A NEW APPROACH OF ZONAL HYBRID RANS-LES BASED ON A TWO-EQUATION $k - \varepsilon$ Model [2] Lars Davidson

> ETMM9, Thessaloniki, 7-9 June 2012 Lars Davidson, www.tfd.chalmers.se/~lada

Financed by the EU project ATAAC (Advanced Turbulence Simulation for Aerodynamic Application Challenges)

DLR, Airbus UK, Alenia, ANSYS, Beijing Tsinghua University, CFS Engineering, Chalmers, Dassault Aviation, EADS, Eurocopter Deutschland, FOI, Imperial College, IMFT, LFK, NLR, NTS, Numeca, ONERA, Rolls-Royce Deutschland, TU Berlin, TU Darmstadt, UniMAN

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

PANS LOW REYNOLDS NUMBER MODEL [3]

$$\begin{split} \frac{\partial k}{\partial t} &+ \frac{\partial (kU_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{ku}} \right) \frac{\partial k}{\partial x_j} \right] + (P_k - \varepsilon) \\ \frac{\partial \varepsilon}{\partial t} &+ \frac{\partial (\varepsilon U_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{\varepsilon u}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + C_{\varepsilon 1} P_k \frac{\varepsilon}{k} - C_{\varepsilon 2}^* \frac{\varepsilon^2}{k} \\ \nu_t &= C_\mu f_\mu \frac{k^2}{\varepsilon}, C_{\varepsilon 2}^* = C_{\varepsilon 1} + \frac{f_k}{f_\varepsilon} (C_{\varepsilon 2} f_2 - C_{\varepsilon 1}), \sigma_{ku} \equiv \sigma_k \frac{f_k^2}{f_\varepsilon}, \sigma_{\varepsilon u} \equiv \sigma_\varepsilon \frac{f_k^2}{f_\varepsilon} \end{split}$$

 $C_{\varepsilon 1}$, $C_{\varepsilon 2}$, σ_k , σ_{ε} and C_{μ} same values as [1]. $f_{\varepsilon} = 1$. f_2 and f_{μ} read

$$f_{2} = \left[1 - \exp\left(-\frac{y^{*}}{3.1}\right)\right]^{2} \left\{1 - 0.3\exp\left[-\left(\frac{R_{t}}{6.5}\right)^{2}\right]\right\}$$
$$f_{\mu} = \left[1 - \exp\left(-\frac{y^{*}}{14}\right)\right]^{2} \left\{1 + \frac{5}{R_{t}^{3/4}}\exp\left[-\left(\frac{R_{t}}{200}\right)^{2}\right]\right\}$$

• Baseline model: $f_k = 0.4$. Range of $0.2 < f_k < 0.6$ is evaluated

www.tfd.chalmers.se/~lada

CHALMERS

Zonal PANS 2/18

PANS LOW REYNOLDS NUMBER MODEL [3]

$$\begin{aligned} \frac{\partial k}{\partial t} &+ \frac{\partial (kU_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{ku}} \right) \frac{\partial k}{\partial x_j} \right] + (P_k - \varepsilon) \\ \frac{\partial \varepsilon}{\partial t} &+ \frac{\partial (\varepsilon U_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{\varepsilon u}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + C_{\varepsilon 1} P_k \frac{\varepsilon}{k} - C_{\varepsilon 2}^* \frac{\varepsilon^2}{k} \\ \nu_t &= C_\mu f_\mu \frac{k^2}{\varepsilon}, C_{\varepsilon 2}^* = C_{\varepsilon 1} + \frac{f_k}{f_\varepsilon} (C_{\varepsilon 2} f_2 - C_{\varepsilon 1}), \sigma_{ku} \equiv \sigma_k \frac{f_k^2}{f_\varepsilon}, \sigma_{\varepsilon u} \equiv \sigma_\varepsilon \frac{f_k^2}{f_\varepsilon} \end{aligned}$$

 $C_{\varepsilon 1}$, $C_{\varepsilon 2}$, σ_k , σ_{ε} and C_{μ} same values as [1]. $f_{\varepsilon} = 1$. f_2 and f_{μ} read

$$f_{2} = \left[1 - \exp\left(-\frac{y^{*}}{3.1}\right)\right]^{2} \left\{1 - 0.3\exp\left[-\left(\frac{R_{t}}{6.5}\right)^{2}\right]\right\}$$
$$f_{\mu} = \left[1 - \exp\left(-\frac{y^{*}}{14}\right)\right]^{2} \left\{1 + \frac{5}{R_{t}^{3/4}}\exp\left[-\left(\frac{R_{t}}{200}\right)^{2}\right]\right\}$$

• Baseline model: $f_k = 0.4$. Range of $0.2 < f_k < 0.6$ is evaluated

www.tfd.chalmers.se/~lada

CHALMERS

Zonal PANS 2/18

PANS LOW REYNOLDS NUMBER MODEL [3]

$$\begin{split} \frac{\partial k}{\partial t} &+ \frac{\partial (kU_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{ku}} \right) \frac{\partial k}{\partial x_j} \right] + (P_k - \varepsilon) \\ \frac{\partial \varepsilon}{\partial t} &+ \frac{\partial (\varepsilon U_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{\varepsilon u}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + C_{\varepsilon 1} P_k \frac{\varepsilon}{k} - \frac{C_{\varepsilon 2}^*}{k} \frac{\varepsilon^2}{k} \\ \nu_t &= C_\mu f_\mu \frac{k^2}{\varepsilon}, C_{\varepsilon 2}^* = 1.5 + \frac{f_k}{f_{\varepsilon}} (1.9 - 1.5), \sigma_{ku} \equiv \sigma_k \frac{f_k^2}{f_{\varepsilon}}, \sigma_{\varepsilon u} \equiv \sigma_{\varepsilon} \frac{f_k^2}{f_{\varepsilon}} \end{split}$$

 $C_{\varepsilon 1}$, $C_{\varepsilon 2}$, σ_k , σ_{ε} and C_{μ} same values as [1]. $f_{\varepsilon} = 1$. f_2 and f_{μ} read

$$f_{2} = \left[1 - \exp\left(-\frac{y^{*}}{3.1}\right)\right]^{2} \left\{1 - 0.3\exp\left[-\left(\frac{R_{t}}{6.5}\right)^{2}\right]\right\}$$
$$f_{\mu} = \left[1 - \exp\left(-\frac{y^{*}}{14}\right)\right]^{2} \left\{1 + \frac{5}{R_{t}^{3/4}}\exp\left[-\left(\frac{R_{t}}{200}\right)^{2}\right]\right\}$$

• Baseline model: $f_k = 0.4$. Range of $0.2 < f_k < 0.6$ is evaluated

www.tfd.chalmers.se/~lada

CHALMERS

Zonal PANS 2/18

х

- Interface: how to treat k and ε over the interface? They should be reduced from their RANS values to suitable LES values
- The usual convection and diffusion across the interface is cut off, and new "interface boundary" conditions are prescribed
- $k_{u,int} = f_k k_{RANS}$
- Nothing is done for ε
- x_{max} = 3.2 (64 cells), z_{max} = 1.6 (64 cells), y dir: 80 128 cells
- CDS in entire region

www.tfd.chalmers.se/~lada

CHALMERS

Zonal PANS 3 / 18

 $(N_x \times N_z) = (64 \times 64). y_{int}^+ = 500$

 $Re_{\tau} = 4\,000$ $Re_{\tau} = 8\,000$ $Re_{\tau} = 16$ $Re_{\tau} = 32\,000.$

INTERFACE LOCATION. $Re_{\tau} = 8000$.

CHALMERS

EFFECT OF f_k . $Re_{\tau} = 16\,000$. $y_{int}^+ = 500$

 $f_k = 0.2$ $f_k = 0.3$ $f_k = 0.5$ $f_k = 0.6$

CHALMERS

Zonal PANS 6 / 18

- E

EFFECT OF RESOLUTION: VELOCITY

www.tfd.chalmers.se/~lada

CHALMERS

Zonal PANS 7 / 18

EFFECT OF RESOLUTION: RESOLVED SHEAR STRESS

Zonal PANS 8 / 18

EFFECT OF RESOLUTION: TURBULENT VISCOSITY

www.tfd.chalmers.se/~lada

CHALMERS

Zonal PANS 9 / 18

www.tfd.chalmers.se/~lada

CHALMERS

Zonal PANS 9 / 18

• When the grid is refined, ν_t gets smaller

www.tfd.chalmers.se/~lada

CHALMERS

www.tfd.chalmers.se/~lada

CHALMERS

www.tfd.chalmers.se/~lada

CHALMERS

• When the grid is refined, ν_t gets smaller

• $\varepsilon_{\text{sgs},\Delta} = \varepsilon_{\text{sgs},0.5\Delta}$

•
$$\varepsilon_{sgs} = 2 \langle \nu_t \bar{\mathbf{s}}_{ij} \bar{\mathbf{s}}_{ij} \rangle - \langle \tau_{12,t} \rangle \frac{\partial \langle \bar{u} \rangle}{\partial \mathbf{y}}$$

- Grid refinement \Rightarrow must be accompanied with larger $\bar{s}_{ij}\bar{s}_{ij}$
- $\Rightarrow \bar{s}_{ij}\bar{s}_{ij}$ must take place at higher wavenumbers

• if not
$$\Rightarrow$$
 grid dependent

CHALMERS

Power Density Spectra of $\nu_t^{0.5} \frac{\partial \bar{w}'}{\partial z}$

CHALMERS

SGS DISSIPATION VS. WAVENUMBER

• Energy spectra of the SGS dissipation show that the peak takes place at surprisingly low wavenumber (length scale corresponding to 10 cells or more).

CHALMERS

SGS DISSIPATION VS. WAVENUMBER

 Energy spectra of the SGS dissipation show that the peak takes place at surprisingly low wavenumber (length scale corresponding to 10 cells or more).

CHALMERS

SGS DISSIPATION, $Re_{\tau} = 8000$

• SGS dissipation in the $\bar{u}'_i \bar{u}'_i / 2$ eq, $\varepsilon_{sgs} = 2 \langle \nu_t \bar{s}_{ij} \bar{s}_{ij} \rangle - \langle \tau_{12,t} \rangle \frac{\partial \langle \bar{u} \rangle}{\partial v}$

CHALMERS

LOCAL EQUILIBRIUM. $Re_{\tau} = 4000$, $N_x \times N_z = 64 \times 64$.

Left vertical axes: URANS region; right vertical axes: LES region.

CHALMERS

• How can both the k eq. and ε be in local equilibrium??

CHALMERS

• How can both the k eq. and ε be in local equilibrium?? If

$$\langle \boldsymbol{P_k} \rangle = \langle \varepsilon \rangle$$

• How can both the k eq. and ε be in local equilibrium??

$$\langle \boldsymbol{P_k} \rangle = \langle \varepsilon \rangle$$

then

lf

$$C_1 \frac{\langle \varepsilon \rangle}{\langle k \rangle} \langle P_k \rangle \neq C_2^* \frac{\langle \varepsilon \rangle^2}{\langle k \rangle}$$
, because $C_1 \neq C_2^*$

www.tfd.chalmers.se/~lada

CHALMERS

LOCAL EQUILIBRIUM IN ε Equation.

• How can both the k eq. and ε be in local equilibrium?? If

$$\langle \boldsymbol{P}_{\boldsymbol{k}} \rangle = \langle \varepsilon \rangle$$

then

$$C_1 \frac{\langle \varepsilon \rangle}{\langle k \rangle} \langle P_k \rangle \neq C_2^* \frac{\langle \varepsilon \rangle^2}{\langle k \rangle}$$
, because $C_1 \neq C_2^*$

However, the figure on previous slide shows

$$C_1\left\langle\frac{\varepsilon}{k}P_k\right\rangle = C_2^*\left\langle\frac{\varepsilon^2}{k}\right\rangle$$

CHALMERS

Zonal PANS

15/18

www.tfd.chalmers.se/~lada

LOCAL EQUILIBRIUM IN ε EQUATION.

• How can both the k eq. and ε be in local equilibrium?? If

$$\langle \boldsymbol{P}_{\boldsymbol{k}} \rangle = \langle \varepsilon \rangle$$

then

$$C_1 \frac{\langle \varepsilon \rangle}{\langle k \rangle} \langle P_k \rangle \neq C_2^* \frac{\langle \varepsilon \rangle^2}{\langle k \rangle}$$
, because $C_1 \neq C_2^*$

However, the figure on previous slide shows

$$C_1\left\langle \frac{\varepsilon}{k}P_k\right\rangle = C_2^*\left\langle \frac{\varepsilon^2}{k}\right\rangle$$

• Answer: when time-averaging $\langle ab \rangle \neq \langle a \rangle \langle b \rangle$

CHALMERS

• The answer is because of time averaging ($\langle ab \rangle < \langle a \rangle \langle b \rangle$, (see below)

CHALMERS

RESOLVED AND MODELLED TURBULENT KINETIC ENERGY.

CHALMERS

CONCLUDING REMARKS

- LRN PANS works well as zonal LES-RANS model for very high Re_{τ} (> 32 000)
- The model gives grid independent results
- The location of the interface is not important (it should not be too close to the wall)
- Values of $0.2 < f_k < 0.5$ have little impact on the results

[1] ABE, K., KONDOH, T., AND NAGANO, Y.

A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows - 1. Flow field calculations. *Int. J. Heat Mass Transfer 37* (1994), 139–151.

[2] DAVIDSON, L.

A new approach of zonal hybrid RANS-LES based on a two-equation $k - \varepsilon$ model.

In *ETMM9: International ERCOFTAC Symposium on Turbulence Modelling and Measurements* (Thessaloniki, Greece, 2012).

[3] MA, J., PENG, S.-H., DAVIDSON, L., AND WANG, F.

A low Reynolds number variant of Partially-Averaged Navier-Stokes model for turbulence.

International Journal of Heat and Fluid Flow 32 (2011), 652–669.