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Chapter 3
One-Dimensional Flow
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing
equations for compressible flows and explain what basic
conservation principles they are based on

5 Explain how thermodynamic relations enter into the flow
equations

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

¢ 1D flow with heat addition*
d 1D flow with friction*

inviscid flow with friction?!
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Chapter 3.8
One-Dimensional Flow with
Heat Addition



One-Dimensional Flow with Heat Addition
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Pipe flow:
no friction

1D steady-state = all variables depend on x only

q is the amount of heat per unit mass added between 1 and
2

analyze by setting up a control volume between station 1
and 2



One-Dimensional Flow with Heat Addition

p1Ur = palsa

p1U; + P1 = pal3 + P2

1 1
h1+§U%+q:h2+§U%

A J

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = analytical solution exists



One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = CpT):

1 1
CoT1 + iuf +q=Cpla+ iug

1 1
q= (CpTg + 2u§> - (CpT1 + 2u%>
1 2
q= CD(TO2 - TO1)

i.e. heat addition increases T, downstream



One-Dimensional Flow with Heat Addition

Momentum equation:

2 2
P2 — P1 = p1Uy — p2us

{pUQ — pa?M? — p’Y[:)OMz _ prQ}

p2 — p1 = YP1M; — ypaM3 =

P2 1+~yM?
p1 1+M3




One-Dimensional Flow with Heat Addition

Ideal gas law:

p To  pa ;iR p2p1
T=—=_="—""-"="""-
pR T1  pR p1 p1p2

Continuity equation:

P1 Uz
prUy = palp = — = —
p2 U

Uy  Meas  +RTy _h My [Ty
\ T

uq N M1la, N \/’yRTl P2 N M
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

T [L+9M3]% (Mo
T _1—}—’}//\4%_ My

p2 [1+M3] <Ml>2
pr 1+ M7 ] \ My
P2 1+ M3
p1 1+~M3




One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

0
o [t (14l

Po, L1+ M) \ 1+ 5(y— M3

.
N [1+7M%} </\42>2 1+ 3¢y —1M3\ T
To, [1+yM2] \M 1+ iy — M2




One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)
the Mach number, M, increases as more heat (per unit mass)
is added to the gas
for some limiting heat addition g*, the flow will eventually
become sonic M =1

Initially supersonic flow (M > 1)
the Mach number, M, decreases as more heat (per unit mass)
is added to the gas
for some limiting heat addition g*, the flow will eventually
become sonic M =1

Note: The (*) condition in this context is not the same as the "critical” condition discussed for isentropic flow!!!



One-Dimensional Flow with Heat Addition

P2 1 +~yM?
pi  1+~M3

Calculate the ratio between the pressure at a specific
location in the flow p and the pressure at sonic conditions p*

p1=p, M =M, p;=p*,and My =1

p 147




One-Dimensional Flow with Heat Addition

T _[ 1 Vg Po [ 147 ](2+(—DM>\7T
T [1+M?] o5 | 1+~M2 (v+1)

p o [1+M?] ( 1 ) To _ (v+1M? 2

= — 2= 2 — 1M

pr | 14y | \M? Ta (1+7M2)2( =DM

P 149

see Table A.3



One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

T*

o]



One-Dimensional Flow with Heat Addition

My
P1
Ty
P1

My
P1
T1
P1

M
P2
Ta
P2

a1

Mz
P2
T2
p2

*
" \

identical values!

M* /
/3*
T

For a given flow, the starred quantities are constant values



One-Dimensional Flow with Heat Addition

Rayleigh curve

Note: it is theoretically possible to
heat an initially subsonic flow to reach
sonic conditions and then continue to
accelerate the flow by cooling

sonic point (M = 1)

Lord Rayleigh 1842-1919
Nobel prize in physics 1904

M>1

see Figure 3.13



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a
violation of the second law of thermodynamics?!



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a
violation of the second law of thermodynamics?!

Answer: if the heat source or sink would have been included
in the system studied, the system entropy would increase
both when adding and removing heat.



M < 1: Adding heat will

increase M
decrease p
increase T,
decrease po
increase s
increase u
decrease p

Flow loss - not isentropic process

One-Dimensional Flow with Heat Addition

M > 1: Adding heat will

decrease M
increase p
increase T,
decrease po
increase s
decrease u
increase p



One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (9) and heat per unit
surface area and unit time (Gya)

Pipe with arbitrary cross section (constant in x):
mass flow through pipe m Lbg
axial length of pipe L q= mwa//
circumference of pipe b = 2ar




Roadmap - One-dimensional Flow

[ Govemi%uations ’ Spee%ound

| —
(f< ‘ Auxniawations

[ Normal shoggp relations J )

(statiorNMFshocks) Alternativ rmsl of
the ene® equation

1D flow with t addition . -
| (Raylei% flow) | [ Total and M conditions ]

[ 1D flow with friction ]

(Fanno line flow)




Chapter 3.9
One-Dimensional Flow with
Friction



One-Dimensional Flow with Friction

Thermally insulated walls

Pipe flow:
adiabatic (g = 0)
cross section area A is constant

average all variables in each cross-section = only
X-dependence

analyze by setting up a control volume between station 1
and 2



One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

L
Sﬁ_ﬁ 7,dS = b / X
0

o

where L is the tube length and b is the circumference



One-Dimensional Flow with Friction

p1Uy = palz

4 L
p1U7 + P D/ TwOX = paU3 + P2
0

1 1
hi + §u§ =hy + iug




One-Dimensional Flow with Friction

Ty varies with the distance x and thus complicating the integration

Solution: let L shrink to dx and we end up with relations on
differential form

d(pu® 4+p) = —%dex

or

d. 4

Tw



One-Dimensional Flow with Friction
From the continuity equation we get

d
Uy = pollp = const = —(pu) =0
p1U1 = paUz )
Writing out all terms in the momentum equation gives

g(u2+ ) = ud—u+ud( )+d—p 2
ax PR = U P e = T
~—

=0

and thus
Jdu o 4
PPax Tax ~ D
Common approximation for 7, :

u do 2
f = y—+ 2 __Z
%A pu pud dx Dpu !



One-Dimensional Flow with Friction

Energy conservation:

hol = ho2 = ho — 0

dx



One-Dimensional Flow with Friction

Summary: , .
d
&(PU) =0
au dp 2
pud7 + ax —Dpu f
d
&ho =0

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = analytical solution exists (for constant f)



One-Dimensional Flow with Friction

Calorically perfect gas:

/X2 Af 1 y+1 M?
X

Ma



One-Dimensional Flow with Friction

Calorically perfect gas:

T2
T1

P2
P1

P2
P1

Po.

p01 B

1/2

—-1/2

v+l
2(v—1)



One-Dimensional Flow with Friction

Initially subsonic flow (M < 1)

M. will increase as L increases
for a critical length L*, the flow at point 2 will reach sonic
conditions, i.e. My =1

Initially supersonic flow (M1 > 1)

M, will decrease as L increases
for a critical length L*, the flow at point 2 will reach sonic
conditions, i.e. My =1

Note: The (*) condition in this context is not the same as the "critical” condition discussed for isentropic flow!!!



One-Dimensional Flow with Friction

T (v+1)
T 24 (y—1)M?

p_1[ a1 ]
p* M |24 (v — 1)M? |

p 124 (y -1 M2
p* M| v+1

po 1 [2+( 1)M2r<v 0
o5 M v+1

see Table A.4



One-Dimensional Flow with Friction

and

1

L* 2
4f 1 1
[ |l [
2 M

where L* is the tube length needed to change current state to
sonic conditions

Let f be the average friction coefficient over the length L* =

AfFL* 1-M? 441 (v + 1)M?
B + In
D ~M? 2 24+ (y — 1)M?

Turbulent pipe flow — 7 ~ 0.005 (Re > 107, roughness ~ 0.001D)




One-Dimensional Flow with Friction

Fanno curve

M <1

sonic point (M = 1)

see Figure 3.15



One-Dimensional Flow with Friction

M < 1: Friction will

increase M
decrease p
decrease T
decrease po
increase s
increase u
decrease p

Flow loss - non-isentropic flow

M > 1: Friction will

decrease M
increase p
increase T
decrease po
increase s
decrease u
increase p
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