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4. The method can also be used in embedded LES (i.e. at the
RANS-LES interface)
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∂ūi
∂xj

+
∂ūj
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◮ The length scale, ∆dw , is taken from the IDDES model [9].

◮ In the RANS regions, ℓt = k1/2/(Ckω).

◮ The interface between LES and RANS regions is chosen at a
fixed grid line (y+ ≃ 500)



Varying filter size

◮ When filter size in LES varies in space, an additional term
appears in the momentum equation.

◮ The reason? the spatial derivatives and the filtering do not
commute.

◮ For the convective term in Navier-Stokes, for example, we get

∂vivj
∂xj

=
∂

∂xj
(vivj) +O

(
(∆x)2

)

◮ Ghosal & Moin [4] showed that the error is proportional to
(∆x)2; hence it is usually neglected.



Commutation error in k equation

◮ In zonal1 hybrid RANS-LES, the length scale at the
RANS-LES interface changes abruptly from a RANS length
scale to a LES length scale.

◮ Hamda [5] found that the commutation error at RANS-LES
interfaces is large.

◮ For the k equation the commutation term reads
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∂ū1k/∂∆ = (kLES − kRANS )

︸ ︷︷ ︸

<0

/ (∆LES −∆RANS
︸ ︷︷ ︸

<0

) > 0



Commutation term: physical meaning

∂uik

∂xi
=

∂ūik
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◮ Hence, the commutation term at the RANS-LES interface
reduces k .
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Commutation term in the ω equation

◮ Let us start by looking at the ε equation.
◮ What happens with ε when a fluid particle moves from a

RANS region into an LES region?
◮ The answer is, nothing. The dissipation is the same in a RANS

region as in an LES region.

◮ Transformation of the k and ε equations to an ω equation
gives
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◮ Hence, the commutation error in the ω equation is the
commutation term in the k equation multiplied by −ω/k so
that

∂uiω

∂xi
=

∂ūiω
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◮ The present approach is similar to adding the commutation
term in PANS [3]
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Synthetic inlet fluctuations
1. A pre-cursor RANS simulation is made using the PDH

model [8].

2. The Reynolds stress tensor is computed using the EARSM
model [10].

3. Synthetic turbulence fluctuations based on homogeneous
turbulence
◮ we can only use the Reynolds stress tensor in one point
◮ We need to chose a relevant location for the Reynolds stress

tensor
◮ In boundary layer flow, the turbulent shear stress is the single

most important stress component
◮ Hence, the Reynolds stress tensor is taken at the location

where the magnitude of the turbulent shear stress is largest.

4. Finally, the synthetic fluctuations are scaled with
(
|u′v ′|/|u′v ′|max

)1/2

RANS
which is taken from the RANS

simulation.

5. Matlab codes can be downloaded [1] (Google “synthetic inlet
fluctuations”)



Channel flow

◮ Reynolds number is Reτ = 8000.

◮ A 256 × 96 × 32 mesh is used

◮ ∆x = 0.1, ∆z = 0.05

◮ The mean U, k and ω taken from 1D RANS simulation using
the PDH k − ω model

◮ The wall-parallel RANS-LES interface is prescribed at a fixed
gridline at y+ ≃ 500.
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Inlet fluctuations
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Length of source region

◮ In how large a region, xtr , should the commutation terms be
added?
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Source terms in k equation
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Commutation terms in the (U)RANS region?
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Commutation terms in the (U)RANS region?
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Commutation term or not in (U)RANS region?

blue lines: commutation terms in the (U)RANS region

red lines: no commutation terms in the (U)RANS region
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Conclusions

◮ A novel method for prescribing inlet modelled turbulent
quantities (k , ε, ω) has been presented

◮ It is based on the non-commutation between the divergence
and the filter operators

◮ No tuning constants

◮ It is best to impose the commutation terms in one grid plane
adjacent to the inlet



Three-Day CFD Course at Chalmers

◮ Unsteady Simulations for Industrial Flows: LES, DES, hybrid
LES-RANS and URANS

◮ 9-11 November 2015 at Chalmers, Gothenburg, Sweden

◮ Max 16 participants

◮ 50% lectures and 50% workshops in front of a PC

◮ Registration deadline: 10 October 2014

◮ For info, see
http://www.tfd.chalmers.se/˜lada/cfdkurs/cfdkurs.html
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