Compressible Flow - TME085 Lecture 11

Niklas Andersson

Chalmers University of Technology
Department of Mechanics and Maritime Sciences
Division of Fluid Mechanics
Gothenburg, Sweden
niklas.andersson@chalmers.se

Overview

Chapter 7 Unsteady Wave Motion

Overview

noncon- $\quad \begin{gathered}\text { substantia } \\ \text { derivative }\end{gathered}$

si
OW

Addressed Learning Outcomes

8 Derive (marked) and apply (all) of the presented mathematical formulae for classical gas dynamics
j unsteady waves and discontinuities in 1D
k basic acoustics
11 Explain how the equations for aero-acoustics and classical acoustics are derived as limiting cases of the compressible flow equations
method of characteristics - a central element in classic compressible flow theory

Roadmap - Unsteady Wave Motion

Chapter 7.5 Elements of Acoustic Theory

Sound Waves

- Weakest audible sound wave (0 dB): $\Delta p \sim 0.00002 \mathrm{~Pa}$
- Loud sound wave (94 dB): $\Delta \mathrm{p} \sim 1 \mathrm{~Pa}$
- Threshold of pain (120 dB): $\Delta p \sim 20 \mathrm{~Pa}$
- Harmful sound wave (130 dB): $\Delta p \sim 60 \mathrm{~Pa}$

Example:
$\Delta p \sim 1$ Pa gives $\Delta \rho \sim 0.000009 \mathrm{~kg} / \mathrm{m}^{3}$ and $\Delta u \sim 0.0025 \mathrm{~m} / \mathrm{s}$

Sound Waves

Schlieren flow visualization of self-sustained oscillation of an under-expanded free jet
A. Hirschberg
"Introduction to alero-acoustics of internal flows", Advances in Aeroacoustics, VKI, 12-16 March 2001

Sound Waves

Screeching rectangular supersonic jet

Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in Chapter 6:

conservation form	non-conservation form	
mass	$\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0$	$\frac{D \rho}{D t}+\rho(\nabla \cdot \mathbf{v})=0$
momentum	$\frac{\partial}{\partial t}(\rho \mathbf{v})+\nabla \cdot(\rho \mathbf{v} \mathbf{v}+p \mathbf{I})=0$	$\rho \frac{D \mathbf{v}}{D t}+\nabla p=0$

Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

$$
\frac{D s}{D t}=0
$$

Assume one-dimensional flow

$$
\begin{array}{ll}
\text { continuity } & \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \\
\text { momentum } & \rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial x}+\frac{\partial p}{\partial x}=0 \\
\text { s=constant }
\end{array}
$$

can $\frac{\partial p}{\partial x}$ be expressed in terms of density?

Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely defined by any tow other state variables

$$
p=p(\rho, s) \Rightarrow d p=\left(\frac{\partial p}{\partial \rho}\right)_{s} d \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} d s
$$

$s=$ constant gives

$$
\begin{gathered}
d p=\left(\frac{\partial p}{\partial \rho}\right)_{s} d \rho=a^{2} d \rho \\
\Rightarrow\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \\
\rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial x}+a^{2} \frac{\partial \rho}{\partial x}=0
\end{array}\right.
\end{gathered}
$$

Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

$$
\rho=\rho_{\infty}+\Delta \rho \quad p=p_{\infty}+\Delta p \quad T=T_{\infty}+\Delta T \quad u=u_{\infty}+\Delta u=\left\{u_{\infty}=0\right\}=\Delta u
$$

where $\rho_{\infty}, p_{\infty}$, and T_{∞} are constant
Now, insert $\rho=\left(\rho_{\infty}+\Delta \rho\right)$ and $u=\Delta u$ in the continuity and momentum equations (derivatives of ρ_{∞} are zero)

$$
\Rightarrow\left\{\begin{array}{l}
\frac{\partial}{\partial t}(\Delta \rho)+\Delta u \frac{\partial}{\partial x}(\Delta \rho)+\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial x}(\Delta u)=0 \\
\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial t}(\Delta u)+\left(\rho_{\infty}+\Delta \rho\right) \Delta u \frac{\partial}{\partial x}(\Delta u)+a^{2} \frac{\partial}{\partial x}(\Delta \rho)=0
\end{array}\right.
$$

Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

$$
\rho=\rho_{\infty}+\Delta \rho \quad p=p_{\infty}+\Delta p \quad T=T_{\infty}+\Delta T \quad u=u_{\infty}+\Delta u=\left\{u_{\infty}=0\right\}=\Delta u
$$

where $\rho_{\infty}, p_{\infty}$, and T_{∞} are constant

Now, insert $\rho=\left(\rho_{\infty}+\Delta \rho\right)$ and $u=\Delta u$ in the continuity and momentum equations (derivatives of ρ_{∞} are zero)

$$
\Rightarrow\left\{\begin{array}{l}
\frac{\partial}{\partial t}(\Delta \rho)+\Delta u \frac{\partial}{\partial x}(\Delta \rho)+\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial x}(\Delta u)=0 \\
\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial t}(\Delta u)+\left(\rho_{\infty}+\Delta \rho\right) \Delta u \frac{\partial}{\partial x}\left(\Delta u+a^{2} \frac{\partial}{\partial x}(\Delta \rho)=0\right.
\end{array}\right.
$$

Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable
$\Rightarrow a^{2}=a^{2}(\rho, s)$. With entropy constant $\Rightarrow a^{2}=a^{2}(\rho)$
Taylor expansion around a_{∞} with ($\Delta \rho=\rho-\rho_{\infty}$) gives

$$
\begin{gathered}
a^{2}=a_{\infty}^{2}+\left(\frac{\partial}{\partial \rho}\left(a^{2}\right)\right)_{\infty} \Delta \rho+\frac{1}{2}\left(\frac{\partial^{2}}{\partial \rho^{2}}\left(a^{2}\right)\right)_{\infty}(\Delta \rho)^{2}+\ldots \\
\Rightarrow\left\{\begin{array}{l}
\frac{\partial}{\partial t}(\Delta \rho)+\Delta u \frac{\partial}{\partial x}(\Delta \rho)+\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial x}(\Delta u)=0 \\
\left.\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial t}(\Delta u)+\left(\rho_{\infty}+\Delta \rho\right) \Delta u \frac{\partial}{\partial x}(\Delta u)+\left[a_{\infty}^{2}+\left(\frac{\partial}{\partial \rho}\left(a^{2}\right)\right)\right)_{\infty} \Delta \rho+\ldots\right] \frac{\partial}{\partial x}(\Delta \rho)=0
\end{array}\right.
\end{gathered}
$$

Elements of Acoustic Theory - Acoustic Equations

Since $\Delta \rho$ and Δu are assumed to be small $\left(\Delta \rho \ll \rho_{\infty}, \Delta u \ll a\right)$

- products of perturbations can be neglected
- higher-order terms in the Taylor expansion can be neglected

$$
\Rightarrow\left\{\begin{array}{l}
\frac{\partial}{\partial t}(\Delta \rho)+\rho_{\infty} \frac{\partial}{\partial x}(\Delta u)=0 \\
\rho_{\infty} \frac{\partial}{\partial t}(\Delta u)+a_{\infty}^{2} \frac{\partial}{\partial x}(\Delta \rho)=0
\end{array}\right.
$$

Note: Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic equations are linear

Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:
"... describe the motion of gas induced by the passage of a sound wave ..."

Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we get

$$
\frac{\partial^{2}}{\partial t^{2}}(\Delta \rho)=a_{\infty}^{2} \frac{\partial^{2}}{\partial x^{2}}(\Delta \rho)
$$

(combine the time derivative of the continuity eqn. and the divergence of the momentum eqn.)
General solution:

$$
\begin{aligned}
& \Delta \rho(x, t)= F\left(x-a_{\infty} t\right)+G\left(x+a_{\infty} t\right) \\
& \begin{aligned}
\text { wave traveling in } & \text { wave traveling in } \\
& \text { positive x-direction } \\
& \text { negative x-direction } \\
& \text { with speed } a_{\infty}
\end{aligned} \\
& \text { with speed } a_{\infty}
\end{aligned}
$$

F and G may be arbitrary functions
Wave shape is determined by functions F and G

Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial t}=\frac{\partial F}{\partial\left(x-a_{\infty} t\right)} \frac{\partial\left(x-a_{\infty} t\right)}{\partial t}=-a_{\infty} F^{\prime} \\
\frac{\partial F}{\partial x}=\frac{\partial F}{\partial\left(x-a_{\infty} t\right)} \frac{\partial\left(x-a_{\infty} t\right)}{\partial x}=F^{\prime}
\end{array}\right.
$$

spatial and temporal derivatives of G can of course be obtained in

 the same way...
Elements of Acoustic Theory - Wave Equation

with $\Delta \rho(x, t)=F\left(x-a_{\infty} t\right)+G\left(x+a_{\infty} t\right)$ and the derivatives of F and G we get

$$
\frac{\partial^{2}}{\partial t^{2}}(\Delta \rho)=a_{\infty}^{2} F^{\prime \prime}+a_{\infty}^{2} G^{\prime \prime}
$$

and

$$
\frac{\partial^{2}}{\partial x^{2}}(\Delta \rho)=F^{\prime \prime}+G^{\prime \prime}
$$

which gives

$$
\frac{\partial^{2}}{\partial t^{2}}(\Delta \rho)-a_{\infty}^{2} \frac{\partial^{2}}{\partial x^{2}}(\Delta \rho)=0
$$

i.e., the proposed solution fulfils the wave equation

Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume $G=0$

$$
\Delta \rho(x, t)=F\left(x-a_{\infty} t\right)
$$

If $\Delta \rho$ is constant (constant wave amplitude), $\left(x-a_{\infty} t\right)$ must be a constant which implies

$$
x=a_{\infty} t+c
$$

where c is a constant

$$
\frac{d x}{d t}=a_{\infty}
$$

Elements of Acoustic Theory - Wave Equation

We want a relation between $\Delta \rho$ and Δu
$\Delta \rho(x, t)=F\left(x-a_{\infty} t\right)$ (wave in positive x direction) gives:

$$
\frac{\partial}{\partial t}(\Delta \rho)=-a_{\infty} F^{\prime} \quad \text { and } \quad \frac{\partial}{\partial x}(\Delta \rho)=F^{\prime}
$$

$$
\underbrace{\frac{\partial}{\partial t}(\Delta \rho)}_{-a_{\infty} F^{\prime}}+a_{\infty} \underbrace{\frac{\partial}{\partial x}(\Delta \rho)}_{F^{\prime}}=0
$$

$$
\frac{\partial}{\partial x}(\Delta \rho)=-\frac{1}{a_{\infty}} \frac{\partial}{\partial t}(\Delta \rho)
$$

Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

$$
\begin{gathered}
\rho_{\infty} \frac{\partial}{\partial t}(\Delta u)=-a_{\infty}^{2} \frac{\partial}{\partial x}(\Delta \rho) \Rightarrow \\
\frac{\partial}{\partial t}(\Delta u)=-\frac{a_{\infty}^{2}}{\rho_{\infty}} \frac{\partial}{\partial x}(\Delta \rho)=\left\{\frac{\partial}{\partial x}(\Delta \rho)=-\frac{1}{a_{\infty}} \frac{\partial}{\partial t}(\Delta \rho)\right\}=\frac{a_{\infty}}{\rho_{\infty}} \frac{\partial}{\partial t}(\Delta \rho) \\
\frac{\partial}{\partial t}\left(\Delta u-\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho\right)=0 \Rightarrow \Delta u-\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho=\text { const }
\end{gathered}
$$

In undisturbed gas $\Delta u=\Delta \rho=0$ which implies that the constant
must be zero and thus

$$
\Delta u=\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho
$$

Elements of Acoustic Theory - Wave Equation

Similarly, for $\Delta \rho(x, t)=G\left(x+a_{\infty} t\right)$ (wave in negative x direction) we obtain:

$$
\Delta u=-\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho
$$

Also, since $\Delta p=a_{\infty}^{2} \Delta \rho$ we get:
Right going wave $(+x$ direction $) \quad \Delta u=\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho=\frac{1}{a_{\infty} \rho_{\infty}} \Delta \rho$
Left going wave (-x direction) $\Delta u=-\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho=-\frac{1}{a_{\infty} \rho_{\infty}} \Delta p$

Elements of Acoustic Theory - Wave Equation

- Δu denotes induced mass motion and is positive in the positive x-direction

$$
\Delta u= \pm \frac{a_{\infty} \Delta \rho}{\rho_{\infty}}= \pm \frac{\Delta p}{a_{\infty} \rho_{\infty}}
$$

- condensation (the part of the sound wave where $\Delta \rho>0$): Δu is always in the same direction as the wave motion
- rarefaction (the part of the sound wave where $\Delta \rho<0$): Δu is always in the opposite direction as the wave motion

Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we get

$$
\frac{\partial^{2}}{\partial t^{2}}(\Delta \rho)=a_{\infty}^{2} \frac{\partial^{2}}{\partial x^{2}}(\Delta \rho)
$$

- Due to the assumptions made, the equation is not exact
- More and more accurate as the perturbations becomes smaller and smaller
- How should we describe waves with larger amplitudes?

Roadmap - Unsteady Wave Motion

Chapter 7.6 Finite (Non-Linear) Waves

Finite (Non-Linear) Waves

When $\Delta \rho, \Delta u, \Delta p, \ldots$ Become large, the linearized acoustic equations become poor approximations

Non-linear equations must be used
One-dimensional non-linear continuity and momentum equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0
\end{aligned}
$$

Finite (Non-Linear) Waves

We still assume isentropic flow, $d s=0$

$$
\frac{\partial \rho}{\partial t}=\left(\frac{\partial \rho}{\partial p}\right)_{s} \frac{\partial p}{\partial t}=\frac{1}{a^{2}} \frac{\partial p}{\partial t}
$$

$$
\frac{\partial \rho}{\partial x}=\left(\frac{\partial \rho}{\partial p}\right)_{s} \frac{\partial p}{\partial x}=\frac{1}{a^{2}} \frac{\partial p}{\partial x}
$$

Inserted in the continuity equation this gives:

$$
\begin{aligned}
& \frac{\partial p}{\partial t}+u \frac{\partial p}{\partial x}+\rho a^{2} \frac{\partial u}{\partial x}=0 \\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0
\end{aligned}
$$

Finite (Non-Linear) Waves

Add $1 /(\rho a)$ times the continuity equation to the momentum equation:

$$
\left[\frac{\partial u}{\partial t}+(u+a) \frac{\partial u}{\partial x}\right]+\frac{1}{\rho a}\left[\frac{\partial p}{\partial t}+(u+a) \frac{\partial p}{\partial x}\right]=0
$$

If we instead subtraction $1 /(\rho a)$ times the continuity equation from the momentum equation, we get:

$$
\left[\frac{\partial u}{\partial t}+(u-a) \frac{\partial u}{\partial x}\right]-\frac{1}{\rho a}\left[\frac{\partial p}{\partial t}+(u-a) \frac{\partial p}{\partial x}\right]=0
$$

Finite (Non-Linear) Waves

Since $u=u(x, t)$, we have:

$$
d u=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} d x=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} \frac{d x}{d t} d t
$$

Let $\frac{d x}{d t}=u+a$ gives

$$
d u=\left[\frac{\partial u}{\partial t}+(u+a) \frac{\partial u}{\partial x}\right] d t
$$

Interpretation: change of u in the direction of line $\frac{d x}{d t}=u+a$

Finite (Non-Linear) Waves

In the same way we get:

$$
d p=\frac{\partial p}{\partial t} d t+\frac{\partial p}{\partial x} \frac{d x}{d t} d t
$$

and thus

$$
d p=\left[\frac{\partial p}{\partial t}+(u+a) \frac{\partial p}{\partial x}\right] d t
$$

Finite (Non-Linear) Waves

Now, if we combine

$$
\begin{gathered}
{\left[\frac{\partial u}{\partial t}+(u+a) \frac{\partial u}{\partial x}\right]+\frac{1}{\rho a}\left[\frac{\partial p}{\partial t}+(u+a) \frac{\partial p}{\partial x}\right]=0} \\
d u=\left[\frac{\partial u}{\partial t}+(u+a) \frac{\partial u}{\partial x}\right] d t \\
d p=\left[\frac{\partial p}{\partial t}+(u+a) \frac{\partial p}{\partial x}\right] d t
\end{gathered}
$$

we get

$$
\frac{d u}{d t}+\frac{1}{\rho a} \frac{d p}{d t}=0
$$

Characteristic Lines

Thus, along a line $d x=(u+a) d t$ we have

$$
d u+\frac{d p}{\rho a}=0
$$

In the same way we get along a line where $d x=(u-a) d t$

$$
d u-\frac{d p}{\rho a}=0
$$

Characteristic Lines

- We have found a path through a point $\left(x_{1}, t_{1}\right)$ along which the governing partial differential equations reduces to ordinary differential equations
- These paths or lines are called characteristic lines
- The C^{+}and C^{-}characteristic lines are physically the paths of right- and left-running sound waves in the $x t$-plane

Characteristic Lines

Characteristic Lines

summary:

$$
\begin{array}{ll}
\frac{d u}{d t}+\frac{1}{\rho a} \frac{d p}{d t}=0 & \text { along } C^{+} \text {characteristic } \\
\frac{d u}{d t}-\frac{1}{\rho a} \frac{d p}{d t}=0 & \text { along } C^{-} \text {characteristic }
\end{array}
$$

$$
\begin{array}{ll}
d u+\frac{d p}{\rho a}=0 & \text { along } C^{+} \text {characteristic } \\
d u-\frac{d p}{\rho a}=0 & \text { along } C^{-} \text {characteristic }
\end{array}
$$

Riemann Invariants

Integration gives:

$$
\begin{aligned}
& J^{+}=u+\int \frac{d p}{\rho a}=\text { constant along } C^{+} \text {characteristic } \\
& J^{-}=u-\int \frac{d p}{\rho a}=\text { constant along } C^{-} \text {characteristic }
\end{aligned}
$$

We need to rewrite $\frac{d p}{\rho a}$ to be able to perform the integrations

Riemann Invariants

Isentropic processes:

$$
p=c_{1} T^{\gamma /(\gamma-1)}=c_{2} a^{2 \gamma /(\gamma-1)}
$$

where c_{1} and c_{2} are constants

$$
\Rightarrow d p=c_{2}\left(\frac{2 \gamma}{\gamma-1}\right) a^{[2 \gamma /(\gamma-1)-1]} d a
$$

Assume calorically perfect gas:

$$
a^{2}=\frac{\gamma p}{\rho} \Rightarrow \rho=\frac{\gamma p}{a^{2}}
$$

with $p=c_{2} a^{2 \gamma /(\gamma-1)}$ we get

$$
\rho=c_{2} \gamma \mathrm{a}^{[2 \gamma /(\gamma-1)-2]}
$$

Riemann Invariants

$$
J^{+}=u+\int \frac{d p}{\rho a}=u+\int \frac{c_{2}\left(\frac{2 \gamma}{\gamma-1)} a^{[2 \gamma /(\gamma-1)-1]}\right.}{C_{2} \gamma a^{[2 \gamma /(\gamma-1)-1]}} d a=u+\int \frac{2 d a}{\gamma-1}
$$

$$
\begin{aligned}
J^{+} & =u+\frac{2 a}{\gamma-1} \\
J^{-} & =u-\frac{2 a}{\gamma-1}
\end{aligned}
$$

Riemann Invariants

If J^{+}and J^{-}are known at some point (x, t), then

$$
\left\{\begin{array} { l }
{ J ^ { + } + J ^ { - } = 2 u } \\
{ J ^ { + } - J ^ { - } = \frac { 4 a } { \gamma - 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
u=\frac{1}{2}\left(J^{+}+J^{-}\right) \\
a=\frac{\gamma-1}{4}\left(J^{+}-J^{-}\right)
\end{array}\right.\right.
$$

Flow state is uniquely defined!

Method of Characteristics

Summary

Acoustic waves

- $\Delta \rho, \Delta u$, etc - very small
- All parts of the wave propagate with the same velocity a_{∞}
- The wave shape stays the same

The flow is governed by linear relations

Finite (non-linear) waves

- $\Delta \rho, \Delta u$, etc - can be large
- Each local part of the wave propagates at the local velocity $(u+a)$
- The wave shape changes with time
- The flow is governed by non-linear relations

Roadmap - Unsteady Wave Motion

Chapter 7.7
Incident and Reflected Expansion Waves

Expansion Waves

Expansion Waves

Properties of a left-running expansion wave

1. All flow properties are constant along C^{-}characteristics
2. The wave head is propagating into region 4 (high pressure)
3. The wave tail defines the limit of region 3 (lower pressure)
4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

$$
\begin{aligned}
& J^{+}=u+\frac{2 a}{\gamma-1} \quad \text { is constant along } C^{+} \text {lines } \\
& J^{-}=u-\frac{2 a}{\gamma-1} \quad \text { is constant along } C^{-} \text {lines }
\end{aligned}
$$

Expansion Waves

Expansion Waves

Expansion Waves

constant flow properties in region 4: $J_{a}^{+}=J_{b}^{+}$
J^{+}invariants constant along C^{+}characteristics:

$$
\begin{aligned}
& J_{a}^{+}=J_{c}^{+}=J_{e}^{+} \\
& J_{b}^{+}=J_{d}^{+}=J_{f}^{+}
\end{aligned}
$$

since $J_{a}^{+}=J_{b}^{+}$this also implies $J_{e}^{+}=J_{f}^{+}$
J^{-}invariants constant along C^{-}characteristics:

$$
\begin{aligned}
& J_{c}^{-}=J_{d}^{-} \\
& J_{e}^{-}=J_{f}^{-}
\end{aligned}
$$

Expansion Waves

constant flow properties in region 4: $\mathrm{J}_{a}^{+}=J_{b}^{+}$
${ }^{+}{ }^{+}$invariants constant along C^{+}characteristics:

$$
\begin{aligned}
& J_{a}^{+}=J_{c}^{+}=J_{e}^{+} \\
& J_{b}^{+}=J_{d}^{+}=J_{f}^{+}
\end{aligned}
$$

since $J_{a}^{+}=J_{b}^{+}$this also implies $J_{e}^{+}=J_{f}^{+}$
J^{-}invariants constant along C^{-}characteristics:

$$
\begin{aligned}
& J_{c}^{-}=J_{d}^{-} \\
& J_{e}^{-}=J_{f}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& u_{e}=\frac{1}{2}\left(J_{e}^{+}+J_{e}^{-}\right), u_{f}=\frac{1}{2}\left(J_{f}^{+}+J_{f}^{-}\right), \Rightarrow u_{e}=u_{f} \\
& a_{e}=\frac{\gamma-1}{4}\left(J_{e}^{+}-J_{e}^{-}\right), a_{f}=\frac{\gamma-1}{4}\left(J_{f}^{+}-J_{f}^{-}\right), \Rightarrow a_{e}=a_{f}
\end{aligned}
$$

Expansion Waves

Along each C^{-}line u and a are constants which means that

$$
\frac{d x}{d t}=u-a=\text { const }
$$

C^{-}characteristics are straight lines in $x t$-space

Expansion Waves

The start and end conditions are the same for all C^{+}lines
J^{+}invariants have the same value for all C^{+}characteristics
C^{-}characteristics are straight lines in $x t$-space
Simple expansion waves centered at $(x, t)=(0,0)$

Expansion Waves

In a left-running expansion fan:
$\checkmark \mathrm{J}^{+}$is constant throughout expansion fan, which implies:

$$
u+\frac{2 a}{\gamma-1}=u_{4}+\frac{2 a_{4}}{\gamma-1}=u_{3}+\frac{2 a_{3}}{\gamma-1}
$$

- J^{-}is constant along C^{-}lines, but varies from one line to the next, which means that

$$
u-\frac{2 a}{\gamma-1}
$$

is constant along each C^{-}line

Expansion Waves

Since $u_{4}=0$ we obtain:

$$
\begin{aligned}
u+\frac{2 a}{\gamma-1} & =u_{4}+\frac{2 a_{4}}{\gamma-1}=\frac{2 a_{4}}{\gamma-1} \Rightarrow \\
\frac{a}{a_{4}} & =1-\frac{1}{2}(\gamma-1) \frac{u}{a_{4}}
\end{aligned}
$$

with $a=\sqrt{\gamma R T}$ we get

$$
\frac{T}{T_{4}}=\left[1-\frac{1}{2}(\gamma-1) \frac{u}{a_{4}}\right]^{2}
$$

Expansion Wave Relations

Isentropic flow \Rightarrow we can use the isentropic relations

$$
\begin{aligned}
& \frac{T}{T_{4}}=\left[1-\frac{1}{2}(\gamma-1) \frac{u}{a_{4}}\right]^{2} \\
& \frac{p}{p_{4}}=\left[1-\frac{1}{2}(\gamma-1) \frac{u}{a_{4}}\right]^{\frac{2 \gamma}{\gamma-1}} \\
& \frac{\rho}{\rho_{4}}=\left[1-\frac{1}{2}(\gamma-1) \frac{u}{a_{4}}\right]^{\frac{2}{\gamma-1}}
\end{aligned}
$$

complete description in terms of u / a_{4}

Expansion Wave Relations

Since C^{-}characteristics are straight lines, we have:

$$
\begin{gathered}
\frac{d x}{d t}=u-a \Rightarrow x=(u-a) t \\
\frac{a}{a_{4}}=1-\frac{1}{2}(\gamma-1) \frac{u}{a_{4}} \Rightarrow a=a_{4}-\frac{1}{2}(\gamma-1) u \Rightarrow \\
x=\left[u-a_{4}+\frac{1}{2}(\gamma-1) u\right] t=\left[\frac{1}{2}(\gamma-1) u-a_{4}\right] t \Rightarrow \\
u=\frac{2}{\gamma+1}\left[a_{4}+\frac{x}{t}\right]
\end{gathered}
$$

Expansion Wave Relations

- Expansion wave head is advancing to the left with speed a_{4} into the stagnant gas
- Expansion wave tail is advancing with speed $u_{3}-a_{3}$, which may be positive or negative, depending on the initial states

Roadmap - Unsteady Wave Motion

Chapter 7.8 Shock Tube Relations

Shock Tube Relations

$$
\begin{gathered}
u_{p}=u_{2}=\frac{a_{1}}{\gamma}\left(\frac{p_{2}}{p_{1}}-1\right)\left[\frac{\frac{2 \gamma_{1}}{\gamma_{1}+1}}{\frac{p_{2}}{p_{1}}+\frac{\gamma_{1}-1}{\gamma_{1}+1}}\right]^{1 / 2} \\
\frac{p_{3}}{p_{4}}=\left[1-\frac{\gamma_{4}-1}{2}\left(\frac{u_{3}}{a_{4}}\right)\right]^{2 \gamma_{4} /\left(\gamma_{4}-1\right)}
\end{gathered}
$$

solving for u_{3} gives

$$
u_{3}=\frac{2 a_{4}}{\gamma_{4}-1}\left[1-\left(\frac{p_{3}}{p_{4}}\right)^{\left(\gamma_{4}-1\right) /\left(2 \gamma_{4}\right)}\right]
$$

Shock Tube Relations

But, $p_{3}=p_{2}$ and $u_{3}=u_{2}$ (no change in velocity and pressure over contact discontinuity)

$$
\Rightarrow u_{2}=\frac{2 a_{4}}{\gamma_{4}-1}\left[1-\left(\frac{p_{2}}{p_{4}}\right)^{\left(\gamma_{4}-1\right) /\left(2 \gamma_{4}\right)}\right]
$$

We have now two expressions for u_{2} which gives us

$$
\frac{a_{1}}{\gamma}\left(\frac{p_{2}}{p_{1}}-1\right)\left[\frac{\frac{2 \gamma_{1}}{\gamma_{1}+1}}{\frac{p_{2}}{p_{1}}+\frac{\gamma_{1}-1}{\gamma_{1}+1}}\right]^{1 / 2}=\frac{2 a_{4}}{\gamma_{4}-1}\left[1-\left(\frac{p_{2}}{p_{4}}\right)^{\left(\gamma_{4}-1\right) /\left(2 \gamma_{4}\right)}\right]
$$

Shock Tube Relations

Rearranging gives:

$$
\frac{p_{4}}{p_{1}}=\frac{p_{2}}{p_{1}}\left\{1-\frac{\left(\gamma_{4}-1\right)\left(a_{1} / a_{4}\right)\left(p_{2} / p_{1}-1\right)}{\sqrt{2 \gamma_{1}\left[2 \gamma_{1}+\left(\gamma_{1}+1\right)\left(p_{2} / p_{1}-1\right)\right]}}\right\}^{-2 \gamma_{4} /\left(\gamma_{4}-1\right)}
$$

- p_{2} / p_{1} as implicit function of p_{4} / p_{1}
- for a given $p_{4} / p_{1}, p_{2} / p_{1}$ will increase with decreased a_{1} / a_{4}

$$
a=\sqrt{\gamma R T}=\sqrt{\gamma\left(R_{u} / M\right) T}
$$

the speed of sound in a light gas is higher than in a heavy gas

- driver gas: low molecular weight, high temperature
- driven gas: high molecular weight, low temperature

Roadmap - Unsteady Wave Motion

