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Addressed Learning Outcomes

3 Describe typical engineering flow situations in which

compressibility effects are more or less predominant (e.g.

Mach number regimes for steady-state flows)

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

j unsteady waves and discontinuities in 1D

9 Solve engineering problems involving the above-mentioned

phenomena (8a-8k)

12 Explain the main principles behind a modern Finite Volume

CFD code and such concepts as explicit/implicit time

stepping, CFL number, conservation, handling of

compression shocks, and boundary conditions

what happens when a moving shock approaches a wall?
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Chapter 7.2

Moving Normal Shock

Waves
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Moving Normal Shock Waves - Governing Equations

2 1

stationary observer

u
′
2 = up > 0 u

′
1 = 0

x

W

moving normal shock

For stationary normal shocks

we have:

With (u1 = W) and
(u2 = W − up) we get:

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

ρ1W = ρ2(W − up)

ρ1W
2 + p1 = ρ2(W − up)

2 + p2

h1 +
1

2
W2 = h2 +

1

2
(W − up)

2
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Moving Normal Shock Waves - Relations

From the continuity equation we get:

up = W

(
1− ρ1

ρ2

)
> 0

After some derivation we obtain:

up =
a1

γ

(
p2

p1
− 1

)
2γ

γ + 1
p2

p1
+

γ − 1

γ + 1


1/2
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Moving Normal Shock Waves - Relations

May also show that

ρ2
ρ1

=

1 +
γ + 1

γ − 1

(
p2

p1

)
γ + 1

γ − 1
+

p2

p1

and

T2

T1
=

p2

p1


γ + 1

γ − 1
+

p2

p1

1 +
γ + 1

γ − 1

(
p2

p1

)

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Moving Normal Shock Waves - Relations

Induced Mach number:

Mp =
up

a2
=

up

a1

a1

a2
=

up

a1

√
T1

T2

inserting up/a1 and T1/T2 from relations on previous slides we

get:

Mp =
1

γ

(
p2

p1
− 1

)
2γ

γ + 1
γ − 1

γ + 1
+

p2

p1


1/2


1 +

(
γ + 1

γ − 1

)(
p2

p1

)
(
γ + 1

γ − 1

)(
p2

p1

)
+

(
p2

p1

)2


1/2
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Moving Normal Shock Waves - Relations

Note that

lim
p2
p1

→∞
Mp →

√
2

γ(γ − 1)

for air (γ = 1.4)

lim
p2
p1

→∞
Mp → 1.89
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Moving Normal Shock Waves - Relations

Note that ho1 6= ho2

constant total enthalpy is only valid for stationary shocks!

shock is uniquely defined by pressure ratio p2/p1

u1 = 0

ho1 = h1 +
1

2
u21 = h1

ho2 = h2 +
1

2
u22

h2 > h1 ⇒ ho2 > ho1
2 4 6 8 10

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1.5

2

2.5

3

3.5

4

p2/p1

T2/T1 = h2/h1 (if Cp is constant)

γ
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The Shock Tube

Niklas Andersson - Chalmers 13 / 39



Shock Tube

p

x

p4

p1

4 1

diaphragm

diaphragm location

tube with closed ends

diaphragm inside, separating two differ-

ent constant states

(could also be two different gases)

if diaphragm is removed suddenly (by

inducing a breakdown) the two states

come into contact and a flow develops

assume that p4 > p1:

state 4 is ”driver” section

state 1 is ”driven” section
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Shock Tube

t

x

dx

dt
= W

dx

dt
= up

4

3 2
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4 3 2 1

Wup

expansion fan contact discontinuity moving normal shock

diaphragm location

flow at some time after diaphragm

breakdown
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Shock Tube
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Shock Tube

I By using light gases for the driver section (e.g. He) and

heavier gases for the driven section (e.g. air) the pressure p4
required for a specific p2/p1 ratio is significantly reduced

I If T4/T1 is increased, the pressure p4 required for a specific

p2/p1 is also reduced
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel




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Chapter 7.3

Reflected Shock Wave
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Shock Reflection

x

t

1

5

2

3

initial moving shock,
dx

dt
= W

reflected shock,
dx

dt
= −Wr

contact surface,
dx

dt
= up

contact surface,
dx

dt
= 0

solid wall
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Shock Reflection - Particle Path

A fluid particle located at x0 at time t0 (a location ahead of the

shock) will be affected by the moving shock and follow the blue

path

time location velocity

t0 x0 0
t1 x0 up
t2 x1 up
t3 x1 0

x

t

x0 x1
t0

t1

t2

t3
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Shock Reflection Relations

I velocity ahead of reflected shock: Wr + up

I velocity behind reflected shock: Wr

Continuity:

ρ2(Wr + up) = ρ5Wr

Momentum:

p2 + ρ2(Wr + up)
2 = p5 + ρ5W

2
r

Energy:

h2 +
1

2
(Wr + up)

2 = h5 +
1

2
W2

r
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Shock Reflection Relations

Reflected shock is determined such that u5 = 0

Mr

M2
r − 1

=
Ms

M2
s − 1

√
1 +

2(γ − 1)

(γ + 1)2
(M2

s − 1)

(
γ +

1

M2
s

)

where

Mr =
Wr + up

a2
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Tailored v.s. Non-Tailored Shock Reflection

I The time duration of condition 5 is determined by what

happens after interaction between reflected shock and

contact discontinuity

I For special choice of initial conditions (tailored case), this

interaction is negligible, thus prolonging the duration of

condition 5
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Tailored v.s. Non-Tailored Shock Reflection

5

1

2

3

t

x

wall

under-tailored

5

1

2

3

t

x

wall

tailored

5

1

2

3

t

x

wall

over-tailored

shock wave

contact surface

expansion wave

Under-tailored conditions:

Mach number of incident wave lower than in tailored

conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored

conditions Niklas Andersson - Chalmers 23 / 39



Shock Reflection - Example

Shock reflection in shock tube (γ = 1.4)
(Example 7.1 in Anderson)

Incident shock (given data)

p2/p1 10.0

Ms 2.95

T2/T1 2.623

p1 1.0 [bar]

T1 300.0 [K]

Calculated data

Mr 2.09

Table A.2

p5/p2 4.978

T5/T2 1.77

p5 =

(
p5

p2

)(
p2

p1

)
p1 = 49.78

T5 =

(
T5

T2

)(
T2

T1

)
T1 = 1393
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Shock Reflection - Shock Tube

I Very high pressure and temperature conditions in a specified

location with very high precision (p5,T5)

I measurements of thermodynamic properties of various gases

at extreme conditions, e.g. dissociation energies, molecular

relaxation times, etc.

I measurements of chemical reaction properties of various gas

mixtures at extreme conditions
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Elements of acoustic theory

Finite non-linear waves

Expansion wavesShock tube relations

Shock tube

Riemann problem

Shock tunnel






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Shock Tunnel

I Addition of a convergent-divergent nozzle to a shock tube

configuration

I Capable of producing flow conditions which are close to
those during the reentry of a space vehicles into the earth’s
atmosphere

I high-enthalpy, hypersonic flows (short time)
I real gas effects

I Example - Aachen TH2:

I velocities up to 4 km/s
I stagnation temperatures of several thousand degrees
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Shock Tunnel

driver section driven section

test section

dump tank

Wr

diaphragm 2diaphragm 1

reflected shock

test object

1. High pressure in region 4 (driver section)

I diaphragm 1 burst
I primary shock generated

2. Primary shock reaches end of shock tube

I shock reflection

3. High pressure in region 5

I diaphragm 2 burst
I nozzle flow initiated
I hypersonic flow in test section
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Shock Tunnel

reflected expansion fan

incident shock wave

reflected shock wave

contact surface

1

2

3

4

5

t

x

4 1

driver section driven section

diaphragm location wall
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Shock Tunnel

By adding a compression tube to the shock tube a very high p4
and T4 may be achieved for any gas in a fairly simple manner

heavy piston compression tube diaphragm

pressurized air
driver gas

p, T

driven gas

p1, T1

pressurized air
driver gas

p4, T4

driven gas

p1, T1
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Roadmap - Unsteady Wave Motion
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Riemann Problem

The shock tube problem is a special case of the general Riemann

Problem

”... A Riemann problem, named after Bernhard

Riemann, consists of an initial value problem composed

by a conservation equation together with piecewise

constant data having a single discontinuity ...”

Wikipedia
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Riemann Problem

May show that solutions to the shock tube problem have the

general form:

p = p(x/t)

ρ = ρ(x/t)

u = u(x/t)

T = T(x/t)

a = a(x/t)

where x = 0 denotes the
position of the initial jump

between states 1 and 4

Niklas Andersson - Chalmers 33 / 39



Riemann Problem - Shock Tube

Shock tube simulation:

I left side conditions (state 4):

I ρ = 2.4 kg/m3

I u = 0.0 m/s
I p = 2.0 bar

I right side conditions (state 1):

I ρ = 1.2 kg/m3

I u = 0.0 m/s
I p = 1.0 bar

I Numerical method

I Finite-Volume Method (FVM) solver
I three-stage Runge-Kutta time stepping
I third-order characteristic upwinding scheme
I local artificial damping
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Riemann Problem - Shock Tube

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

d
e
n
s
it
y

0 0.5 1 1.5 2 2.5 3
−20

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3
−20

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3
−20

0

20

40

60

80

100

v
e
lo
c
it
y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

5

p
re
s
s
u
re

t = 0.0000 s t = 0.0010 s t = 0.0025 s

Niklas Andersson - Chalmers 35 / 39



Riemann Problem - Shock Tube
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Riemann Problem - Shock Tube
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Riemann Problem - Shock Tube
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Riemann Problem - Shock Tube
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