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LARGE EDDY SIMULATIONS

GS

SGS

SGS

In LES, large (Grid) Scales (GS) are resolved and the small

(Sub-Grid) Scales (SGS) are modelled.

LES is suitable for bluff body flows where the flow is governed by

large turbulent scales
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BLUFF-BODY FLOW: SURFACE-MOUNTED CUBE[1]
Krajnović & Davidson (AIAA J., 2002)

Snapshots of large turbulent scales illustrated by Q = −
∂ūi

∂xj

∂ūj

∂xi
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BLUFF-BODY FLOW: FLOW AROUND A BUS[2]

Krajnović & Davidson (JFE, 2003)
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BLUFF-BODY FLOW: FLOW AROUND A CAR[3]
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BLUFF-BODY FLOW: FLOW AROUND A TRAIN[4]
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SEPARATING FLOWS

Wall

TIME-AVERAGED flow and INSTANTANEOUS flow
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SEPARATING FLOWS

Wall

TIME-AVERAGED flow and INSTANTANEOUS flow

In average there is backflow (negative velocities). Instantaneous,

the negative velocities are often positive.
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SEPARATING FLOWS

Wall

TIME-AVERAGED flow and INSTANTANEOUS flow

In average there is backflow (negative velocities). Instantaneous,

the negative velocities are often positive.

How easy is it to model fluctuations that are as large as the mean

flow?

Is it reasonable to require a turbulence model to fix this?

Isn’t it better to RESOLVE the large fluctuations?
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NEAR-WALL TREATMENT

Biggest problem with LES: near walls, it requires very fine mesh in

all directions, not only in the near-wall direction.
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NEAR-WALL TREATMENT

Biggest problem with LES: near walls, it requires very fine mesh in

all directions, not only in the near-wall direction.

The reason: violent violent low-speed outward ejections and

high-speed in-rushes must be resolved (often called streaks).

A resolved these structures in LES requires ∆x+ ≃ 100,

∆y+

min ≃ 1 and ∆z+ ≃ 30

The object is to develop a near-wall treatment which models the

streaks (URANS) ⇒ much larger ∆x and ∆z

In the presentation we use Hybrid LES-RANS for which the grid

requirements are much smaller than for LES
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NEAR-WALL TREATMENT

from Hinze (1975)
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NEAR-WALL TREATMENT
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Fluctuating streamwise velocity at y+ = 5. DNS of channel flow.

We find that the structures in the spanwise direction are very

small which requires a very fine mesh in z direction.
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HYBRID LES-RANS

Near walls: a RANS one-eq. k or a k − ω model.

In core region: a LES one-eq. kSGS model.

y

x

Interface

wall

wall

URANS

URANS

LES

y+

ml

• Location of interface either pre-defined or automatically computed
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MOMENTUM EQUATIONS

• The Navier-Stokes, time-averaged in the near-wall regions and

filtered in the core region, reads

∂ūi

∂t
+

∂

∂xj

(
ūi ūj

)
= βδ1i −

1

ρ

∂p̄

∂xi
+

∂

∂xj

[

(ν + νT )
∂ūi

∂xj

]

νT = νt , y ≤ yml

νT = νsgs, y ≥ yml

• The equation above: URANS or LES? Same boundary conditions ⇒
same solution!
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TURBULENCE MODEL

• Use one-equation model in both URANS region and LES region.

∂kT

∂t
+

∂

∂xj
(ūjkT ) =

∂

∂xj

[

(ν + νT )
∂kT

∂xj

]

+ PkT
− Cε

k
3/2
T

ℓ

PkT
= 2νT S̄ij S̄ij , νT = Ckℓk

1/2
T

LES-region: kT = ksgs, νT = νsgs, ℓ = ∆ = (δV )1/3

URANS-region: kT = k , νT = νt ,

ℓ ≡ ℓRANS = 2.5n[1 − exp(−Ak1/2y/ν)], Chen-Patel model (AIAA

J. 1988)

Location of interface can be defined by min(0.65∆, y),
∆ = max(∆x ,∆y ,∆z)
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STANDARD HYBRID LES-RANS

• Coarse mesh: ∆x+ = 2∆z+ = 785. δ/∆x ≃ 2.5, δ/∆z ≃ 5.
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◦ 0.4 ln(y+) + 5.2
B(x) =

〈u(x0)u(x − x0)〉

urmsurms

• Too high velocity because too low shear stress
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WAYS TO IMPROVE THE RANS-LES METHOD[5, 6, 7]

The reason is that LES region is supplied with bad boundary (i.e.

interface) conditions by the URANS region.

The flow going from the RANS region into the LES region has no

proper turbulent length or time scales

New approach: Synthesized isotropic turbulent fluctuations are

added as momentum sources at the interface.

The superimposed fluctuations should be regarded as forcing

functions rather than boundary conditions.
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FORCING FLUCTUATIONS ADDED AT THE INTERFACE

• Object: to trig the momentum equations into resolving large-scale

turbulence

u′
f , v ′

f , w ′
f

x

y

URANS region

LES region

wall

interface

y+

ml

• For more info, see Davidson at al. [5, 7]
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IMPLEMENTATION

u′
f

v ′
f

An Interface

Control Volume

LES

URANS

Fluctuations u′
f , v

′
f ,w

′
f are added as sources in all three

momentum equations. The source is

−γρu′
i ,f u

′
2,f An = −γρu′

i ,f u
′
2,f V/∆y (An=area, V=volume of the C.V.)

The source is scaled with γ = kT/ksynt
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INLET BOUNDARY CONDITIONS

Uinlet constant in time; uinlet function of time.
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Left: Inlet boundary profiles

Right: Evolution of u velocity depending of type of inlet B.C.

• With steady inlet B.C., u gets turbulent first at x = xE .
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EMBEDDED LES (BLUFF BODY FLOWS)

Uin+u′
i (t)

Uout

Uout

Steady RANS

Steady RANS

LES

Uin+u′
i (t) used as B.C. for LES in the inner region.

Examples of inner region: external mirror of a car; a flap/slat; a

detail of a landing gear. Often in connection with aero-acoustics.
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INLET BOUNDARY CONDITIONS VS. FORCING

Inlet

Ub(y)

y

u′(y , t)

URANS region

LES region

x

Ub(xi , t)
u′(xi , t)
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FULLY DEVELOPED CHANNEL FLOW (PERIODIC IN x )
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◦ 0.4 ln(y+) + 5.2
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DIFFUSER[5]

Instantaneous inlet data from channel DNS used.

Domain: −8 ≤ x ≤ 48, 0 ≤ yinlet ≤ 1, 0 ≤ z ≤ 4.

xmax = 40 gave return flow at the outlet

Grid: 258 × 66 × 32.

Re = UinH/ν = 18 000, angle 10o

The grid is much too coarse for LES (in the inlet region

∆z+ ≃ 170)

Matching plane fixed at yml at the inlet. In the diffuser it is located

along the 2D instantaneous streamline corresponding to yml .
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DIFFUSER GEOMETRY. Re = 18 000, ANGLE 10o

H = 2δ

7.9H

21H

29H

4H

4.7H

periodic
b.c.

convective outlet b.c.

no-slip b.c.
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DIFFUSER: RESULTS WITH LES
• Velocities. Markers: experiments by Buice & Eaton (1997)

x = 3H 6 14 17 20 24H

x/H = 27 30 34 40 47Hwww.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 24 / 58



DIFFUSER: RESULTS WITH NEW RANS-LES
x = 3H 6 14 17 20 24H

x/H = 27 30 34 40 47H

forcing; no forcing
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DIFFUSER: RESULTS WITH NEW RANS-LES

0 0.5 1 1.5

x = −H

−0.5 0 0.5 1
−0.5

0

0.5

1

x = 3H

−0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x = 6H

forcing; no forcing

www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 26 / 58



SHEAR STRESSES (×2 IN LOWER HALF)
x = 3H 6 13 19 23H

x/H = 26 33 40 47H

resolved; modelled
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RANS-LES: νt/ν
x = 3H 6 14 17 20 24H

x/H = 27 30 34 40 47H

forcing; without forcing

At x = 24H, νT ,max/ν ≃ 450

At x = −7H νT ,max/ν ≃ 11
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RANS-LES: LOCATION OF MATCHING LINE

• Location of matching line. It is defined along 2D instantaneous

streamline (defined by mass flow).

Ub,in,kyml ,in,k∆z =

jml,i,k∑

2

(ūeAe,x + v̄eAe,y )

This approach has successfully been used for asymmetric plane

diffuser as well as 3D hill (Simpson & Byun)

Other option: min(0.65∆, y), ∆ = max(∆x ,∆y ,∆z)

www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 29 / 58



3D-HILL

3.2H

L2

W

δ = 0.5H

L1

H

outlet B.C.

x
z

y

Inlet B.C.
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NUMERICAL METHOD

Implicit, finite volume (collocated),

Central differencing in space and time (Crank-Nicolson (α = 0.6))

Efficient multigrid solver for the pressure Poisson equation

CPU/time step 25 seconds on a single AMD Opteron 244

Time step ∆tUin/H = 0.026. Mesh 160 × 80 × 128

8 000 + 8 000 time steps for fully developed+averaging (10 + 10

through flow or T ∗ = TUb/H = 200 + 200)

One simulation (8 000 + 8 000) takes one week
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SYMMETRY PLANE z = 0
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3D HILL: RANS

X
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• Similar results obtained with all other RANS models (k − ω, Low-Re

RSM, EARSM, SA-model etc) [9].
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STREAMWISE PROFILES AT x = 3.69H [8]
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SECONDARY VELOCITY VECTORS AT x = 3.69H

−2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

y
/H

Hybrid LES-RANS

−2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

y
/H

z/H

Expts

www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 35 / 58



SECONDARY VELOCITY VECTORS AT x = 3.69H
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RANS SST: STREAMWISE PROFILES AT x = 3.69H
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3D HILL: SUMMARY

All RANS models give a completely incorrect flow field

LES and hybrid LES-RANS in good agreement with expts.

Mesh sizes
RANS 0.5 − 1.2 million (half of the domain)

Hybrid LES-RANS 1.7 million

CPU times
RANS, EARSM 1 − 2 days 1-CPU DEC-Alpha

LES-RANS 1 week (10+10 T-F)∗ 1-CPU Opteron 244

∗ T-F=Through-Flows

• Hybrid LES-RANS results in Ref. [8]
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MODELLED DISSIPATION, εM

• The unsteady Navier-Stokes reads

∂ūi

∂t
+

∂

∂xj

(
ūi ūj

)
= −

1

ρ

∂p̄

∂xi
+

∂

∂xj

[

(ν + νT )

(
∂ūi

∂xj
+

∂ūj

∂xi

)]

The turbulent viscosity, νT , dampens the fluctuations, via the modelled

dissipation, εM , which reads

εM = −τij
∂ūi

∂xj
= 〈2νT s̄ij s̄ij〉, τij = −2νt s̄ij +

2

3
δijk , s̄ij = 0.5

(
∂ūi

∂xj
+

∂ūj

∂xi

)
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−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time step number

ū
′
=

ū
−

〈ū
〉

low dissipation

high dissipation
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STEADY VS. UNSTEADY REGIONS

∂ūi

∂t
+

∂

∂xj

(
ūi ūj

)
= −

1

ρ

∂p̄

∂xi
+

∂

∂xj

[

(ν + νT )

(
∂ūi

∂xj
+

∂ūj

∂xi

)]

• OBJECT:

In regions of fine grid: turbulence resolved by ū′
i , i.e.

∂ūi

∂t
In regions of coarse grid: turbulence modelled by νT

• PROBLEM: in fine-grid regions, νT increases too much which kills ū′
i

• SOLUTION: when ū′
i starts to grow, reduce νT
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VON KÁRMÁN LENGTH SCALE
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Lvk ,3D

Lvk ,1D = κ
∂〈ū〉/∂y

∂2〈ū〉/∂y2

LvK ,3D = κ
s̄

|U ′′|
, s̄ = (2s̄ij s̄ij)

1/2

U ′′ =

(
∂2ūi

∂xj∂xj

∂2ūi

∂xj∂xj

)0.5

• The von Kármán detects unsteadiness (i.e. resolved turbulence, ū′
i )

and reduces the length scale
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THE SAS TURBULENCE MODEL[10, 11, 12]

Dk

Dt
−

∂

∂xj

[(

ν +
νt

σk

)
∂k

∂xj

]

= νt s̄
2 − c1kω

Dω

Dt
−

[(

ν +
νt

σω

)
∂ω

∂xj

]

︸ ︷︷ ︸

transport

= c2s̄2 − c3ω
2 + PSAS

νt = c4
k

ω
, PSAS = c5

L

LvK ,3D
, LvK ,3D = c6

s̄

U ′′

• Fine grid ⇒ unsteadiness ⇒ small LvK ,3D ⇒ large PSAS ⇒ large ω ⇒
small k and low νt

• SAS: Scale-Adapated Simulation
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SAS: EVALUATION FROM DNS CHANNEL DATA

• Reτ = 500, ∆x+ = 50, ∆z+ = 12, y+

min = 0.3
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DOMAIN, Reτ = uτδ/ν = 2000 (Reb ≃ 80 000)

in
le

t

o
u

tle
t

2δ

x

y

100δ

• 256 × 64 × 32 (x , y , z) cells. zmax = 6.3δ, ∆x+ ≃ 785, ∆z+ ≃ 393.

• δ/∆z ≃ 5, δ/∆x ≃ 2.5

• MODELS: SAS and no SAS
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CHANNEL WITH INLET-OUTLET

• Synthesized inlet fluctuations (U ′)m, (V ′)m, (W ′)m with time scale

T = 0.2δ/uτ and length scale L = 0.1δ.

• The streamwise fluctuations are superimposed to a mean profile

obtained from 1D channel flow with k − ω model
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MEAN VELOCITY
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RESOLVED URMS
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PEAK RESOLVED FLUCTUATIONS
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TURBULENT VISCOSITY 〈νt〉/ν
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EVALUATION OF THE SECOND DERIVATIVE

• Option I: (used) compute the first derivatives at the faces

(
∂u

∂y

)

j+1/2

=
uj+1 − uj

∆y
,

(
∂u

∂y

)

j−1/2

=
uj − uj−1

∆y

⇒

(
∂2u

∂y2

)

j

=
uj+1 − 2uj + uj−1

(∆y)2
+

(∆y)2

12

∂4u

∂y4

• Option II: compute the first derivatives at the centre

(
∂u

∂y

)

j+1

=
uj+2 − uj

2∆y
,

(
∂u

∂y

)

j−1

=
uj − uj−2

2∆y

⇒

(
∂2u

∂y2

)

j

=
uj+2 − 2uj + uj−2

4(∆y)2
+

(∆y)2

3

∂4u

∂y4
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SECOND DERIVATIVES
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SAS: CONCLUSIONS

SAS: A model which controls the modelled dissipation, εM , has

been presented

It detects unsteadiness and then reduces εM

In this way the model let the equations resolve the turbulence

instead of modelling it

The results is improved accuracy because of less modelling

More details in [13]
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CONCLUSIONS

Flows with large turbulence fluctuations difficult to model with

RANS models because u′ ≃ ū

Unsteady methods (URANS, DES, SAS, Hybrid LES-RANS, LES)

are increasingly being used in universities as well as in industry

LES is a suitable method for bluff body flows

Methods based on a mixture of LES and RANS are likely to be the

methods of the future

For boundary layers (Rex → ∞) some kind of forcing needed

when going from (U)RANS region to LES region

Fluctuating inlet boundary conditions can be regarded as a

special case of forcing
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