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RESEARCH QUESTION

1. 1 want to use a k —w DES model
1.1 How do | prescribe inlet values on k and w?
1.2 What about the URANS region? Should | prescribe k and w from a
steady RANS solution?
2. The proposed method is to add commutation terms in the k and w
equations.
3. The commutation terms read (A goes from Agans to A gs)

CHALMERS T e



RESEARCH QUESTION

1. | want to use a k — w DES model

1.1 How do | prescribe inlet values on k and w?
1.2 What about the URANS region? Should | prescribe k and w from a
steady RANS solution?

2. The proposed method is to add commutation terms in the k and w

equations.
3. The commutation terms read (A goes from Agans to A gs)
O0A Ok
» k equation: ~ o aug (sink term)

CHALMERS T e



RESEARCH QUESTION

1. | want to use a k — w DES model

1.1 How do | prescribe inlet values on k and w?
1.2 What about the URANS region? Should | prescribe k and w from a
steady RANS solution?

2. The proposed method is to add commutation terms in the k and w

equations.
3. The commutation terms read (A goes from Agans to A gs)
O0A Ok
» k equation: ~ o aug (sink term)

> w equation: (source term)

k Ox1 OA

CHALMERS T e



RESEARCH QUESTION

1. | want to use a k — w DES model

1.1 How do | prescribe inlet values on k and w?
1.2 What about the URANS region? Should | prescribe k and w from a
steady RANS solution?

2. The proposed method is to add commutation terms in the k and w

equations.
3. The commutation terms read (A goes from Agans to A gs)
O0A Ok
» k equation: ~ o aug (sink term)
w OA 8!.71/(

> w equation: (source term)

koxg 0N
4. The method can also be used in embedded LES (i.e. at the
RANS-LES interface)
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THE ZONAL k —w HYBRID RANS-LES PDH MODEL

» In the LES region, the model reads

. 3/2
8k+8v,k_Pk_fkk+8[<y+ ut> 8k}

at - Ix 6 Ox or) Ox;
Ow  OViw W g > 0 Ve \ Ow ve Ok Ow
E"_ 8){,' — Cwlf;‘)EP szw +87Xj |:<V+O_w> 8XJ:| +Cw?aix.laixj
_ k kK ou; Bﬁj ou; _
Vt = fu;’ P* =y (axj- + 3X,'> an7 b = CLesAgw

Adw = min (max [dedw, CwAmax, Anstep] aAmaX)

CHALMERS TN Y



THE ZONAL k —w HYBRID RANS-LES PDH MODEL
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» The length scale, Ay, is taken from the IDDES model [9].
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THE ZONAL k —w HYBRID RANS-LES PDH MODEL

» In the LES region, the model reads

= 3/2
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Vt = fu;’ P* =y (axj- + 3X,'> an7 by = CLesAgw

Adw = min (max [dedw, CwAmax, Anstep] aAmaX)

» The length scale, Ay, is taken from the IDDES model [9].
> In the RANS regions, /; = k'/?/(Cyw).
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THE ZONAL k —w HYBRID RANS-LES PDH MODEL

» In the LES region, the model reads

Ok 0wk _p g K0 [, me) Ok
ot ox o T ox ok ) Ox;

ow  Oviw W g > 0 Ve \ Ow ve Ok Ow
. = L lw7 - Lw a_ — | 5 Cwiii
8t+ Ox; Cant kP Cuz +E)xj [<V+aw> 8)9}4_ k Ox; Ox;
_ k kK ou; aﬁj ou; -
Vt = fu;’ P* =y (axj- + 3X,'> an7 by = CLesAgw

Adw = min (max [dedw, CwAmax, Anstep] aAmaX)

» The length scale, Ay, is taken from the IDDES model [9].

> In the RANS regions, /; = k'/?/(Cyw).

» The interface between LES and RANS regions is chosen at a fixed
grid line (y™ ~ 500)
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VARYING FILTER SIZE

» When filter size in LES varies in space, an additional term appears in
the momentum equation.

» The reason? the spatial derivatives and the filtering do not commute.

» For the convective term in Navier-Stokes, for example, we get

dviv; 0 _ 5
D %(VIVJ)JFO((AX) )

» Ghosal & Moin [4] showed that the error is proportional to (Ax)?;
hence it is usually neglected.

CHALMERS L L



COMMUTATION ERROR IN k EQUATION

» In zonal! hybrid RANS-LES, the length scale at the RANS-LES
interface changes abruptly from a RANS length scale to a LES length
scale.

» Hamda [5] found that the commutation error at RANS-LES interfaces
is large.

» For the k equation the commutation term reads
8u,-k . 8L_I,'k . aA 8L_I,'k
aX,' N 8X,' 8X,' oA

the interface is chosen at a location where the RANS and LES length scales differ
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COMMUTATION TERM: PHYSICAL MEANING

ou;k _ Otk B O0A Ok
ox;  Ox; Ox; O

» Consider a fluid particle in a RANS region moving in the x; direction
and passing across a RANS-LES interface.
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» = The commutation term < 0 on the right-side of the k equation.
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COMMUTATION TERM: PHYSICAL MEANING

ou;k _ Otk B O0A Ok
ox;  Ox; Ox; O

» Consider a fluid particle in a RANS region moving in the x; direction
and passing across a RANS-LES interface.

» The filterwidth decreases across the interface, i.e. 9A/Ox; <0
» k decreases when going from RANS to LES =
durk/OA = (ks — krans) / (ALes — Arans) > 0

<0 <0
» — The commutation term > 0

» = The commutation term < 0 on the right-side of the k equation.

» Hence, the commutation term at the RANS-LES interface reduces k.
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COMMUTATION TERM AT THE RANS-LES

INTERFACE
L_l/ /\E/‘
RANS o/ \/ LES 2%
W' N
y 1
< L >
be < >
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COMMUTATION TERM AT THE RANS-LES
INTERFACE
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COMMUTATION TERM AT THE LES INLET

7 s
inlet
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COMMUTATION TERM

OA Ou;k
8X; 0A

KRANS inlet

AT THE LES INLET

7 Lx

inlet

7 N_a

7 s

T

X
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COMMUTATION TERM IN THE w EQUATION

> Let us start by looking at the £ equation.

» What happens with € when a fluid particle moves from a RANS region
into an LES region?

» The answer is, nothing. The dissipation is the same in a RANS region
as in an LES region.

» Transformation of the k and € equations to an w equation gives

dw d < £ ) ide_’_id(l/k) 1 de wdk

dt  dt \Cek)  Cikdt " Ci dt  Cikdt kdt
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COMMUTATION TERM IN THE w EQUATION

> Let us start by looking at the £ equation.

» What happens with € when a fluid particle moves from a RANS region
into an LES region?

» The answer is, nothing. The dissipation is the same in a RANS region
as in an LES region.

» Transformation of the k and € equations to an w equation gives

dw _d (e \__1de cdl/k)_ 1 d¢ wdk
dt  dt \Cik) Cikdt C. dt — Cikdt kdt

» Hence, the commutation error in the w equation is the commutation
term in the k equation multiplied by —w/k so that

Juiw  Otiw  0Adbw  Odujw EGA ou:k

o Ox  Ox 0A _ 0x | Kkox oL
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SUMMARY OF INLET TREATMENT OF k AND w

» Prescribe RANS values of k and w at the inlet obtained from RANS
simulations
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SUMMARY OF INLET TREATMENT OF k AND w

» Prescribe RANS values of k and w at the inlet obtained from RANS
simulations
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» k equation: —%&hk
g ' aXl I5JAN

(sink term)
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SUMMARY OF INLET TREATMENT OF k AND w

» Prescribe RANS values of k and w at the inlet obtained from RANS
simulations

» Add commutation term to the cell slice(s) near the inlet
0N Ok
COx1 OA
w OA Ok
koxg OA

» k equation: (sink term)

> w equation: (source term)

CHALMERS AN E SIS



SUMMARY OF INLET TREATMENT OF k AND w

» Prescribe RANS values of k and w at the inlet obtained from RANS

simulations
» Add commutation term to the cell slice(s) near the inlet
» k equation: _ 08 dink (sink term)
Ox; OA
> w equation: w 04 Onk (source term)
k 8X1 oA
» The present approach is similar to adding the commutation term in
PANS [3]
¢ Dk _ Dlfiked) _, D _ Dk _, Diy
Dt Dt Dt — Dt Dt
% = gt + ﬁ,-aii, kot = k + %<u§u;>
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SYNTHETIC INLET FLUCTUATIONS

1. A pre-cursor RANS simulation is made using the PDH model [8].
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> We need to chose a relevant location for the Reynolds stress tensor

» In boundary layer flow, the turbulent shear stress is the single most
important stress component
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SYNTHETIC INLET FLUCTUATIONS

1. A pre-cursor RANS simulation is made using the PDH model [8].

2. The Reynolds stress tensor is computed using the EARSM model [10].
3. Synthetic turbulence fluctuations based on homogeneous turbulence

» we can only use the Reynolds stress tensor in one point

» We need to chose a relevant location for the Reynolds stress tensor

» In boundary layer flow, the turbulent shear stress is the single most
important stress component

» Hence, the Reynolds stress tensor is taken at the location where the
magnitude of the turbulent shear stress is largest.

4. Finally, the synthetic fluctuations are scaled with
—— 1/2 . . .
(\u’v’]/\u’v’\max)R/ANS which is taken from the RANS simulation.

5. Matlab codes can be downloaded [1] (Google “synthetic inlet
fluctuations™)
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CHANNEL FLOW

Reynolds number is Re; = 8 000.

A 256 x 96 x 32 mesh is used

Ax =0.1, Az =0.05

The mean U, k and w taken from 1D RANS simulation using the
PDH k — w model

» The wall-parallel RANS-LES interface is prescribed at a fixed gridline

vV v.v v

at y* ~ 500.
__________ RANS ________
AN a LES 20
P B RANS """
< L »

X
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INLET FLUCTUATIONS
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RESuULTS

Turbulent viscosity

Friction velocity
0.01 -
1L7L v v v v -
] 0.008} & .
0.8 \ . A .
"Q ,"” v
g\ v
106 1\\/. 500087 .
N—r 4 v
04l 095 §0.004§ . e
02 0971 5 3 0.002¢
% 5 10 15 20 0 01 02 03 04
x/0 y/o
V: ur =1 (target value) —: x = 0.055; == x = 2.5;
—-= x = 5.650; V: v¢/(us6)/10 at

inlet (i.e. RANS).
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RESuULTS

Resolved turbulent stress

10

—: x/6 = 0.05; == x =

2.56; 5.855; o:
fully developed channel flow
with Zonal hybrid RANS-LES
model.

X =

www.tfd.chalmers.se/~lada

CHALMERS
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LENGTH OF SOURCE REGION

> In how large a region, x:, should the commutation terms be added?

RANS

N [ B T
77w 5

AN A LES 28

J&

A RANS """
y

L. L

% < >
www.tfd.chalmers.se/~lada CHALMERS Go4Hybrid, Berlin, 2015 16 / 30




RESuULTS

V¢ max in the LES region
]

0.1
—~~ % ! ‘
% 0081} "
& LY
S 006\t 0.95
= o
2 o0
S Lo 0.9
£>0.02 N e

q — = ) 0.85,

1
x/6

— xty/0 =0.1; == x¢, /0 = 0.5; == x¢ /0 =11

o: cell center

www.tfd.chalmers.se/~lada

CHALMERS

Friction velocity

2
x/6
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SOURCE TERMS IN k EQUATION

100,

.
N
0 00000000 ©6 06 o o ° °

-100

-200

-300
0 0.5 1

y/é

x/8 = 0.05. o: Production term, P¥, x;, = 0.05.
——: commutation term. (x¢/d = 0.1,0.5,1)
Arrow shows increasing xi,
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BOUNDARY LAYER

v

The Reynolds number is Rey = 11000 (Re,, i, = 3400).
A 128 x 192 x 32 mesh is used with Ax = 0.1, Az =0.05

v

» Upas(k=0.38 B=41N=05][6,7])
y* yt <5
U = 12.23 + 4.49|n()§lil) 5<yt <30 (1)
™
—In(y+)+B+—sin2< y) yt > 30
K K 26

v

k and w from a RANS solution

LES
a,v,w T
P RANS ~ 77" [
L ;
- .

www.tfd.chalmers.se/~lada CHALMERS Go4Hybrid, Berlin, 2015 19 / 30



RESULTS, BOUNDARY LAYER

«10 - Skin friction Turbulent viscosity

3 0.02
\‘9; ) M 0 © 0 o
2 \ix 10
S N
1 N ——
1 2 3 '
% 5 10 % 01 02 03 04
X/éin Y/(Sin
—: baseline —: x = 0.060;,; == x =
- = U;, from RANS 2.350;,; == x = 11.96;;
o: 0.37(/og10ReX)_2‘584. Vi ve/(Ur,indin)/80 at inlet
(i.e. RANS).
CHALMERS Go4Hybrid, Berlin, 2015 20 / 30



LENGTH OF SOURCE REGION

> In how large a region, x:, should the commutation terms be added?

Xtr
o
B LES
7wt I(S
"""""""""""""" in
y RANS
L. L
% < >
www.tfd.chalmers.se/~lada CHALMERS Go4Hybrid, Berlin, 2015 21 /30




BOUNDARY LAYER: DIFFERENT X

Term in k eq.

3X 10 ~ 1004,

o)

_mM

y [
1 -200
0 -300
0 5 10 0 0.5 1
X/(sin )//5
—  X¢/0 = 0.125; x/din = 0.06. o: Production
—= Xtr/0in = 1.25; term, x¢ /0in = 0.125
- = X¢/0in = 2.5 —_ commutation term.

(x¢r/0 = 0.125,1.25,2.5)
Arrow shows increasing xi,
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COMMUTATION TERMS IN THE (U)RANS REGION?

Xtr
o
U LES
7wt S
N L RANS T [0
L. L ;
= .

Go4Hybrid, Berlin, 2015
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COMMUTATION TERMS IN THE (U)RANS REGION?

Xtr
o
U LES
a,v,w &
CRANS T [0

<
| G
A
'\
v

Go4Hybrid, Berlin, 2015
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COMMUTATION TERMS IN THE (U)RANS REGION?

Xtr
o
U LES
a,v,w &
CRANS T [0

<
| G
A
'\
v

» Argument for using commutation terms in the (U)RANS region:

Vi URANS <K< Vt RANS

Go4Hybrid, Berlin, 2015
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BOUNDARY LAYER: COMMUTATION TERM OR NOT?

BLUE LINES: commutation terms in the (U)RANS region
RED LINES: no commutation terms in the (U)RANS region

Turbulent viscosity

x10 ~

mw oAt cgeigomeae- 0.2

1 -
= 0.05
20 1 2 3 zzzZZllE-
% 5 10 % 01 02 03
x/8in y/bin

solid lines: x/d;, = 0.06
dashed lines: x/d;, = 2.35
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CONCLUSIONS

» A novel method for prescribing inlet modelled turbulent quantities
(k,e,w) has been presented

> It is based on the non-commutation between the divergence and the
filter operators

» No tuning constants

> It is best to impose the commutation terms in one grid plane adjacent
to the inlet
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THREE-DAY CFD COURSE AT CHALMERS

» Unsteady Simulations for Industrial Flows: LES, DES, hybrid
LES-RANS and URANS

» O0-11 November 2015 at Chalmers, Gothenburg, Sweden

» Max 16 participants

» 50% lectures and 50% workshops in front of a PC

» Registration deadline: 10 October 2015

» For info, see http://www.tfd.chalmers.se/~lada/cfdkurs/cfdkurs.html
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