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RESEARCH QUESTION

1. I want to use a k — w DES model
1.1 How do | prescribe inlet values on k and w?
1.2 What about the URANS region? Should | prescribe k and w
from a steady RANS solution?
2. The proposed method is to add commutation terms in the k
and w equations.
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4. The method can also be used in embedded LES (i.e. at the
RANS-LES interface)
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THE ZONAL k —w HYBRID RANS-LES PDH MODEL
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» In the LES region, the model reads
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» The length scale, Ay, is taken from the IDDES model [9].

> In the RANS regions, £; = k'/? /(Cyw).

» The interface between LES and RANS regions is chosen at a
fixed grid line (y* ~ 500)



VARYING FILTER SIZE

» When filter size in LES varies in space, an additional term
appears in the momentum equation.
> The reason? the spatial derivatives and the filtering do not
commute.
» For the convective term in Navier-Stokes, for example, we get
7R

B = g (7) + O (85F)

» Ghosal & Moin [4] showed that the error is proportional to
(Ax)?; hence it is usually neglected.



COMMUTATION ERROR IN k EQUATION

» In zonal' hybrid RANS-LES, the length scale at the
RANS-LES interface changes abruptly from a RANS length
scale to a LES length scale.

» Hamda [5] found that the commutation error at RANS-LES
interfaces is large.
» For the k equation the commutation term reads
OJuik  Ouk  OA Jujk
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lthe interface is chosen at a location where the RANS and LES length
scales differ
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» Consider a fluid particle in a RANS region moving in the x;
direction and passing across a RANS-LES interface.

» The filterwidth decreases across the interface, i.e.
6A/6x1 <0
» k decreases when going from RANS to LES =
Oty k/OA = (kes — krans) / (ALes — Arans) > 0
<0 <0
» = The commutation term > 0

» = The commutation term < 0 on the right-side of the k
equation.

» Hence, the commutation term at the RANS-LES interface
reduces k.
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COMMUTATION TERM IN THE w EQUATION

P Let us start by looking at the € equation.
» What happens with £ when a fluid particle moves from a
RANS region into an LES region?
» The answer is, nothing. The dissipation is the same in a RANS
region as in an LES region.

» Transformation of the k and € equations to an w equation
gives

dw d<5>_1d€+id(1/k)_1de w dk
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P Let us start by looking at the € equation.

» What happens with € when a fluid particle moves from a
RANS region into an LES region?

» The answer is, nothing. The dissipation is the same in a RANS
region as in an LES region.

» Transformation of the k and € equations to an w equation
gives

dw d [ ¢ _i£+id(1/k)_ 1 g2 wdk
B Cik dt C, dt ik dt k dt

dt ~ dt \ Gk

P> Hence, the commutation error in the w equation is the
commutation term in the k equation multiplied by —w/k so
that
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SUMMARY OF INLET TREATMENT OF k AND w

» Prescribe RANS values of k and w at the inlet obtained from

RANS simulations
» Add commutation term to the cell slice(s) near the inlet
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» k equation: “ o 0D
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P> The present approach is similar to adding the commutation
term in PANS [3]

(sink term)

> w equation: (source term)
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SYNTHETIC INLET FLUCTUATIONS

1. A pre-cursor RANS simulation is made using the PDH
model [8].

2. The Reynolds stress tensor is computed using the EARSM
model [10].

3. Synthetic turbulence fluctuations based on homogeneous
turbulence

» we can only use the Reynolds stress tensor in one point

» We need to chose a relevant location for the Reynolds stress
tensor

» In boundary layer flow, the turbulent shear stress is the single
most important stress component

» Hence, the Reynolds stress tensor is taken at the location
where the magnitude of the turbulent shear stress is largest.

4. Finally, the synthetic fluctuations are scaled with
(|W|/|W|max)};//\2,\,5 which is taken from the RANS
simulation.

5. Matlab codes can be downloaded [1] (Google “synthetic inlet
fluctuations”)



CHANNEL FLOW

v

Reynolds number is Re; = 8 000.
A 256 x 96 x 32 mesh is used
Ax =0.1, Az =0.05

The mean U, k and w taken from 1D RANS simulation using
the PDH k — w model

The wall-parallel RANS-LES interface is prescribed at a fixed
gridline at y™ ~ 500.
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INLET FLUCTUATIONS
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RESuULTS
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RESuULTS

10 Resolved turbulent stress Maxin%um resolved turbulent fluctuations
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LENGTH OF SOURCE REGION

P In how large a region, x¢, should the commutation terms be

added?
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RESuULTS
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SOURCE TERMS IN k EQUATION
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COMMUTATION TERMS IN THE (U)RANS REGION?
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COMMUTATION TERMS IN THE (U)RANS REGION?
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» Argument for using commutation terms in the (U)RANS
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COMMUTATION TERM OR NOT IN (U)RANS REGION?

BLUE LINES: commutation terms in the (U)RANS region
RED LINES: no commutation terms in the (U)RANS region
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solid lines: x/d;, = 0.05
dashed lines: x/d;, = 2.5



CONCLUSIONS

» A novel method for prescribing inlet modelled turbulent
quantities (k,e,w) has been presented

> It is based on the non-commutation between the divergence
and the filter operators

» No tuning constants

P [t is best to impose the commutation terms in one grid plane
adjacent to the inlet
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Unsteady Simulations for Industrial Flows: LES, DES, hybrid
LES-RANS and URANS

9-11 November 2015 at Chalmers, Gothenburg, Sweden
Max 16 participants

50% lectures and 50% workshops in front of a PC
Registration deadline: 10 October 2014

For info, see
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