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DES — DETACHED-EDDY SIMULATIONS

» Problem:

» the flow in the RANS region is highly unsteady (i.e. URANS)
» this means that RANS turbulence models (developed for
steady flow) are not accurate

» Solution:
> solve the steady equations in the RANS region
Turbulent viscosity
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F1cURE: Channel flow. —: DES; ——; 1D steady RANS.
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FI1GURE: Grey color indicates the solver that drives the flow



TWO SOLVERS

Steady RANS solver DES solver
drift term
6/(x)
y I e = B e D e
drift term
X
wall wall

FI1GURE: Grey color indicates the solver that drives the flow

» The interface, §;(x), is defined by the usual DES switch

B Ly B kl/z/(CHw)
FDES = maX{Z,l} = maX{T,l



MOMENTUM EQUATIONS
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TIME AVERAGING

»Subscript T indicates averaging time (memory = T)

(p(t))T = %/_t o(r)exp(—(t — 1)/ T)dT =

() = (0)1 = al) 72" + (1 — a)o"
a=exp(—At/T).
7, = max(0.1k/e, At)



NUMERICAL METHOD: FINITE VOLUME METHODS
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CALC-BFC [6]

2D RANS solver
Staggered grid

SIMPLEC

u, v, w: 2nd order upwind
k & w: Hybrid 15t order
Steady
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CALC-LES [5]

3D DES solver

Collocated grid

Pressure-velocity: fractional step
u, v, w: Central differences (CDS)
k & w: Hybrid 15t order upwind/C

Crank-Nicholson in time



TURBULENCE MODELS

Steady RANS solver DES solver
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> EARSM (Explicit Algebraic Stress » DES k —w model
Model) [9]

> coupled to Wilcox k — w model [10]



COUPLING IN THE RANS SOLVER
o/ +1
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F1GURE: Cell j in RANS solver adjacent to the interface.

> <bijlS>T, (GLES) 7, at the LES-RANS interface are used as a

J+1
boundary condition for the RANS solver in the wall region
> The wall-normal velocity, ¥**">, is solved for using the

pressure at node j + 1.
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FirsT TEST CASE: CHANNEL FLOW

» We denote the method NZ S-DES (Non-Zonal approach using
Steady RANS coupled to DES)

» Reynolds number is Re; = 8000.
» A 32 x 96 x 32 mesh is used
P Xmax = 3.2, Zmax = 1.6, 15% stretching in y direction



CHANNEL FLOW: VELOCITY
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F1cURE: Channel flow. NZ S-DES compared with standard DES. =
DES solver in NZ S-DES; = =: RANS solver in NZ S-DES; =- =

Standard DES; +: Reichardt’s law,
Ut = % In(1 —0.4y")+7.8[1 —exp(—yt/11) — (y*/11)exp(—y ™ /3)].



CHANNEL FLOW: SHEAR STRESSES
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FIGURE: Vertical black dashed lines show RANS-LES interface. —:
resolved; =« =: viscous + modeled; == : total. —=: viscous plus
modeled in RANS solver (EARSM) in NZ S-DES.



CHANNEL FLOW: FORCES
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SHEAR STRESSES INCLUDING DRIFT TERM
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. total. == viscous plus

resolved; == : viscous + modeled; mm :
modeled in RANS solver (EARSM) in NZ S-DES.



FLAT-PLATE BOUNDARY LAYER

Rey = 6100.

Mesh: 1024 x 160 x 64 cells (x, y, z)

Az;: = 85 and Axi’,': = 280.

Anisotropic, synthetic turbulence at inlet [3, 1].
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Commutation terms in the k and w equations are used at
inlet [4, 1].



SKIN FRICTION AND VELOCITIES
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FIGURE: === : NZ S-DES; =:=": Standard DES; = =: RANS solver in
NZ S-DES.



SHEAR STRESSES
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FIGURE: x/d; = 75,Reg = 10200. —— : resolved; —- = viscous plus

modeled; == : total; ——: viscous plus modeled in RANS solver
(EARSM) in NZ S-DES; + DNS at Rey = 8000



THIRD TEST CASE: HUMP FLOW
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FIGURE: The domain of the hump. z.x = 0.3.

» The Reynolds number of the hump flow is Re. = 936 000.

» The mesh has 648 x 108 x 64 cells (x, y, z) with At = 0.0015
» Grid from NASA WOI’kShOpl; refined near the inlet and outlet.
» Inlet is located at x = —2.1 and the outlet at x = 4.0,

» Experiments by [8, 7]

https://turbmodels.larc.nasa.gov/nasahump_val.html



PRESSURE AND SKIN FRICTION
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(A) Pressure m=—: +6% (B) Skin friction.
FIGURE: Pressure and skin friction. =——: NZ S-DES; —-=: Standard

DES; ==: RANS solver in NZ S-DES. +: expts. [8, 7]



VELOCITIES
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SHEAR STRESSES
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FIGURE: === : NZ S-DES; =:=: Standard DES; = =: RANS solver



FORCES
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CONCLUSIONS

>

>

A new steady RANS coupled to DES (N-Z S-DES) is
proposed.

Very good results for channel flow and flat-plate boundary
layer (much better than standard DES)

Hump flow: similar results as standard DES

The new model is very robust regarding location of
RANS-LES interface, 50 < y* < 200 (not shown here)
EARSM is used in the RANS solver: it is found that kK — w
performs equally well (not shown here)

The 2D RANS solver increase the CPU by 10%

Future development: replace full RANS solver with

boundary-layer solver prescribing the pressure gradient from
the DES solver [2]
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