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> i.e. limiting the dissipation term, v, in the k equation
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PERTURBATION ANALYSIS

» Along mean streamlines, ks and ey are assumed to be in
equilibrium. We get

>
M~ Pk DK ey =
ar + Yey =0
TEM . SMpky pe M —
dt elk + a2kM

» For infinitesimal perturbations we get
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» 5 Eqns, 7 Unknowns: dep, 5P, 64, Skyy, depp, 6DK, 6DF
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> DK, D=7
» Boussinesq and neglecting quadratic perturbation terms gives
>
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» 7 Eqns, 7 Unknowns: The perturbation analysis gives [4, 2]
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» For 1) < C.2/C.1: an increase in ¢ (a decrease in Ap,ax) =
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» But for ¢ > C.o/C.; this relation is reversed.
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» Same limit: ¢ < Cp/Cq
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» The AKN low-Reynolds number of Abe et al. [1] is used as
underlying RANS model
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Ci1 = 15 Co=19, (,=009
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vy = Cf— or=14, o.=14

> together with IDDES of Shur et. al [10]
» With ¢ < C.o/C.q is called IDDES-PC (Partition Control)
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» Re. = u;h/v =5200

» The mesh has 32 x 96 x 32 (x, y, z) cells =
(Ax+, Az+) = (800,400).
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> The spanwise extent is z,,x = 0.2.
» The mesh has 582 x 128 x 32 cells (x, y, z)
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v

) is proposed which reads

» The limiter is derived using perturbation analysis which
assumes
O(0knm)  Skn Okm
Ox; ok Ox;
> 3(3km)

The limiter is shown to reduce T
J

» Good results are obtained (better than standard IDDES for
the hump flow)
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