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(ID)DES: physical meaning of ψ

C k = Pk + Dk − ψε k − equation

C ε = Cε1
ε
k
Pk + Dε − Cε2

ε2

k
ε− equation

ψ = max
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1, k3/2/ε
CDES∆max
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◮ To control – limit – how the fast energy partition (i.e. the
cut-off) changes in physical space

◮ i.e. limit
∂κc
∂xj

◮ by limiting ψ = max

(

1,
k3/2/ε

CDES∆max

)

◮ i.e. limiting the dissipation term, ψε, in the k equation
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◮ Along mean streamlines, kM and εM are assumed to be in

equilibrium. We get
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0 = δεM

◮ 5 Eqns, 7 Unknowns: δεM , δPk , δψ, δkM , δεM , δDk , δDε
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◮ Boussinesq and neglecting quadratic perturbation terms gives
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◮ 7 Eqns, 7 Unknowns: The perturbation analysis gives [4, 2]

δψ

ψ
=

3δkM
kM

(

1−
Cε2

Cε1ψ

)

, ψ = max

(

1,
k3/2/ε

CDES∆max

)

◮ For ψ < Cε2/Cε1: an increase in ψ (a decrease in ∆max) ⇒
negative δkM (i.e. less modeled and more resolved)

◮ But for ψ > Cε2/Cε1 this relation is reversed.

◮ Hence we introduce a limit: ψ ≤ Cε2/Cε1 ≡ 1.9/1.5 = 1.27
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◮ Same limit: ψ ≤ Cε2/Cε1
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◮ The AKN low-Reynolds number of Abe et al. [1] is used as
underlying RANS model
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∂t
+
∂ūjk

∂xj
=

∂

∂xj

[(
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νt
σk

)

∂k

∂xj

]

+ Pk − ψε

∂ε
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+
∂ūjε

∂xj
=

∂

∂xj

[(

ν +
νt
σε

)

∂ε

∂xj

]

+ Cε1f1Pk

ε

k
− Cε2

ε2

k
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Cε1 = 1.5, Cε2 = 1.9, Cµ = 0.09

νt = Cµfµ
k2

ε
, σk = 1.4, σε = 1.4

◮ together with IDDES of Shur et. al [10]

◮ With ψ ≤ Cε2/Cε1 is called IDDES-PC (Partition Control)
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Figure: : IDDES-PC model; : IDDES; Markers: DNS [8]
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hump flow. Velocities.
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hump flow. Shear stresses.
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hump flow. Turbulent Viscosity and 〈u′u′〉.
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is proposed which reads

◮ ψ ≤ Cε2/Cε1 ≡ 1.9/1.5 = 1.27

◮ The limiter is derived using perturbation analysis which
assumes

∂(δkM )

∂xj
=
δkM
kM

∂kM
∂xj

◮ The limiter is shown to reduce ∂(δkM )
∂xj

◮ Good results are obtained (better than standard IDDES for
the hump flow)
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