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DES — Detached-Eddy Simulations

◮ Problem:
◮ the flow in the RANS region is highly unsteady (i.e. URANS)
◮ this means that RANS turbulence models (developed for

steady flow) are not accurate

◮ Solution:
◮ solve the steady equations in the RANS region
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Figure: Channel flow. : DES; ; 1D steady RANS.
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◮The interface, δI (x), is defined by the usual DES switch

FDES = max

{

Lt

∆
, 1

}

= max

{

k1/2/(Cµω)

∆
, 1

}



Momentum Equations
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Time Averaging

◮Subscript T indicates averaging time (memory = T )

〈φ(t)〉T =
1

T

∫ t

−∞

φ(τ) exp(−(t − τ)/T )dτ ⇒

〈φ〉tT ≡ 〈φ〉T = a〈φ〉t−∆t
T + (1− a)φt

a = exp(−∆t/T ).

τr = max(0.1k/ε,∆t)



Numerical Method: Finite Volume Methods

◮ CALC-BFC [6]

◮ 2D RANS solver

◮ Staggered grid

◮ SIMPLEC

◮ ū, v̄ , w̄ : 2nd order upwind

◮ k & ω: Hybrid 1st order

◮ Steady

◮ CALC-LES [5]

◮ 3D DES solver

◮ Collocated grid

◮ Pressure-velocity: fractional step

◮ ū, v̄ , w̄ : Central differences (CDS)

◮ k & ω: Hybrid 1st order upwind/CDS

◮ Crank-Nicholson in time



Turbulence Models

wall

Steady RANS solver

x

y

drift term

◮ EARSM (Explicit Algebraic Stress
Model) [9]

◮ coupled to Wilcox k − ω model [10]
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Coupling in the RANS Solver
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Figure: Cell j in RANS solver adjacent to the interface.

◮ 〈p̄LESj+1 〉T , 〈ū
LES
j+1 〉T , at the LES-RANS interface are used as a

boundary condition for the RANS solver in the wall region

◮ The wall-normal velocity, v̄RANS
j , is solved for using the

pressure at node j + 1.
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First Test Case: Channel flow

◮ We denote the method NZ S-DES (Non-Zonal approach using
Steady RANS coupled to DES)

◮ Reynolds number is Reτ = 8000.

◮ A 32× 96× 32 mesh is used

◮ xmax = 3.2, zmax = 1.6, 15% stretching in y direction



Channel flow: Velocity
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Figure: Channel flow. NZ S-DES compared with standard DES . :
DES solver in NZ S-DES ; : RANS solver in NZ S-DES ; :
Standard DES; +: Reichardt’s law,
U+ = 1

κ
ln(1− 0.4y+) + 7.8 [1− exp (−y+/11)− (y+/11) exp (−y+/3)].



Channel flow: Shear Stresses
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(b) NZ S-DES .

Figure: Vertical black dashed lines show RANS-LES interface. :
resolved; : viscous + modeled; : total. : viscous plus
modeled in RANS solver (EARSM) in NZ S-DES .



Channel flow: Forces
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Shear Stresses Including Drift Term
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Figure: Vertical black dashed lines show RANS-LES interface. :
resolved; : viscous + modeled; : total. : viscous plus
modeled in RANS solver (EARSM) in NZ S-DES .



Flat-Plate Boundary Layer

◮ Reθ = 6100.

◮ Mesh: 1024 × 160 × 64 cells (x , y , z)

◮ ∆z+in = 85 and ∆x+in = 280.

◮ Anisotropic, synthetic turbulence at inlet [3, 1].

◮ Commutation terms in the k and ω equations are used at
inlet [4, 1].



Skin Friction and Velocities
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(b) Mean velocity. Lower lines: x/δin
Reθ = 8000; upper lines: x/δin =
Reθ = 10 500. + DNS at Reθ = 8000.

Figure: : NZ S-DES ; : Standard DES; : RANS solver in
NZ S-DES .



Shear Stresses
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Figure: x/δin = 75,Reθ = 10 200. : resolved; : viscous plus
modeled; : total; : viscous plus modeled in RANS solver
(EARSM) in NZ S-DES ; + DNS at Reθ = 8 000



Third Test Case: Hump flow
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Figure: The domain of the hump. zmax = 0.3.

◮ The Reynolds number of the hump flow is Rec = 936 000.

◮ The mesh has 648× 108× 64 cells (x , y , z) with ∆t = 0.0015

◮ Grid from NASA workshop1; refined near the inlet and outlet.

◮ Inlet is located at x = −2.1 and the outlet at x = 4.0,

◮ Experiments by [8, 7]

1https://turbmodels.larc.nasa.gov/nasahump val.html



Pressure and Skin Friction
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Figure: Pressure and skin friction. : NZ S-DES ; : Standard
DES; : RANS solver in NZ S-DES . +: expts. [8, 7]



Velocities
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Figure: : NZ S-DES ; : Standard DES; : RANS solver



Shear Stresses
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Figure: : NZ S-DES ; : Standard DES; : RANS solver



Forces
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Conclusions

◮ A new steady RANS coupled to DES (N-Z S-DES) is
proposed.

◮ Very good results for channel flow and flat-plate boundary
layer (much better than standard DES)

◮ Hump flow: similar results as standard DES

◮ The new model is very robust regarding location of
RANS-LES interface, 50 < y+ < 200 (not shown here)

◮ EARSM is used in the RANS solver: it is found that k − ω
performs equally well (not shown here)

◮ The 2D RANS solver increase the CPU by 10%

◮ Future development: replace full RANS solver with
boundary-layer solver prescribing the pressure gradient from
the DES solver [2]
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