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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

6 Define the special cases of calorically perfect gas, thermally

perfect gas and real gas and explain the implication of each

of these special cases

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

a 1D isentropic flow*

i detached blunt body shocks, nozzle flows

what does quasi-1D mean? either the flow is 1D or not, or?
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Basic concepts

Governing equations

Area-velocity relation

Nozzles

Diffusers

Numerical simulation

Free boundary reflection

Nozzle pressure ratio

Nozzle relations
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Quasi-One-Dimensional Flow

Chapter 3 - One-dimensional steady-state flow
I overall assumption:

one-dimensional flow

constant cross section area

I applications:

normal shock

one-dimensional flow with heat addition

one-dimensional flow with friction

Chapter 4 - Two-dimensional steady-state flow
I overall assumption:

two-dimensional flow

uniform supersonic freestream

I applications:

oblique shock

expansion fan

shock-expansion theory
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Quasi-One-Dimensional Flow

I Extension of one-dimensional flow to allow variations in

streamtube area

I Steady-state flow assumption still applied

streamtube area A(x)

x
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Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

cross-section area A(x)

x
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Chapter 5.2

Governing Equations
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Governing Equations

Introduce cross-section-averaged flow quantities ⇒
all quantities depend on x only

A = A(x), ρ = ρ(x), u = u(x), p = p(x), ...

1

2

Ω

Γ

x

S1 S2

Ω control volume

S1 left boundary (area A1)

S2 right boundary (area A2)

Γ perimeter boundary

∂Ω = S1 ∪ Γ ∪ S2
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Governing Equations - Mass Conservation

I steady-state

I no flow through Γ

d

dt

y

Ω

ρdV︸ ︷︷ ︸
=0

+
{

∂Ω

ρv · ndS︸ ︷︷ ︸
−ρ1u1A1+ρ2u2A2

= 0

ρ1u1A1 = ρ2u2A2
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Governing Equations - Momentum Conservation

I steady-state

I no flow through Γ

d

dt

y

Ω

ρvdV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρ(v · n)v + pn]dS = 0

{

∂Ω

ρ(v · n)vdS = −ρ1u
2
1A1 + ρ2u

2
2A2

{

∂Ω

pndS = −p1A1 + p2A2 −
ˆ A2

A1

pdA

(ρ1u
2
1 + p1)A1 +

ˆ A2

A1

pdA = (ρ2u
2
2 + p2)A2
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Governing Equations - Energy Conservation

I steady-state

I no flow through Γ

d

dt

y

Ω

ρeodV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρho(v · n)]dS = 0

which gives

ρ1u1A1ho1 = ρ2u2A2ho2

from continuity we have that ρ1u1A1 = ρ2u2A2 ⇒

ho1 = ho2
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Governing Equations - Summary

ρ1u1A1 = ρ2u2A2

(ρ1u
2
1 + p1)A1 +

ˆ A2

A1

pdA = (ρ2u
2
2 + p2)A2

ho1 = ho2
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Governing Equations - Differential Form

Continuity equation:

ρ1u1A1 = ρ2u2A2

or

ρuA = c

where c is a constant ⇒

d(ρuA) = 0
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Governing Equations - Differential Form

Momentum equation:

(ρ1u
2
1 + p1)A1 +

ˆ A2

A1

pdA = (ρ2u
2
2 + p2)A2 ⇒

d
[
(ρu2 + p)A

]
= pdA ⇒

d(ρu2A) + d(pA) = pdA ⇒

ud(ρuA)︸ ︷︷ ︸
=0

+ρuAdu+ Adp+ pdA = pdA ⇒

ρuAdu+ Adp = 0 ⇒

dp = −ρudu Euler’s equation
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Governing Equations - Differential Form

Energy equation:

ho1 = ho2 ⇒

dho = 0

ho = h+
1

2
u2 ⇒

dh+ udu = 0
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Governing Equations - Differential Form

Summary (valid for all gases):

d(ρuA) = 0

dp = −ρudu

dh+ udu = 0

Assumptions:

I quasi-one-dimensional flow

I inviscid flow

I steady-state flow
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Chapter 5.3

Area-Velocity Relation
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Area-Velocity Relation

d(ρuA) = 0 ⇒ uAdρ+ ρAdu+ ρudA = 0

divide by ρuA gives

dρ

ρ
+

du

u
+

dA

A
= 0

Euler’s equation:

dp = −ρudu ⇒ dp

ρ
=

dp

dρ

dρ

ρ
= −udu

Assuming adiabatic, reversible (isentropic) process and the

definition of speed of sound gives

dp

dρ
=

(
∂p

∂ρ

)
s

= a2 ⇒ a2
dρ

ρ
= −udu ⇒ dρ

ρ
= −M2du

u
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Area-Velocity Relation

Now, inserting the expression for
dρ

ρ
in the rewritten continuity

equation gives

(1−M2)
du

u
+

dA

A
= 0

or

dA

A
= (M2 − 1)

du

u

which is the area-velocity relation

Niklas Andersson - Chalmers 24 / 41



Area-Velocity Relation

dA

A
= (M2 − 1)

du

u

M < 1: decreasing A correlated with increasing u

M > 1: increasing A correlated with increasing u

M = 1: dA = 0

M = 1

M < 1 M > 1

accelerating flow accelerating flow

throat

converging-diverging nozzle

only possibility to obtain

supersonic flow!
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Area-Velocity Relation

Alternative:

Slowing down from supersonic to subsonic flow

(supersonic diffuser)

M = 1

M > 1 M < 1

decelerating flow decelerating flow

throat

in practice:

difficult to obtain completely

shock-free flow in this case

Niklas Andersson - Chalmers 26 / 41



Area-Velocity Relation

M → 0 ⇒ dA

A
= −du

u

dA

A
+

du

u
= 0 ⇒

1

Au
[udA+ Adu] = 0 ⇒

d(uA) = 0 ⇒ Au = c

where c is a constant

Niklas Andersson - Chalmers 27 / 41



Area-Velocity Relation

Note 1: The area-velocity relation is only valid for isentropic flow

I not valid across a compression shock

(due to entropy increase)

Note 2: The area-velocity relation is valid for all gases
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Area-Velocity Relation Examples - Rocket Engine

combustion

chamber

M < 1
M > 1

fuel

ox
id
iz
er

high-velocity gas

High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical

figures for a LH
2
/LOx rocket engine: po ∼ 120 [bar], To ∼ 3600 [K], exit velocity ∼ 4000 [m/s]
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Area-Velocity Relation Examples - Wind Tunnel

M < 1 M > 1
M > 1 M = 1 M < 1

accelerating flow decelerating flowconstant velocity

nozzle diffusertest section

Niklas Andersson - Chalmers 30 / 41



Roadmap - Quasi-One-Dimensional Flow

Basic concepts

Governing equations

Area-velocity relation

Nozzles

Diffusers

Numerical simulation

Free boundary reflection

Nozzle pressure ratio

Nozzle relations







Niklas Andersson - Chalmers 31 / 41



Chapter 5.4

Nozzles
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Nozzle Flow - Relations

Calorically perfect gas assumed:

From Chapter 3:

To

T
=

(ao
a

)2

= 1 +
1

2
(γ − 1)M2

po

p
=

(
To

T

) γ
γ−1

ρo
ρ

=

(
To

T

) 1
γ−1
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Nozzle Flow - Relations

Critical conditions:

To

T∗ =
(ao
a∗

)2

=
1

2
(γ + 1)

po

p∗
=

(
To

T∗

) γ
γ−1

ρo
ρ∗

=

(
To

T∗

) 1
γ−1
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Nozzle Flow - Relations

M∗2 =
u2

a∗2
=

u2

a2
a2

a∗2
=

u2

a2
a2

a2o

a2o

a∗2
⇒

M∗2 = M2
1
2(γ + 1)

1 + 1
2(γ − 1)M2
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Nozzle Flow - Relations

For nozzle flow we have

ρuA = c

where c is a constant and therefore

ρ∗u∗A∗ = ρuA

or, since at critical conditions u∗ = a∗

ρ∗a∗A∗ = ρuA

which gives

A

A∗ =
ρ∗

ρ

a∗

u
=

ρ∗

ρo

ρo
ρ

a∗

u
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Nozzle Flow - Relations

A

A∗ =
ρ∗

ρo

ρo
ρ

a∗

u

ρo
ρ

=

(
To

T

) 1
γ−1

ρ∗

ρo
=

(
To

T∗

) −1
γ−1

a∗

u
=

1

M∗


⇒ A

A∗ =

[
1 + 1

2(γ − 1)M2
] 1
γ−1[

1
2(γ + 1)

] 1
γ−1 M∗
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Nozzle Flow - Relations

(
A

A∗

)2

=

[
1 + 1

2(γ − 1)M2
] 2
γ−1[

1
2(γ + 1)

] 2
γ−1 M∗2

M∗2 = M2
1
2(γ + 1)

1 + 1
2(γ − 1)M2


⇒

(
A

A∗

)2

=

[
1 + 1

2(γ − 1)M2
] γ+1
γ−1[

1
2(γ + 1)

] γ+1
γ−1 M2

which is the area-Mach-number relation
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Area-Mach-Number Relation

0 2 4 6 8 10
10

−1

10
0

Area ratio, A/A
∗

M
a
c
h
n
u
m
b
e
r,
M

Area-Mach-Number Relation

subsonic

supersonic

(
A

A∗

)2

=

[
1 + 1

2(γ − 1)M2
] γ+1
γ−1[

1
2(γ + 1)

] γ+1
γ−1 M2
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Area-Mach-Number Relation

Note 1: Critical conditions used here are those corresponding to

isentropic flow. Do not confuse these with the conditions

in the cases of one-dimensional flow with heat addition

and friction

Note 2: For quasi-one-dimensional flow, assuming inviscid

steady-state flow, both total and critical conditions are

constant along streamlines unless shocks are present

(then the flow is no longer isentropic)

Note 3: The derived area-Mach-number relation is only valid for

calorically perfect gas and for isentropic flow. It is not

valid across a compression shock

Niklas Andersson - Chalmers 40 / 41



Roadmap - Quasi-One-Dimensional Flow

Basic concepts

Governing equations

Area-velocity relation

Nozzles

Diffusers

Numerical simulation

Free boundary reflection

Nozzle pressure ratio

Nozzle relations







Niklas Andersson - Chalmers 41 / 41


	Addressed Learning Outcomes
	Quasi-One-Dimensional Flow
	Governing Equations
	Mass Conservation
	Mass Conservation
	Energy Conservation
	Summary
	Differential Form

	Area-Velocity Relation
	Examples

	Nozzles
	Nozzle Relations
	Area-Mach-Number Relation


