LES, HYBRID LES-RANS AND SCALE-ADAPTIVE SIMULATIONS (SAS)

Lars Davidson, www.tfd.chalmers.se/~lada

- In LES, large (Grid) Scales (GS) are resolved and the small (Sub-Grid) Scales (SGS) are modelled.
- LES is suitable for bluff body flows where the flow is governed by large turbulent scales

www.tfd.chalmers.se/~lada

CHALMERS

BLUFF-BODY FLOW: SURFACE-MOUNTED CUBE[1] Krajnović & Davidson (AIAA J., 2002)

Snapshots of large turbulent scales illustrated by $Q = -\frac{\partial \bar{u}_i}{\partial x_i} \frac{\partial \bar{u}_j}{\partial x_i}$

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009 3 / 58

BLUFF-BODY FLOW: FLOW AROUND A BUS[2]

4/58

BLUFF-BODY FLOW: FLOW AROUND A CAR[3]

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009 5 / 58

・ロト ・ 四ト ・ ヨト ・ ヨト ・

BLUFF-BODY FLOW: FLOW AROUND A TRAIN[4]

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009 6 / 58

TIME-AVERAGED flow and INSTANTANEOUS flow

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009 7 / 58

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.
- How easy is it to model fluctuations that are as large as the mean flow?

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.
- How easy is it to model fluctuations that are as large as the mean flow?
- Is it reasonable to require a turbulence model to fix this?

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.
- How easy is it to model fluctuations that are as large as the mean flow?
- Is it reasonable to require a turbulence model to fix this?
- Isn't it better to RESOLVE the large fluctuations?

www.tfd.chalmers.se/~lada

CHALMERS

• Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).
- A resolved these structures in LES requires $\Delta x^+ \simeq 100$, $\Delta y^+_{min} \simeq 1$ and $\Delta z + \simeq 30$

周 ト イ ヨ ト イ ヨ ト

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).
- A resolved these structures in LES requires $\Delta x^+ \simeq 100$, $\Delta y^+_{min} \simeq 1$ and $\Delta z + \simeq 30$
- The object is to develop a near-wall treatment which models the streaks (URANS) ⇒ much larger Δx and Δz

・ 同 ト ・ ヨ ト ・ ヨ ト

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).
- A resolved these structures in LES requires $\Delta x^+ \simeq 100$, $\Delta y^+_{min} \simeq 1$ and $\Delta z + \simeq 30$
- The object is to develop a near-wall treatment which models the streaks (URANS) ⇒ much larger Δx and Δz
- In the presentation we use Hybrid LES-RANS for which the grid requirements are much smaller than for LES

イロン 不通 とくほ とくほ とうほ

- Fluctuating streamwise velocity at $y^+ = 5$. DNS of channel flow.
- We find that the structures in the spanwise direction are very small which requires a very fine mesh in *z* direction.

	www.t	fd.cha	Imers.se/	lada
--	-------	--------	-----------	------

CHALMERS

LES course, 19-21 Oct 2009 10 / 58

A (10) × A (10) × A (10)

HYBRID LES-RANS

Near walls: a RANS one-eq. k or a $k - \omega$ model. In core region: a LES one-eq. k_{SGS} model.

Location of interface either pre-defined or automatically computed

			PP-1 1
	cha	Imore co	lada
WWWWW.LIG		111013.30	laua

MOMENTUM EQUATIONS

• The Navier-Stokes, time-averaged in the near-wall regions and filtered in the core region, reads

$$\frac{\partial \bar{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\bar{u}_{i} \bar{u}_{j} \right) = \beta \delta_{1i} - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[(\nu + \nu_{T}) \frac{\partial \bar{u}_{i}}{\partial x_{j}} \right]$$
$$\nu_{T} = \nu_{t}, \mathbf{y} \leq \mathbf{y}_{ml}$$
$$\nu_{T} = \nu_{sgs}, \mathbf{y} \geq \mathbf{y}_{ml}$$

• The equation above: URANS or LES? Same boundary conditions ⇒ same solution!

	_				
\A/\A/\A/ TI	$\alpha \circ$	na	more ea/		
VV VV VV.LI	u.u	na	1103.30/	- Iau	

CHALMERS

LES course, 19-21 Oct 2009 12/58

TURBULENCE MODEL

Use one-equation model in both URANS region and LES region.

$$\frac{\partial k_T}{\partial t} + \frac{\partial}{\partial x_j} (\bar{u}_j k_T) = \frac{\partial}{\partial x_j} \left[(\nu + \nu_T) \frac{\partial k_T}{\partial x_j} \right] + P_{k_T} - C_{\varepsilon} \frac{k_T^{3/2}}{\ell}$$
$$P_{k_T} = 2\nu_T \bar{S}_{ij} \bar{S}_{ij}, \ \nu_T = C_k \ell k_T^{1/2}$$

- LES-region: $k_T = k_{sgs}$, $\nu_T = \nu_{sgs}$, $\ell = \Delta = (\delta V)^{1/3}$
- URANS-region: $k_T = k$, $\nu_T = \nu_t$, $\ell \equiv \ell_{RANS} = 2.5n[1 - \exp(-Ak^{1/2}y/\nu)]$, Chen-Patel model (AIAA J. 1988)
- Location of interface can be defined by $\min(0.65\Delta, y)$, $\Delta = \max(\Delta x, \Delta y, \Delta z)$

STANDARD HYBRID LES-RANS

• Coarse mesh: $\Delta x^+ = 2\Delta z^+ = 785$. $\delta/\Delta x \simeq 2.5$, $\delta/\Delta z \simeq 5$.

Too high velocity because too low shear stress

CHALMERS

WAYS TO IMPROVE THE RANS-LES METHOD[5, 6, 7]

- The reason is that LES region is supplied with bad boundary (i.e. interface) conditions by the URANS region.
- The flow going from the RANS region into the LES region has no proper turbulent length or time scales
- New approach: Synthesized isotropic turbulent fluctuations are added as momentum sources at the interface.
- The superimposed fluctuations should be regarded as forcing functions rather than boundary conditions.

FORCING FLUCTUATIONS ADDED AT THE INTERFACE

• Object: to trig the momentum equations into resolving large-scale turbulence

• For more info, see Davidson at al. [5, 7]

www.tf	fd.cha	lmers.se/	lada
--------	--------	-----------	------

IMPLEMENTATION

Fluctuations u'_f, v'_f, w'_f are added as sources in all three momentum equations. The source is

 −γρu'_{i,f}u'_{2,f}A_n = −γρu'_{i,f}u'_{2,f}V/Δy (A_n=area, V=volume of the C.V.)

 The source is scaled with γ = k_T/k_{svnt}

• The could be could with $f = R_f$

INLET BOUNDARY CONDITIONS U_{inlet} constant in time; u_{inlet} function of time.

Left: Inlet boundary profiles

Right: Evolution of *u* velocity depending of type of inlet B.C.

• With steady inlet B.C., *u* gets turbulent first at $x = x_E$.

www.ti	d.c	ha	mers.se/	lada

CHALMERS

- $U_{in}+u'_{i}(t)$ used as B.C. for LES in the inner region.
- Examples of inner region: external mirror of a car; a flap/slat; a detail of a landing gear. Often in connection with aero-acoustics.

INLET BOUNDARY CONDITIONS VS. FORCING

CHALMERS

LES course, 19-21 Oct 2009

20 / 58

FULLY DEVELOPED CHANNEL FLOW (PERIODIC IN X)

no forcing; ____ forcing (isotropic fluctuations) $\circ 0.4 \ln(y^+) + 5.2$

LES course, 19-21 Oct 2009 21 / 58

DIFFUSER[5]

- Instantaneous inlet data from channel DNS used.
- Domain: $-8 \le x \le 48, 0 \le y_{inlet} \le 1, 0 \le z \le 4$.
- $x_{max} = 40$ gave return flow at the outlet
- Grid: $258 \times 66 \times 32$.
- $Re = U_{in}H/\nu = 18\ 000$, angle 10^{o}
- The grid is much too coarse for LES (in the inlet region $\Delta z^+ \simeq$ 170)
- Matching plane fixed at y_{ml} at the inlet. In the diffuser it is located along the 2D instantaneous streamline corresponding to y_{ml} .

DIFFUSER: RESULTS WITH LES

Velocities. Markers: experiments by Buice & Eaton (1997)

www.tfd.chalmers.se/~lada

CHALMERS

24 / 58

DIFFUSER: RESULTS WITH NEW RANS-LES

CHALMERS

LES course, 19-21 Oct 2009 26 / 58

A (10) A (10) A (10)

RANS-LES: LOCATION OF MATCHING LINE

• Location of matching line. It is defined along 2D instantaneous streamline (defined by mass flow).

$$U_{b,in,k}y_{ml,in,k}\Delta z = \sum_{2}^{j_{ml,i,k}} (\bar{u}_e A_{e,x} + \bar{v}_e A_{e,y})$$

- This approach has successfully been used for asymmetric plane diffuser as well as 3D hill (Simpson & Byun)
- Other option: $\min(0.65\Delta, y)$, $\Delta = \max(\Delta x, \Delta y, \Delta z)$

くぼう くほう くほう

3D-HILL

NUMERICAL METHOD

- Implicit, finite volume (collocated),
- Central differencing in space and time (Crank-Nicolson (α = 0.6))
- Efficient multigrid solver for the pressure Poisson equation
- CPU/time step 25 seconds on a single AMD Opteron 244
- Time step $\Delta t U_{in}/H = 0.026$. Mesh $160 \times 80 \times 128$
- 8000 + 8000 time steps for fully developed+averaging (10 + 10 through flow or $T^* = TU_b/H = 200 + 200$)
- One simulation (8000 + 8000) takes one week

3

• □ ▶ • @ ▶ • E ▶ • E ▶

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009 32 / 58

э

3D HILL: RANS

• Similar results obtained with all other RANS models ($k - \omega$, Low-Re RSM, EARSM, SA-model etc) [9].

Image: Image:

STREAMWISE PROFILES AT x = 3.69H [8]

Hybrid LES-RANS; • Experiments

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009 34 / 58

SECONDARY VELOCITY VECTORS AT x = 3.69HHybrid LES-RANS

SECONDARY VELOCITY VECTORS AT x = 3.69HRANS, SST

RANS SST: STREAMWISE PROFILES AT x = 3.69H

RANS-SST; • Experiments

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009 37 / 58

3D HILL: SUMMARY

- All RANS models give a completely incorrect flow field
- LES and hybrid LES-RANS in good agreement with expts.
- Mesh sizes RANS
 U.5 – 1.2 million (half of the domain) Hybrid LES-RANS
 1.7 million
- CPU times RANS, EARSM 1 – 2 days LES-RANS 1 week (10+10 T-F)* 1-CPU DEC-Alpha 1 week (10+10 T-F)* 1-CPU Opteron 244
- * T-F=Through-Flows
- Hybrid LES-RANS results in Ref. [8]

MODELLED DISSIPATION, ε_M

The unsteady Navier-Stokes reads

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{u}_i \bar{u}_j \right) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\left(\nu + \nu_T \right) \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \right]$$

The turbulent viscosity, ν_T , dampens the fluctuations, via the modelled dissipation, ε_M , which reads

STEADY VS. UNSTEADY REGIONS

$$\frac{\partial \bar{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\bar{u}_{i} \bar{u}_{j} \right) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[\left(\nu + \nu_{T} \right) \left(\frac{\partial \bar{u}_{i}}{\partial x_{j}} + \frac{\partial \bar{u}_{j}}{\partial x_{i}} \right) \right]$$

BJECT:

- In regions of fine grid: turbulence resolved by \bar{u}'_i , i.e. $\frac{\partial \bar{u}_i}{\partial t}$
- $\bullet\,$ In regions of coarse grid: turbulence modelled by $\nu_{\mathcal{T}}$
- **PROBLEM**: in fine-grid regions, ν_T increases too much which kills \bar{u}'_i
- SOLUTION: when \bar{u}'_i starts to grow, reduce ν_T

• ()

VON KÁRMÁN LENGTH SCALE

• The von Kármán detects unsteadiness (i.e. resolved turbulence, \bar{u}'_i) and reduces the length scale

LES course, 19-21 Oct 2009

41/58

THE SAS TURBULENCE MODEL[10, 11, 12]

$$\frac{Dk}{Dt} - \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] = \nu_t \bar{s}^2 - c_1 k \omega$$

$$\underbrace{\frac{D\omega}{Dt} - \left[\left(\nu + \frac{\nu_t}{\sigma_\omega} \right) \frac{\partial \omega}{\partial x_j} \right]}_{\text{transport}} = c_2 \bar{s}^2 - c_3 \omega^2 + P_{SAS}$$

$$\nu_t = c_4 \frac{k}{\omega}, \quad P_{SAS} = c_5 \frac{L}{L_{\nu K, 3D}}, \quad L_{\nu K, 3D} = c_6 \frac{\bar{s}}{U''}$$

• Fine grid \Rightarrow unsteadiness \Rightarrow small $L_{vK,3D} \Rightarrow$ large $P_{SAS} \Rightarrow$ large $\omega \Rightarrow$ small k and low ν_t

SAS: Scale-Adapated Simulation

SAS: EVALUATION FROM DNS CHANNEL DATA

• $Re_{\tau} = 500, \Delta x^+ = 50, \Delta z^+ = 12, y^+_{min} = 0.3$

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009 43 / 58

DOMAIN, $Re_{\tau} = u_{\tau}\delta/\nu = 2000 \ (Re_b \simeq 80\,000)$

• 256 × 64 × 32 (*x*, *y*, *z*) cells. $z_{max} = 6.3\delta$, $\Delta x^+ \simeq 785$, $\Delta z^+ \simeq 393$.

- $\delta/\Delta z \simeq$ 5, $\delta/\Delta x \simeq$ 2.5
- MODELS: SAS and no SAS

A (10) A (10)

CHANNEL WITH INLET-OUTLET

• Synthesized inlet fluctuations $(\mathcal{U}')^m$, $(\mathcal{V}')^m$, $(\mathcal{W}')^m$ with time scale $\mathcal{T} = 0.2\delta/u_{\tau}$ and length scale $\mathcal{L} = 0.1\delta$.

• The streamwise fluctuations are superimposed to a mean profile obtained from 1D channel flow with $k - \omega$ model

周レイモレイモレ

MEAN VELOCITY

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009

イロト イヨト イヨト イヨト

46 / 58

RESOLVED URMS

www.tfd.chalmers.se/~lada

CHALMERS

LES course, 19-21 Oct 2009 4

<ロ> (日) (日) (日) (日) (日)

47 / 58

э

PEAK RESOLVED FLUCTUATIONS

www.tfd.chalmers.se/~lada

CHALMERS

48 / 58

TURBULENT VISCOSITY $\langle \nu_t \rangle / \nu$

A (10) A (10) A (10)

EVALUATION OF THE SECOND DERIVATIVE

• Option I: (used) compute the first derivatives at the faces

$$\begin{pmatrix} \frac{\partial u}{\partial y} \end{pmatrix}_{j+1/2} = \frac{u_{j+1} - u_j}{\Delta y}, \qquad \left(\frac{\partial u}{\partial y} \right)_{j-1/2} = \frac{u_j - u_{j-1}}{\Delta y}$$
$$\Rightarrow \left(\frac{\partial^2 u}{\partial y^2} \right)_j = \frac{u_{j+1} - 2u_j + u_{j-1}}{(\Delta y)^2} + \frac{(\Delta y)^2}{12} \frac{\partial^4 u}{\partial y^4}$$

Option II: compute the first derivatives at the centre

$$\begin{pmatrix} \frac{\partial u}{\partial y} \end{pmatrix}_{j+1} = \frac{u_{j+2} - u_j}{2\Delta y}, \qquad \left(\frac{\partial u}{\partial y} \right)_{j-1} = \frac{u_j - u_{j-2}}{2\Delta y}$$
$$\Rightarrow \left(\frac{\partial^2 u}{\partial y^2} \right)_j = \frac{u_{j+2} - 2u_j + u_{j-2}}{4(\Delta y)^2} + \frac{(\Delta y)^2}{3} \frac{\partial^4 u}{\partial y^4}$$

50 / 58

SECOND DERIVATIVES

www.tfd.chalmers.se/~lada

CHALMERS

□ ▶ < @ ▶ < ⊇ ▶ < ⊇ ▶ = > ⊇ > LES course. 19-21 Oct 2009 5

51 / 58

SAS: CONCLUSIONS

- SAS: A model which controls the modelled dissipation, ε_M, has been presented
- It detects unsteadiness and then reduces ε_M
- In this way the model let the equations resolve the turbulence instead of modelling it
- The results is improved accuracy because of less modelling
- More details in [13]

CONCLUSIONS

- Flows with large turbulence fluctuations difficult to model with RANS models because $u' \simeq \overline{u}$
- Unsteady methods (URANS, DES, SAS, Hybrid LES-RANS, LES) are increasingly being used in universities as well as in industry
- LES is a suitable method for bluff body flows
- Methods based on a mixture of LES and RANS are likely to be the methods of the future
- For boundary layers $(Re_x \to \infty)$ some kind of forcing needed when going from (U)RANS region to LES region
- Fluctuating inlet boundary conditions can be regarded as a special case of forcing

3

• □ ▶ • @ ▶ • E ▶ • E ▶

References I

- S. Krajnović and L. Davidson. Large eddy simulation of the flow around a bluff body. AIAA Journal, 40(5):927–936, 2002.
- S. Krajnović and L. Davidson. Numerical study of the flow around the bus-shaped body. *Journal of Fluids Engineering*, 125:500–509, 2003.
- S. Krajnović and L. Davidson.
 Flow around a simplified car. part II: Understanding the flow.
 Journal of Fluids Engineering, 127(5):919–928, 2005.
- H. Hemida and S. Krajnović.

LES study of the impact of the wake structures on the aerodynamics of a simplified ICE2 train subjected to a side wind. In *Fourth International Conference on Computational Fluid Dynamics (ICCFD4)*, 10-14 July, Ghent, Belgium, 2006.

REFERENCES II

L. Davidson and S. Dahlström.

Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number.

International Journal of Computational Fluid Dynamics, 19(6):415–427, 2005.

S. Dahlström and L. Davidson.

Hybrid RANS-LES with additional conditions at the matching region.

In K. Hanjalić, Y. Nagano, and M. J. Tummers, editors, *Turbulence Heat and Mass Transfer 4*, pages 689–696, New York, Wallingford (UK), 2003. begell house, inc.

REFERENCES III

L. Davidson and M. Billson.

Hybrid LES/RANS using synthesized turbulent fluctuations for forcing in the interface region.

International Journal of Heat and Fluid Flow, 27(6):1028–1042, 2006.

L. Davidson and S. Dahlström.

Hybrid LES-RANS: Computation of the flow around a three-dimensional hill.

In W. Rodi and M. Mulas, editors, *Engineering Turbulence Modelling and Measurements 6*, pages 319–328. Elsevier, 2005.

 W. Haase, B. Aupoix, U. Bunge, and D. Schwamborn, editors. FLOMANIA: Flow-Physics Modelling – An Integrated Approach, volume 94 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer, 2006.

REFERENCES IV

F. R. Menter, M. Kuntz, and R. Bender.

A scale-adaptive simulation model for turbulent flow prediction. AIAA paper 2003–0767, Reno, NV, 2003.

F. R. Menter and Y. Egorov.

Revisiting the turbulent length scale equation. In *IUTAM Symposium: One Hundred Years of Boundary Layer Research*, Göttingen, 2004.

F. R. Menter and Y. Egorov.
 A scale-adaptive simulation model using two-equation models.
 AIAA paper 2005–1095, Reno, NV, 2005.

REFERENCES V

L. Davidson.

Evaluation of the SST-SAS model: Channel flow, asymmetric diffuser and axi-symmetric hill.

In *ECCOMAS CFD 2006*, September 5-8, 2006, Egmond aan Zee, The Netherlands, 2006.