)) Ap + g(A):o
Poo Pl 5 Poc P o o op _ Pl (B



Elements of Acoustic Theory - Acoustic Equations

Since Ap and Au are assumed to be small (Ap < poo, AU <K Q)

products of perturbations can be neglected
higher-order terms in the Taylor expansion can be neglected

2(Au) =0

0
7(Ap) + Poo Ox

ot

2 (an) =0

8
Au +a

Poo bt

Note: Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic
equations are linear



Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage
of a sound wave ...”



Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we

get

2
P (Ap) = a? %(Ap)

(combine the time derivative of the continuity egn. and the divergence of the momentum eqn.)
General solution:

Ap(x,t) = F(X — asol) + G(X + acol)
wave traveling in wave traveling in

positive x-direction

with speed aoo

negative x-direction
with speed aoo

F and G may be arbitrary functions
Wave shape is determined by functions F and G



Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to

OF  OF  dx—axt) A F
ot O(X — asot) ot -
OF _ OF  dx—axt)

X O(X—axt) X

Spatial and temporal derivatives of G can of course be obtained in
the same way...



Elements of Acoustic Theory - Wave Equation

with Ap(x, t) = F(X — axt) + G(X 4 axt) and the derivatives of £
and G we get

82
pre) (Ap) =a> F" +a*.G"
and
82
@(Ap) — F// _|_ G//
which gives
0?2 6‘2

s (Ar) —a 8—(Ap) =0

i.e., the proposed solution fulfils the wave equation



Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

Ap(x,t) = F(X — asct)

If Ap is constant (constant wave amplitude), (x — ast) must be a
constant which implies

X =axl+cC
where ¢ is a constant

ax

=a
dt o



Elements of Acoustic Theory - Wave Equation
We want a relation between Ap and Au

Ap(x,t) = F(x — axt) (wave in positive x direction) gives:

0 _ ’ 0 o
51 (Ap) = —axcF and e (AP) =F
0 0
&(AP) +aoo a(AP) =0
—— ~——
—acoF’ F!
or
%, 19



Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

2 (Bu) = ~a% 2 (Ap) >

Poo bt
0 a’, o 0 1 0 )
a0 = 2= 2 — {2 ap) = - L 280 | = =2 )

0 Au ——Ap :0:>Au—a¥°°Ap:const
82‘ Poo Poo

In undisturbed gas Au = Ap = 0 which implies that the constant
must be zero and thus

Au

%% Ap
Poo




Elements of Acoustic Theory - Wave Equation

Similarly, for Ap(x,t) = G(x + ast) (wave in negative x direction)
we obtain:

a
Au=—""Ap
Poo

Also, since Ap = a?,Ap we get:

o 1
Right going wave (+x direction) Au = a—Ap = Ap
Poo oo Poo
, ) . Ao 1
Left going wave (-x direction) Au=-——Ap=— Ap



Elements of Acoustic Theory - Wave Equation

Au denotes induced mass motion and is positive in the
positive x-direction

Ao Ap _ 4 Ap
Poo oo Poo

Au =+

condensation (the part of the sound wave where Ap > 0):
Au is always in the same direction as the wave motion

rarefaction (the part of the sound wave where Ap < 0):
Au is always in the opposite direction as the wave motion



Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we
get

0? 0?
@(AP) = ago@(Ap)

Due to the assumptions made, the equation is not exact

More and more accurate as the perturbations becomes
smaller and smaller

How should we describe waves with larger amplitudes?
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Chapter 7.6
Finite (Non-Linear) Waves



Finite (Non-Linear) Waves

When Ap, Au, Ap, ... Become large, the linearized acoustic
equations become poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations

dp 8p ou
at TVax TPax TV

ou ou 10p

ot TV T oax Y




Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

ot \op), ot aot ox  \op

Inserted in the continuity equation this gives:

o Lou
E%—ua—x—l—pa a—

ou, v 10p
ot ox  pox

0

0

9 _ (99 0o _ 1p 9 _ (o) & _10p
L Ox  azox



Finite (Non-Linear) Waves

Add 1/(pa) times the continuity equation to the momentum
equation:

ou ou 1 [op op|
[at—k(u%-a) :|+p|:+(u+a)a)<:|—0

If we instead subtraction 1/(pa) times the continuity equation
from the momentum equation, we get:

[g;’Jr(u—a)gﬂ - [%Jr(u—a)ap} =0



Finite (Non-Linear) Waves
Since u = u(x,t), we have:

_ou 6u ou 8u ax

ax .
Let i =Uu+agives

au

ou ou
[at -+ (U +a)8x} at

. . o e
Interpretation: change of u in the direction of line di)t( =u+a



Finite (Non-Linear) Waves

In the same way we get:

_Op op dx
dp = Edt + 5&dt

and thus
op

~ Ip
dap = {81‘ + (u+a)ax] dt



Finite (Non-Linear) Waves

Now, if we combine

Ip

ou ou ap B
+ (u+ a)a} =0

[m+(u+a)8x} +p—a [E

ou ou
du = [ + (u+a)ax} dt

ot
~|op op
dp = {81‘ +(u+a)ax] at
we get

au 1 dp




Characteristic Lines

Thus, along a line dx = (u + a)dt we have

{o’qude}
pa

In the same way we get along a line where dx = (u — a)dt




Characteristic Lines

» We have found a path through a point (x1, ;) along which the
governing partial differential equations reduces to ordinary
differential equations

» These paths or lines are called characteristic lines

» The CT and C~ characteristic lines are physically the paths
of right- and left-running sound waves in the xt-plane



Characteristic Lines

_ o ax
C™ characteristic line: — =u-—a
- . dp
compatibility equation: du— — =0
pa

/

+ ax
C™ characteristic line: E =u+a
. dp
compatibility equation: du+ — =0
pa
'X

X1



Characteristic Lines

summary:

s

Z—L; - ;z',(; =0 along C" characteristic
((jj—l: — pla(Zﬁ =0 along C™ characteristic
or
au + CZZ =0 along C' characteristic
au — dp =0 along C™ characteristic

pa




Riemann Invariants

Integration gives:

Ko/ .
JT=u+ / —g = constant along C* characteristic
P

a .
J =u-— / —Z = constant along C~ characteristic
p

e/ . .
We need to rewrite —g to be able to perform the integrations
p



Riemann Invariants
Isentropic processes:

D= CIT’Y/('Yfl) — CQ&Q’Y/(’Yil)

where ¢, and ¢y are constants

S dp=cy <2’Y1> 27/ (1)1l 4

Assume calorically perfect gas:

2P, _ P

a —
p T

with p = c2a27/=1) we get

p= 0273[27/("/—1)_2]



Riemann Invariants

27\ gl2v/(v-1)-1] :

“dp = (’yfl)a 2da
+ p— — p— E—

J —u+/ e —u+/ Comyal21 /-1 da u+/ o




Riemann Invariants

If JT and J~ are known at some point (x, t), then

It 4 d =2 u:%(ﬁw—)

=
4a

—+ — —

JT—dJ —’\/7_1 a:u(J+*J7)

Flow state is uniquely defined!



Method of Characteristics

transfer J™ along C™ characteristics, and vice versa

flow state may be
computed here

flow state known
here

X



Summary

Acoustic waves

Ap, Au, etc - very small
All parts of the wave
propagate with the same
velocity as

The wave shape stays the
same

The flow is governed by
linear relations

Finite (non-linear) waves

Ap, Au, etc - can be large
Each local part of the
wave propagates at the
local velocity (U + a)

The wave shape changes
with time

The flow is governed by
non-linear relations
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Chapter 7.7
Incident and Reflected
Expansion Waves



Expansion Waves

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

®

incident shock wave

Lo | @

driver section driven section




Expansion Waves

Properties of a left-running expansion wave

1. All flow properties are constant along C~ characteristics

2. The wave head is propagating into region 4 (high pressure)
3. The wave tail defines the limit of region 3 (lower pressure)
4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

is constant along C™ lines

is constant along C™ lines




Expansion Waves

o=
o=




Expansion Waves

C~ @ ct
o
cx ct
o
C+
@
ct ct ct




Expansion Waves

[N @ ct
o=
C B ct
C'~ f
B
e
® d ot
C
b « a « «
ct ct ct

constant flow properties in region 4: J: = J;r

J¥ invariants constant along C™ characteristics:
+ _ g+t
Ji =dg =4
+ _ gt
Jb - Jd 7‘J/

since JT = J this also implies gt =uf
a b e f

J ™ invariants constant along C~ characteristics:
Jo =Jy

Jy =



Expansion Waves

A
inregion 4: y+ — J+
constant flow properties in region 4: J;~ = Jb
N @ ¢
c= J¥ invariants constant along C™ characteristics:
+ _ g+t
c= B C+ Ja - Jc *Je
C™ f g =dF =4t
B
i + _ + _ +
e since J; = J,; this also implies J;~ = J;
d ot
@ S 5
J ™ invariants constant along C~ characteristics:
b @ a «@ «@ — —
> Jo =,
X c d
ct ct ct
Jo =
1, o
ue:E(Je +Jg ),uf:E(Jl, +J; ), = Ue = Ur
Y14 — y—1 4 —
e = 1 (Je — e )ar = 1 (" —Ji ), = ae =g




Expansion Waves

Along each C™ line u and a are constants which means that

X _ i —a = const
at B

C™ characteristics are straight lines in xt-space



Expansion Waves

The start and end conditions are the same for all C™ lines
JT invariants have the same value for all C™ characteristics
C™ characteristics are straight lines in xt-space

Simple expansion waves centered at (x,t) = (0,0)




Expansion Waves

In a left-running expansion fan;

» J*1 is constant throughout expansion fan, which implies:

2a 2a, n 2as

Usg + = U3

u =
+7—1 v—1 v—1

» J~ is constant along C™ lines, but varies from one line to the
next, which means that

is constant along each C™ line



Expansion Waves

Since uys = 0 we obtain:

U 2a o 2a4  2a4
1 YTy 4o
a u
=1 (=1 =
a (v )a4

with a = /~yRT we get

To[i-ta-n2]



Expansion Wave Relations

Isentropic flow = we can use the isentropic relations

complete description in terms of u/ay



Expansion Wave Relations

Since C~ characteristics are straight lines, we have:

d

d—j:u—a:x:(u—a)t
a u
—=1l——(y—-1)—=a=a1—-(y—1)u
a; (v )a4 4 2(7 u =



Expansion Wave Relations

Expansion wave head is advancing
- to the left with speed a, into the

/ stagnant gas
us =0 ! >

T expansion wave | «

Expansion wave tail is advancing

with speed uz — az, which may be

positive or negative, depending on
a— the initial states

T expansion wave ' ¥
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Chapter 7.8
Shock Tube Relations



Shock Tube Relations

2 1/2

a
Up:U2:1<le) Lll
Y \P1 ,O2+71—

p1 m+1

03 v —1 fuz\ ]/ e
kA T e
P4 { 2 <a4>}

solving for us gives

b 2ay - (:QS) (ya—1)/(2v4)
vq— 1 P4




Shock Tube Relations

But, p3 = p2 and us = U, (no change in velocity and pressure
over contact discontinuity)

(ya=1)/(2v4)
o[ ()
va—1 P4

We have now two expressions for us which gives us

271 12

A (pg — 1) . m+1l _2a - <pQ>(v4—1)/(2v4>
7 \P1 P2 4 L_l Y4 —1 D4




Shock Tube Relations

Rearranging gives:

Po_pP2 )y (u—D(@/as)p2/pr— 1) 21/ (1)
P1 P1 \/2"}/1 [271 + (’Yl + 1)(,02/01 — 1)]

» pa/p1 as implicit function of p4/p1
» for a given ps/pi1, p2/p1 will increase with decreased a; /a4

a = \/RT = /4(Ry/M)T
» the speed of sound in a light gas is higher than in a heavy
gas

» driver gas: low molecular weight, high temperature
» driven gas: high molecular weight, low temperature
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