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Chapter 3

One-Dimensional Flow
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Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

5 Explain how thermodynamic relations enter into the flow

equations

8 Derive (marked) and apply (all) of the presented
mathematical formulae for classical gas dynamics

c 1D flow with heat addition*

d 1D flow with friction*

inviscid flow with friction?!
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Roadmap - One-dimensional Flow

Speed of sound

Auxiliary relations

Alternative forms of

the energy equation

Total and critical conditions

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)
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Chapter 3.8

One-Dimensional Flow with

Heat Addition
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One-Dimensional Flow with Heat Addition

1 2control volume Ω

q

q

x

Pipe flow:

I no friction

I 1D steady-state ⇒ all variables depend on x only

I q is the amount of heat per unit mass added between 1 and

2

I analyze by setting up a control volume between station 1

and 2
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One-Dimensional Flow with Heat Addition

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 + q = h2 +

1

2
u22

Valid for all gases!

General gas ⇒ Numerical solution necessary

Calorically perfect gas ⇒ analytical solution exists
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One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = CpT ):

CpT1 +
1

2
u21 + q = CpT2 +

1

2
u22

q =

(
CpT2 +

1

2
u22

)
−
(
CpT1 +

1

2
u21

)
CpTo = CpT +

1

2
u2 ⇒

q = Cp(To2 − To1)

i.e. heat addition increases To downstream
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One-Dimensional Flow with Heat Addition

Momentum equation:

p2 − p1 = ρ1u
2
1 − ρ2u

2
2{

ρu2 = ρa2M2 = ρ
γp

ρ
M2 = γpM2

}
p2 − p1 = γp1M

2
1 − γp2M

2
2 ⇒

p2

p1
=

1 + γM2
1

1 + γM2
2
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One-Dimensional Flow with Heat Addition

Ideal gas law:

T =
p

ρR
⇒ T2

T1
=

p2

ρ2R

ρ1R

p1
=

p2

p1

ρ1
ρ2

Continuity equation:

ρ1u1 = ρ2u2 ⇒
ρ1
ρ2

=
u2

u1

u2

u1
=

M2a2

M1a1
=

√
γRT2√
γRT1

⇒ ρ1
ρ2

=
M2

M1

√
T2

T1

T2

T1
=

(
1 + γM2

1

1 + γM2
2

)2(
M2

M1

)2
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

T2

T1
=

[
1 + γM2

1

1 + γM2
2

]2(
M2

M1

)2

ρ2
ρ1

=

[
1 + γM2

2

1 + γM2
1

](
M1

M2

)2

p2

p1
=

1 + γM2
1

1 + γM2
2
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

po2
po1

=

[
1 + γM2

1

1 + γM2
2

](
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

) γ
γ−1

To2
To1

=

[
1 + γM2

1

1 + γM2
2

](
M2

M1

)2
(
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

) γ
γ−1
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One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)
I the Mach number, M, increases as more heat (per unit mass)

is added to the gas
I for some limiting heat addition q∗, the flow will eventually

become sonic M = 1

Initially supersonic flow (M > 1)
I the Mach number, M, decreases as more heat (per unit mass)

is added to the gas
I for some limiting heat addition q∗, the flow will eventually

become sonic M = 1

Note: The (*) condition in this context is not the same as the ”critical” condition discussed for isentropic flow!!!
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One-Dimensional Flow with Heat Addition

p2

p1
=

1 + γM2
1

1 + γM2
2

Calculate the ratio between the pressure at a specific

location in the flow p and the pressure at sonic conditions p∗

p1 = p, M1 = M, p2 = p∗, and M2 = 1

p∗

p
=

1 + γM2

1 + γ
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One-Dimensional Flow with Heat Addition

T

T∗ =

[
1 + γ

1 + γM2

]2
M2

ρ

ρ∗
=

[
1 + γM2

1 + γ

](
1

M2

)

p

p∗
=

1 + γ

1 + γM2

po

p∗o
=

[
1 + γ

1 + γM2

](
2 + (γ − 1)M2

(γ + 1)

) γ
γ−1

To

T∗
o

=
(γ + 1)M2

(1 + γM2)2
(2 + (γ − 1)M2)

see Table A.3

Niklas Andersson - Chalmers 17 / 40



One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

q∗ = Cp(T
∗
o − To) = CpTo

(
T∗
o

To
− 1

)
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One-Dimensional Flow with Heat Addition

M1

p1

T1
ρ1

M2

p2

T2
ρ2

q

M1

p1

T1
ρ1

M
∗

p
∗

T
∗

ρ
∗

q
∗
1

M2

p2

T2
ρ2

M
∗

p
∗

T
∗

ρ
∗

q
∗
2

1 2 ∗

q
∗
2 = q

∗
1 − q For a given flow, the starred quantities are constant values

identical values!
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One-Dimensional Flow with Heat Addition

Rayleigh curve

Lord Rayleigh 1842-1919

Nobel prize in physics 1904

Note: it is theoretically possible to

heat an initially subsonic flow to reach

sonic conditions and then continue to

accelerate the flow by cooling

s

h

sonic point (M = 1)

ad
di
ng
he
at

re
m
ov
in
g
he
at

a
d
d
in
g
h
e
a
t

re
m
o
vi
n
g
h
e
a
t

M < 1

M > 1

see Figure 3.13
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One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a

violation of the second law of thermodynamics?!

Answer: if the heat source or sink would have been included

in the system studied, the system entropy would increase

both when adding and removing heat.
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One-Dimensional Flow with Heat Addition

M < 1: Adding heat will

I increase M

I decrease p

I increase To

I decrease po

I increase s

I increase u

I decrease ρ

M > 1: Adding heat will

I decrease M

I increase p

I increase To

I decrease po

I increase s

I decrease u

I increase ρ

Flow loss - not isentropic process
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One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (q) and heat per unit

surface area and unit time (q̇wall )

L

x

b

Pipe with arbitrary cross section (constant in x):

mass flow through pipe ṁ

axial length of pipe L

circumference of pipe b = 2πr

q =
Lbq̇wall

ṁ
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Roadmap - One-dimensional Flow

Speed of sound

Auxiliary relations

Alternative forms of

the energy equation

Total and critical conditions

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)
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Chapter 3.9

One-Dimensional Flow with

Friction
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One-Dimensional Flow with Friction

1 2control volume Ω

Thermally insulated walls

x

Pipe flow:

I adiabatic (q = 0)

I cross section area A is constant

I average all variables in each cross-section ⇒ only

x-dependence

I analyze by setting up a control volume between station 1

and 2
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One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

{

∂Ω

τwdS = b

ˆ L

0
τwdx

where L is the tube length and b is the circumference
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One-Dimensional Flow with Friction

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 −

4

D

ˆ L

0
τwdx = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22
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One-Dimensional Flow with Friction

τw varies with the distance x and thus complicating the integration

Solution: let L shrink to dx and we end up with relations on

differential form

d(ρu2 + p) = − 4

D
τwdx

or

d

dx
(ρu2 + p) = − 4

D
τw
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One-Dimensional Flow with Friction

From the continuity equation we get

ρ1u1 = ρ2u2 = const ⇒ d

dx
(ρu) = 0

Writing out all terms in the momentum equation gives

d

dx
(ρu2 + p) = ρu

du

dx
+ u

d

dx
(ρu)︸ ︷︷ ︸
=0

+
dp

dx
= − 4

D
τw

and thus

ρu
du

dx
+

dp

dx
= − 4

D
τw

Common approximation for τw:

τw = f
1

2
ρu2 ⇒ ρu

du

dx
+

dp

dx
= − 2

D
ρu2f
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One-Dimensional Flow with Friction

Energy conservation:

ho1 = ho2 ⇒ d

dx
ho = 0
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One-Dimensional Flow with Friction

Summary:

d

dx
(ρu) = 0

ρu
du

dx
+

dp

dx
= − 2

D
ρu2f

d

dx
ho = 0

Valid for all gases!

General gas ⇒ Numerical solution necessary

Calorically perfect gas ⇒ analytical solution exists (for constant f )
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One-Dimensional Flow with Friction

Calorically perfect gas:

ˆ x2

x1

4f

D
dx =

− 1

γM2
− γ + 1

2γ
ln

 M2

1 +
γ − 1

2
M2



M2

M1
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One-Dimensional Flow with Friction

Calorically perfect gas:

T2

T1
=

2 + (γ − 1)M2
1

2 + (γ − 1)M2
2

p2

p1
=

M1

M2

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

]1/2

ρ2
ρ1

=
M1

M2

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

]−1/2

po2
po1

=
M1

M2

[
2 + (γ − 1)M2

2

2 + (γ − 1)M2
1

] γ+1
2(γ−1)
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One-Dimensional Flow with Friction

Initially subsonic flow (M1 < 1)
I M2 will increase as L increases
I for a critical length L∗, the flow at point 2 will reach sonic

conditions, i.e. M2 = 1

Initially supersonic flow (M1 > 1)
I M2 will decrease as L increases
I for a critical length L∗, the flow at point 2 will reach sonic

conditions, i.e. M2 = 1

Note: The (*) condition in this context is not the same as the ”critical” condition discussed for isentropic flow!!!
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One-Dimensional Flow with Friction

T

T∗ =
(γ + 1)

2 + (γ − 1)M2

p

p∗
=

1

M

[
γ + 1

2 + (γ − 1)M2

]1/2

ρ

ρ∗
=

1

M

[
2 + (γ − 1)M2

γ + 1

]1/2

po

p∗o
=

1

M

[
2 + (γ − 1)M2

γ + 1

] γ+1
2(γ−1)

see Table A.4

Niklas Andersson - Chalmers 36 / 40



One-Dimensional Flow with Friction

and

ˆ L∗

0

4f

D
dx =

− 1

γM2
− γ + 1

2γ
ln

 M2

1 +
γ − 1

2
M2



1

M

where L∗ is the tube length needed to change current state to

sonic conditions

Let f̄ be the average friction coefficient over the length L∗ ⇒

4f̄ L∗

D
=

1−M2

γM2
+

γ + 1

2γ
ln
(

(γ + 1)M2

2 + (γ − 1)M2

)
Turbulent pipe flow → f̄ ∼ 0.005 (Re > 10

5
, roughness ∼ 0.001D)

Niklas Andersson - Chalmers 37 / 40



One-Dimensional Flow with Friction

Fanno curve

s

h

sonic point (M = 1)

M < 1

M > 1

see Figure 3.15
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One-Dimensional Flow with Friction

M < 1: Friction will

I increase M

I decrease p

I decrease T

I decrease po

I increase s

I increase u

I decrease ρ

M > 1: Friction will

I decrease M

I increase p

I increase T

I decrease po

I increase s

I decrease u

I increase ρ

Flow loss - non-isentropic flow
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Roadmap - One-dimensional Flow

Speed of sound

Auxiliary relations

Alternative forms of

the energy equation

Total and critical conditions

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)
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