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Addressed Learning Outcomes

4 Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

b normal shocks*
e oblique shocks in 2D*
f shock reflection at solid walls*
g contact discontinuities
I detached blunt body shocks, nozzle flows

why do we get normal shocks in some cases and oblique
shocks in other?
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Mach Waves
A Mach wave is an infinitely weak oblique shock

subsonic supersonic
V<a




Obligue Shocks and Expansion Waves

\

compression corner expansion corner

Supersonic two-dimensional steady-state inviscid flow
(no wall friction)

In real flow, viscosity is non-zero = boundary layers

For high-Reynolds-number flows, boundary layers are thin =
inviscid theory still relevant!



Oblique Shocks

Two-dimensional steady-state flow

y Stationary shock

Flow condition

Flow condition




Oblique Shocks

Stationary oblique shock
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Chapter 4.3
Obligue Shock Relations



Obligue Shock Relations

Two-dimensional steady-state flow
Control volume aligned with flow stream lines



Obligue Shock Relations

wy ~ o
// Al
Velocity notations:
u .
Mp, = =L =M sin(3) M
a
u .
My, = —2 = My sin(3 — 6) My =

as



Obligue Shock Relations

Conservation of mass:
%jffpd”ﬁ—l—@pv-ndSZO
Q 00

Mass conservation for control volume €2:

0— plulA + PQUQA =0=

p1Ur = palsz



Obligue Shock Relations

Conservation of momentum:

% {[[ evar + {J lo(v - n)v + pu] aS = [[[ pfct¥
& Q

o

Momentum in shock-normal direction:

0 — (Ui +P1)A + (p2u3 + p2)A = 0 =

[ p1UT + P1 = pal3 + P2 ]




Obligue Shock Relations

Momentum in shock-tangential direction:

0— p1U1W1A + PQUQWQA =0=



Obligue Shock Relations

Conservation of energy:
S [ ooy + ff lphov -ulds = [[] - var
¢ o Q

Energy equation applied to the control volume €:

1 1
0 — prusfhy + i(uf + WA + pauslha + i(ug +WHA=0=

1 1




Obligue Shock Relations

We can use the equations as for normal shocks if we replace M,
with M, and Ma with M,

2 _ MI%1 + [2/(7 - 1)]
" Ry/(y =DM -1

Ratios such as p2/p1, p2/p1, and Ty /T can be calculated using
the relations for normal shocks with M; replaced by Mp,



Obligue Shock Relations

What about ratios involving stagnation flow properties, can
we use the ones previously derived for normal shocks?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can
we use the ones previously derived for normal shocks?

The answer is no, but why?



Obligue Shock Relations
What about ratios involving stagnation flow properties, can
we use the ones previously derived for normal shocks?
The answer is no, but why?

Po,, To,, etc are calculated using M; not M, (the tangential
velocity is included)



Obligue Shock Relations
What about ratios involving stagnation flow properties, can
we use the ones previously derived for normal shocks?
The answer is no, but why?

Po,, To,, etc are calculated using M; not M, (the tangential
velocity is included)

OBS! Do not not use ratios involving total quantities, e.g.
Pos/Poys Tos/To,, Obtained from formulas or tables for
normal shock
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The 6-5-M Relation

[t can be shown that

22
tan@chotB( Misin"f — 1 >

M2(~ + cos 283) + 2

which is the 8-3-M relation

Does this give a complete specification of flow state 2 as function
of flow state 17
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The 6-5-M Relation

In general there are two solutions for a given M; (or none)

Oblique shock properties (the 6-3-M relation for ~
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The 6-5-M Relation

tan 6 = 2cot/ﬁ<

Mf sin2 8 —1
Mf(’Y + cos2B8) + 2

Example: Wedge flow

Two solution case:
Weak solution:
smaller 5, My > 1 (except in some cases)
Strong solution:
larger 5, My < 1

Note: In Chapter 3 we learned that the mach number always reduces to subsonic values behind a shock. This is true
for normal shocks (shocks that are normal to the flow direction). It is also true for oblique shocks if looking in the
shock-normal direction.



The 6-5-M Relation

tanf = 2cotf | (¥
M3 (~y + cos 28) + 2

Mfsinzﬁfl >

No solution case: Detached curved shock




The 6-5-M Relation - Shock Strength

There is a small region where we may find weak shock
solutions for which My < 1

In most cases weak shock solutions have My > 1
Strong shock solutions always have My < 1

In practical situations, weak shock solutions are most
common

Strong shock solution may appear in special situations due
to high back pressure, which forces My < 1



The 6-5-M Relation - Wedge Flow

Wedge flow oblique shock analysis:

1. 0-5-M relation = 3 for given My and ¢

2. B gives My, according to: My, = M sin(3)

3. normal shock formula with M, instead of M; =
M, (instead of Ms)

4. My given by My = M, / sin(5 — 0)

5. normal shock formula with M, instead of M; =
p2/p1, P2/P1, etc

6. upstream conditions + p2/p1, P2/p1, etc =
downstream conditions



Chapter 4.4
Supersonic Flow over
Wedges and Cones



Supersonic Flow over Wedges and Cones

What about cone flows?

M>1
_—

Similar to wedge flow, we do get a constant-strength shock
wave, attached at the cone tip (or else a detached curved
shock)

The attached shock is also cone-shaped



Supersonic Flow over Wedges and Cones

What about cone flows?

M>1
_—

» The flow condition immediately downstream of the shock is
uniform

» However, downstream of the shock the streamlines are
curved and the flow varies in a more complex manner (3D
relieving effect - as R increases there is more and more
space around cone for the flow)

» [ for cone shock is always smaller than that for wedge
shock, if M is the same
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Chapter 4.6
Regular Reflection from a
Solid Boundary



Shock Reflection

Regular reflection of oblique shock at solid wall

(see example 4.10)

My >1

L=

X

Assumptions:
steady-state inviscid flow
weak shocks



Shock Reflection

first shock:
upstream condition:
My > 1, flow in x-direction
downstream condition:

weak shock = My > 1
deflection angle 6
shock angle /31

second shock:
upstream condition:
same as downstream condition of first shock
downstream condition:

weak shock = M3z > 1
deflection angle 6
shock angle B2



Shock Reflection

Solution:
first shock:

» (31 calculated from 6-5-M relation for specified 6 and M,
(weak solution)

» flow condition 2 according to formulas for normal shocks
(Mn, = My sin(B1) and M, = My sin(5; — 6))

second shock:

» [ calculated from 8-5-M relation for specified 6 and My
(weak solution)

» flow condition 3 according to formulas for normal shocks
(Mn2 = MQ Sin(ﬂg) and Mn3 = M3 sin(,BQ — 9))

= complete description of flow and shock waves
(angle between upper wall and second shock: ® = 35 — 6)
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Chapter 4.7
Comments on Flow Through
Multiple Shock Systems



Flow Through Multiple Shock Systems

Single-shock compression versus multiple-shock compression:

My, s3

My, s1




Flow Through Multiple Shock Systems

We may find 6, and 6, (for same M) which gives the same final
Mach number

In such cases, the multiple shock flow has smaller losses

Explanation: entropy generation at a shock is a very non-linear
function of shock strength

Note: 61 might very well be less than 26,
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Chapter 4.8
Pressure Deflection
Diagrams



Pressure Deflection Diagrams

normal shock p2

solution strong shock

solution

= relation between p-

and 0 infinitely weak
shock solution ————

weak shock
solution

0




Pressure Deflection Diagrams - Shock Reflection




Pressure Deflection Diagrams - Shock Intersection

-~ .
slip line

A slip line is a contact discontinuity
discontinuity in p, T, s, v, and M
continuous in p and flow angle



Pressure Deflection Diagrams - Shock Intersection
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Chapter 4.12
Detached Shock Wave in
Front of a Blunt Body



Detached Shocks
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M<1




Detached Shocks

As we move along the detached shock form the centerline,
the shock will change in nature as
» right in front of the body we will have a normal shock
» strong oblique shock
» weak oblique shock
» far away from the body it will approach a Mach wave, .e. an
infinitely weak oblique shock



Detached Shocks




Roadmap - Oblique Shocks and Expansion Waves

[ Shock-expansion theory ]

[ Oblique shocks ]—»CT)<—[ Expansion waves ’
t 1

[ Mach reflection ] [ Prandtl-Meyer expansion ]
)

[ Shock intersection ]
)

[ Detac%hocks ]
)

Shoo%tems 4—( Pressure—dwon diagram J
t
Solid bouw reflection

*

Oblique w relations 4—[ The 0 — w relation ’




	Addressed Learning Outcomes
	An Introduction to Oblique Shocks and Expansion Waves
	Oblique Shock Relations
	Definitions
	Governing Equations
	The theta-beta-M Relation

	Supersonic Flow over Wedges and Cones
	Regular Reflection from a Solid Boundary
	Flow Through Multiple Shock Systems
	Pressure Deflection Diagrams
	Detached Shock Wave in Front of a Blunt Body

