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Chapter 5
Quasi-One-Dimensional
Flow
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

6 Define the special cases of calorically perfect gas, thermally
perfect gas and real gas and explain the implication of each
of these special cases

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*
I detached blunt body shocks, nozzle flows

what does quasi-1D mean? either the flow is 1D or not, or?
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Quasi-One-Dimensional Flow

Chapter 3 - One-dimensional steady-state flow
overall assumption:
one-dimensional flow
constant cross section area
applications:
normal shock
one-dimensional flow with heat addition
one-dimensional flow with friction

Chapter 4 - Two-dimensional steady-state flow
overall assumption:
two-dimensional flow
uniform supersonic freestream
applications:
oblique shock
expansion fan
shock-expansion theory



Quasi-One-Dimensional Flow

Extension of one-dimensional flow to allow variations in
streamtube area

Steady-state flow assumption still applied

e

streamtube area A(x)




Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

S

cross-section area A(x)




Roadmap - Quasi-One-Dimensional Flow

[

Baschepts

'

Governing equations

!

Area-velocity relation

:

Nozzles

.

]<—[ Free boundary reflection

Diffusers

t

(

.

Nozzle pressure ratio ]

N

Numerical simulation

t

)

Nozzle relations




Chapter 5.2
Governing Equations



Governing Equations

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

A :A(X>7 p=pX), u= U(X)7 P :p(X)7

" Q  control volume

N Sy left boundary (area Aq)
S, right boundary (area As)
I'  perimeter boundary

0N =S, UI'USy



Governing Equations - Mass Conservation

steady-state
no flow through I"

%jf pdV + @pv~nd8 =0
Q o0

=0 —p1U1A1+p2u2As

[P1U1A1 = P2U2A2]




Governing Equations - Momentum Conservation

steady-state
no flow through I

% Hf pvav + @ [p(v-n)v+pn]dS =0
= 09

~—_——
=0
S@SP(V -n)vaS = —p1UiAL + paUisAs
o9
Ao
ﬁpno’s = —P1A1 + P2A2 — pPdA
0 A1

Ao

[(plu% +p1)A1L + . PAA = (pau3 + P2)As
1




Governing Equations - Energy Conservation

steady-state
no flow through I"

% JIJ’ peod” + ﬁ [pho(v - m)]dS =0
Q2 2Q

———
=0

which gives

p1U1A1ho, = pat2Asho,

from continuity we have that p1u1A1 = patsAs =



Governing Equations - Summary

p1UIAL = paU2A2

Az

(prUi + p1)AL + . PdA = (paU3 + P2)As
J AL

hOl = h02




Governing Equations - Differential Form

Continuity equation:

P1UIAL = paUaAsz

or
PUA =C

where ¢ is a constant =

d(puA) =0



Governing Equations - Differential Form

Momentum equation:
Aa

(p1u? + p1)A; +/ PdA = (paU3 + p2)Ag =
Aq

d [(pu* + p)A] = pdA =
d(pu?A) + d(pA) = pdA =

ud(puA) +puAdu + Adp + pdA = pdA =
=0

pUACU + Adp =0 =

dp — —pUdU Euler’s equation



Governing Equations - Differential Form

Energy equation:

hol — h02 =
dho — ()

1 .
hO:h+§u2:

dh+udu=20



Governing Equations - Differential Form

Summary (valid for all gases):

4 N\

d(puA) =0
dp = —pudu

dh+udu =0

(. J

Assumptions:
quasi-one-dimensional flow
inviscid flow
steady-state flow
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Chapter 5.3
Area-Velocity Relation



Area-Velocity Relation

d(puA) = 0 = uAdp + pAdu + pudA =0

divide by puA gives

dp du dA
o utal
Euler’s equation:
dp = —pudu = dp = d_p@ = —udu
p dpp

Assuming adiabatic, reversible (isentropic) process and the
definition of speed of sound gives

do _ <8p> :azﬁaz%:—udu:>@:—l\42d—u
dp op ) s p p u



Area-Velocity Relation

Now, inserting the expression for 2P in the rewritten continuity
p

equation gives

du dA
— 27 —_—
(1 M)U+A 0
or
dA 9 au
A~ M=

which is the area-velocity relation



Area-Velocity Relation

decreasing A correlated with increasing u
increasing A correlated with increasing u
dA=0

M< 1 —_— — M>1 only possibility to obtain

M=1 I
converging-diverging nozzle
supersonic flow!

accelerating flow T accelerating flow

throat



Area-Velocity Relation

Alternative:

Slowing down from supersonic to subsonic flow
(supersonic diffuser)

M=1 -
in practice:
M>1 — i — M1 difficult to obtain completely
shock-free flow in this case

decelerating flow T decelerating flow

throat



Area-Velocity Relation

M—>0:>%:—d—u

A u

%+d£_0:>
A u

1
A [UJA + Adu] = 0 =

dUuA)=0=Au=c

where ¢ is a constant



Area-Velocity Relation

The area-velocity relation is only valid for isentropic flow

not valid across a compression shock
(due to entropy increase)

The area-velocity relation is valid for all gases



Area-Velocity Relation Examples - Rocket Engine

combustion —

chamber M>1 — high-velocity gas
M<1

S
&; e
*}
o

High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical
figures for a LH2/LOx rocket engine: po ~ 120 [bar], To ~ 3600 [K], exit velocity ~ 4000 [m/s]



Area-Velocity Relation Examples - Wind Tunnel

nozzle test section diffuser
—_—>
W
EE——
M<1 i M > 1 e
_— M>1 M=1 M<1
—_—

accelerating flow constant velocity decelerating flow
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Chapter 5.4
Nozzles



Nozzle Flow - Relations

Calorically perfect gas assumed:

From Chapter 3:




Nozzle Flow - Relations

Critical conditions:

To
T*




Nozzle Flow - Relations




Nozzle Flow - Relations

For nozzle flow we have
PUA =C
where ¢ is a constant and therefore
P UTAT = puA

or, since at critical conditions v* = a*

prarA* = puA
which gives
A_pa _ppd
A  puU  pop U



Nozzle Flow - Relations

A _ PP

A* pop U




Nozzle Flow - Relations

* _2_
8 Sy +1)]7 M2

M*2 _ 2 %(ry + 1)
1+ (v — M2

(3 - et

which is the area-Mach-number relation



Area-Mach-Number Relation

~ ‘ 1
2 1/, 27 5—1
(A [T+ 3¢y =1)M?]7
A* B 1 % 2
[z(y+ D] M
Area-Mach-Number Relation
supersonic
s 10°
[
o
5
c
8
=
subsonic
-1 L L L
10 0 2 4 6

Area ratio, A/A™



Area-Mach-Number Relation

Note 1:

Note 2:

Note 3:

Critical conditions used here are those corresponding to
isentropic flow. Do not confuse these with the conditions
in the cases of one-dimensional flow with heat addition
and friction

For quasi-one-dimensional flow, assuming inviscid
steady-state flow, both total and critical conditions are
constant along streamlines unless shocks are present
(then the flow is no longer isentropic)

The derived area-Mach-number relation is only valid for
calorically perfect gas and for isentropic flow. It is not
valid across a compression shock
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