
Detached Eddy Simulations: Analysis
of a limit on the dissipation term for
reducing spectral energy transfer at

cut-off

Lars Davidson∗, Christophe Friess∗∗

∗Division of Fluid Dynamics
Dept. of Mechanics and Maritime Sciences

SE-412 96 Gothenburg, Sweden

∗∗Aix-Marseille Université
CNRS, Centrale Marseille

M2P2 UMR 7340, 13451, Marseille, France

November 26, 2021



(ID)DES: physical meaning of ψ

C k = Pk + Dk − ψε k − equation

C ε = Cε1
ε
k
Pk + Dε − Cε2

ε2

k
ε− equation

ψ = max
(

1, k3/2/ε
CDES∆max

)



Partition of Turbulent Kinetic Energy

κ

E

κc

cut-offresolved
scales

SGS

ψ = max
(

1, k3/2/ε
CDES∆max

)

εsgs

δ∆max < 0

δψ > 0

δkM < 0

Figure: Energy spectrum.



Object of the Present Work



Object of the Present Work

◮ To control – limit – how the fast energy partition (i.e. the
cut-off) changes in physical space



Object of the Present Work

◮ To control – limit – how the fast energy partition (i.e. the
cut-off) changes in physical space

◮ i.e. limit
∂κc
∂xj



Object of the Present Work

◮ To control – limit – how the fast energy partition (i.e. the
cut-off) changes in physical space

◮ i.e. limit
∂κc
∂xj

◮ by limiting ψ = max

(

1,
k3/2/ε

CDES∆max

)



Object of the Present Work

◮ To control – limit – how the fast energy partition (i.e. the
cut-off) changes in physical space

◮ i.e. limit
∂κc
∂xj

◮ by limiting ψ = max

(

1,
k3/2/ε

CDES∆max

)

◮ i.e. limiting the dissipation term, ψε, in the k equation



Perturbation Analysis



Perturbation Analysis
◮ Along mean streamlines, kM and εM are assumed to be in

equilibrium. We get

◮

dkM

dt
= Pk + Dk − ψεM = 0

dεM
dt

= Cε1
εM
kM

Pk +Dε − Cε2
ε2M
kM

= 0



Perturbation Analysis
◮ Along mean streamlines, kM and εM are assumed to be in

equilibrium. We get

◮

dkM

dt
= Pk + Dk − ψεM = 0

dεM
dt

= Cε1
εM
kM

Pk +Dε − Cε2
ε2M
kM

= 0

◮ For infinitesimal perturbations we get

0 = δPk + δDk − εMδψ

0 = Cε1
εM
kM

Pk

(

δPk

Pk
−
δkM
kM

)

+ Cε2
ε2M
kM

(

δkM
kM

)

+ δDε



Perturbation Analysis
◮ Along mean streamlines, kM and εM are assumed to be in

equilibrium. We get

◮

dkM

dt
= Pk + Dk − ψεM = 0

dεM
dt

= Cε1
εM
kM

Pk +Dε − Cε2
ε2M
kM

= 0

◮ For infinitesimal perturbations we get

0 = δPk + δDk − εMδψ

0 = Cε1
εM
kM

Pk

(

δPk

Pk
−
δkM
kM

)

+ Cε2
ε2M
kM

(

δkM
kM

)

+ δDε

0 = δεM



Perturbation Analysis
◮ Along mean streamlines, kM and εM are assumed to be in

equilibrium. We get

◮

dkM

dt
= Pk + Dk − ψεM = 0

dεM
dt

= Cε1
εM
kM

Pk +Dε − Cε2
ε2M
kM

= 0

◮ For infinitesimal perturbations we get

0 = δPk + δDk − εMδψ

0 = Cε1
εM
kM

Pk

(

δPk

Pk
−
δkM
kM

)

+ Cε2
ε2M
kM

(

δkM
kM

)

+ δDε

0 = δεM

◮ 5 Eqns, 7 Unknowns: δεM , δPk , δψ, δkM , δεM , δDk , δDε



Perturbation Analysis



Perturbation Analysis

◮ Dk , Dε?



Perturbation Analysis

◮ Dk , Dε?

◮ Boussinesq and neglecting quadratic perturbation terms gives



Perturbation Analysis

◮ Dk , Dε?

◮ Boussinesq and neglecting quadratic perturbation terms gives

◮

Dk + δDk =
Cµ

σk

∂

∂xj

[

k2M
εM

∂kM
∂xj

+
k2M
εM

∂(δkM )

∂xj
+

2(δkM )kM
εM

∂kM
∂xj

]



Perturbation Analysis

◮ Dk , Dε?

◮ Boussinesq and neglecting quadratic perturbation terms gives

◮

Dk + δDk =
Cµ

σk

∂

∂xj

[

k2M
εM

∂kM
∂xj

+
k2M
εM

∂(δkM )

∂xj
+

2(δkM )kM
εM

∂kM
∂xj

]

Following [5], we assume that δkM/kM does not vary in space, i.e.



Perturbation Analysis

◮ Dk , Dε?

◮ Boussinesq and neglecting quadratic perturbation terms gives

◮

Dk + δDk =
Cµ

σk

∂

∂xj

[

k2M
εM

∂kM
∂xj

+
k2M
εM

∂(δkM )

∂xj
+

2(δkM )kM
εM

∂kM
∂xj

]

Following [5], we assume that δkM/kM does not vary in space, i.e.

∂(δkM/kM)

∂xj
= 0 ⇒

∂(δkM )

∂xj
=
δkM
kM

∂kM
∂xj

⇒



Perturbation Analysis

◮ Dk , Dε?

◮ Boussinesq and neglecting quadratic perturbation terms gives

◮

Dk + δDk =
Cµ

σk

∂

∂xj

[

k2M
εM

∂kM
∂xj

+
k2M
εM

∂(δkM )

∂xj
+

2(δkM )kM
εM

∂kM
∂xj

]

Following [5], we assume that δkM/kM does not vary in space, i.e.

∂(δkM/kM)

∂xj
= 0 ⇒

∂(δkM )

∂xj
=
δkM
kM

∂kM
∂xj

⇒

δDk

Dk
=

3δkM
kM

δDε

Dε
=

2δkM
kM



Perturbation Analysis: Final Step



Perturbation Analysis: Final Step

◮ 7 Eqns, 7 Unknowns:



Perturbation Analysis: Final Step

◮ 7 Eqns, 7 Unknowns: The perturbation analysis gives [4, 2]



Perturbation Analysis: Final Step

◮ 7 Eqns, 7 Unknowns: The perturbation analysis gives [4, 2]

δψ

ψ
=

3δkM
kM

(

1−
Cε2

Cε1ψ

)

, ψ = max

(

1,
k3/2/ε

CDES∆max

)



Perturbation Analysis: Final Step

◮ 7 Eqns, 7 Unknowns: The perturbation analysis gives [4, 2]

δψ

ψ
=

3δkM
kM

(

1−
Cε2

Cε1ψ

)

, ψ = max

(

1,
k3/2/ε

CDES∆max

)

◮ For ψ < Cε2/Cε1: an increase in ψ (a decrease in ∆max) ⇒
negative δkM (i.e. less modeled and more resolved)



Perturbation Analysis: Final Step

◮ 7 Eqns, 7 Unknowns: The perturbation analysis gives [4, 2]

δψ

ψ
=

3δkM
kM

(

1−
Cε2

Cε1ψ

)

, ψ = max

(

1,
k3/2/ε

CDES∆max

)

◮ For ψ < Cε2/Cε1: an increase in ψ (a decrease in ∆max) ⇒
negative δkM (i.e. less modeled and more resolved)

◮ But for ψ > Cε2/Cε1 this relation is reversed.



Perturbation Analysis: Final Step

◮ 7 Eqns, 7 Unknowns: The perturbation analysis gives [4, 2]

δψ

ψ
=

3δkM
kM

(

1−
Cε2

Cε1ψ

)

, ψ = max

(

1,
k3/2/ε

CDES∆max

)

◮ For ψ < Cε2/Cε1: an increase in ψ (a decrease in ∆max) ⇒
negative δkM (i.e. less modeled and more resolved)

◮ But for ψ > Cε2/Cε1 this relation is reversed.

◮ Hence we introduce a limit: ψ ≤ Cε2/Cε1



Perturbation Analysis: Final Step

◮ 7 Eqns, 7 Unknowns: The perturbation analysis gives [4, 2]

δψ

ψ
=

3δkM
kM

(

1−
Cε2

Cε1ψ

)

, ψ = max

(

1,
k3/2/ε

CDES∆max

)

◮ For ψ < Cε2/Cε1: an increase in ψ (a decrease in ∆max) ⇒
negative δkM (i.e. less modeled and more resolved)

◮ But for ψ > Cε2/Cε1 this relation is reversed.

◮ Hence we introduce a limit: ψ ≤ Cε2/Cε1 ≡ 1.9/1.5 = 1.27



Partition of Turbulent Kinetic Energy

κ

E

κc

cut-offresolved
scales

SGS

ψ = max
(

1, k3/2/ε
CDES∆max

)

εsgs

δ∆max < 0

δψ > 0

δkM < 0

Figure: Energy spectrum.



Perturbation Analysis: Retaining Convection



Perturbation Analysis: Retaining Convection
◮ Above we set the convection to zero, i.e.

dkM

dt
= Pk + Dk − ψεM = 0

dεM
dt

= Cε1
εM
kM

Pk +Dε − Cε2
ε2M
kM

= 0



Perturbation Analysis: Retaining Convection
◮ Above we set the convection to zero, i.e.

dkM

dt
= Pk + Dk − ψεM = 0

dεM
dt

= Cε1
εM
kM

Pk +Dε − Cε2
ε2M
kM

= 0

◮ Now let’s keep it and neglect the diffusion (Dk = Dε = 0), i.e.

Pk − C k − ψεM = 0, Cε1
εM
kM

Pk − C ε − Cε2
ε2M
kM

= 0



Perturbation Analysis: Retaining Convection
◮ Above we set the convection to zero, i.e.

dkM

dt
= Pk + Dk − ψεM = 0

dεM
dt

= Cε1
εM
kM

Pk +Dε − Cε2
ε2M
kM

= 0

◮ Now let’s keep it and neglect the diffusion (Dk = Dε = 0), i.e.

Pk − C k − ψεM = 0, Cε1
εM
kM

Pk − C ε − Cε2
ε2M
kM

= 0

◮ The perturbation analysis gives [2]

δψ

ψ
= δkM

kM

(

1− Cε2
Cε1ψ

)

Dk = Dε = 0



Perturbation Analysis: Retaining Convection
◮ Above we set the convection to zero, i.e.

dkM

dt
= Pk + Dk − ψεM = 0

dεM
dt

= Cε1
εM
kM

Pk +Dε − Cε2
ε2M
kM

= 0

◮ Now let’s keep it and neglect the diffusion (Dk = Dε = 0), i.e.

Pk − C k − ψεM = 0, Cε1
εM
kM

Pk − C ε − Cε2
ε2M
kM

= 0

◮ The perturbation analysis gives [2]

δψ

ψ
= δkM

kM

(

1− Cε2
Cε1ψ

)

Dk = Dε = 0

δψ

ψ
= 3 δkM

kM

(

1− Cε2
Cε1ψ

)

C k = C ε = 0



Perturbation Analysis: Retaining Convection
◮ Above we set the convection to zero, i.e.

dkM

dt
= Pk + Dk − ψεM = 0

dεM
dt

= Cε1
εM
kM

Pk +Dε − Cε2
ε2M
kM

= 0

◮ Now let’s keep it and neglect the diffusion (Dk = Dε = 0), i.e.

Pk − C k − ψεM = 0, Cε1
εM
kM

Pk − C ε − Cε2
ε2M
kM

= 0

◮ The perturbation analysis gives [2]

δψ

ψ
= δkM

kM

(

1− Cε2
Cε1ψ

)

Dk = Dε = 0

δψ

ψ
= 3 δkM

kM

(

1− Cε2
Cε1ψ

)

C k = C ε = 0

◮ Same limit: ψ ≤ Cε2/Cε1



The Turbulence Model



The Turbulence Model

◮ The AKN low-Reynolds number of Abe et al. [1] is used as
underlying RANS model

∂k

∂t
+
∂ūjk

∂xj
=

∂

∂xj

[(

ν +
νt
σk

)

∂k

∂xj

]

+ Pk − ψε

∂ε

∂t
+
∂ūjε

∂xj
=

∂

∂xj

[(

ν +
νt
σε

)

∂ε

∂xj

]

+ Cε1f1Pk

ε

k
− Cε2

ε2

k

Cε1 = 1.5, Cε2 = 1.9, Cµ = 0.09

νt = Cµfµ
k2

ε
, σk = 1.4, σε = 1.4



The Turbulence Model

◮ The AKN low-Reynolds number of Abe et al. [1] is used as
underlying RANS model

∂k

∂t
+
∂ūjk

∂xj
=

∂

∂xj

[(

ν +
νt
σk

)

∂k

∂xj

]

+ Pk − ψε

∂ε

∂t
+
∂ūjε

∂xj
=

∂

∂xj

[(

ν +
νt
σε

)

∂ε

∂xj

]

+ Cε1f1Pk

ε

k
− Cε2

ε2

k

Cε1 = 1.5, Cε2 = 1.9, Cµ = 0.09

νt = Cµfµ
k2

ε
, σk = 1.4, σε = 1.4

◮ together with IDDES of Shur et. al [10]

◮ With ψ ≤ Cε2/Cε1 is called IDDES-PC (Partition Control)



The Numerical Method



The Numerical Method

◮ The Python finite volume code pyCALC-LES [3] is used.



The Numerical Method

◮ The Python finite volume code pyCALC-LES [3] is used.

◮ Fully vectorized (i.e. no for loops).



The Numerical Method

◮ The Python finite volume code pyCALC-LES [3] is used.

◮ Fully vectorized (i.e. no for loops).

◮ Fractional step. For velocities, second-order central
differencing in space and Crank-Nicolson in time.



The Numerical Method

◮ The Python finite volume code pyCALC-LES [3] is used.

◮ Fully vectorized (i.e. no for loops).

◮ Fractional step. For velocities, second-order central
differencing in space and Crank-Nicolson in time.

◮ For k and ε, hybrid central/upwind scheme



The Numerical Method

◮ The Python finite volume code pyCALC-LES [3] is used.

◮ Fully vectorized (i.e. no for loops).

◮ Fractional step. For velocities, second-order central
differencing in space and Crank-Nicolson in time.

◮ For k and ε, hybrid central/upwind scheme

◮ The discretized equations are solved with Python sparse
matrix solvers.



The Numerical Method

◮ The Python finite volume code pyCALC-LES [3] is used.

◮ Fully vectorized (i.e. no for loops).

◮ Fractional step. For velocities, second-order central
differencing in space and Crank-Nicolson in time.

◮ For k and ε, hybrid central/upwind scheme

◮ The discretized equations are solved with Python sparse
matrix solvers.

◮ The pyAMG solver [9] is used for the pressure Poisson
equation (very efficient)



The Numerical Method

◮ The Python finite volume code pyCALC-LES [3] is used.

◮ Fully vectorized (i.e. no for loops).

◮ Fractional step. For velocities, second-order central
differencing in space and Crank-Nicolson in time.

◮ For k and ε, hybrid central/upwind scheme

◮ The discretized equations are solved with Python sparse
matrix solvers.

◮ The pyAMG solver [9] is used for the pressure Poisson
equation (very efficient)



Channel flow, periodic b.c.

◮ Reτ = uτh/ν = 5200

◮ The mesh has 32× 96× 32 (x , y , z) cells ⇒
(∆x+,∆z+) = (800, 400).



Channel flow, periodic b.c.

◮ Reτ = uτh/ν = 5200

◮ The mesh has 32× 96× 32 (x , y , z) cells ⇒
(∆x+,∆z+) = (800, 400).

100 102
y +

0

10

20

U
+

IDDES-PC
IDDES
DNS

(a) Mean velocity.

2000 4000
y +

1.0

1.2

1.4

1.6
ψ

(b) ψ

2000 4000
y +

0

20

40

60

ν t
/ν

(c) Turbulent viscosity

Figure: : IDDES-PC model; : IDDES; Markers: DNS [8]



Channel flow inlet-outlet

◮ RANS inlet values on k and ε.



Channel flow inlet-outlet

◮ RANS inlet values on k and ε.

2000 4000
y +

0

1

2

3

4

k
+

IDDES-PC
IDDES

(a) Modeled k .

2000 4000
y +

1.0

1.5

2.0

2.5

ψ

(b) ψ.

2000 4000
y +

0

50

100

150

200

ν t
/ν

(c) Turbulent viscosity.

Figure: Profiles at x = δ, i.e. one half-channel width.



hump flow
◮ The Reynolds number is Rec = 936 000

◮ The spanwise extent is zmax = 0.2.

◮ The mesh has 582 × 128× 32 cells (x , y , z)



hump flow
◮ The Reynolds number is Rec = 936 000

◮ The spanwise extent is zmax = 0.2.

◮ The mesh has 582 × 128× 32 cells (x , y , z)

−2 0 2 4
x

0.0
0.5y

(a) Grid.

−1 0 1
x

−0.5

0.0

0.5

1.0

−Cp

(b) Pressure coefficient.

0 1
x

0.000

0.005
Cf

(c) Skin friction

Figure: : IDDES-PC model; . IDDES. Markers:
experiments [7, 6]



hump flow. Velocities.

0.0 0.5 1.0
U

0.00

0.05

0.10

0.15

0.20

y
−
y w

al
l

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.001

0.002

0.003

0.004

(a) x = 0.65.

0.0 0.5 1.0
U

0.00

0.05

0.10

0.15

0.20

y
−
y w

al
l

−0.2 −0.1 0.0
0.000

0.001

0.002

0.003

(b) x = 1.0.

0.0 0.5 1.0
U

0.00

0.05

0.10

0.15

0.20

y
−
y w

al
l

0.0 0.1 0.2 0.3 0.4
0.000

0.001

0.002

0.003

0.004

(c) x = 1.30.

Figure: : IDDES-PC model; . IDDES. Markers:
experiments [7, 6]



hump flow. Shear stresses.

−0.004 0.000 0.0040.00

0.01

0.02

y
−
y w

al
l

(a) x = 0.65.

−0.02 0.000.00

0.05

0.10

0.15

0.20

y
−
y w

al
l

(b) x = 1.0.

−0.015 0.0000.00

0.05

0.10

0.15

0.20

y
−
y w

al
l

(c) x = 1.30.

Figure: : IDDES-PC model; . IDDES. Markers:
experiments [7, 6]



hump flow. Turbulent Viscosity and 〈u′u′〉.

−2 0 2 4
x

0.0
0.5y

(a) Grid.

0.00 0.01 0.02 0.03
2⟨k⟩⟨3 ⟨u′u′⟩

0.0

0.1

0.2

y resolve⟩

mo⟩ele⟩

(b) Streamwise fluctuations.

0 10 20 30
νt/ν

0.00

0.05

0.10

0.15

0.20

y
−
y w

al
l

(c) Turbulent viscosity.

Figure: x = 0. : IDDES-PC model; . IDDES.



Conclusions

◮ A limiter on ψ = max
(

1, k3/2/ε
CDES∆max

)

is proposed which reads



Conclusions

◮ A limiter on ψ = max
(

1, k3/2/ε
CDES∆max

)

is proposed which reads

◮ ψ ≤ Cε2/Cε1



Conclusions

◮ A limiter on ψ = max
(

1, k3/2/ε
CDES∆max

)

is proposed which reads

◮ ψ ≤ Cε2/Cε1 ≡ 1.9/1.5 = 1.27



Conclusions

◮ A limiter on ψ = max
(

1, k3/2/ε
CDES∆max

)

is proposed which reads

◮ ψ ≤ Cε2/Cε1 ≡ 1.9/1.5 = 1.27

◮ The limiter is derived using perturbation analysis which
assumes

∂(δkM )

∂xj
=
δkM
kM

∂kM
∂xj



Conclusions

◮ A limiter on ψ = max
(

1, k3/2/ε
CDES∆max

)

is proposed which reads

◮ ψ ≤ Cε2/Cε1 ≡ 1.9/1.5 = 1.27

◮ The limiter is derived using perturbation analysis which
assumes

∂(δkM )

∂xj
=
δkM
kM

∂kM
∂xj

◮ The limiter is shown to reduce ∂(δkM )
∂xj



Conclusions

◮ A limiter on ψ = max
(

1, k3/2/ε
CDES∆max

)

is proposed which reads

◮ ψ ≤ Cε2/Cε1 ≡ 1.9/1.5 = 1.27

◮ The limiter is derived using perturbation analysis which
assumes

∂(δkM )

∂xj
=
δkM
kM

∂kM
∂xj

◮ The limiter is shown to reduce ∂(δkM )
∂xj

◮ Good results are obtained (better than standard IDDES for
the hump flow)



References I

[1] K. Abe, T. Kondoh, and Y. Nagano. A new turbulence model
for predicting fluid flow and heat transfer in separating and
reattaching flows - 1. Flow field calculations. Int. J. Heat
Mass Transfer, 37(1):139–151, 1994.

[2] L. Davidson. Fluid mechanics, turbulent flow and turbulence
modelingÃ. eBook, Division of Fluid Dynamics, Dept. of
Mechanics and Maritime Sciences, Chalmers University of
Technology, Gothenburg, 2014.

[3] L. Davidson. pyCALC-LES: a Python code for DNS, LES and
Hybrid LES-RANSÃ. Division of Fluid Dynamics, Dept. of
Mechanics and Maritime Sciences, Chalmers University of
Technology, Gothenburg, 2021.

[4] C. Friess and L. Davidson. A formulation of PANS able to
mimic IDDES. International Journal of Heat and Fluid Flow,
86(108666), 2020.

http://www.tfd.chalmers.se/~lada/postscript_files/py-calc-les.pdf
http://www.tfd.chalmers.se/~lada/postscript_files/py-calc-les.pdf


References II

[5] Ch. Friess, R. Manceau, and T.B. Gatski. Toward an
equivalence criterion for hybrid RANS/LES methods.
International Journal of Heat and Fluid Flow, 122:233–246,
2015.

[6] D. Greenblatt, K. B. Paschal, C.-S. Yao, and J. Harris. A
separation control CFD validation test case Part 1: Zero
efflux oscillatory blowing. AIAA-2005-0485, 2005.

[7] D. Greenblatt, K. B. Paschal, C.-S. Yao, J. Harris, N. W.
Schaeffler, and A. E. Washburn. A separation control CFD
validation test case. Part 1: Baseline & steady suction.
AIAA-2004-2220, 2004.

[8] M. Lee and R. D. Moser. Direct numerical simulation of
turbulent channel flow up to Reτ ≈ 5200. Journal of Fluid
Mechanics, 774:395–415, 2015.

[9] L. N. Olson and J. B. Schroder. PyAMG: Algebraic multigrid
solvers in Python v4.0, 2018. Release 4.0.



References III

[10] M. L. Shur, P. R. Spalart, M. Kh. Strelets, and A. K. Travin.
A hybrid RANS-LES approach with delayed-DES and
wall-modelled LES capabilities. International Journal of Heat
and Fluid Flow, 29:1638–1649, 2008.


	References

