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Chapter 7
Unsteady Wave Motion
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Addressed Learning Outcomes

3

12

Describe typical engineering flow situations in which
compressibility effects are more or less predominant (e.g.
Mach number regimes for steady-state flows)
Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

| unsteady waves and discontinuities in 1D
Solve engineering problems involving the above-mentioned
phenomena (8a-8k)
Explain the main principles behind a modern Finite Volume
CFD code and such concepts as explicit/implicit time
stepping, CFL number, conservation, handling of
compression shocks, and boundary conditions

what happens when a moving shock approaches a wall?



Chapter 7.2
Moving Normal Shock
Waves



Moving Normal Shock Waves - Governing Equations

@ stationary observer
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moving normal shock x
For stationary normal shocks With (uy = W) and
we have: (Uug =W — up) we get:
p1Uy = paUs piW = pa(W — up)
P1U% +p1 = PQU% + P2 p1W2 +p1 = p2(W — Up)2 + P2
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Moving Normal Shock Waves - Relations

From the continuity equation we get:

upvv(1—p1>>0
P2

After some derivation we obtain:
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Moving Normal Shock Waves - Relations

May also show that
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Moving Normal Shock Waves - Relations

Induced Mach number:

Mot Ui U [Th
P ay — N Ty
2 day as 2
inserting up/a; and T, /T, from relations on previous slides we
get:

1/2



Moving Normal Shock Waves - Relations

Note that

for air (y = 1.4)



Moving Normal Shock Waves - Relations
Note that ho, # ho,
constant total enthalpy is only valid for stationary shocksl!

shock is uniquely defined by pressure ratio pa/p;

To/T1 = ha/hy (if Cp is constant)

up =0
1 2
hol :/’71+§U1:h1

1
ho, = ha + 5ug

hy > hy :>h02 >/’Io1




The Shock Tube



Shock Tube

diaphragm
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tube with closed ends

diaphragm inside, separating two differ-
ent constant states

(could also be two different gases)

if diaphragm is removed suddenly (by
inducing a breakdown) the two states
come into contact and a flow develops

assume that py > py:
state 4 is "driver” section
state 1 is "driven” section



Shock Tube

expansion fan contact discontinuity moving normal shock
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Shock Tube

expansion fan contact discontinuity moving normal shock
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Shock Tube

» By using light gases for the driver section (e.g. He) and
heavier gases for the driven section (e.g. air) the pressure py
required for a specific pa/p; ratio is significantly reduced

» If T4/ T is increased, the pressure p4 required for a specific
p2/p1 is also reduced



Roadmap - Unsteady Wave Motion
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Chapter 7.3
Reflected Shock Wave



Shock Reflection

ax
contact surface, — = 0
at

ta \ solid wall
ax
reflected shock, E =-W
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Shock Reflection - Particle Path

A fluid particle located at x( at time t; (a location ahead of the

shock) will be affected by the moving shock and follow the blue

path
time location velocity
) X0 0
ty X0 Up
ty X1 Up
ty X1 0

Xo




Shock Reflection Relations

velocity ahead of reflected shock: W, + up,
velocity behind reflected shock: W,

Continuity:
p2(Wr +up) = psWr
Momentum:
P2 + pa(Wr + Up)? = p5 + psW?
Energy:

1 1
Py + 5 (Wr +Up)* = hs + 5W7



Shock Reflection Relations

Reflected shock is determined such that us = 0

M; My 2(y — 1) 1
= 1 M2 —1 s
M2 —1 M§1\/ +(wl)2< sl LY

where



Tailored v.s. Non-Tailored Shock Reflection

The time duration of condition 5 is determined by what
happens after interaction between reflected shock and
contact discontinuity

For special choice of initial conditions (tailored case), this
interaction is negligible, thus prolonging the duration of
condition 5



Tailored v.s. Non-Tailored Shock Reflection

shock wave
contact surface
expansion wave

®

under-tailored

®
0]

wall

®

Under-tailored conditions:

X

tailored

wall

Y

over-tailored

wall

Mach number of incident wave lower than in tailored
conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored
conditions



Shock Reflection - Example

Shock reflection in shock tube (v = 1.4)

(Example 7.1 in Anderson)

Incident shock (given data) Calculated data
M, 2.09
p2/p1 100 '
M, 295 Table A.2
To/T1 2.623 ps/p2  4.978
P1 1.0 [bar] T5/To 1.77
T 300.0 [K]

Ps P2
= — — =49.78
- (/02> <p1> .
Ts5 = (7_2> <7_1> Ty = 1393



Shock Reflection - Shock Tube

» Very high pressure and temperature conditions in a specified
location with very high precision (o5, T5)

» measurements of thermodynamic properties of various gases
at extreme conditions, e.g. dissociation energies, molecular
relaxation times, etc.

» measurements of chemical reaction properties of various gas
mixtures at extreme conditions



Roadmap - Unsteady Wave Motion

[ Basioggfftepts J

‘ Moving rwal shocks ]<—O—>[ Elements of acoustic theory ]

Shocvection ] [ Finite non-linear waves ]

.

[ Shock tube relations ]4—[ Expansion waves ]

.

Shock tube ]—»[ Shock tunnel ]

t

‘ Riemann problem ]




Shock Tunnel

» Addition of a convergent-divergent nozzle to a shock tube
configuration

» Capable of producing flow conditions which are close to
those during the reentry of a space vehicles into the earth’s
atmosphere

» high-enthalpy, hypersonic flows (short time)
» real gas effects

» Example - Aachen TH2:

» velocities up to 4 km/s
» stagnation temperatures of several thousand degrees



Shock Tunnel

test object

diaphragm 1 diaphragm 2

dump tank

test section
reflected shock

High pressure in region 4 (driver section)

diaphragm 1 burst
primary shock generated

Primary shock reaches end of shock tube
shock reflection

High pressure in region 5
diaphragm 2 burst

nozzle flow initiated
hypersonic flow in test section



Shock Tunnel

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

®

incident shock wave
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driver section driven section




Shock Tunnel

By adding a compression tube to the shock tube a very high py
and T4 may be achieved for any gas in a fairly simple manner

heavy piston compression tube diaphragm

|

pressurized air driver gas driven gas

P T p1, T1

i i driver gas driven gas
pressurized air

: s T4 P1, Tl




The Aachen Shock Tunnel - TH2

Shock tunnel built
1975

nozzle
end of shock tube \ =
inspection windOW:
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The Aachen Shock Tunnel - TH2

Shock tube specifications:

diameter

driver section

driven section

diaphragm 1

diaphragm 2

max operating (steady) pressure

140 mm

6.0m

154 m

10 mm stainless steel
copper/brass sheet
1500 bar



The Aachen Shock Tunnel - TH2

Driver gas (usually helium):

100 bar < p4 < 1500 bar
electrical preheating (optional) to 600 K

Driven gas:
0.1 bar < p; < 10 bar

Dump tank evacuated before test



The Aachen Shock Tunnel - TH2

initial conditions shock reservoir free stream

Pa Ty P1 Ms P2 Ps Ts Moo Too Uso Poo
[bar] K] [bar] [bar] [bar] K] K] [m/s] [mbar]
100 293 1.0 3.3 12 65 1500 7.7 125 1740 7.6
370 500 1.0 4.6 26 175 2500 7.4 250 2350 20.0
720 500 0.7 5.6 50 325 3650 6.8 460 3910 42.0
1200 500 0.6 6.8 50 560 4600 6.5 700 3400 73.0
100 293 0.9 3.4 12 65 1500 1.3 60 1780 0.6
450 500 1.2 4.9 29 225 2700 1.3 120 2480 1.5
1300 520 0.7 6.4 46 630 4600 12.1 220 3560 1.2
26 293 0.2 3.4 12 15 1500 1.4 60 1780 0.1
480 500 0.2 6.6 50 210 4600 1.0 270 3630 0.7
100 293 1.0 3.4 12 65 15600 7.7 130 1750 7.3
370 500 1.0 5.1 27 220 2700 7.3 280 2440 26.3




The Caltech Shock Tunnel - T5

Free-piston shock tunnel

Secondary Diaphragm

=

/
7/ =

TestSection  Shock tube (ST) Compression Tube (CT) Secondary Reservoir (2R)

Piston

Primary Diaphragm

CT-8T Junction




The Caltech Shock Tunnel - T5

» Compression tube (CT):
» length 30 m, diameter 300 mm
» free piston (120 kg)
» max piston velocity: 300 m/s
» driven by compressed air (80 bar - 150 bar)

» Shock tube (ST):

length 12 m, diameter 90 mm
driver gas: helium + argon

driven gas: air

diaphragm 1: 7 mm stainless steel
P4 Max 1300 bar

vV V.V VvV vV



The Caltech Shock Tunnel - T5

Reservoir conditions:

ps 1000 bar
T5 10000 K

Freestream conditions (design conditions):
My, 5.2
Too 2000 K
Poo 0.3 bar
typical test time 1 ms



Other Examples of Shock Tunnels
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Riemann Problem

The shock tube problem is a special case of the general Riemann
Problem

”... A Riemann problem, named after Bernhard
Riemann, consists of an initial value problem composed
by a conservation equation together with piecewise
constant data having a single discontinuity ...”

Wikipedia



Riemann Problem

May show that solutions to the shock tube problem have the
general form:

p =p(x/t) Whgrg x=0 dgngteg the

p = plx/t) position of the initial jump
between states 1 and 4

u=u(x/t)

T =T(x/t)

a=a(x/t)



Riemann Problem - Shock Tube

Shock tube simulation:

» left side conditions (state 4):
> p=24kg/m?
» u=00m/s
» p=2.0bar

» right side conditions (state 1):
» p=12kg/m?
» u=00m/s
» p=1.0bar

» Numerical method
» Finite-Volume Method (FVM) solver
» three-stage Runge-Kutta time stepping
» third-order characteristic upwinding scheme
» local artificial damping



Riemann Problem - Shock Tube

density

velocity

pressure

t = 0.0000s

t =0.0010s

t =0.0025s
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Riemann Problem - Shock Tube

t = 0.0000s t =0.0010s t =0.0025s
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Riemann Problem - Shock Tube

density {p = p(x/t)}

25
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Riemann Problem - Shock Tube

velocity {u = u(x/t)}
100 ! !

t =0.0010s
80l t =0.0025s
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Riemann Problem - Shock Tube

pressure {p = p(x/t)}
x10°
25
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