LARGE EDDY SIMULATIONS IN INDUSTRY

Lars Davidson Division of Fluid Dynamics Dept. of Mechanics and Maritime Sciences SE-412 96 Gothenburg Sweden www.tfd.chalmers.se/~lada

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

THREE-DAY CFD COURSE AT CHALMERS

This lecture is a condensed version of the course

- Unsteady Simulations for Industrial Flows: LES, DES, hybrid LES-RANS and URANS, 11-13 November 2019, http://www.cfd-sweden.se/
- Turbulence modeling, 8 weeks MSc course, see http://www.tfd.chalmers.se/~lada/comp_turb_model/
- Course literature: eBook [3].

伺 ト イ ヨ ト イ ヨ ト

- In LES, large (Grid) Scales (GS) are resolved and the small (Sub-Grid) Scales (SGS) are modelled.
- LES is suitable for bluff body flows where the flow is governed by large turbulent scales

www.tfd.chalmers.se/~lada

CHALMERS

BLUFF-BODY FLOW: SURFACE-MOUNTED CUBE[5] Krajnović & Davidson (AIAA J., 2002)

Snapshots of large turbulent scales illustrated by $Q = -\frac{\partial \bar{u}_i}{\partial x_i} \frac{\partial \bar{u}_j}{\partial x_i}$

www.tfd.chalmers.se/~lada

CHALMERS

AB Volvo, CFD workshop 2019 4 / 37

BLUFF-BODY FLOW: FLOW AROUND A BUS[6]

5/37

BLUFF-BODY FLOW: FLOW AROUND A CAR[7]

AB Volvo, CFD workshop 2019 6 / 37

・ロト ・ 四ト ・ ヨト ・ ヨト

www.tfd.chalmers.se/~lada

BLUFF-BODY FLOW: FLOW AROUND A TRAIN[4]

www.tfd.chalmers.se/~lada

CHALMERS

■ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≦ の < ○ AB Volvo, CFD workshop 2019 7 / 37

TIME-AVERAGED flow and INSTANTANEOUS flow

www.tfd.chalmers.se/~lada

CHALMERS

AB Volvo, CFD workshop 2019 8 / 37

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.

CHALMERS

AB Volvo, CFD workshop 2019 8 / 37

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.
- How easy is it to model fluctuations that are as large as the mean flow?

CHALMERS

AB Volvo, CFD workshop 2019

8/37

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.
- How easy is it to model fluctuations that are as large as the mean flow?
- Is it reasonable to require a turbulence model to fix this?

CHALMERS

- TIME-AVERAGED flow and INSTANTANEOUS flow
- In average there is backflow (negative velocities). Instantaneous, the negative velocities are often positive.
- How easy is it to model fluctuations that are as large as the mean flow?
- Is it reasonable to require a turbulence model to fix this?
- Isn't it better to RESOLVE the large fluctuations?

CHALMERS

TIME AVERAGING AND FILTERING

RANS: time average. This is called Reynolds time averaging:

$$\langle \Phi \rangle = \frac{1}{2T} \int_{-T}^{T} \Phi(t) dt, \ \Phi = \langle \Phi \rangle + \Phi'$$

In LES we <u>filter</u> (volume average) the equations. In 1D we get:

LARGE EDDY SIMULATIONS

• Large scales (GS) are resolved; small scales (SGS) are modelled.

www.tfd.chalmers.se/~lada

CHALMERS

AB Volvo, CFD workshop 2019 10 / 37

• (10) • (10)

ENERGY SPECTRUM

The limit (cut-off) between GS and SGS is supposed to take place in the inertial subrange (II)

CHALMERS

AB Volvo, CFD workshop 2019 11 / 37

SUBGRID MODEL

- We need a subgrid model for the SGS turbulent scales
- The simplest model is the Smagorinsky model [9]:

$$\nu_{sgs} = (C_S \Delta)^2 \sqrt{2\bar{s}_{ij}\bar{s}_{ij}} \equiv (C_S \Delta)^2 |\bar{s}|$$
$$\bar{s}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right), \quad \Delta = (\Delta V_{IJK})^{1/3}$$
(2)

A (10) A (10)

12/37

AB Volvo, CFD workshop 2019

- In RANS we always use two-equation models (or more). But not in LES? Why?
 - In LES, less turbulence is modeled.
 - However, on coarse meshes, it may indeed be better to use one-equation (DES) or two-equation models (PANS)

CHALMERS

ENERGY PATH

www.tfd.chalmers.se/~lada

LES vs. RANS

LES can handle many flows which RANS (<u>Reynolds Averaged Navier</u> <u>Stokes</u>) cannot; the reason is that in LES large, turbulent scales are resolved. Examples are:

- o Flows with large separation
- *o* Bluff-body flows (e.g. flow around a car); the wake often includes large, unsteady, turbulent structures
- o Transition
- In RANS all turbulent scales are modelled \Rightarrow inaccurate
- In LES only small, isotropic turbulent scales are modelled \Rightarrow <u>accurate</u> LES is *very* much more expensive than RANS.

FINITE VOLUME RANS AND LES CODES.

	RANS	LES
Domain	2D or 3D	always 3D
Time domain	steady or unsteady	always unsteady
Space discretization	2nd order upwind	central differencing
Time discretization	1st order	2nd order (e.g. C-N)
Turbulence model	\geq two-equations	zero- or one-eq

A

TIME AVERAGING IN LES

- *t*₁: Start time averaging
- t₂: Stop time averaging

• Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.

CHALMERS

□ ▶ < ⓓ ▶ < ≧ ▶ < ≧ ▶ ≧ AB Volvo, CFD workshop 2019 17/37

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).

CHALMERS

□ ▶ < ⓓ ▶ < ≧ ▶ < ≧ ▶ ≧ AB Volvo, CFD workshop 2019 17/37

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).
- A resolved these structures in LES requires $\Delta x^+ \simeq 100$, $\Delta y^+_{min} \simeq 1$ and $\Delta z^+ \simeq 30$

伺 ト イ ヨ ト イ ヨ ト

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).
- A resolved these structures in LES requires $\Delta x^+ \simeq 100$, $\Delta y^+_{min} \simeq 1$ and $\Delta z^+ \simeq 30$
- The object is to develop a near-wall treatment which models the streaks (URANS) ⇒ much larger Δx and Δz

< 回 > < 回 > < 回 >

- Biggest problem with LES: near walls, it requires very fine mesh in all directions, not only in the near-wall direction.
- The reason: violent violent low-speed outward ejections and high-speed in-rushes must be resolved (often called streaks).
- A resolved these structures in LES requires $\Delta x^+ \simeq 100$, $\Delta y^+_{min} \simeq 1$ and $\Delta z^+ \simeq 30$
- The object is to develop a near-wall treatment which models the streaks (URANS) ⇒ much larger Δx and Δz
- In the presentation we use Hybrid LES-RANS for which the grid requirements are much smaller than for LES

 In RANS when using wall-functions, 30 < y⁺ < 100 for the wall-adjacent cells

www.tfd.chalmers.se/~lada

CHALMERS

AB Volvo, CFD workshop 2019 18 / 37

www.tfd.chalmers.se/~lada

CHALMERS AE

AB Volvo, CFD workshop 2019 18 / 37

www.tfd.chalmers.se/~lada

CHALMERS

AB Volvo, CFD workshop 2019 18 / 37

• AND
$$\Delta x^+ \simeq 1$$

 $\Delta y^+_{min} \simeq 1$

CHALMERS AB Volvo, CFD workshop 2019

NEAR-WALL TREATMENT

CHALMERS

NEAR-WALL TREATMENT

• Fluctuating streamwise velocity at $y^+ = 5$. DNS of channel flow.

CHALMERS

・ 同 ト ・ ヨ ト ・ ヨ

AB Volvo, CFD workshop 2019

20/37

• We find that the structures in the spanwise direction are very small which requires a very fine mesh in *z* direction.

- For the near-wall region, we know how fine the mesh should be in terms of viscous units (see Slide 17)
- An appropriate resolution for the fully turbulent part of the boundary layer is $\delta/\Delta x \simeq 10 20$ and $\delta/\Delta z \simeq 20 40$
- This may be relevant also for jets and shear layers

□ > < @ > < ≧ > < ≧ > ≧ > ≧ < ○ < ○ AB Volvo, CFD workshop 2019 21/37

How to estimate resolution in general? [1, 2]

- Energy spectra (both in spanwise direction and time)
- Two-point correlations
- Ratio of SGS turbulent kinetic energy $\langle k_{sgs} \rangle$ to resolved $0.5 \langle u'u' + v'v' + w'w' \rangle$
- Ratio of SGS shear stress $\langle \tau_{sgs,12} \rangle$ to resolved $\langle u'v' \rangle$
- Ratio of SGS viscosity, $\langle \nu_{sgs} \rangle$ to molecular, u

The $(\Delta x, \Delta z)$ mesh is $(\delta/\Delta x, \delta/\Delta z) = (10, 20)$

□ > < 合 > < ≧ > < ≧ > ≤ ≧ > ○ < ○ AB Volvo, CFD workshop 2019 23 / 37

23/37

AB Volvo, CFD workshop 2019

CHANNEL FLOW, $Re_{\tau} = 4000, y^+ = 440$

The $(\Delta x, \Delta z)$ mesh is $(\delta / \Delta x, \delta / \Delta z) = (10, 20)$

- Two-point correlation is better
- Shows that 2∆z and 2∆x are too coarse.

www.tfd.chalmers.se/~lada

CHANNEL FLOW, $Re_{\tau} = 4000, y^+ = 440$

The $(\Delta x, \Delta z)$ mesh is $(\delta/\Delta x, \delta/\Delta z) = (10, 20)$

- Two-point correlation is better integral lenghscale,
- Shows that 2∆z and 2∆x are too coarse.
- integral lenghscale, $L_t = \int_0^{z_{max}} B_{ww}(\hat{z}) d\hat{z}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

23/37

AB Volvo, CFD workshop 2019

A >

www.tfd.chalmers.se/~lada

• Pope [8] suggests $\gamma > 0.8$ indicates well resolved flow

 $- (\Delta x, \Delta z) -- 0.5\Delta x -- 0.5\Delta z \circ 2\Delta x;$ +: $2\Delta z$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Pope [8] suggests $\gamma > 0.8$ indicates well resolved flow

 $(\Delta x, \Delta z)$ ----0.5∆*x* --- $0.5\Delta z \circ 2\Delta x;$ $+: 2\Delta z$

- A TE N - A TE N

24/37

AB Volvo, CFD workshop 2019

Pope criterion does not work here CHALMERS

www.tfd.chalmers.se/~lada

SGS vs. Molecular Viscosity [2]

SGS VS. RESOLVED SHEAR STRESSES

DES: DETACHED-EDDY SIMULATIONS

DES: Use RANS near walls and LES away from walls

- RANS: high turbulent viscosity
- LES: low turbulent viscosity

The S-A one-equation model (RANS) reads

$$\frac{d\rho\tilde{\nu}_{t}}{dt} = \frac{\partial}{\partial x_{j}} \left(\frac{\mu + \mu_{t}}{\sigma_{\tilde{\nu}_{t}}} \frac{\partial\tilde{\nu}_{t}}{\partial x_{j}} \right) + \text{cr. term} + P - \boxed{C_{w1}\rho f_{w} \left(\frac{\tilde{\nu}_{t}}{d} \right)^{2}}, \quad d = x_{n}$$

Replace d with \tilde{d} :

$$\left(\frac{\tilde{\nu}_t}{d}\right)^2 \Rightarrow \left(\frac{\tilde{\nu}_t}{\tilde{d}}\right)^2, \quad \tilde{d} = \min\{C_{DES}\Delta, d\}, \quad \Delta = \max\{\Delta x_1, \Delta x_3, \Delta x_3\}$$

This is the DES S-A one-equation model

CHALMERS

< 回 > < 回 > < 回 >

DES BASED ON TWO-EQUATION DES MODELS

- RANS: high turbulent viscosity
- LES: low turbulent viscosity
- **►**RANS $k \varepsilon$. The k equation reads

$$\frac{\partial k}{\partial t} + \bar{v}_j \frac{\partial k}{\partial x_j} = P^k + \frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial}{\partial x_j} \left((\nu + \frac{\nu_t}{\sigma_k}) \frac{\partial k}{\partial x_j} \right) - F_{DES}\varepsilon, \quad F_{DES} = 1$$

DES:

$$F_{DES} = \max\left(1, \frac{L_t}{C_{DES}\Delta}\right) = \max\left(1, \frac{k^{3/2}}{\varepsilon C_{DES}\Delta}\right)$$

In LES region, $F_{DES} > 1$ which decreases k and $\nu_t = C_{\mu} k^2 / \varepsilon$.

www.tfd.chalmers.se/~lada

CHALMERS

・ 伊 ト ・ ヨ ト ・ ヨ ト

DDES: DELAYED DES

- *F_{DES}* may switch to LES because Δ*x*₁ is too small (but not sufficiently small)
- Hence boundary layer is treated in LES mode with too a coarse mesh ⇒ poorly resolved LES ⇒ inaccurate predictions.
- ► The solution is DDES (Delayed DES)

< 回 > < 回 > < 回 >

DDES: DELAYED DES CONT'D

----: grid; ----: U; ---- RANS-LES interface. $\Delta = C_{DES} \max (\Delta x_1, \Delta x_2, \Delta x_3)$

- Good DES mesh since entire b.l. modeled by RANS.
- poor DES grid since the outer part of the b.l. is in LES mode

▶ In DDES, F_{DES} is computed as ($C_{DES} = 0.67$)

$$F_{DES} = \max\left\{\frac{L_t}{C_{DES}\Delta}(1-F_1), 1\right\}$$

where F_1 ($F_1 = 1$ in the boundary layer) is taken from SST- $k - \omega$

CHALMERS

BACKWARD FACING STEP: DOMAIN

• Re_H = 28 000 Experiments by Vogel & Eaton [10]

- Mean inlet profiles from RANS (same as in boundary layer)
- Grid: 336×120 in $x \times y$ plane. $Z_{max} = 1.6H$, $N_k = 64$, $\Delta z_{in}^+ = 31$.
- Anisotropic synthetic fluctuations, u', v', w' (same as for boundary layer flow); no fluctuations for t'

CHALMERS

• Constant heat flux, q_w , on lower wall.

AB + 4 B + 4 B

BACKSTEP FLOW. SKIN FRICTION AND STANTON NUMBER

-----: PANS; ----: 2D RANS; expts. [10].

CHALMERS

FORWARD/BACKWARD FLOW

 Fraction of time, γ, when the flow along the bottom wall is in the downstream direction.

___: PANS;

--: PANS, no inlet fluctuations; o: experiments [10].

www.tfd.chalmers.se/~lada

CHALMERS

AB Volvo, CFD workshop 2019 33 / 37

CONCLUDING REMARKS

- LES/DES is expensive and accurate
- RANS is cheap and sometimes inaccurate
- After you have made an LES/DES: try to verify if the resolution is sufficient

References I

[1] DAVIDSON, L.

Large eddy simulations: how to evaluate resolution. International Journal of Heat and Fluid Flow 30, 5 (2009), 1016–1025.

[2] DAVIDSON, L.

How to estimate the resolution of an LES of recirculating flow. In *ERCOFTAC* (2010), M. V. Salvetti, B. Geurts, J. Meyers, and P. Sagaut, Eds., vol. 16 of *Quality and Reliability of Large-Eddy Simulations II*, Springer, pp. 269–286.

[3] DAVIDSON, L.

Fluid mechanics, turbulent flow and turbulence modeling. eBook, Division of Fluid Dynamics, Dept. of Applied Mechanics, Chalmers University of Technology, Gothenburg,

CHALMERS

REFERENCES II

http://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf, 2014.

- [4] HEMIDA, H., AND KRAJNOVIĆ, S. LES study of the impact of the wake structures on the aerodynamics of a simplified ICE2 train subjected to a side wind. In Fourth International Conference on Computational Fluid Dynamics (ICCFD4) (10-14 July, Ghent, Belgium, 2006).
- [5] KRAJNOVIĆ, S., AND DAVIDSON, L. Large eddy simulation of the flow around a bluff body. AIAA Journal 40, 5 (2002), 927–936.
- [6] KRAJNOVIĆ, S., AND DAVIDSON, L. Numerical study of the flow around the bus-shaped body. *Journal of Fluids Engineering 125* (2003), 500–509.

CHALMERS

< 日 > < 同 > < 回 > < 回 > < 回 > <

REFERENCES III

- [7] KRAJNOVIĆ, S., AND DAVIDSON, L.
 Flow around a simplified car. part II: Understanding the flow. Journal of Fluids Engineering 127, 5 (2005), 919–928.
- [8] POPE, S. B.

Turbulent Flow.

Cambridge University Press, Cambridge, UK, 2001.

[9] SMAGORINSKY, J.

General circulation experiments with the primitive equations. Monthly Weather Review 91 (1963), 99–165.

[10] VOGEL, J. C., AND EATON, J. K.

Combined heat transfer and fluid dynamic measurements downstream a backward-facing step. *Journal of Heat Transfer 107* (1985), 922–929.

www.tfd.chalmers.se/~lada

CHALMERS

AB Volvo, CFD workshop 2019 37 / 37