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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

b normal shocks*

e oblique shocks in 2D*

f shock reflection at solid walls*

g contact discontinuities

i detached blunt body shocks, nozzle flows

why do we get normal shocks in some cases and oblique

shocks in other?
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Roadmap - Oblique Shocks and Expansion Waves

Oblique shocks Expansion waves
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Detached shocks

Shock systems Pressure-deflection diagram

Solid boundary reflection

Oblique shock relations The θ − β −M relation

Prandtl-Meyer expansion

Shock-expansion theory
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Mach Waves

A Mach wave is an infinitely weak oblique shock
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Oblique Shocks and Expansion Waves

compression corner expansion corner

Supersonic two-dimensional steady-state inviscid flow

(no wall friction)

In real flow, viscosity is non-zero ⇒ boundary layers

For high-Reynolds-number flows, boundary layers are thin ⇒
inviscid theory still relevant!
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Oblique Shocks

Two-dimensional steady-state flow

β > µ

Flow condition

1

Flow condition

2

Stationary shock

M > 1

x

y
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Oblique Shocks

Stationary oblique shock
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Chapter 4.3

Oblique Shock Relations
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Oblique Shock Relations

I Two-dimensional steady-state flow

I Control volume aligned with flow stream lines
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Oblique Shock Relations

Velocity notations:

Mn1 =
u1

a1
= M1 sin(β)

Mn2 =
u2

a2
= M2 sin(β − θ)

M1 =
v1

a1

M2 =
v2
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Oblique Shock Relations

Conservation of mass:

d

dt

y

Ω

ρdV +
{

∂Ω

ρv · ndS = 0

Mass conservation for control volume Ω:

0− ρ1u1A+ ρ2u2A = 0 ⇒

ρ1u1 = ρ2u2
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Oblique Shock Relations

Conservation of momentum:

d

dt

y

Ω

ρvdV +
{

∂Ω

[ρ(v · n)v + pn]dS =
y

Ω

ρfdV

Momentum in shock-normal direction:

0− (ρ1u
2
1 + p1)A+ (ρ2u

2
2 + p2)A = 0 ⇒

ρ1u
2
1 + p1 = ρ2u

2
2 + p2
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Oblique Shock Relations

Momentum in shock-tangential direction:

0− ρ1u1w1A+ ρ2u2w2A = 0 ⇒

w1 = w2
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Oblique Shock Relations

Conservation of energy:

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n]dS =
y

Ω

ρf · vdV

Energy equation applied to the control volume Ω:

0− ρ1u1[h1 +
1

2
(u21 +w2

1)]A+ ρ2u2[h2 +
1

2
(u22 +w2

2)]A = 0 ⇒

h1 +
1

2
u21 = h2 +

1

2
u22
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Oblique Shock Relations

We can use the equations as for normal shocks if we replace M1

with Mn1 and M2 with Mn2

M2
n2

=
M2

n1
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n1 − 1

Ratios such as ρ2/ρ1, p2/p1, and T2/T1 can be calculated using

the relations for normal shocks with M1 replaced by Mn1
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Oblique Shock Relations

What about ratios involving stagnation flow properties, can

we use the ones previously derived for normal shocks?

The answer is no, but why?

Po1 , To1 , etc are calculated using M1 not Mn1 (the tangential

velocity is included)

OBS! Do not not use ratios involving total quantities, e.g.

po2/po1 , To2/To1 , obtained from formulas or tables for

normal shock
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Roadmap - Oblique Shocks and Expansion Waves
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The θ-β-M Relation

It can be shown that

tan θ = 2 cotβ
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)

which is the θ-β-M relation

Does this give a complete specification of flow state 2 as function

of flow state 1?
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The θ-β-M Relation

In general there are two solutions for a given M1 (or none)
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The θ-β-M Relation

Example: Wedge flow

θ

β
M1 > 1

Two solution case:

Weak solution:

I smaller β, M2 > 1 (except in some cases)

Strong solution:

I larger β, M2 < 1

Note: In Chapter 3 we learned that the mach number always reduces to subsonic values behind a shock. This is true

for normal shocks (shocks that are normal to the flow direction). It is also true for oblique shocks if looking in the

shock-normal direction.

tan θ = 2 cot β
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)
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The θ-β-M Relation

No solution case: Detached curved shock

θM1 > 1

tan θ = 2 cot β
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)
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The θ-β-M Relation - Shock Strength
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I There is a small region where we may find weak shock

solutions for which M2 < 1

I In most cases weak shock solutions have M2 > 1

I Strong shock solutions always have M2 < 1

I In practical situations, weak shock solutions are most

common

I Strong shock solution may appear in special situations due

to high back pressure, which forces M2 < 1
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The θ-β-M Relation - Wedge Flow

Wedge flow oblique shock analysis:

1. θ-β-M relation ⇒ β for given M1 and θ

2. β gives Mn1 according to: Mn1 = M1 sin(β)
3. normal shock formula with Mn1 instead of M1 ⇒

Mn2 (instead of M2)

4. M2 given by M2 = Mn2/ sin(β − θ)

5. normal shock formula with Mn1 instead of M1 ⇒
ρ2/ρ1, p2/p1, etc

6. upstream conditions + ρ2/ρ1, p2/p1, etc ⇒
downstream conditions
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Chapter 4.4

Supersonic Flow over

Wedges and Cones

Niklas Andersson - Chalmers 28 / 50



Supersonic Flow over Wedges and Cones

I Similar to wedge flow, we do get a constant-strength shock

wave, attached at the cone tip (or else a detached curved

shock)

I The attached shock is also cone-shaped

What about cone flows?

M > 1
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Supersonic Flow over Wedges and Cones

I The flow condition immediately downstream of the shock is

uniform

I However, downstream of the shock the streamlines are

curved and the flow varies in a more complex manner (3D

relieving effect - as R increases there is more and more

space around cone for the flow)

I β for cone shock is always smaller than that for wedge

shock, if M1 is the same

What about cone flows?

M > 1
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Roadmap - Oblique Shocks and Expansion Waves

Oblique shocks Expansion waves
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Shock intersection

Detached shocks
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Chapter 4.6

Regular Reflection from a

Solid Boundary
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Shock Reflection

Regular reflection of oblique shock at solid wall
(see example 4.10)

β1

θ

β2

θ

θ

M1 > 1 M2 > 1

M3 > 1

x

y

Assumptions:

I steady-state inviscid flow

I weak shocks
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Shock Reflection

first shock:
I upstream condition:

M1 > 1, flow in x-direction

I downstream condition:

weak shock ⇒ M2 > 1
deflection angle θ
shock angle β1

second shock:
I upstream condition:

same as downstream condition of first shock

I downstream condition:

weak shock ⇒ M3 > 1
deflection angle θ
shock angle β2
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Shock Reflection

Solution:

first shock:

I β1 calculated from θ-β-M relation for specified θ and M1

(weak solution)
I flow condition 2 according to formulas for normal shocks

(Mn1 = M1 sin(β1) and Mn2 = M2 sin(β1 − θ))

second shock:

I β2 calculated from θ-β-M relation for specified θ and M2

(weak solution)
I flow condition 3 according to formulas for normal shocks

(Mn2 = M2 sin(β2) and Mn3 = M3 sin(β2 − θ))

⇒ complete description of flow and shock waves

(angle between upper wall and second shock: Φ = β2 − θ)
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Chapter 4.7

Comments on Flow Through

Multiple Shock Systems
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Flow Through Multiple Shock Systems

Single-shock compression versus multiple-shock compression:

θ1

M1, s1
M2,

s2

θ2

M1, s1
M2,

s2 M3, s3
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Flow Through Multiple Shock Systems

We may find θ1 and θ2 (for same M1) which gives the same final

Mach number

In such cases, the multiple shock flow has smaller losses

Explanation: entropy generation at a shock is a very non-linear

function of shock strength

Note: θ1 might very well be less than 2θ2
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Chapter 4.8

Pressure Deflection

Diagrams
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Pressure Deflection Diagrams

θ

β

M1

M2

⇒ relation between p2
and θ

θ

p2

weak shock

solution

strong shock

solution

normal shock

solution

infinitely weak

shock solution
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Pressure Deflection Diagrams - Shock Reflection

θ2
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Pressure Deflection Diagrams - Shock Intersection

1

2

3

5

4

slip line

θ2

θ3

Φ

A slip line is a contact discontinuity

I discontinuity in ρ, T , s, v, and M
I continuous in p and flow angle
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Pressure Deflection Diagrams - Shock Intersection
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Chapter 4.12

Detached Shock Wave in

Front of a Blunt Body
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Detached Shocks

M>1

M>1

M<1M>1

c2

c1

strong shock between c1
and c2, weak shock out-

side
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Detached Shocks

As we move along the detached shock form the centerline,
the shock will change in nature as

I right in front of the body we will have a normal shock
I strong oblique shock
I weak oblique shock
I far away from the body it will approach a Mach wave, i.e. an

infinitely weak oblique shock
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