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THREE-DAY CFD COURSE AT CHALMERS

» This lecture is a condensed version of the course

o Unsteady Simulations for Industrial Flows: LES, DES, hybrid
LES-RANS and URANS

@ 5-7 November 2012 at Chalmers, Gothenburg, Sweden

o Max 16 participants

@ 50% lectures and 50% workshops in front of a PC

@ For info, see http://www.tfd.chalmers.se/ lada/cfdkurs/cfdkurs.html
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LECTURE NOTES

@ The slides are partly based on the course material at
(click here)
http://www.tfd.chalmers.se/ lada/
comp_turb.model/lecturenotes.html

@ This course is part of the MSc programme Applied Mechanics at
Chalmers. For Fluid courses, click here
http://www.tfd.chalmers.se/ lada/
msc/msc-programme . html

@ The MSc programme is presented here
http://www.chalmers.se/en/education/programmes/mas
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LARGE EDDY SIMULATIONS
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o In LES, large (Grid) Scales (GS) are resolved and the small
(Sub-Grid) Scales (SGS) are modelled.

o LES is suitable for bluff body flows where the flow is governed by
large turbulent scales
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BLUFF-BODY FLOW: SURFACE-MOUNTED CUBE[14]

Krajnovi¢ & Davidson (AIAA J., 2002)
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BLUFF-BODY FLOW: FLOwW AROUND A BUS[15]
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BLUFF-BODY FLOW: FLOW AROUND A CAR[16]
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BLUFF-BODY FLOW: FLOW AROUND A TRAIN[12]

Hemida & Krajnovi¢, 2006
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SEPARATING FLOWS

o TIME-AVERAGED flow and INSTANTANEOUS flow
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@ In average there is backflow (negative velocities). Instantaneous,
the negative velocities are often positive.
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SEPARATING FLOWS

o TIME-AVERAGED flow and INSTANTANEOUS flow

@ In average there is backflow (negative velocities). Instantaneous,
the negative velocities are often positive.

@ How easy is it to model fluctuations that are as large as the mean
flow?

@ Is it reasonable to require a turbulence model to fix this?

@ Isnt it better to RESOLVE the large fluctuations?
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TIME AVERAGING AND FILTERING

RANS: time average. This is called Reynolds time averaging:

)
() ;—T/_ch(t)dt, ® = (6) 4+ &

In LES we filter (volume average) the equations. In 1D we get:

o(S, )dg
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EQUATIONS

@ The filtering is defined by the discretization (nothing is done)
@ The filtered Navier-Stokes (N-S) eqgns, i.e. the LES eqns, read

00 0 o 0B FU_on 00
ot~ oxp 'V pox;  oxoxg  OxT Oxp

where the subgrid stresses are given by

7j = Uilj — Ul
Contrary to Reynolds time averaging where (u;) = 0, we have here

ul#£0 T # 0
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FILTERING: HOW 1S EQ. 2 OBTAINED?

@ The N-S eqns are filtered (=discretized) using Eq. 1
@ The pressure gradient term, for example, reads

ap
8x, V/ 8x,dv

o Now we want to move the derivative out of the integral. It is
allowed if V is constant.

o The filtering volume, V=grid cell which is not constant
e Fortunately, the error is proportional to V2, i.e. it is 2nd-order error

g)’z a(?(, (:7/‘/pdv> +o(v2) - %(ﬁwo(vz)

All linear terms are treated in the same way.
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NON-LINEAR TERM

o First we filter the term and move the derivative out of the integral

anUj_ 8 1 " 2\ 8 — 2

o We have iTu, we want iEl,-Dj
oX; oX;
@ Let’'s add want we want (on both LHS ans RHS) and subtract want
we don’t want
o This is how we end up with the convective term and the SGS term
C)T,j i
ax/- ox;

inEq. 2,i.e. — (Uit; — u;u;)
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LARGE EDDY SIMULATIONS

SGS Q //r

N

@ Large scales (GS) are resolved; small scales (SGS) are modelled.
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ENERGY SPECTRUM

The limit (cut-off) between GS and SGS is supposed to take place in
the inertial subrange (ll)

E(x) cut-off

I: large scales
II: inertial subrange, —5/3-range
ITI: dissipation subrange
g |
GS ~ sGS
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SUBGRID MODEL

@ We need a subgrid model for the SGS turbulent scales
@ The simplest model is the Smagorinsky model [23]:
1

Vsgs = (CsA)? /2558 = (CsA)? |3 (3)
Lo =, 7 — V
Sj =5 (8)(,- + 8x,->’ A = (AVik)

@ A damping function f, is added to ensure that vsgs == 0as y = 0
f,=1—exp(—y*/26)

@ A more convenient way to dampen the SGS viscosity near the wall
is

A = min {(A Vik)'73, my}

where y is the distance to the nearest wall.
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SMAGORINSKY MODEL VS. MIXING-LENGTH MODEL

e The eddy viscosity in the mixing length model reads in
boundary-layer flow [13, 22]

ou
oy |
e Generalized to three dimensions, we have

ou;  aU\ au;1'? 1
=& : : d = /2 a\1/2 _ 2
et Kax/ i ax,-> ax,l = (7 (28;S;) " = £7|8].

Vt:£2

e In the Smagorinsky model the SGS length scale ¢ = CsA i.e.

vsgs = (CsD)?[8|

which is the same as Eq. 3
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ENERGY PATH

dissipating range
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LES vs. RANS

LES can handle many flows which RANS (Reynolds Averaged Navier
Stokes) cannot; the reason is that in LES large, turbulent scales are
resolved. Examples are:

o Flows with large separation

o Bluff-body flows (e.g. flow around a car); the wake often includes
large, unsteady, turbulent structures

o Transition

e In RANS all turbulent scales are modelled = inaccurate

e In LES only small, isotropic turbulent scales are modelled = accurate
LES is very much more expensive than RANS.
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FINITE VOLUME RANS AND LES CODES.

RANS

LES

Domain

Time domain

Space discretization
Time discretization
Turbulence model

www.tfd.chalmers.se/lada

2D or 3D

steady or unsteady
2nd order upwind
1st order

> two-equations

CHALMERS

always 3D

always unsteady
central differencing
2nd order (e.g. C-N)
zero- or one-eq
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TIME AVERAGING IN LES

e fy: Start time averaging
e f>: Stop time averaging

A

WWA

ti: start k: end
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NEAR-WALL RESOLUTION

@ Biggest problem with LES: near walls, it requires very fine mesh in
all directions, not only in the near-wall direction.
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high-speed in-rushes must be resolved (often called streaks).
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NEAR-WALL RESOLUTION

@ Biggest problem with LES: near walls, it requires very fine mesh in
all directions, not only in the near-wall direction.

@ The reason: violent violent low-speed outward ejections and
high-speed in-rushes must be resolved (often called streaks).

@ A resolved these structures in LES requires Ax+ ~ 100,
Ayt ~1and Az+ ~ 30

@ The object is to develop a near-wall treatment which models the
streaks (URANS) = much larger Ax and Az

@ In the presentation we use Hybrid LES-RANS for which the grid
requirements are much smaller than for LES
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NEAR-WALL RESOLUTION CONT’D

o In RANS when using L x byt
wall-functions,
30 < y™ < 100 for the
wall-adjacent cells
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NEAR-WALL RESOLUTION CONT’D

y wall
@ In RANS when using ST I RN
wall-functions, ;
30 < y™ < 100 for the
wall-adjacent cells
o InLES, Azt ~30 Azt l y
[ )
z
L x .
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NEAR-WALL RESOLUTION CONT’D

y wall
omRANSwhenusng X | 0 |1yt L
wall-functions, ;
30 < y™ < 100 for the
wall-adjacent cells
o InLES, Azt ~30 Azt l y
EVERYWHERE
[ )
z
L x .
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NEAR-WALL RESOLUTION CONT’D

y wall
- Lx d +
o INRANSwhenusing 7 | | | IANRY
wall-functions, ;
30 < y™ < 100 for the
wall-adjacent cells
e INLES, Azt ~30 Azt l y
EVERYWHERE
[ )
o AND Ax™ ~ 100,
+  ~ 1 z
Aymin - T_.X °
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NEAR-WALL TREATMENT

3 Movement of burst
11 N
U, / Pressure waves
X
15 I
1 1
. I
U=0, /)
80 I 2
40
2y~ 100

from Hinze (1975)

www.tfd.chalmers.se/ lada CHALMERS Helsinki 4 October 2012 24/1



NEAR-WALL TREATMENT

@ Fluctuating streamwise velocity at y*+ = 5. DNS of channel flow.

@ We find that the structures in the spanwise direction are very
small which requires a very fine mesh in z direction.

=] F = = £ DA

www.tfd.chalmers.se/"lada CHALMERS Helsinki 4 October 2012 25/1



ZONAL PANS MODEL

L. Davidson

A New Approach of Zonal Hybrid RANS-LES Based on a
Two-equation k — ¢ Model [7]

ETMM9, Thessaloniki, 7-9 June 2012

Financed by the EU project
ATAAC (Advanced Turbulence Simulation for Aerodynamic Application
Challenges)

DLR, Airbus UK, Alenia, ANSYS, Beijing Tsinghua University, CFS
Engineering, Chalmers, Dassault Aviation, EADS, Eurocopter
Deutschland, FOI, Imperial College, IMFT, LFK, NLR, NTS, Numeca,
ONERA, Rolls-Royce Deutschland, TU Berlin, TU Darmstadt, UniMAN
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PANS Low REYNOLDS NUMBER MODEL [17]

ok AkU) 9 Ok
o -9 e P, _
ot ox  ax K” am) 8)9} (Fic=)
e 0cl) 0 Oe , €2
at ' ax  ax V+05U ax; +C€1Pkk 2’k
2 f f2 f2
= Cufy— K ,Clp = Cq +7k(052f2_CE1),UkuEkaiaaau50'€fL

C:1, Ce, 0k, 0. and C, same values as [1]. f. = 1. f, and f, read

L= [1 —exp(—

fu = [1 —exp(—

y*

3.1 )I {1 —o.sexp[_ (6%)2]}
Wl el )

@ Baseline model: fy = 0.4. Range of 0.2 < fx < 0.6 is evaluated
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PANS Low REYNOLDS NUMBER MODEL [17]

ok (kU)o ok
oK -9 el p, —
ot T ox  ox K” am) 8)9} (Fic=e)
e 0cl) 0 Oe , €2
at ' ax  ox V+05U ax; +C€1Pkk “k
k2 fx f2 f2
vt = C,ufu?a o= Co1 + ¢ ’ K(Cooty — Ct)y 00y = kai,o'au = Uafi

C.1, Cc, 0k, 0. and C, same values as [1]. f. = 1. f, and f, read

L= [1 —exp(—

fu = [1 —exp(—

y*

3.1 )I {1 —o.sexp[_ (6%)2]}
Wl el )

@ Baseline model: fy = 0.4. Range of 0.2 < fx < 0.6 is evaluated
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PANS Low REYNOLDS NUMBER MODEL [17]

ak+8(kU,-)_iK,,+a_m> gﬂ (P —<)

at ax T ax
e 0cl) 0 Oe , €2
E 8)(/ _8_)(/ v+ 8X/ +C€1Pkk 52?

K2 f, f2 f2
v = Cufu— *2_15+fk(19—15)aku_akfk,aeu_aef

Ocu

C.1, Cc, 0k, 0. and C, same values as [1]. f. = 1. f, and f, read
2
_ |1 A B LA
f = [1 eXp( 3.1)} {1 O'SeXp[ (6.5) ]}
2
e 5 ool - (BLY?
b= {1 exp 14)} {1 * Rg/4e"p[ (200) ]}
@ Baseline model: fy = 0.4. Range of 0.2 < fx < 0.6 is evaluated
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CHANNEL FLow: ZONAL RANS-LES

ku,int>5u,int LES, fx <1
|
RANS, f, = 1.0 »
y
l— wall
X

o Interface: how to treat k and ¢ over the interface? They should be
reduced from their RANS values to suitable LES values

@ The usual convection and diffusion across the interface is cut off,
and new “interface boundary” conditions are prescribed

® Kyint = fkKrans

@ Nothing is done for ¢

@ Xmax = 3.2 (64 cells), zmax = 1.6 (64 cells), y dir: 80 — 128 cells

@ CDS in entire region
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(N x Ny) = (64 x 64). y+ = 500
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INTERFACE LOCATION. Re. = 8000.

8000 )

-
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EFFECT OF fx. Re; = 16000. y;, = 500

30f %
25 0.2
20}
1T 04
+ ~
D15 > \
S 06 |
10+ |
o 0.8
0 L L L -1 == L
1 100 1000 10000 0 0.05 0.1
y+
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EFFECT OF RESOLUTION: VELOCITY

30 Tﬁggp}
25
20
+
Dis
10
5
o= 100 1000 30000 0= 100 1000 30000
y* y*
Re, =4000_.... Re,=8000 . Re,=16000;
Re, = 32000.
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EFFECT OF RESOLUTION: RESOLVED SHEAR STRESS

(Nx x Nz) = (32 x 32)

(Ny x N;) = (128 x 128)

O Opy
i : u
0.2\ N H 0.2 F'5\
X . \i \"\ : + | ‘é i
~ 04 n o~ 0Ar
S " S "
S 06 S 06
~ S~
0.8 - 0.8 -
-1 . . . 1 . . .
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

— Re,=4000._._.. Re, =8000—.— Re, =16000;
Re, = 32000.
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EFFECT OF RESOLUTION:

Re. = 4000

TURBULENT VISCOSITY

Re. = 8000

1.015 1015
T 001 0.01
(S
S
N—r
g
X005 1.005|
0 ; 0 ;
0 005 01 015 02 025 03 0 005 01 015 02 025 03
. Re.=16000 e Re, =32000
T 001 0.01
S
3
p—
\ ]
S’ 1.005 1.005} &
of— o .
005 0.1 0.15 02 025 03 005 01 015 02 025 03

—_— Ny x Nz)
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EFFECT OF RESOLUTION: TURBULENT VISCOSITY
Re, = 4000 Re, = 8000

1.015

1.015

0.05 0.1 0.15 0.2 0.25 0.3 00 0.05 0.1 0.15 0.2 0.25 0.3

— (NyxN;)2X64x64____ 32x32_)_ 128x 128
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SGS MODELS BASED ON GRID SIZE

@ When the grid is refined, v; gets smaller
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SGS MODELS BASED ON GRID SIZE

@ When the grid is refined, v; gets smaller
E p
k,res

Ke
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SGS MODELS BASED ON GRID SIZE

@ When the grid is refined, v; gets smaller
E Pk,res

€59s,0.5A
N

K/C 2/{0
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SGS MODELS BASED ON GRID SIZE

@ When the grid is refined, v; gets smaller

@ Esgs,A = €5g5,0.5A

- o(u
® esgs = 2(1i55) — <T12,t>6<—y>
E Pk res o Grid refinement = must be
\ accompanied with larger s;s;;

@ = §;5; must take place at
higher wavenumbers

o if not = grid dependent

€sgs,0.5A
N

K¢ 2/€C
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POWER DENSITY SPECTRA OF v} e

One-eq ksgs model Zonal PANS
0.02 0.03
/N
~ 0.025/
N 0015
<o) 0.02}
>
S 0.01 0.015f
S
- 0.01f
> 0.005
W 0.005}
% % 20 40 60 80 100

Rz

— (Nx x N;) =64 x64 . 32x32 0. 128 x 128
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SGS DISSIPATION VS. WAVENUMBER

@ Energy spectra of the SGS dissipation show that the peak takes
place at surprisingly low wavenumber (length scale corresponding
to 10 cells or more).

E(k)

K¢
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SGS DISSIPATION VS. WAVENUMBER

@ Energy spectra of the SGS dissipation show that the peak takes
place at surprisingly low wavenumber (length scale corresponding
to 10 cells or more).

E(k) “sgs.r

Re
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SGS DISSIPATION, Re. = 8000

o SGS dissipation in the Tl;/2 eq, esgs = 2(1tS;8j) — <7’12’t>%;>

One-eq ksgs model Zonal PANS

15 15

8.1 0.15 0.2 0.25 0.3 8.1 0.15 0.2 0.25 0.3

y y
— (Nx x N;) =64 x64 oo 32x32 0. — 128 x 128
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LocAL EQUILIBRIUM. Re-

k equation
0.4 : 4E-3
0.3
0.2 12E-3
OlLi/\
% o1 02z 03 04 05 08

y
—_— (P)T
e (E)T

= 4000, Ny x N, = 64 x 64.

€ equation
0.03
4E-4
0.02
2E-4
0.01

o 01 02 03 04 05 08

Y
—— (CutPy/e)"
memm (Ce2e?/K)T

Left vertical axes: URANS region; right vertical axes: LES region.
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LocAL EQUILIBRIUM IN € EQUATION.

@ How can both the k eq. and ¢ be in local equilibrium??
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LocAL EQUILIBRIUM IN € EQUATION.

@ How can both the k eq. and ¢ be in local equilibrium??

(Px) = (e)
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LocAL EQUILIBRIUM IN € EQUATION.

@ How can both the k eq. and ¢ be in local equilibrium??
If
(Pk) = {e)
then

{e) (e)? "
C1W<Pk>;£02m,because Ci1 # G5
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LocAL EQUILIBRIUM IN € EQUATION.

@ How can both the k eq. and ¢ be in local equilibrium??

If
(Pk) = (e)
then

{e) (e)? !
C1W<Pk>7é02m,because Ci1 # G5

However, the previous slide shows

o= ()
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LocAL EQUILIBRIUM IN € EQUATION.

@ How can both the k eq. and ¢ be in local equilibrium??

If
(Pi) = (e)
then

{e) (e)? .
C1W<Pk>7é02m,because Ci1 # G5

However, the previous slide shows
Cr (L P) = Cs =

@ Answer: when time-averaging (ab) # (a)(b)
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LocAL EQUILIBRIUM IN € EQUATION.

e The answer is because of time averaging ((ab) < (a)(b), (see
below)

1.2

118}

\
1.1

1.05f

(ePk/k) (2/k)
(ENPi)/ (k) =777 (eB)/(k)
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RESOLVED AND MODELLED TURBULENT KINETIC
ENERGY.

Resolved Modelled: bottom; total: top
8 Bf-,
7 /\7» .
6 i 6%
.5 % 5 \
33 4 A E 4
= I
3 3 _‘\:\
M e T T :\é 2b
1 1 o
00 : : O.‘l: O.‘2 013 0.4 C'O 011 012 013 0.4
y Yy
Re, =4000_.... Re.=8000_._ Re-=16000;
Re,. = 32000.
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CONCLUDING REMARKS

@ LRN PANS works well as zonal LES-RANS model for very high
Re. (> 32000)

@ The model gives grid independent results

@ The location of the interface is not important (it should not be too
close to the wall)

@ Values of 0.2 < fx < 0.5 have little impact on the results
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HYBRID LES-RANS

Near walls: a RANS one-eq. k or a k — w model.
In core region: a LES one-eq. ksgs model.

wall
URANS
Interface LES
URANS
y Yom
wall

X

e Location of interface either pre-defined or automatically computed
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MOMENTUM EQUATIONS

e The Navier-Stokes, time-averaged in the near-wall regions and
filtered in the core region, reads

ou; 0 . 19p 0 ol
ot o, (0:3) = 0x | Ox [(V+VT)8)9
v =vtY < Ymi
VT = Vsgs, ¥ 2 Ymi

e The equation above: URANS or LES? Same boundary conditions =
same solution!
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TURBULENCE MODEL

e Use one-equation model in both URANS region and LES region.

3/2

okr 0 . B ok
L [(v+w) 8xﬂ+ ey — Ce—1—

- —(U:kt) = —
ot + axj(uf T) axj
e C 1/2

Pk-r = 21/7’8,'/8,‘/, vr = CkfkT

o URANS-region: kr = k, vt = vy,
{ = lpans = 2.5n[1 — exp(—Ak'/2y /v)], Chen-Patel model (AIAA
J. 1988)

@ Location of interface can be defined by min(0.65A, y),
A = max(Ax,Ay,Az)
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DIFFUSER|[9]

@ Instantaneous inlet data from channel DNS used.

@ Domain: -8 < x<48,0 < Yjniet < 1,0 <z < 4.

® Xmax = 40 gave return flow at the outlet

o Grid: 258 x 66 x 32.

@ Re= UjH/v =18000, angle 10°

@ The grid is much too coarse for LES (in the inlet region
Azt ~170)

@ Matching plane fixed at y,; at the inlet. In the diffuser it is located
along the 2D instantaneous streamline corresponding to y,.
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DIFFUSER GEOMETRY. Re = 18 000, ANGLE 10°
H=25 _

7.9H
21H

no-slip b.c. 47H

convective outlet b.c.
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DIFFUSER: RESULTS WITH LES
e Velocities. Markers: experiments by Buice & Eaton (1997)
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DIFFUSER: RESULTS WITH RANS LES
x =3H 6 20 24

X/H = 27 30 34 40 47H

forcing: no forcing
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SHEAR STRESSES (x2 IN LOWER HALF)
x=3H 6 19 = 23H

x/H =26 33 40 47H
resolved; - - - . modelled
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RANS-LES: v;/v
x =3H 6 24H

At x = —7H v1 max/v ~ 11
At x = 24H, vT max/v ~ 450

x/H =27 30 34 40 47H
forcing; - - - = no forcing
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k — w MODEL SST-DES

o DES [24]: Detached Eddy Simulation
@ SST[18, 19]: A combination of the k — ¢ and the k — w model

ok 0 ,_ 0 ok N
— —(Ujk)za—xj|:<l/+—> :|+Pk—,6 kw

at * ox;
Ow 0 ,_ 0 Oow Py
8—t+a—Xj(U/w)—a—Xj|:<I/+—>a—Xj:|+ 7{—,8W+

@ The dissipation term in the k equation is modified as [19, 25]

ﬁ*kw — ﬂ*kaDEs, FDES = max{ Lt s 1 }
CpesA
k1/2
A =max{Axy,Axe, Axz}, Li= 5

= RANS near walls and LES away from walls
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RESOLUTION

o For the near-wall region, we know how fine the mesh should be in
terms of viscous units (see Slide 22)

@ An appropriate resolution for the fully turbulent part of the
boundary layeris §/Ax ~ 10 — 20 and §/Az ~ 20 — 40

@ This may be relevant also for jets and shear layers
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HOW TO ESTIMATE RESOLUTION IN GENERAL? [4, 5]

@ Energy spectra (both in spanwise direction and time)

@ Two-point correlations

o Ratio of SGS turbulent kinetic energy (ksgs) to resolved
05UV + vV + ww')

o Ratio of SGS shear stress (7545 12) to resolved (u'v')

o Ratio of SGS viscosity, (vsgs) to molecular, v

@ Energy spectra of SGS dissipation

@ Comparison of SGS dissipation due to du;/dx; and d(u;) /0x;
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CHANNEL FLOW, Re, = 4000, y* = 440

Energy spectra Two-point correlations
10t )

0
— N
& 107 E
= N
2 N2
W 5
(A4

1o 10° 10 10° 02, 01 0.2 03 0.4

szzﬂ(kz—‘l)/ZmaX Z:Z_ZO

(AX,AZ) ocaa 05AX .m0 05Az o02AXx; +:2Az

The (Ax, Az) meshis (6/Ax,5/Az) = (10,20)
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CHANNEL FLOW, Re, = 4000, y* = 440

Energy spectra Two-point correlations
10"t " B
. Ng 0.8r \\‘ L]
<N 102} E 0.6r
2 </f-\1\ 0.4f
= ~—
L 10°} § 0.2
(A4
o
e 10 10° 02,

Ky = 27T(kz — 1)/Zmax

(AX,AZ) ocaa 05AX .m0 05Az o02AXx; +:2Az

The (Ax, Az) meshis (6/Ax,5/Az) = (10,20)

@ Two-point correlation is better
@ Shows that 2Az and 2Ax (two-point corr in x) are too coarse.
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CHANNEL FLOW, Re, = 4000, y* = 440

_ K
kres — (ul2 4 V/2 4 W/2)/2 v = <k7—>rej-kres

0 1000 2000 3000 4000 o 0 1000 2000 3000 4000

yr yr

@ Pope [20] suggests ~v > 0.8 indicates well resolved flow
(AX,AZ) ocaa 05AX .0 05Az o02AXx; +:2Az
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CHANNEL FLOW, Re, = 4000, y* = 440

_ K
kres — (ul2 4 V/2 4 W/2)/2 v = <k7—>rej-kres

0 1000 2000 3000 4000 o 0 1000 2000 3000 4000

yr yr

@ Pope [20] suggests ~v > 0.8 indicates well resolved flow
(AX,AZ) ocaa 05AX .0 05Az o02AXx; +:2Az

@ Pope criterion does not work here
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SGS VS. MOLECULAR VISCOSITY [5]

/

<ngs>/l/
—_— N>=32, - N,=64; _._N;=128.
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SGS vS. RESOLVED SHEAR STRESSES

615 02 0%
(Tsgs,12)/(U'V")

0 0.05 0.1

— NZ:32;---- NZ:64;_._NZ:128.
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THE PANS MODEL

o The PANS model is a modified k — £ model
@ It can operate both in RANS mode and LES mode

@ In the present work a low-Reynolds turbulence version of the
PANS is used

@ A method how to implement embedded LES is proposed
o lItis evaluated for channel flow and hump flow
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Embedded LES Using PANS [10, 11]
Lars Davidson' and Shia-Hui Peng'2
Davidson& Peng

'Department of Applied Mechanics

Chalmers University of Technology, SE-412 96 Gothenburg, SWEDEN
2FOlI, Swedish Defence Research Agency, SE-164 90, Stockholm,
SWEDEN



PANS Low REYNOLDS NUMBER MODEL [17]

ok, okU) 0 v\ Ok,
ot oy —a—x,-K”*o—ku)a—xJ“P“—m
Ozy  O(eul)) 0 Oey 2
%¢u _ 9 p « Su
ot axp  ox |\” s o) Ox; + Gt k 2k,
2 f2 f2
vy = Cy, f Ky 7 7o = Coq + ;k(Cazfz —C.1), 00 = kaiaffeu = Uefi

C:1, Ce2, 0k, 0. and C, same values as [1]. £. = 1. £, and f, read

o= [1 —exp(—

fu = [1 —exp(—

;’2)}2{1 —O.Sexp[— ((;q_é)z]}

2
y* 3 R
ﬁ):| {1 + Wex
t

SRS

@ Baseline model: f, = 0.4. Range of 0.2 < f,x < 0.6 is evaluated
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CHANNEL FLOW: DOMAIN

Interface

d RANS, f, =1.0 ! LES, f, < 1

) 2.20 o

o Interface: Synthetic turbulent fluctuations are introduced as
additional convective fluxes in the momentum equations and the

continuity equation
o fy = 0.4 is the baseline value for LES [17]
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INLET FLUCTUATIONS

2 —

L —
o

O os
15 -
c

D 06
>\ 1 9-

O 04
=

05 \§ 02

Ny

0

0 — s
0 0.5 1 15 2 0 0.1 0.2 0.3 0.4 0.5
2 z

<ulvl>’ VI‘2ITIS’ Wrms’ Ufz'ms/uﬂz'

@ Anisotropic synthetic fluctuations, v, v/, w/,

@ Integral length scale £ ~ 0.13 (see 2-p point correlation)

o Asymmetric time filter (/)™ = a(U')™! + b(u')™ with
a=0.954,b= (1 - a%)'/? gives a time integral scale 7 = 0.015
(At =0.00063)
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INTERFACE CONDITIONS FOR K, AND ¢,

e For k, & ¢, we prescribe “inlet” boundary conditions at the
interface.

o First, the usual convective and diffusive fluxes at the interface are
set to zero

o Next, new convective fluxes are added. Which “inlet” values
should be used at the interface?

> Ru,int = fiukrans(x = 0.50), Eu,int = Cg/4k3,/i§t/€sg& lsgs = CsA,
A= V13

>
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INTERFACE CONDITIONS FOR K, AND ¢,

o For k, & ¢, we prescribe “inlet” boundary conditions at the
interface.

o First, the usual convective and diffusive fluxes at the interface are
set to zero

@ Next, new convective fluxes are added. Which “inlet” values
should be used at the interface?

> Ku,int = fkkRANS(X = 0-55)1 Eu,int = Cz/4k3§,2,[/€sgss ésgs = CsA,
A — V1 /3
» Baseline Cs; = 0.07; different Cs values are tested
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CHANNEL FLOW: VELOCITY AND SHEAR STRESSES

0.5 1 15 2

xX/0=019 oo X/0=125 .0 X/06=3
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CHANNEL FLOW: STRESSES AND PEAK VALUES VS. X

x/6=3 4 100
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CHANNEL FLOW: DIFFERENT Cg VALUE FOR €jnterface

@ Ky,int = fxKrans

9 Eyint = 03/4k3/,,27t/£sgs, lsgs = CsA

X/ =

30

(v

y+

—_— Cs=007 . Cs=01 .2 Cs=02
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CHANNEL FLOW: DIFFERENT Cs VALUE FOR € nterface

6 )(w/(s = 3 1.05
5 i/
__________ 1
S R
\ '/r l‘
33 ] = 095
3
S~
20 L.
"""""" 09
1!
;
00 0.2 0.4 0.6 0.8 1 0'850 1 2 3 4
yT x/0

—_— Cs=007 . Cs=01 .2 Cs=02
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CHANNEL FLOW: DIFFERENT f; VALUES

Xx/6=3
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CHANNEL FLOW: DIFFERENT f; VALUES

4 X/ 0=3 1.05
35
3 1
N 25
= .
32 S 095
T S
1 0.9
05l {7 eI
% 0.2 0.4 0.6 08 1 085 1 2 3 4
yT x/6
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Hump FLOW

wn
uy)

cooLIIIIiiiiipo

NTS 2D RANS PANS
o , Separation xg/c = 0.65; reattachment xg/c = 1.1

o Re;=9360002° (Up,=c=p=1,v=1/Re;
@ H/c=0.91,h/c=0.128, x/c = [0.6,4.2]
@ Mesh: 312 x 120 x 64, Znax = 0.2c¢ (baseline)
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BASELINE INLET FLUCTUATIONS

[N

0.4

p—
S
0.35 8 0.8
+—
03 £ 06
} SO
> o
~ 025 O 04
2
02 02
=
0.15 \§ o
1 o 1 2 3 4 5 6 0 002 004 006 008 01
Iy, 2 2 2 2 5
<U 4 >s Vimss Wrms> Urms/ur z

@ Integral length scale £ ~ 0.04 (see 2-p point correlation)

o Asymmetric time filter (/)™ = a(/’)™! + b(u')™ with
a=0.954,b= (1 - a%)'/? gives a time integral scale 7 = 0.038

e At =0.002. 7500 + 7500 time steps (100 hours one core)

@ Fluctuations multiplied by
fb/ = max {05 [1 — tanh(y — Yo — }/Wall)/b] ,0.02}, Yo = 0.2,
b=10.01.
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PRESSURE: AMPLITUDES OF INLET FLUCT
0.8

o9

0.77

0.67

8.

baseline inlet fluct _ ... 1.5x (baseline inlet fluct)
— == 0.5x (baseline inlet fluct)
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SKIN FRICTION: AMPLITUDES OF INLET FLUCT

10X 10° ‘ ‘ 3X 1Q
8 2
6l g
% il
S8
S~ L
Q 4 ol
2,
5 17
of
24t
0 0.5 1 1.5 0.6 0.8 1 1.2 14 1.6
x/c x/c

baseline inlet fluct _ ... 1.5x (baseline inlet fluct)
— - == 0.5x (baseline inlet fluct)
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VELOCITIES: AMPLITUDES OF INLET FLUCT

0.25

Xx/c =65
 x/c=100

0

_ U/Up . U/Up .
baseline _._... 15x (baseline) . 0.5x (baseline)

0.5

1
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VELOCITIES: AMPLITUDES OF INLET FLUCT

x/c =120 x/c =130
0.25 : 0.25)
0.2 0.2
015 0.15
0.1 0.1
0.05 0.05
% 0 04 06 08 1 12 % oz “4 06 08 1 12
U/U, U/U,

baseline _._... 1.5x (baseline) . 0.5x (baseline)
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RESOLVED AND MODELLED (< 0) SHEAR STRESSES

x/c—

0 0.01 0. 02 0.03 0.04

(T2,u), (—U'V')/U3
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SHEAR STRESSES: AMPLITUDES OF INLET FLUCT

@ Resolved and Modelled (< 0) Shear stresses

x/c=1.30

_x/c=1.20

0 0.01 0.02 0.03 0 0.01 0.02 0.03

(Ti2.0), (—U/V')/UR (Ti2.0), (—U'V')JUR

baseline inlet fluct - ... 1.5x (baseline inlet fluct)
— == 0.5x (baseline inlet fluct)
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TURB VISCOSITY: AMPLITUDES OF INLET FLUCT

x/c =0.80

o x/c =0.65 o
0.18 015
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TURB VISCOSITY: AMPLITUDES OF INLET FLUCT

x/c=1.20 N x/c=1.30
0.15
> o1
0.05
GO 20 40 60 80 = —].;)0 120 G0 20 40 60 80 - 100 120
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PRESSURE: fx = 0.5; NO INLET FLUCT; Ny = 128

0.8

© 09

0.77

0.67

8.

—_— Ne=128 ____ noinletfluct —._ 4, =05
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SKIN FRICTION: fx = 0.5; NO INLET FLUCT; Ny, = 128
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VELOCITIES: f, = 0.5; NO INLET FLUCT; N, = 128
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VELOCITIES: f, = 0.5; NO INLET FLUCT; N, = 128

x/c =120
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RESOLVED AND MODELLED (< 0) SHEAR STRESSES
x/c =06 x/¢ = 0.80

. x/c=110
(r124), (—UV)/UZ _ (Ti20), (—U'V))/U2
N,=128 _ ... noinletfluct —.ee =0 g
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SHEAR STRESSES: fy = 0.5; NO INLET FLUCT; N, = 128

@ Resolved and Modelled (< 0) Shear stresses
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TURB VISCOSITY: f = 0.5; NO INLET FLUCT; N, = 128
x‘/\c: 0.65 x/c =0.80

0.2,
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TURB VISCOSITY: f, = 0.5; NO INLET FLUCT; N, = 128

x/c=1.20

x/c=1.30

e=w== Noinletfluct —.— f, =05
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CONCLUDING REMARKS

o LRN PANS has been shown to work well as an embedded LES
method

@ Channel flow: At two § downstream the interface, the resolved
turbulence in good agreement with DNS data and the wall friction
velocity has reached 99% of its fully developed value.

o Channel flow: The treatment of the modelled k, and <, across the
interface is important.

@ LRN PANS predicts the hump flow well but the recover rate sligtly
too slow

@ Hump flow: large (small) inlet fluctuations gives a smaller (larger)
recirculation
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PANS: CONCLUDING REMARKS

e Embedded LES with k — ¢ PANS and Synthetic b.c.
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» Isotropic fluctuations work well for channel flow

www.tfd.chalmers.se/ lada CHALMERS Helsinki 4 October 2012 91/1



PANS: CONCLUDING REMARKS

o Embedded LES with kK — ¢ PANS and Synthetic b.c.
o Channel flow

» Isotropic fluctuations work well for channel flow
» Strong dependence on interface k, & ¢, values

www.tfd.chalmers.se/ lada CHALMERS Helsinki 4 October 2012 91/1



PANS: CONCLUDING REMARKS

o Embedded LES with kK — ¢ PANS and Synthetic b.c.
o Channel flow

» Isotropic fluctuations work well for channel flow
» Strong dependence on interface k, & ¢, values
» No strong dependence on amplitude, L or 7 of fluctuations
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PANS: CONCLUDING REMARKS CONT’D

@ Hump flow
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PANS: CONCLUDING REMARKS CONT’D

@ Hump flow

» PANS & synthetic inlet b.c. with f, everywhere gives good results
except Cy (error > 50%)
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PANS: CONCLUDING REMARKS CONT’D

@ Hump flow
» PANS & synthetic inlet b.c. with f, everywhere gives good results
except Cy (error > 50%)
» With embedded isotropic fluctuations, interface must be located far
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PANS: CONCLUDING REMARKS CONT’D

@ Hump flow

» PANS & synthetic inlet b.c. with f, everywhere gives good results
except Cy (error > 50%)

» With embedded isotropic fluctuations, interface must be located far
upstream

» With embedded anisotropic fluctuations, good results are obtained,
still poor Cs

» On-going work ...
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Large Eddy Simulation of Heat Transfer in Boundary layer and
Backstep Flow Using PANS [6]

Lars Davidson
THMT-12, Palermo, Sept 2012



PANS Low REYNOLDS NUMBER MODEL [17]
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C:1, Ce, 0k, 0. and C, same values as [1]. f. = 1. f, and f, read

fr = [1 —exp(—

fu = [1 —exp(—

§/1)I {1 —0.3exp[_ (%)2]}
Wl el )

@ Baseline model: fx = 0.4.
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NUMERICAL METHOD

@ Incompressible finite volume method

@ Pressure-velocity coupling treated with fractional step
o Differencing scheme for momentum eqgns:

» 95% 2™ order central and 5% 2™ order upwind differencing
scheme (baseline) OR
» 100% 2™ order central differencing

@ Hybrid 15! order upwind/2" order central scheme k & ¢ eqgns.
e 2"._order Crank-Nicholson for time discretization
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BOUNDARY LAYER FLOW: DOMAIN

X T 5inlet

L

@ Inlet: 0jnet = 1 (covered by 45 cells), Rey = 3600, Ui, = p = 1.
Stretching 1.12 upto y/§ ~ 1.

o Domain: L/oj, = 3.2, H/din = 15.6, Zmax = 1.5d5

o Resolution: Az ~ 27, Ax; ~ 54

o Grid: 66 x 96 x 64 (x,y, 2)
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ANISOTROPIC SYNTHETIC FLUCTUATIONS: I [3, 2, 8]

@ Prescribe an homogeneous Reynolds tensor, U;u; (here from
DNS)
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ANISOTROPIC SYNTHETIC FLUCTUATIONS: I [3, 2, 8]

@ Prescribe an homogeneous Reynolds tensor, U;u; (here from

DNS)
e isotropic fluctuations in principal directions, (uju})y = (UsU5)a,
UpaUp =0

o
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ANISOTROPIC SYNTHETIC FLUCTUATIONS: I [3, 2, 8]

@ Prescribe an homogeneous Reynolds tensor, U;u; (here from

DNS)
e isotropic fluctuations in principal directions, (ujuj)x = (UyUs)a,
/ / —
Upalp =0
T T
o re-scale the normal components, (uju))y > (UsUy)a,
Uy \Up, =0
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ANISOTROPIC SYNTHETIC FLUCTUATIONS: II

Xo

!y
uiu, #0

! g ! g
—_— UjU > upU

X

@ Transform from (X1 x, X2,») to (X1, X2)

2 2
o % — 23, % — 5 from (1 U, )pear in DNS channel flow, Re, = 500
2 3
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INLET CONDITIONS FOR K, AND £, AS IN [10]

@ A pre-cursor RANS simulation using the AKN model (i.e. PANS
with fy = 1) is carried out. At Rey = 3600, Urans: Vrans, Krans
are taken.

@ Ujp = Upans + Ulsynts Vin = VRans + V;ym, Wip = Wéym

@ Anisotropic synthetic fluctuations are used. The fluctuations are
scaled with K, /ky max-

9 ku,in = fxkrans, Euin = 02/4/(3,//;27/6393, lsgs = CsA, A = V1/3,
Cs = 0.05
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INLET TURB. FLUCTUATION, TWO-POINT CORRELATIONS

Two-point correlation

1000 :
8001
I 600 ‘Q‘
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A 2o e e
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BOUNDARY LAYER: VELOCITY AND SKIN FRICTION

100%CDS ‘ x10°
25¢ 1 3.6
20¢
+ 15
)
10r
gl
2.6
0= 10 . 50 1000 o 05 1 15 2 25 3
y X
— 100% CDS; .. 100%
CDS, U, from AKN; — . — 25%
X = 0in} mmm= X = 20jp; largerinletfluct.;.... 25% larger
— - X = 30jp; H: DNS [21] inlet fluct., Cs = 0.07; markers:
0.37 (logigRex) 2% (+: AKN; o
DNS)

www.tfd.chalmers.se/ lada CHALMERS Helsinki 4 October 2012 101/1



REYNOLDS STRESSES
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BACKWARD FACING STEP: DOMAIN

4H y

1 ) ) TqW

4.05H 21H

o Rey = 28000 Experiments by Vogel & Eaton [26]
@ Mean inlet profiles from RANS (same as in boundary layer)
o Grid: 336 x 120 in x x y plane. Zyax = 1.6H, N = 64, Az = 31.

@ Anisotropic synthetic fluctuations, v, v/, w’ (same as for boundary
layer flow); no fluctuations for

@ Constant heat flux, qy, on lower wall.
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BACKSTEP FLOW. SKIN FRICTION AND STANTON
NUMBER

x10° ‘ ‘ X 10
S S
"\
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3 e ‘\‘ 1
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x/H

— PANS; ___.. PANS, 50% smaller inlet fluctuations;
— - = WALE; e: PANS, no inlet fluctuations; - - - : 2D RANS; o,e:

experiments [26].
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BACKSTEP FLOW: VELOCITIES.

x=—-113H x =3.2H x =14.86H
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— PANS; ___.. PANS, 50% smaller inlet fluctuations;
— o WALE;

o: PANS, no inlet fluctuations; - - - : 2D RANS; o: experiments [26].

www.tfd.chalmers.se/ lada CHALMERS Helsinki 4 October 2012 105/ 1



BACKSTEP FLOW: RESOLVED STREAMWISE STRESS.

x=-113H x =3.2H x =14.86H
I z
~_ 18
6
Urms/Ui. | | Urms./ Uin | | Urms/Ui. |
— PANS; ___.. PANS, 50% smaller inlet fluctuations;
— . — WALE;

o: PANS, no inlet fluctuations; - - - : 2D RANS; o: experiments [26].
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BACKSTEP FLOW: TURBULENT VISCOSITIES.

x=-113H X =32H x = 14.86H
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o: PANS, no inlet fluctuations; - - - : 2D RANS/10;
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FORWARD/BACKWARD FLOW

o Fraction of time, ~, when the flow along the bottom wall is in the
downstream direction.
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— PANS; ____ PANS, 50% smaller inlet fluctuations;

— o — WALE;

o: PANS, no inlet fluctuations; o: experiments [26].
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SHEAR STRESSES. X = 3.2H

PANS
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SHEAR STRESSES. X = 14.86

PANS RANS
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TERMS IN THE () EQUATION. x = 3.2H

PANS RANS
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TERMS IN THE (U) EQUATION. x = 14.86H

PANS
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HEAT FLUXES. X = 3.2H
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HEAT FLUXES. x = 14.86H

PANS RANS
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TERMS IN THE (T) EQUATION. x = 3.2H

PANS RANS
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TERMS IN THE (T) EQUATION. x = 14.86H
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CONCLUDING REMARKS

o Developing boundary layer
» Synthetic fluctuations give fully developed conditions after a couple
of boundary layer thicknesses
» 5% upwinding dampens resolved fluctuations; can be compensated
by 25% larger inlet fluctuations
o Backstep flow
» Very good agreement with experiments
» 2D RANS predicts turbulent diffusion surprisingly well
» Synthetic inlet fluctuations give an improved Stanton number;
otherwise small effect in the reciculation region
» LRN PANS and WALE equally good
» 5% upwinding has a negligble effect in the recirculation region
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