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o LRN Damping functions, f, f,, as in [4]
o =10

@ LES region: f, =04

@ RANS region: f, = 1.0
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»Zonal RANS-LES: f, has a large gradient at the RANS-LES interface
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PANS: DERIVATION
@ The PANS k equation is derived by multiplying the RANS k equation
by fx. The left hand reads
Dktot
fy 1
ok (1)
where D/Dt = 0/0t + 1;0/0x;, ktot = k + kres (modeled plus resolved).

o If it is assumed that f, constant, Eq. 1 can be re-written as

Dk:ot Dfy kiot Dk k
fi = =—=, fk=
Dt Dt Dt ktot

()

@ If f is not constant, Eq. 2 must be written as (Girimaji & Wallin [2])

Dkeot  Dficktor Df _ Dk [, Df;
Dt Dt ©“Dt T Dt Dt

fi

@ This work presents models for the boxed term at RANS-LES
interfaces, i.e.
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PANS: DERIVATION
@ The PANS k equation is derived by multiplying the RANS k equation
by fx. The left hand reads
Dktot
fy 1
ok (1)
where D/Dt = 0/0t + 1;0/0x;, ktot = k + kres (modeled plus resolved).

o If it is assumed that f, constant, Eq. 1 can be re-written as

Dk:ot Dfy kiot Dk k
fi = =—=, fk=
Dt Dt Dt ktot

()

@ If f is not constant, Eq. 2 must be written as (Girimaji & Wallin [2])

Dkeot  Dficktor Df _ Dk [, Df;
Dt Dt ©“Dt T Dt Dt

fi

@ This work presents models for the boxed term at RANS-LES
interfaces, i.e.

> horizontal RANS-LES interface in boundary layer (channel flow)
» vertical RANS-LES interface in embedded LES (channel flow)
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INTERFACE MODEL 1

@ In [2], kot Dfy /Dt is represented by introducing an additional
turbulent viscosity, v, in the momentum equation

i( —..) S, — 1 81_1,' + 8Uj
axj VtrSij),  Sij = 5

8X_, aX,'
where P Df,  k Df
ktr =2 k k
Vtr |§|27 ktr Ufl‘|s| tot Dt fk Dt

@ The object of Py, is to decrease v; and facilitate growth of resolved
turbulence on the LES side of an interface

@ Hence, only v, < 0 is used which corresponds to Df/Dt < 0 (from
RANS to LES).

® v + vy > 0 in the momentum equation (but not in the k equation)
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INTERFACE MODEL 2

@ This model is identical to Model 1 except that k/fy is replaced by

ktot i.e.
k Dfy Dfy,
P — _ P A
ke T f Dt ke T Ol Dy
Model 1 Model 2

1._,_
kot = k + §<U;U,{>r.a

where subscript r.a. denotes running average.

@ In PANS, f, is defined as fx = k/kior

@ In post-processing it is usually found that fx > k/kior (approx. a
factor 4 Iarger) = |Pk:r|mode12 > |Pkn|model 1
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INTERFACE MODEL 3

o In Models 1 & 2, vy, = Py, /|3|*> which may cause numerical problems.
@ Model 3 does not involve vy,. The original term ko Dfy /Dt is used in
the k equation
o Adding the term
Df, ku. Df,
S et Bt
Dt (u,u,) Dt
in the momenum equation corresponds to the time-averaged term
uiu; Dfy k(u.u’) Dfy
2 Dt (. ul) Dt

Df,

:—< tot>—

Dt

in the ks equation.
@ However, this term causes numerical instability. Hence it is not used.

@ Only the term in the k equation, ki Dfy/Dt < 0, is used.
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INTERFACE MODELS: SUMMARY

o Models 1 & 2: additional turbulent viscosity, vy = Py, /|3]? < 0, in
P, and momentum equations

» Limit in momentum equations: v; + v > 0
k Dfy

» Model 1: P, = ——

kar fk Dt

Df
> Model 2: Py, = (kiog)r.o ok

naFt
@ Model 3: additional production term, Py, , in k equation without use
of Vr
Dfy
Pkt, = <ktot>r.aﬁ <0

@ Models 1-3 correspond to the non-commutivity in DES beteen
filtering and spatial derivative at RANS-LES interfaces (Hamba [3])
o _ o _onoF
Ox;  Ox; Ox; OA
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FuLLy DEVELOPED CHANNEL FLOw

@ The URANS and the LES regions.

LES, f, =0.4
y URANS, fk =1 Yint
wall

X
@ Re; = u:0/v =2000, Re = 4000 and Re = 8000

® Xmax = 3.2, Vmax = 2 and Zmax = 1.6.

@ 32 x 32 cells in the x — z plane

o N, = 80 cells (Re; =2000 and 4000) or N, = 96 (Re, = 8000)
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FuLLy DEVELOPED CHANNEL FLOW: RESULTS

Velocity Turbulent viscosity
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e: location of the computational cell centers.
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FuLLy DEVELOPED CHANNEL FLOW: RESULTS

Production terms in k eq

modeled & resolved stresses
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EMBEDDED CHANNEL FLOw
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0.95

5.45

@ Re; = u0/v =950
@ The domain size is 6.4 X 2 x 1.6 (x,y, z)
@ 128 x 80 x 64 cells.
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SYNTHETIC FLUCTUATIONS AT THE INTERFACE
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VELOCITY AND SKIN FRICTION

Velocity at x = 5.5 Friction velocity
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RESOLVED AND MODELED TURBULENCE

Streamwise fluctuation Turbulent viscosities
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PRODUCTION AT INTERFACE
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= Py + Pg,, Model ktotﬁ.
: Py, no interface model;
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CONCLUSIONS

@ Three interface models for horizontal (wall-parallel) and vertical
interfaces (embedded LES) have been presented:
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CONCLUSIONS

@ Three interface models for horizontal (wall-parallel) and vertical

interfaces (embedded LES) have been presented:
» LDk 3dded via v, to the k eq and mom eq (vt, +v: > 0): Model 1
fr Dt tr tr

> ktot% added via 14, to the k eq and mom eq (v, + v: > 0): Model 2
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CONCLUSIONS

@ Three interface models for horizontal (wall-parallel) and vertical
interfaces (embedded LES) have been presented:
- £ %ftk added via v, to the k eq and mom eq (v, + v+ > 0): Model 1
> Kiot Dk added via 14, to the k eq and mom eq (v, + v: > 0): Model 2
> kot 2 added no v, to the k eq (Model 3)
@ Model 2 works very well

@ Model 3 gives identical results to Model 2 (not shown in this
presentation)
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THREE-DAY CFD COURSE AT CHALMERS

@ Unsteady Simulations for Industrial Flows: LES, DES, hybrid
LES-RANS and URANS

29-31 October 2014 at Chalmers, Gothenburg, Sweden

Max 16 participants

50% lectures and 50% workshops in front of a PC

Registration deadline: 10 October 2014

For info, see http://www.tfd.chalmers.se/"lada/cfdkurs/cfdkurs.html

e © e ¢ ¢

CHALMERS ETMMI0, Marbella, 2014 17 / 19



REFERENCES 1

[1] DaviDSON, L.
A new approach to treat the RANS-LES interface in PANS.
In ETMMI10: 10th International ERCOFTAC Symposium on
Turbulence Modelling and Measurements (Marbella, Spain, 2014).

[2] GiriMAJI, S. S., AND WALLIN, S.
Closure modeling in bridging regions of variable-resolution (VR)
turbulence computations.
Journal of Turbulence 14, 1 (2013), 72 - 98.

[3] HAMBA, F.
Analysis of filtered Navier-Stokes equation for hybrid RANS/LES
simulation.
Physics of Fluids A 23, 015108 (2011).

www.tfd.chalmers.se/~lada CHALMERS ETMM10, Marbella, 2014 18 / 19




REFERENCES 11

[4] MA, J., PENG, S.-H., DAVIDSON, L., AND WANG, F.
A low Reynolds number variant of Partially-Averaged Navier-Stokes
model for turbulence.
International Journal of Heat and Fluid Flow 32, 3 (2011), 652-669.
10.1016/j.ijheatfluidflow.2011.02.001.

www.tfd.chalmers.se/~lada CHALMERS ETMM10, Marbella, 2014 19 / 19



