LES, Hybrid LES-RANS and Scale-Adaptive Simulations (SAS)

Lars Davidson, www.tfd.chalmers.se/Iada

Large Eddy Simulations

SGS

- In LES, large (Grid) Scales (GS) are resolved and the small (Sub-Grid) Scales (SGS) are modelled.
- LES is suitable for bluff body flows where the flow is governed by large turbulent scales

BLUFF-BODY FLOW: Surface-Mounted Cube[1]

 Krajnović \& Davidson (AIAA J., 2002)

Snapshots of large turbulent scales illustrated by $Q=-\frac{\partial \bar{u}_{i}}{\partial x_{j}} \frac{\partial \bar{u}_{j}}{\partial x_{i}}$

BLUFF-BODY FLOW: Flow Around a Bus[2]

BLUFF-BODY FLOW: Flow Around a Car[3]

BLUFF-BODY FLOW: Flow Around a Train[4]

Separating Flows

- TIME-AVERAGED flow and INSTANTANEOUS flow

Separating Flows

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.

Separating Flows

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.
- How easy is it to model fluctuations that are as large as the mean flow?

Separating Flows

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.
- How easy is it to model fluctuations that are as large as the mean flow?
- Is it reasonable to require a turbulence model to fix this?

Separating Flows

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.
- How easy is it to model fluctuations that are as large as the mean flow?
- Is it reasonable to require a turbulence model to fix this?
- Isn't it better to RESOLVE the large fluctuations?

Near-Wall Treatment

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.

Near-Wall Treatment

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).

Near-Wall Treatment

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).
- A resolved these structures in LES requires $\Delta x^{+} \simeq 100$, $\Delta y_{\text {min }}^{+} \simeq 1$ and $\Delta z+\simeq 30$

Near-Wall Treatment

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).
- A resolved these structures in LES requires $\Delta x^{+} \simeq 100$, $\Delta y_{\min }^{+} \simeq 1$ and $\Delta z+\simeq 30$
- The object is to develop a near-wall treatment which models the streaks (URANS) \Rightarrow much larger Δx and Δz

Near-Wall Treatment

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).
- A resolved these structures in LES requires $\Delta x^{+} \simeq 100$, $\Delta y_{\text {min }}^{+} \simeq 1$ and $\Delta z+\simeq 30$
- The object is to develop a near-wall treatment which models the streaks (URANS) \Rightarrow much larger Δx and Δz
- In the presentation we use Hybrid LES-RANS for which the grid requirements are much smaller than for LES

Near-Wall Treatment

Near-Wall Treatment

- Fluctuating streamwise velocity at $y^{+}=5$. DNS of channel flow.
- We find that the structures in the spanwise direction are very small which requires a very fine mesh in z direction.

Hybrid LES-RANS

Near walls: a RANS one-eq. k or a $k-\omega$ model. In core region: a LES one-eq. $k_{\text {SGS }}$ model.

URANS

- Location of interface either pre-defined or automatically computed

Momentum Equations

- The Navier-Stokes, time-averaged in the near-wall regions and filtered in the core region, reads

$$
\begin{aligned}
\frac{\partial \bar{u}_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\bar{u}_{i} \bar{u}_{j}\right) & =\beta \delta_{1 i}-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left[\left(\nu+\nu_{T}\right) \frac{\partial \bar{u}_{i}}{\partial x_{j}}\right] \\
\nu_{T} & =\nu_{t}, y \leq y_{m l} \\
\nu_{T} & =\nu_{s g s}, y \geq y_{m l}
\end{aligned}
$$

- The equation above: URANS or LES? Same boundary conditions \Rightarrow same solution!

Turbulence Model

- Use one-equation model in both URANS region and LES region.

$$
\begin{aligned}
\frac{\partial k_{T}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\bar{u}_{j} k_{T}\right) & =\frac{\partial}{\partial x_{j}}\left[\left(\nu+\nu_{T}\right) \frac{\partial k_{T}}{\partial x_{j}}\right]+P_{k_{T}}-C_{\varepsilon} \frac{k_{T}^{3 / 2}}{\ell} \\
P_{k_{T}} & =2 \nu_{T} \bar{S}_{i j} \bar{S}_{i j}, \nu_{T}=C_{k} \ell k_{T}^{1 / 2}
\end{aligned}
$$

- LES-region: $k_{T}=k_{\text {sgs }}, \nu_{T}=\nu_{\text {sgs }}, \ell=\Delta=(\delta V)^{1 / 3}$
- URANS-region: $k_{T}=k, \nu_{T}=\nu_{t}$, $\ell \equiv \ell_{\text {RANS }}=2.5 n\left[1-\exp \left(-A k^{1 / 2} y / \nu\right)\right]$, Chen-Patel model (AIAA J. 1988)
- Location of interface can be defined by $\min (0.65 \Delta, y)$, $\Delta=\max (\Delta x, \Delta y, \Delta z)$

Standard Hybrid LES-RANS

- Coarse mesh: $\Delta x^{+}=2 \Delta z^{+}=785 . \delta / \Delta x \simeq 2.5, \delta / \Delta z \simeq 5$.

standard LES-RANS;
--- DNS; LES
$\circ 0.4 \ln \left(y^{+}\right)+5.2$

$$
B(x)=\frac{\left\langle u\left(x_{0}\right) u\left(x-x_{0}\right)\right\rangle}{u_{r m s} u_{r m s}}
$$

- Too high velocity because too low shear stress

Ways to Improve the RANS-LES Method [5, 6, 7]

- The reason is that LES region is supplied with bad boundary (i.e. interface) conditions by the URANS region.
- The flow going from the RANS region into the LES region has no proper turbulent length or time scales
- New approach: Synthesized isotropic turbulent fluctuations are added as momentum sources at the interface.
- The superimposed fluctuations should be regarded as forcing functions rather than boundary conditions.

Forcing Fluctuations Added at the Interface

- Object: to trig the momentum equations into resolving large-scale turbulence
interface

- For more info, see Davidson at al. [5, 7]

Implementation

- Fluctuations $u_{f}^{\prime}, v_{f}^{\prime}, w_{f}^{\prime}$ are added as sources in all three momentum equations. The source is
$-\gamma \rho u_{i, f}^{\prime} u_{2, f}^{\prime} A_{n}=-\gamma \rho u_{i, f}^{\prime} u_{2, f}^{\prime} V / \Delta y\left(A_{n}=\right.$ area, $V=$ volume of the C.V. $)$
- The source is scaled with $\gamma=k_{T} / k_{\text {synt }}$

Inlet Boundary Conditions

$U_{\text {inlet }}$ constant in time; $u_{\text {inlet }}$ function of time.

Left: Inlet boundary profiles
Right: Evolution of u velocity depending of type of inlet B.C.

- With steady inlet B.C., u gets turbulent first at $x=x_{E}$.

Embedded LES (Bluff Body Flows)

- $U_{\text {in }}+u_{i}^{\prime}(t)$ used as B.C. for LES in the inner region.
- Examples of inner region: external mirror of a car; a flap/slat; a detail of a landing gear. Often in connection with aero-acoustics.

Inlet Boundary Conditions vs. Forcing

Inlet

Fully Developed Channel Flow (PERIODIC in x)

no forcing; $\quad=\mathbf{= - =}$ forcing (isotropic fluctuations)
$\circ 0.4 \ln \left(y^{+}\right)+5.2$

DIFFUSER[5]

- Instantaneous inlet data from channel DNS used.
- Domain: $-8 \leq x \leq 48,0 \leq y_{\text {inlet }} \leq 1,0 \leq z \leq 4$.
- $x_{\text {max }}=40$ gave return flow at the outlet
- Grid: $258 \times 66 \times 32$.
- $R e=U_{\text {in }} H / \nu=18000$, angle 10°
- The grid is much too coarse for LES (in the inlet region $\Delta z^{+} \simeq 170$)
- Matching plane fixed at $y_{m /}$ at the inlet. In the diffuser it is located along the 2D instantaneous streamline corresponding to $y_{m /}$.

DIffuser Geometry. $R e=18000$, ANGLE 10°

 $H=\frac{2 \delta}{I}$
convective outlet b.c.

Diffuser: Results with LES

- Velocities. Markers: experiments by Buice \& Eaton (1997)

DIFFUSER: Results With New RANS-LES $x=3 H$

DIFFUSER: Results With New RANS-LES

RANS-LES: Location Of Matching Line

- Location of matching line. It is defined along 2D instantaneous streamline (defined by mass flow).

$$
U_{b, i n, k} y_{m l, i n, k} \Delta z=\sum_{2}^{j_{m l, i, k}}\left(\bar{u}_{e} A_{e, x}+\bar{v}_{e} A_{e, y}\right)
$$

- This approach has successfully been used for asymmetric plane diffuser as well as 3D hill (Simpson \& Byun)
- Other option: $\min (0.65 \Delta, y), \Delta=\max (\Delta x, \Delta y, \Delta z)$

3D-HiLL

Numerical Method

- Implicit, finite volume (collocated),
- Central differencing in space and time (Crank-Nicolson ($\alpha=0.6$))
- Efficient multigrid solver for the pressure Poisson equation
- CPU/time step 25 seconds on a single AMD Opteron 244
- Time step $\Delta t U_{i n} / H=0.026$. Mesh $160 \times 80 \times 128$
- $8000+8000$ time steps for fully developed+averaging (10 +10 through flow or $\left.T^{*}=T U_{b} / H=200+200\right)$
- One simulation $(8000+8000)$ takes one week

3D Hill: RANS

- Similar results obtained with all other RANS models ($k-\omega$, Low-Re RSM, EARSM, SA-model etc) [9].

Streamwise Profiles at $x=3.69 H$ [8]

Hybrid LES-RANS; ○ Experiments

Secondary Velocluty vectors at $x=3.69 H$

Secondary Velocity Vectors at $x=3.69 \mathrm{H}$ RANS, SST

RANS SST: Streamwise Profiles at $x=3.69 H$

RANS-SST; ○ Experiments

3D Hill: Summary

- All RANS models give a completely incorrect flow field
- LES and hybrid LES-RANS in good agreement with expts.
- Mesh sizes

RANS $0.5-1.2$ million (half of the domain)
Hybrid LES-RANS 1.7 million

- CPU times

RANS, EARSM 1-2 days 1-CPU DEC-Alpha
LES-RANS 1 week (10+10 T-F)* 1-CPU Opteron 244

* T-F=Through-Flows
- Hybrid LES-RANS results in Ref. [8]

Modelled Dissipation, ε_{M}

- The unsteady Navier-Stokes reads

$$
\frac{\partial \bar{u}_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\bar{u}_{i} \bar{u}_{j}\right)=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left[\left(\nu+\nu_{T}\right)\left(\frac{\partial \bar{u}_{i}}{\partial x_{j}}+\frac{\partial \bar{u}_{j}}{\partial x_{i}}\right)\right]
$$

The turbulent viscosity, ν_{T}, dampens the fluctuations, via the modelled dissipation, ε_{M}, which reads

$$
\varepsilon_{M}=-\tau_{i j} \frac{\partial \bar{u}_{i}}{\partial x_{j}}=\left\langle 2 \nu_{T} \bar{s}_{i j} \bar{s}_{i j}\right\rangle, \tau_{i j}=-2 \nu_{t} \bar{s}_{i j}+\frac{2}{3} \delta_{i j} k, \bar{s}_{i j}=0.5\left(\frac{\partial \bar{u}_{i}}{\partial x_{j}}+\frac{\partial \bar{u}_{j}}{\partial x_{i}}\right)
$$

___ low dissipation
=-=- high dissipation

Steady vs. Unsteady Regions

$$
\frac{\partial \bar{u}_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\bar{u}_{i} \bar{u}_{j}\right)=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left[\left(\nu+\nu_{T}\right)\left(\frac{\partial \bar{u}_{i}}{\partial x_{j}}+\frac{\partial \bar{u}_{j}}{\partial x_{i}}\right)\right]
$$

- OBJECT:
- In regions of fine grid: turbulence resolved by \bar{u}_{i}^{\prime}, i.e. $\frac{\partial \bar{u}_{i}}{\partial t}$
- In regions of coarse grid: turbulence modelled by ν_{T}
- PROBLEM: in fine-grid regions, ν_{T} increases too much which kills \bar{u}_{i}^{\prime}
- SOLUTION: when \bar{u}_{i}^{\prime} starts to grow, reduce ν_{T}

von KÁrmán Length Scale

$$
L_{v k, 3 D}
$$

$$
\begin{aligned}
& L_{v k, 1 D}=\kappa \frac{\partial\langle\bar{u}\rangle / \partial y}{\partial^{2}\langle\bar{u}\rangle / \partial y^{2}} \\
& L_{v K, 3 D}=\kappa \frac{\bar{s}}{\left|U^{\prime \prime}\right|}, \bar{s}=\left(2 \bar{s}_{i j} \bar{s}_{i j}\right)^{1 / 2} \\
& U^{\prime \prime}=\left(\frac{\partial^{2} \bar{u}_{i}}{\partial x_{j} \partial x_{j}} \frac{\partial^{2} \bar{u}_{i}}{\partial x_{j} \partial x_{j}}\right)^{0.5}
\end{aligned}
$$

- The von Kármán detects unsteadiness (i.e. resolved turbulence, \bar{u}_{i}^{\prime}) and reduces the length scale

The SAS Turbulence Model[10, 11, 12]

$$
\begin{gathered}
\frac{D k}{D t}-\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\nu_{t}}{\sigma_{k}}\right) \frac{\partial k}{\partial x_{j}}\right]=\nu_{t} \bar{s}^{2}-c_{1} k \omega \\
\underbrace{\frac{D \omega}{D t}-\left[\left(\nu+\frac{\nu_{t}}{\sigma_{\omega}}\right) \frac{\partial \omega}{\partial x_{j}}\right]}_{\text {transport }}=c_{2} \bar{s}^{2}-c_{3} \omega^{2}+P_{S A S} \\
\nu_{t}=c_{4} \frac{k}{\omega}, \quad P_{S A S}=c_{5} \frac{L}{L_{v K, 3 D}}, \quad L_{v K, 3 D}=c_{6} \frac{\bar{s}}{U^{\prime \prime}}
\end{gathered}
$$

- Fine grid \Rightarrow unsteadiness \Rightarrow small $L_{V K, 3 D} \Rightarrow$ large $P_{S A S} \Rightarrow$ large $\omega \Rightarrow$ small k and low ν_{t}
- SAS: Scale-Adapated Simulation

SAS: Evaluation from DNS Channel Data

- $R e_{\tau}=500, \Delta x^{+}=50, \Delta z^{+}=12, y_{\text {min }}^{+}=0.3$

$\kappa\left\langle\overline{\mathbf{S}} / U^{\prime \prime}\right\rangle \quad$ =- = $=\quad \kappa\left|\frac{\partial\langle U\rangle / \partial y}{\partial^{2}\langle U\rangle / \partial y^{2}}\right|-=-(\Delta V)^{1 / 3} \circ \Delta \Delta y$

Domain, $R e_{\tau}=u_{\tau} \delta / \nu=2000\left(R e_{b} \simeq 80000\right)$

- $256 \times 64 \times 32(x, y, z)$ cells. $z_{\max }=6.3 \delta, \Delta x^{+} \simeq 785, \Delta z^{+} \simeq 393$.
- $\delta / \Delta z \simeq 5, \delta / \Delta x \simeq 2.5$
- MODELS: SAS and no SAS

Channel With Inlet-Outlet

- Synthesized inlet fluctuations $\left(\mathcal{U}^{\prime}\right)^{m},\left(\mathcal{V}^{\prime}\right)^{m},\left(\mathcal{W}^{\prime}\right)^{m}$ with time scale $\mathcal{T}=0.2 \delta / u_{\tau}$ and length scale $\mathcal{L}=0.1 \delta$.
- The streamwise fluctuations are superimposed to a mean profile obtained from 1D channel flow with $k-\omega$ model

Mean Velocity

SAS

$$
x=3 \delta \quad-==-\quad x=23 \delta
$$

no SAS

ー- - $\quad x=98 \delta$

Resolved URMS

SAS

——— $\quad x=98 \delta$

Peak Resolved Fluctuations

SAS

no SAS

$\max \left\{\left\langle u^{\prime} v^{\prime}\right\rangle\right\}===-\max \left\{u_{r m s}\right\}-=-\max \left\{\boldsymbol{w}_{r m s}\right\} \circ \max \left\{v_{r m s}\right\}$

Turbulent Viscosity $\left\langle\nu_{t}\right\rangle / \nu$

$$
x=3 \delta \quad----\quad x=23 \delta
$$

—- - $x=98 \delta \quad \nabla$ 1D $k-\omega$

Evaluation of The Second Derivative

- Option I: (used) compute the first derivatives at the faces

$$
\begin{gathered}
\left(\frac{\partial u}{\partial y}\right)_{j+1 / 2}=\frac{u_{j+1}-u_{j}}{\Delta y}, \quad\left(\frac{\partial u}{\partial y}\right)_{j-1 / 2}=\frac{u_{j}-u_{j-1}}{\Delta y} \\
\Rightarrow\left(\frac{\partial^{2} u}{\partial y^{2}}\right)_{j}=\frac{u_{j+1}-2 u_{j}+u_{j-1}}{(\Delta y)^{2}}+\frac{(\Delta y)^{2}}{12} \frac{\partial^{4} u}{\partial y^{4}}
\end{gathered}
$$

- Option II: compute the first derivatives at the centre

$$
\begin{aligned}
& \left(\frac{\partial u}{\partial y}\right)_{j+1}=\frac{u_{j+2}-u_{j}}{2 \Delta y}, \quad\left(\frac{\partial u}{\partial y}\right)_{j-1}=\frac{u_{j}-u_{j-2}}{2 \Delta y} \\
& \Rightarrow\left(\frac{\partial^{2} u}{\partial y^{2}}\right)_{j}=\frac{u_{j+2}-2 u_{j}+u_{j-2}}{4(\Delta y)^{2}}+\frac{(\Delta y)^{2}}{3} \frac{\partial^{4} u}{\partial y^{4}}
\end{aligned}
$$

Second Derivatives

SAS: Option I

SAS: Option II

$\max \left\{\left\langle u^{\prime} v^{\prime}\right\rangle\right\}=-==\max \left\{u_{r m s}\right\}-=-\max \left\{w_{r m s}\right\} \circ \max \left\{v_{r m s}\right\}$

SAS: CONCLUSIONS

- SAS: A model which controls the modelled dissipation, ε_{M}, has been presented
- It detects unsteadiness and then reduces ε_{M}
- In this way the model let the equations resolve the turbulence instead of modelling it
- The results is improved accuracy because of less modelling
- More details in [13]

Conclusions

- Flows with large turbulence fluctuations difficult to model with RANS models because $u^{\prime} \simeq \bar{u}$
- Unsteady methods (URANS, DES, SAS, Hybrid LES-RANS, LES) are increasingly being used in universities as well as in industry
- LES is a suitable method for bluff body flows
- Methods based on a mixture of LES and RANS are likely to be the methods of the future
- For boundary layers $\left(R e_{x} \rightarrow \infty\right)$ some kind of forcing needed when going from (U)RANS region to LES region
- Fluctuating inlet boundary conditions can be regarded as a special case of forcing

References I

© S. Krajnović and L. Davidson.
Large eddy simulation of the flow around a bluff body. AIAA Journal, 40(5):927-936, 2002.
© S. Krajnović and L. Davidson.
Numerical study of the flow around the bus-shaped body. Journal of Fluids Engineering, 125:500-509, 2003.
© S. Krajnović and L. Davidson.
Flow around a simplified car. part II: Understanding the flow. Journal of Fluids Engineering, 127(5):919-928, 2005.

B H. Hemida and S. Krajnović.
LES study of the impact of the wake structures on the aerodynamics of a simplified ICE2 train subjected to a side wind.
In Fourth International Conference on Computational Fluid Dynamics (ICCFD4), 10-14 July, Ghent, Belgium, 2006.

References II

固 L. Davidson and S. Dahlström.
Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number. International Journal of Computational Fluid Dynamics, 19(6):415-427, 2005.

目 S. Dahlström and L. Davidson.
Hybrid RANS-LES with additional conditions at the matching region.
In K. Hanjalić, Y. Nagano, and M. J. Tummers, editors, Turbulence Heat and Mass Transfer 4, pages 689-696, New York, Wallingford (UK), 2003. begell house, inc.

References III

回 L. Davidson and M. Billson.
Hybrid LES/RANS using synthesized turbulent fluctuations for forcing in the interface region.
International Journal of Heat and Fluid Flow, 27(6):1028-1042, 2006.

固 L. Davidson and S. Dahlström.
Hybrid LES-RANS: Computation of the flow around a three-dimensional hill.
In W. Rodi and M. Mulas, editors, Engineering Turbulence Modelling and Measurements 6, pages 319-328. Elsevier, 2005.
W. Haase, B. Aupoix, U. Bunge, and D. Schwamborn, editors. FLOMANIA: Flow-Physics Modelling - An Integrated Approach, volume 94 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design.
Springer, 2006.

References IV

围 F．R．Menter，M．Kuntz，and R．Bender．
A scale－adaptive simulation model for turbulent flow prediction． AIAA paper 2003－0767，Reno，NV， 2003.

E．F．R．Menter and Y．Egorov．
Revisiting the turbulent length scale equation．
In IUTAM Symposium：One Hundred Years of Boundary Layer Research，Göttingen， 2004.

圊 F．R．Menter and Y．Egorov．
A scale－adaptive simulation model using two－equation models． AIAA paper 2005－1095，Reno，NV， 2005.

References V

囯 L. Davidson.
Evaluation of the SST-SAS model: Channel flow, asymmetric diffuser and axi-symmetric hill.
In ECCOMAS CFD 2006, September 5-8, 2006, Egmond aan Zee, The Netherlands, 2006.

