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EMBEDDED LES: PROBLEM FORMULATION

y

Interface

RANS

s

A,

|
U, v w
|

L.

X

www.tfd.chalmers.se/~lada

CHALMERS

o At the interface between RANS and LES, turbulent fluctuations,
u', v/, w', are imposed to stimulate growth of resolved fluctuations
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EMBEDDED LES: PROBLEM FORMULATION

Interface
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o At the interface between RANS and LES, turbulent fluctuations,
u',v',w', are imposed to stimulate growth of resolved fluctuations

X

@ To promote transition from RANS to LES (reducing the gray area),
additional forcing may be used in the LES region

@ In the present work, forcing is added using a scale-similarity model
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MOMENTUM EQUATION

The momentum equations for LES read

DU;_’_E%_i (V+V )81_1,' _87’,';(
Dt = pOx; Oxg 565 Ox Oxk

where D /Dt denotes material derivative. The stress tensor, Tj, is
obtained from the scale-similarity model

Tik = Uil — Uj Uy
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TURBULENT KINETIC ENERGY EQ

o Let us take a closer look at the equation for the resolved, turbulent
kinetic energy, K = (@ti!) /2, which reads ((.) denotes averaging in
time)

o0l 10T | 10(muE)
E+<ukui> 8Xk + ; aX,' 2 an N

, 9% o\ Ot/ OTik o
anan i 8Xk an i

@ The second line is simply the T eq. multiplied by @’
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TURBULENT KINETIC ENERGY EQ (CONT’'D)

@ The right side can be re-written as

y 0? B//' TAY OTik ) =
Ox, Oxy ox, '/
—_——

anon

(92K 8[1,’ 8[1,’ i)T/k —/
v — VUV — u;
OXx OX Oy OX;c ox, '

€ €5GS

@ The first term on the left side is the non-isotropic (i.e. the true)
viscous dissipation, €™"; this is predominately negative.
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@ The first term on the left side is the non-isotropic (i.e. the true)
viscous dissipation, €™"; this is predominately negative.

@ The first term on the right side is the viscous diffusion
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TURBULENT KINETIC ENERGY EQ (CONT’'D)

@ The right side can be re-written as
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@ The first term on the left side is the non-isotropic (i.e. the true)
viscous dissipation, €™"; this is predominately negative.

@ The first term on the right side is the viscous diffusion

@ the second term, ¢, is the (isotropic) dissipation which is positive
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TURBULENT KINETIC ENERGY EQ (CONT’'D)

@ The right side can be re-written as

y 0? B//' TAY OTik ) =
Ox, Oxy ox, '/
—_——

anon

(92K 8[1,’ 8[1,’ i)T/k —/
v — Vv — u;
OX1 Oxy Oxy Ox Ox !

€ €5GS

@ The first term on the left side is the non-isotropic (i.e. the true)
viscous dissipation, €™"; this is predominately negative.

@ The first term on the right side is the viscous diffusion
@ the second term, ¢, is the (isotropic) dissipation which is positive

@ The last term, £5gs, can be positive (forward scattering=dissipation)
or negative (backward scattering=forcing).
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PHYSICAL INTERPRETATION

@ The SGS term

e — OTik o
SGS an i

consists of a net SGS force vector, T,-SGS, (per unit mass), multiplied by a
velocity fluctuation vector, U,f i.e.

SGS -
£5Gs = <Ti Ui>

@ When the SGS vector, T7¢3, opposes the fluctuation, U,f, it is

1
damping the fluctuation, i.e. it is dissipative
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SELECT FORWARD OR BACKSCATTER

@ We want to be able to make the term =55 dissipative or forcing

y 82 [I,/- B, B 6’7',';( D, .
Oxkaxk ! axk a
N——

EﬂOI‘I

82K 6[7; 6[7; i)T,‘k )
v —v(=—"=—")—(—10

8Xkan 8Xk an ()Xk

‘5, €SGS

0%t
@ The viscous term in the mom. eq., v L}, is dissipative
Oxkaxk

I 2~/
( I ik . UI
: has the same sign as -

OX Ox1 O

@ Otherwise, it is a forcing term (backscatter)

o If —

, then eg¢s is dissipative
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SELECT BACKSCATTER EVENTS

@ We want the SGS stress tensor to act as backscatter in the K
equation.

@ Hence we add —37jx/Oxk to the momentum equation only when its
sign is opposite to that of the viscous diffusion term. i.e. [1]

. OTik T ~ OTik \ ~ 0Tk
Mi = - ’ Mi = Mi sy V) = _Mi
k SIgn <8Xk 8xk8xk k max( k 0) 8Xk k an
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0%t 0°1;

—F VS. ——
8xk8xk 8Xkaxk
. OTik T ~ otk \ ~  OTi
Mi - - . (’ ) Miy = M',O, = —Mjy——
k = Sign (()Xk OX1OXc i = max(Mi; 0) OXxk ik Oxk
° D;, is not known at run-time. It could be computed as

U = Ui — (Uj)ra, where (Tj)r, denotes the running-time average of u;.

@ It was shown in [1] that, for yT 2 20 in channel flow, the second
derivative of T is almost 100% correlated with that of z;

@ Hence, in the present work, the relation at the top-left is replaced by
OTik 82D;
8Xk 6xk6xk

My = sign (
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STABILITY

@ The forcing has a positive feedback, i.e. the more the momentum eq
is destabilized, the larger the velocity gradients, the larger the forcing

@ Hence, the forcing term has to be limited

02u;

8xk8xk

or;
‘— k1 < B(v + vses)

8Xk

The baseline value is § = 2.
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PANS Low REYNOLDS NUMBER MODEL [3]

ok O(kU;) D ve \ Ok

A Shhe VA or pP_

ot " Oxjp  0x KH aku> 3&} +(P-e)

de  0U;) 0 Oe 52

k2 fx f2 f2

Ve = C,ufu?, e2 — G+ E(Ce2f2 51) Oku = Ok 3 yOeu = O¢ é

o LRN Damping functions, f, f, as in [3]

@ RANS region: f, =1.0

@ LES region: i) fy = 0.4 orii) fr = % (A/Lt)z/3 Ly = (kres + k)32

Cu

@ Option i and ii give same results. but Option ii unstable in backstep

flow with forcing
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TEST CASE I: CHANNEL FLOW
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TEST CASE I: CHANNEL FLoOw
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TEST CASE I: CHANNEL FLoOw
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TEST CASE II: BOUNDARY LAYER FLOW
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TEST CASE II: BouNDARY LAYER FLOW
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TEST CASE II: BouNDARY LAYER FLOW
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INLET TURB. FLUCTUATION, 2-POINT CORRELATIONS

Two-point correlation
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RESULTS: SKIN FRICTION

Channel flow 4 10" Boundary layer flow
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RESULTS: RESOLVED SHEAR STRESSES

0 Channel flow Boundary layer flow
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x = 1.25: with markers
x = 3: without markers
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- - - no backscatter.
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BACKSTEP FLOW, COMPUTATIONAL DOMAIN
o Rey =28000, 336 x 152 x 64 cells (x,y,2z), Zmax = 1.6
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BACKSTEP FLOW, COMPUTATIONAL DOMAIN
o Rey =28000, 336 x 152 x 64 cells (x,y,2z), Zmax = 1.6
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SKIN FRICTION AND St NUMBER

3 Skin Friction 107 Stanton number

Cr
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— backscatter
- - - no backscatter
o: Experiments by Vogel & Eaton [4]
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CONCLUSIONS

@ The gray area issue at RANS-LES interface has been addressed
@ The stresses, 7j, from a scale-similarity model was used for forcing
OTik
an

@ The forcing was achieved be selecting the instants when —
corresponds to backscatter

o It is found that the forcing indeed quickens the transition from RANS
mode to LES mode

@ The present approach can also be used for laminar-turbulent transition
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THREE-DAY CFD COURSE AT CHALMERS

@ Unsteady Simulations for Industrial Flows: LES, DES, hybrid
LES-RANS and URANS

6-8 November 2013 at Chalmers, Gothenburg, Sweden

Max 16 participants

50% lectures and 50% workshops in front of a PC

Registration deadline: 18 October 2013

For info, see http://www.tfd.chalmers.se/"lada/cfdkurs/cfdkurs.html
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