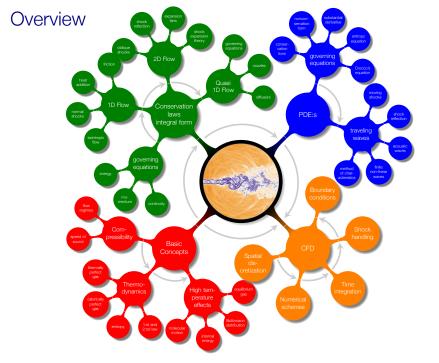
Compressible Flow - TME085 Lecture 2

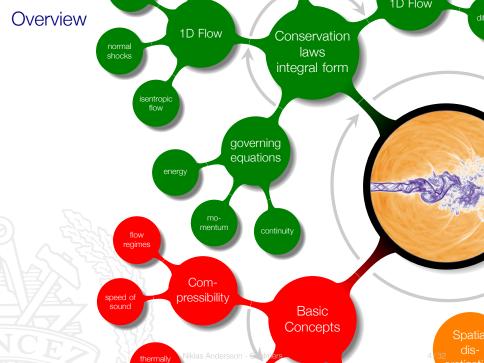
Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se



Chapter 2 Integral Forms of the Conservation Equations for Inviscid Flows



Addressed Learning Outcomes

- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 5 Explain how thermodynamic relations enter into the flow equations
- 7 Explain why entropy is important for flow discontinuities

equations, equations and more equations

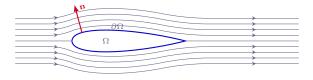
Roadmap - Integral Relations

Governing equations (integral form)

Continuity equation Momentum equation Energy equation

Control volume example

Chapter 1.5 Aerodynamic Forces



Ω region occupied by body
 ∂Ω surface of body
 n outward facing unit normal vector

Overall forces on the body du to the flow

$$\mathbf{F} = \oint (-\rho \mathbf{n} + \tau \cdot \mathbf{n}) dS$$

where p is static pressure and τ is a stress tensor

Drag is the component of \mathbf{F} which is parallel with the freestream direction:

$$D = D_p + D_f$$

where D_p is drag due to pressure and D_f is drag due to friction

Lift is the component of ${\bf F}$ which is normal to the free stream direction:

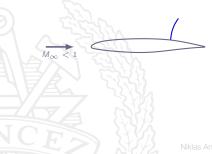
$$L = L_p + L_f$$

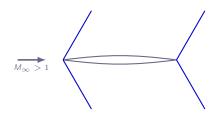
(L_f is usually negligible)

Inviscid flow around slender body (attached flow)

- subsonic flow: D = 0
- transonic or supersonic flow: D > 0

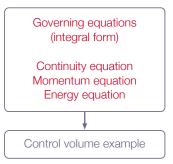
Explanation: Wave drag





- Wave drag is an inviscid phenomena, connected to the formation of compression shocks and entropy increase
- Viscous effects are present in all Mach regimes
- At transonic and supersonic conditions a particular phenomena named "shock/boundary-layer interaction" may appear
 - shocks trigger flow separation
 - usually leads to unsteady flow

Roadmap - Integral Relations



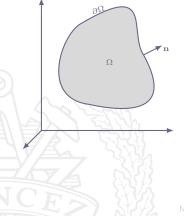
Integral Forms of the Conservation Equations

Conservation principles:

- conservation of mass
- conservation of momentum (Newton's second law)
 - conservation of energy (first law of thermodynamics)

Integral Forms of the Conservation Equations

The control volume approach:



Notation:

 Ω : fixed control volume

 $\partial \Omega :$ boundary of Ω

 $\mathbf{n}:$ outward facing unit normal vector

 $\mathbf{v}:$ fluid velocity

 $V = |\mathbf{v}|$

Chapter 2.3 Continuity Equation

Continuity Equation

Conservation of mass:

$$\underbrace{\frac{d}{dt}\iiint\rho d\mathscr{V}}_{\Omega} \rho d\mathscr{V} + \underbrace{\bigoplus}_{\partial\Omega}\rho \mathbf{v} \cdot \mathbf{n} dS = 0$$

rate of change of total mass in $\boldsymbol{\Omega}$

net mass flow out from Ω

Note: notation in the text book $\mathbf{n} \cdot dS = d\mathbf{S}$

Chapter 2.4 Momentum Equation

Momentum Equation

Conservation of momentum:

$$\underbrace{\frac{d}{dt}\iiint \rho \mathbf{v} d\mathcal{V}}_{\text{rate of change of total}} + \underbrace{\bigoplus}_{\substack{\partial \Omega \\ \rho \text{ lus surface force on } \partial \Omega \\ \text{due to pressure}} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = \underbrace{\iiint}_{\substack{\Omega \\ \rho \text{ lus surface force on } \partial \Omega \\ \text{forces inside } \Omega \end{array}}_{\text{rate of momentum flow out from } \sigma \text{ plus surface force on } \partial \Omega }$$

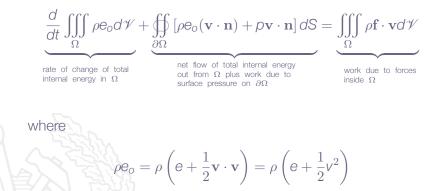
Note: friction forces due to viscosity are not included here. To account for these forces, the term $-(\tau \cdot \mathbf{n})$ must be added to the surface integral term.

Note: the body force, f, is force per unit mass.

m

Chapter 2.5 Energy Equation

Conservation of energy:



is the total internal energy

The surface integral term may be rewritten as follows:

$$\oint_{\partial\Omega} \left[\rho \left(e + \frac{1}{2} v^2 \right) (\mathbf{v} \cdot \mathbf{n}) + \rho \mathbf{v} \cdot \mathbf{n} \right] dS$$

 \Leftrightarrow

Introducing total enthalpy

$$h_o = h + \frac{1}{2}v^2$$

we get

 $\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_0 d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho h_0 \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$ Niklas Andersson - Chalmers

Note 1: to include friction work on $\partial \Omega$, the energy equation is extended as

$$\frac{d}{dt} \iiint \rho \mathbf{e}_o d\mathcal{V} + \oiint [\rho h_o \mathbf{v} \cdot \mathbf{n} - (\tau \cdot \mathbf{n}) \cdot \mathbf{v}] dS = \iiint \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

Note 2: to include heat transfer on $\partial \Omega$, the energy equation is further extended

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho h_{o} \mathbf{v} \cdot \mathbf{n} - (\boldsymbol{\tau} \cdot \mathbf{n}) \cdot \mathbf{v} + \mathbf{q} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

where \mathbf{q} is the heat flux vector

Note 3: the force ${\bf f}$ inside Ω may be a distributed body force field

Examples:

- gravity
- Coriolis and centrifugal acceleration terms in a rotating frame of reference

Note 4: there may be objects inside Ω which we choose to represent as sources of momentum and energy.

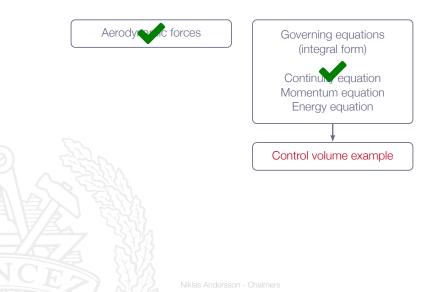
For example, there may be a solid object inside Ω which acts on the fluid with a force **F** and performs work \dot{W} on the fluid

Momentum equation:

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{v} d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} d\mathcal{V} + \mathbf{F}$$
ergy equation:

$$\frac{d}{dt} \iiint \rho \mathbf{e}_o d\mathcal{V} + \oiint _{\partial \Omega} \left[\rho h_o \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V} + \dot{\mathcal{W}}$$

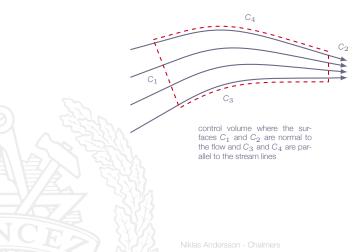
Roadmap - Integral Relations



How can we use control volume formulations of conservation laws?

- Let Ω → 0: In the limit of vanishing volume the control volume formulations give the Partial Differential Equations (PDE:s) for mass, momentum and energy conservation (see Chapter 6)
 - Apply in a "smart" way \Rightarrow Analysis tool for many practical problems involving compressible flow (see Chapter 2, Section 2.8)

Example: Steady-state adiabatic inviscid flow



Conservation of mass:

$$\underbrace{\frac{d}{dt}\iiint \rho d\mathscr{V} + \bigoplus_{\partial\Omega} \rho \mathbf{v} \cdot \mathbf{n} dS}_{= 0} = 0$$

Conservation of energy:

$$\underbrace{\frac{d}{dt} \iiint_{\Omega} \rho e_0 d\mathcal{V}}_{= 0} + \underbrace{\bigoplus_{\partial \Omega} \left[\rho h_0 \mathbf{v} \cdot \mathbf{n} \right] dS}_{-\rho_1 h_{o_1} v_1 A_1 + \rho_2 h_{o_2} v_2 A_2} = 0$$

Conservation of mass:

 $\rho_1 \mathsf{v}_1 \mathsf{A}_1 = \rho_2 \mathsf{v}_2 \mathsf{A}_2$

Conservation of energy:

 $\rho_1 h_{o_1} v_1 A_1 = \rho_2 h_{o_2} v_2 A_2$

 \Leftrightarrow

 $h_{o_1} = h_{o_2}$

Total enthalpy h_o is conserved along streamlines in steady-state adiabatic inviscid flow

Roadmap - Integral Relations

