Compressible Flow - TME085 Lecture 8

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se

Chapter 5 Quasi-One-Dimensional Flow

Overview

Addressed Learning Outcomes

- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 7 Explain why entropy is important for flow discontinuities
- 8 Derive (marked) and apply (all) of the presented mathematical formulae for classical gas dynamics
 - a 1D isentropic flow*
 - b normal shocks*
 - i detached blunt body shocks, nozzle flows

12 **Explain** the main principles behind a modern Finite Volume CFD code and such concepts as explicit/implicit time stepping, CFL number, conservation, handling of compression shocks, and boundary conditions

time for rocket science!

Quasi-One-Dimensional Flow

- Extension of one-dimensional flow to allow variations in streamtube area
- Steady-state flow assumption still applied

Governing Equations - Differential Form

$$d(\rho uA) = 0$$
$$dp = -\rho udu$$
$$dh + udu = 0$$

Assumptions:

- quasi-one-dimensional flow
- inviscid flow
- steady-state flow

Valid for all gases!

Chapter 5.4 Nozzles

Area-Velocity Relation

$$\frac{dA}{A} = (M^2 - 1)\frac{du}{u}$$

M < 1: decreasing *A* correlated with increasing *u* M > 1: increasing *A* correlated with increasing *u* M = 1: dA = 0

Note 1: The area-velocity relation is only valid for isentropic flow

Note 2: The area-velocity relation is valid for all gases

Area-Mach-Number Relation

$$\left(\frac{A}{A^*}\right)^2 = \frac{\left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{\gamma + 1}{\gamma - 1}}}{\left[\frac{1}{2}(\gamma + 1)\right]^{\frac{\gamma + 1}{\gamma - 1}}M^2}$$

Roadmap - Quasi-One-Dimensional Flow

Assumptions:

- inviscid
- steady-state
- quasi-one-dimensional
- calorically perfect gas

Alt. 1: sub-critical (non-choked) nozzle flow

• M < 1 at nozzle throat

Alt. 2: critical (choked) nozzle flow

Choked nozzle flow (no shocks):

- ► A* is constant throughout the nozzle
- $A_t = A^*$

 M_1 given by the subsonic solution of

$$\left(\frac{A_1}{A^*}\right)^2 = \left(\frac{A_1}{A_t}\right)^2 = \frac{1}{M_1^2} \left[\frac{2}{\gamma+1}(1+\frac{1}{2}(\gamma-1)M_1^2)\right]^{\frac{\gamma+1}{\gamma-1}}$$

 M_2 given by the supersonic solution of

$$\left(\frac{A_2}{A^*}\right)^2 = \left(\frac{A_2}{A_t}\right)^2 = \frac{1}{M_2^2} \left[\frac{2}{\gamma+1}(1+\frac{1}{2}(\gamma-1)M_2^2)\right]^{\frac{\gamma+1}{\gamma-1}}$$

M is uniquely determined everywhere in the nozzle, with subsonic flow upstream of throat and supersonic flow downstream of throat

Nozzle Mass Flow

For a choked nozzle:

$$\dot{m} = \rho_1 u_1 A_1 = \rho^* u^* A^* = \rho_2 u_2 A_2$$

$$\rho^* = \frac{\rho^*}{\rho_0} \rho_0 = \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}} \frac{p_0}{RT_0}$$

$$a^* = \frac{a^*}{a_0} a_0 = \left(\frac{2}{\gamma+1}\right)^{\frac{1}{2}} \sqrt{\gamma RT_0}$$

$$\dot{m} = \frac{\rho_0 A_t}{\sqrt{T_0}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}$$

Nozzle Mass Flow

$$\vec{m} = \frac{p_o A_t}{\sqrt{T_o}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}$$

- The maximum mass flow that can be sustained through the nozzle
- Valid for quasi-one-dimensional, inviscid, steady-state flow and calorically perfect gas

Note: The massflow formula is valid even if there are shocks present downstream of throat!

Nozzle Mass Flow

How can we increase mass flow through nozzle?

- ► increase p_o
- decrease T_o
- increase A_t
- decrease R (increase molecular weight, without changing γ)

Roadmap - Quasi-One-Dimensional Flow

 $\begin{array}{lll} A(x) & \text{area function} \\ A_t & \min\{A(x)\} \\ p_o & \text{inlet total pressure} \\ p_e & \text{outlet static pressure} \\ & (\text{ambient pressure}) \end{array}$

 p_o/p_e pressure ratio

For critical p_o/p_e , a jump to supersonic solution will occur

As the flow jumps to the supersonic branch downstream of the throat, a normal shock will appear in order to match the ambient pressure at the nozzle exit

Nozzle Flow with Varying Pressure Ratio (Summary)

$(\rho_o/\rho_e) < (\rho_o/\rho_e)_{\it cr}$

- the flow remains entirely subsonic
- the mass flow depends on p_e , *i.e.* the flow is not choked
- no shock is formed, therefore the flow is isentropic throughout the nozzle

$(\rho_o/\rho_e) = (\rho_o/\rho_e)_{cr}$

- the flow just achieves M = 1 at the throat
- the flow will then suddenly flip to the supersonic solution downstream of the throat, for an infinitesimally small increase in (ρ_o/ρ_e)

$(p_o/p_e) > (p_o/p_e)_{cr}$

- the flow is choked (fixed mass flow), *i.e.* it does not depend on p_e
 - a normal shock will appear downstream of the throat, with strength and position depending on (p_o/p_e)

Effects of changing the pressure ratio (p_o/p_e) (where p_e is the back pressure and p_o is the total pressure at the nozzle inlet)

- critical value: $p_o/p_e = (p_o/p_e)_c$
 - ▶ nozzle flow reaches M = 1 at throat, flow becomes choked
- supercritical value: $p_o/p_e = (p_o/p_e)_{sc}$
 - nozzle flow is supersonic from throat to exit, without any interior normal shock - isentropic flow
 - normal shock at exit: (p₀/p_e) = (p₀/p_e)_{ne} < (p₀/p_e)_{sc}
 normal shock is still present but is located just at exit isentropic flow inside nozzle

Normal shock at exit

Quasi-one-dimensional theory

- ► When the interior normal shock is "pushed out" through the exit (by increasing (p_o/p_e), *i.e.* lowering the back pressure), it disappears completely.
- ► The flow through the nozzle is then shock free (and thus also isentropic since we neglect viscosity).

Three-dimensional nozzle flow

- When the interior normal shock is "pushed out" through the exit (by increasing (p_o/p_e)), an oblique shock is formed outside of the nozzle exit.
- For the exact supercritical value of (p_o/p_e) this oblique shock disappears.
- For (p_o/p_e) above the supercritical value an expansion fan is formed at the nozzle exit.

Roadmap - Quasi-One-Dimensional Flow

Chapter 5.6 Wave Reflection From a Free Boundary

Free-Boundary Reflection

Free boundary - shear layer, interface between different fluids, etc

Free-Boundary Reflection - Shock Reflection

incident shock

- ► No jump in pressure at the free boundary possible
- Incident shock reflects as expansion waves at the free boundary
- Reflection results in net turning of the flow

Free-Boundary Reflection - Expansion Wave Reflection

- No jump in pressure at the free boundary possible
- Incident expansion waves reflects as compression waves at the free boundary
- Finite compression waves coalesces into a shock
- Reflection results in net turning of the flow

Free-Boundary Reflection - System of Reflections

overexpanded nozzle flow

shock reflection at jet centerline

shock reflection at free boundary

expansion wave reflection at jet centerline

expansion wave reflection at free boundary

repeated shock/expansion system

underexpanded jet

Free-Boundary Reflection - Summary

Solid-wall reflection

Compression waves reflects as compression waves Expansion waves reflects as expansion waves

Free-boundary reflection

Compression waves reflects as expansion waves Expansion waves reflects as compression waves

Roadmap - Quasi-One-Dimensional Flow

Chapter 5.5 Diffusers

open test section

 $p_o/p_e = (p_o/p_e)_{sc}$ M = 3.0 in test section $\Rightarrow p_o/p_e = 36.7$!!!

$$\begin{split} \rho_o/\rho_{amb} &= (\rho_o/\rho_e)(\rho_e/\rho_{amb}) < (\rho_o/\rho_e)_{sc} \\ M &= 3.0 \text{ in test section} \Rightarrow \\ \rho_o/\rho_{amb} &= 36.7/10.33 = 3.55 \end{split}$$

test section (closed)

well-designed supersonic + subsonic diffuser \Rightarrow

- 1. decreased total pressure loss
- 2. decreased po and power to drive wind tunnel

Main problems:

- 1. Design is extremely difficult due to complex 3D flow in diffuser
 - viscous effects
 - oblique shocks
 - separations
- 2. Starting requirements: second throat must be significantly larger than first throat

solution:

- variable geometry diffuser
- second throat larger during startup procedure
 - decreased second throat to optimum value after flow is established

Roadmap - Quasi-One-Dimensional Flow

Quasi-One-Dimensional Euler Equations

Quasi-One-Dimensional Euler Equations

Example: choked flow through a convergent-divergent nozzle

Quasi-One-Dimensional Euler Equations

$$A(x)\frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}\left[A(x)E\right] = A'(x)H$$

where A(x) is the cross section area and

$$Q = \begin{bmatrix} \rho \\ \rho u \\ \rho e_o \end{bmatrix}, \ E(Q) = \begin{bmatrix} \rho u \\ \rho u^2 + \rho \\ \rho h_o u \end{bmatrix}, \ H(Q) = \begin{bmatrix} 0 \\ \rho \\ 0 \end{bmatrix}$$

Numerical Approach

- Finite-Volume Method
- Method of lines, three-stage Runge-Kutta time stepping
- ► 3rd-order characteristic upwinding scheme
- Subsonic inflow boundary condition at min(x)
 - T_o , p_o given
- Subsonic outflow boundary condition at max(x)
 - p given

Finite-Volume Spatial Discretization

Integration over cell *j* gives:

$$\frac{1}{2} \left[A(x_{j-\frac{1}{2}}) + A(x_{j+\frac{1}{2}}) \right] \Delta x_j \frac{d}{dt} \bar{Q}_j + \left[A(x_{j+\frac{1}{2}}) \hat{E}_{j+\frac{1}{2}} - A(x_{j-\frac{1}{2}}) \hat{E}_{j-\frac{1}{2}} \right] = \left[A(x_{j+\frac{1}{2}}) - A(x_{j-\frac{1}{2}}) \right] \hat{H}_j$$

Finite-Volume Spatial Discretization

 $\bar{Q}_{j} = \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} QA(x) dx \right) / \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} A(x) dx \right)$ $\hat{E}_{i+\frac{1}{2}} \approx E\left(Q\left(x_{i+\frac{1}{2}}\right)\right)$ $\hat{H}_{j} \approx \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} HA'(x) dx \right) / \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} A'(x) dx \right)$

Nozzle Simulation - Back Pressure Sweep

Niklas Andersson - Chalmers

Modern Compressible Flow

Niklas Andersson - Chalmers

64/65

Roadmap - Quasi-One-Dimensional Flow

