
USING MACHINE LEARNING FOR WALL FUNCTIONS INCLUDING

PRESSURE GRADIENTS

Lars Davidson

LESisMORE, Kickoff, Sept 2024
Download paper and Python scripts

https://www.tfd.chalmers.se/~lada/wall_function_ML_kdtree.html


MACHINE LEARNING

• Machine learning (ML) is often a method where known data are used for teaching the
algorithm to classify a set of data.

• Photographs where the machine learning algorithm should recognize, e.g., traffic
lights [11].

• ECG signals where the machine learning algorithm should recognize certain unhealthy
conditions of the heart [9].

• Detecting fraud for credit card payments [10].
• In my case, input and output are numerical values.
• The ML will then be some form of regression method.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 2 / 35



MACHINE LEARNING

• Machine learning (ML) is often a method where known data are used for teaching the
algorithm to classify a set of data.

• Photographs where the machine learning algorithm should recognize, e.g., traffic
lights [11].

• ECG signals where the machine learning algorithm should recognize certain unhealthy
conditions of the heart [9].

• Detecting fraud for credit card payments [10].
• In my case, input and output are numerical values.
• The ML will then be some form of regression method.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 2 / 35



MACHINE LEARNING

• Machine learning (ML) is often a method where known data are used for teaching the
algorithm to classify a set of data.

• Photographs where the machine learning algorithm should recognize, e.g., traffic
lights [11].

• ECG signals where the machine learning algorithm should recognize certain unhealthy
conditions of the heart [9].

• Detecting fraud for credit card payments [10].
• In my case, input and output are numerical values.
• The ML will then be some form of regression method.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 2 / 35



MACHINE LEARNING

• Machine learning (ML) is often a method where known data are used for teaching the
algorithm to classify a set of data.

• Photographs where the machine learning algorithm should recognize, e.g., traffic
lights [11].

• ECG signals where the machine learning algorithm should recognize certain unhealthy
conditions of the heart [9].

• Detecting fraud for credit card payments [10].

• In my case, input and output are numerical values.
• The ML will then be some form of regression method.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 2 / 35



MACHINE LEARNING

• Machine learning (ML) is often a method where known data are used for teaching the
algorithm to classify a set of data.

• Photographs where the machine learning algorithm should recognize, e.g., traffic
lights [11].

• ECG signals where the machine learning algorithm should recognize certain unhealthy
conditions of the heart [9].

• Detecting fraud for credit card payments [10].
• In my case, input and output are numerical values.

• The ML will then be some form of regression method.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 2 / 35



MACHINE LEARNING

• Machine learning (ML) is often a method where known data are used for teaching the
algorithm to classify a set of data.

• Photographs where the machine learning algorithm should recognize, e.g., traffic
lights [11].

• ECG signals where the machine learning algorithm should recognize certain unhealthy
conditions of the heart [9].

• Detecting fraud for credit card payments [10].
• In my case, input and output are numerical values.
• The ML will then be some form of regression method.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 2 / 35



INITIAL WORK [6]

• Machine Learning (svr) wall functions were developed
• Good results for channel flow placing the wall-adjacent cell at different locations
• Good results for developing boundary layer flow
• Training the svr with steady or instantaneous data: same results
• Training nearest neighbor (Python’s scipy.spatial.KDTree) with instantaneous

data: same results

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 3 / 35



MACHINE LEARNING

• KDTree will be used for finding y+.
• It is essentially a fast look-up table
• There will be two sets of data points.

• One is the target data set, i.e. low-Re IDDES (X = [U+
target , y

+
target ])

• The other one is the wall-function IDDES (x = [U+
CFD, y

+
CFD]

• KDTree computes the distance between the vectors as

ds = Xi − xj (1)

for all samples i and j and finds the k nearest neighbors for each j .

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 4 / 35



THE NUMERICAL METHOD

• The Python finite volume code pyCALC-LES [5] is used.
• Fully vectorized (i.e. no for loops).
• Fractional step. For velocities, second-order central differencing in space and

Crank-Nicolson in time.
• For k and ε, hybrid central/upwind scheme
• The discretized equations are solved with Python sparse matrix solvers.
• It runs either on the CPU or the GPU (the GPU is up to 70 times faster)
• On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.
• cupy is used to switch from CPU to GPU (import cupy)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 35



THE NUMERICAL METHOD

• The Python finite volume code pyCALC-LES [5] is used.

• Fully vectorized (i.e. no for loops).
• Fractional step. For velocities, second-order central differencing in space and

Crank-Nicolson in time.
• For k and ε, hybrid central/upwind scheme
• The discretized equations are solved with Python sparse matrix solvers.
• It runs either on the CPU or the GPU (the GPU is up to 70 times faster)
• On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.
• cupy is used to switch from CPU to GPU (import cupy)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 35



THE NUMERICAL METHOD

• The Python finite volume code pyCALC-LES [5] is used.
• Fully vectorized (i.e. no for loops).

• Fractional step. For velocities, second-order central differencing in space and
Crank-Nicolson in time.

• For k and ε, hybrid central/upwind scheme
• The discretized equations are solved with Python sparse matrix solvers.
• It runs either on the CPU or the GPU (the GPU is up to 70 times faster)
• On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.
• cupy is used to switch from CPU to GPU (import cupy)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 35



THE NUMERICAL METHOD

• The Python finite volume code pyCALC-LES [5] is used.
• Fully vectorized (i.e. no for loops).
• Fractional step. For velocities, second-order central differencing in space and

Crank-Nicolson in time.

• For k and ε, hybrid central/upwind scheme
• The discretized equations are solved with Python sparse matrix solvers.
• It runs either on the CPU or the GPU (the GPU is up to 70 times faster)
• On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.
• cupy is used to switch from CPU to GPU (import cupy)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 35



THE NUMERICAL METHOD

• The Python finite volume code pyCALC-LES [5] is used.
• Fully vectorized (i.e. no for loops).
• Fractional step. For velocities, second-order central differencing in space and

Crank-Nicolson in time.
• For k and ε, hybrid central/upwind scheme

• The discretized equations are solved with Python sparse matrix solvers.
• It runs either on the CPU or the GPU (the GPU is up to 70 times faster)
• On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.
• cupy is used to switch from CPU to GPU (import cupy)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 35



THE NUMERICAL METHOD

• The Python finite volume code pyCALC-LES [5] is used.
• Fully vectorized (i.e. no for loops).
• Fractional step. For velocities, second-order central differencing in space and

Crank-Nicolson in time.
• For k and ε, hybrid central/upwind scheme
• The discretized equations are solved with Python sparse matrix solvers.

• It runs either on the CPU or the GPU (the GPU is up to 70 times faster)
• On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.
• cupy is used to switch from CPU to GPU (import cupy)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 35



THE NUMERICAL METHOD

• The Python finite volume code pyCALC-LES [5] is used.
• Fully vectorized (i.e. no for loops).
• Fractional step. For velocities, second-order central differencing in space and

Crank-Nicolson in time.
• For k and ε, hybrid central/upwind scheme
• The discretized equations are solved with Python sparse matrix solvers.
• It runs either on the CPU or the GPU (the GPU is up to 70 times faster)

• On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.
• cupy is used to switch from CPU to GPU (import cupy)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 35



THE NUMERICAL METHOD

• The Python finite volume code pyCALC-LES [5] is used.
• Fully vectorized (i.e. no for loops).
• Fractional step. For velocities, second-order central differencing in space and

Crank-Nicolson in time.
• For k and ε, hybrid central/upwind scheme
• The discretized equations are solved with Python sparse matrix solvers.
• It runs either on the CPU or the GPU (the GPU is up to 70 times faster)
• On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.

• cupy is used to switch from CPU to GPU (import cupy)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 35



THE NUMERICAL METHOD

• The Python finite volume code pyCALC-LES [5] is used.
• Fully vectorized (i.e. no for loops).
• Fractional step. For velocities, second-order central differencing in space and

Crank-Nicolson in time.
• For k and ε, hybrid central/upwind scheme
• The discretized equations are solved with Python sparse matrix solvers.
• It runs either on the CPU or the GPU (the GPU is up to 70 times faster)
• On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.
• cupy is used to switch from CPU to GPU (import cupy)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 35



CREATE TARGET DATABASE 1: DIFFUSER

L1 L2 L3

x1

x2 slip wall

wall

h HHmaxα

Geometry.

Grid, x − y plane (not to scale). 700 × 90 cells. Every
10th grid line is shown.

Diffuser, α = 15o.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 6 / 35



TARGET DATABASE: RESULTS

• 700 × 90 × 96. k − ε IDDES.
• Inlet b.c. from pre-cursor IDDES channel flow at Reτ = 5 200.

Pressure coefficient. Skin friction. Velocity.

*

Diffuser flow. Target data base.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 7 / 35



TARGET DATABASE FOR KDTREE . BASELINE: K = 5 (FIVE NBRS)

Data points of y+ vs. x . Scatter plot of U+ and y+.

Diffuser flow. The target database consists of time-averaged 41 profiles of U+ vs. y+ with 26
points in each profile. d the is wall distance. Every second x line and y point are shown.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 8 / 35



INPUT/OUTPUT IN THE KDTREE .

y+
P : inlet and outlet parameter

U+ : inlet and output parameter

uτ : y+
P ν/yP

ρu2
τ : ū equation

C−1/2
µ u2

τ : k equation

u3
τ

κy
: ε equation

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 9 / 35



INPUT/OUTPUT IN THE KDTREE .

y+
P : inlet and outlet parameter

U+ : inlet and output parameter

uτ : y+
P ν/yP

ρu2
τ : ū equation

C−1/2
µ u2

τ : k equation

u3
τ

κy
: ε equation

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 9 / 35



CREATE TARGET DATABASE 2: HUMP

L1 c L2

x1

x2

slip wall

wall
H h

h = 0.128. H = 0.909, L1 = 2.1, c = 1, L2 = 4.1. Grid. 582 × 128 × 64 cells. Every 10th.

Hump flow.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 10 / 35



TARGET DATABASE 2: RESULTS

Pressure coefficient. Friction coefficient. Velocity at x = 0.65.

Velocity at x = 0.80. Velocity at x = 1.10. Velocity at x = 1.30.

Hump flow, low-Re IDDES.+: experiments [8, 7].
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 11 / 35



TARGET DATABASE FOR KDTREE . BASELINE: K = 1 (ONE NBR).

Data points of y+ vs. x . Scatter plot of U+ and y+.

Hump flow. d is the wall distance. The target database consists of time-averaged 582 profiles (all
grid lines) of U+ vs. y+ with 24 points in each profile. Every 20th x line and every 4th y point are
shown.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 12 / 35



NEW WALL FUNCTION GRID STRATEGY

Low-Re number grid. Wall function grid. New wall function grid.

Different grids. : grid lines.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 13 / 35



DIFFUSER FLOW, WALL FUNCTIONS: SETUP

• Wall functions based on KDTree or Reichardt wall functions
• Wall functions based Reichardt’s law

ūP

uτ
≡ U+ =

1
κ
ln(1 − 0.4y+) + 7.8

[
1 − exp

(
−y+/11

)
− (y+/11) exp

(
−y+/3

)]
is solved using the Newton-Raphson method scipy.optimize.newton in Python.

• Turbulence model: IDDES based on the AKN low-Re k − ε model
• Instantaneous inlet b.c. from pre-cursor channel IDDES using KDTree wall functions
• Grid: 462 × 70 × 48 (low-Re IDDES grid: 600 × 90 × 96)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 14 / 35



RESULTS, DIFFUSER FLOW, α = 15o

• 468 × 70 × 48 cells (every 2nd in x and z)

Pressure coefficient. Skin coefficient. Velocity profiles.

Diffuser flow, α = 15o. : KDTree using hump flow data; : KDTree using diffuser flow data;
: Reichardt’s law; +: low-Re IDDES.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 15 / 35



RESULTS, DIFFUSER FLOW, α = 10o

• 387 × 70 × 48 cells (every 2nd in x and z)

Pressure coefficient. Skin coefficient. Velocity profiles.

Diffuser flow, α = 10o. : KDTree using hump flow data; : KDTree using diffuser flow data;
: Reichardt’s law; +: low-Re IDDES.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 16 / 35



HUMP FLOW, WALL FUNCTIONS: SETUP

• The Reynolds number is Rec = 936 000. Spanwise extent is zmax = 0.2.
• The mesh has 291 × 106 × 64/32 cells [x , y , z] (low-Re IDDES 582 × 106 × 64)
• Inlet b.c.

• Mean from 2D RANS
• Inlet turbulence: fluctuation from STG
• Inlet k and ε: 2D RANS plus commutation term in k eq. [3, 1] (Model 3)

• Comparison with
• Experiments [8, 7]

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 17 / 35



RESULTS, HUMP FLOW. 583 × 106 × 64 CELLS.

Pressure coefficient. Friction coefficient. x = 0.65.

x = 0.80. x = 1.10. x = 1.30.

: KDTree hump data; : KDTree diffuser data; : Reichardt’s law; +: exp.
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 18 / 35



RESULTS, HUMP FLOW. 583 × 106 × 64 CELLS. SHEAR STRESSES

x = 0.65. x = 0.80.

x = 1.10. x = 1.30.

: KDTree hump data; : KDTree diffuser data; : Reichardt’s law; +: exp.
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 19 / 35



RESULTS, HUMP FLOW. 291 × 106 × 32 CELLS.

Pressure coefficient. Friction coefficient. x = 0.65.

x = 0.80. x = 1.10. x = 1.30.

: KDTree hump data; : KDTree diffuser data; : Reichardt’s law; +: exp.
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 20 / 35



RESULTS, HUMP FLOW. 291 × 106 × 32 CELLS. SHEAR STRESSES

x = 0.65. x = 0.80.

x = 1.10. x = 1.30.

: KDTree hump data; : KDTree diffuser data; : Reichardt’s law; +: exp.
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 21 / 35



RESULTS, HUMP FLOW. 291 × 106 × 32 CELLS, K = 5.

Pressure coefficient. Friction coefficient. x = 0.65.

x = 0.80. x = 1.10. x = 1.30.

: KDTree hump data; : KDTree diffuser data; : Reichardt’s law; +: exp.
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 22 / 35



HUMP FLOW. 291 × 106 × 32 CELLS. SHEAR STRESSES, K = 5.

x = 0.65. x = 0.80.

x = 1.10. x = 1.30.

: KDTree hump data; : KDTree diffuser data; : Reichardt’s law; +: exp.
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 23 / 35



RESULTS, HUMP FLOW. 291 × 106 × 16 CELLS. VELOCITY

Pressure coefficient. Friction coefficient. x = 0.65.

x = 0.80. x = 1.10. x = 1.30.

: KDTree hump data; : KDTree diffuser data; : Reichardt’s law; +: exp.
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 24 / 35



RESULTS, HUMP FLOW. 291 × 106 × 16 CELLS. SHEAR STRESSES

x = 0.65. x = 0.80.

x = 1.10. x = 1.30.

: KDTree hump data; : KDTree diffuser data; : Reichardt’s law; +: exp.
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 25 / 35



RESULTS, HUMP FLOW. STANDARD WALL FUNCTION MESH, Ny = 80

Pressure coefficient. Friction coefficient. x = 0.65.

x = 0.80. x = 1.10.

: KDTree hump data; : KDTree diffuser data; : Reichardt’s law; +: exp.
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 26 / 35



URANS/LES INTERFACE.

Hump flow. Diffuser flow.

: Number of cells in the URANS region (left y axis); : y+ of wall-adjacent cells (right y
axis).

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 27 / 35



BOUNDARY LAYER FLOW.

• Inlet b.c. taken from a pre-cursor k − ω simulation at Reθ ≃ 2 500
• Grid: 550 × 90 × 64
• Domain: 63 × 4.6 × 3.2.
• Inlet boundary layer thickness: δin = 0.86
• Inlet k and ε: 2D RANS plus commutation term in k eq. [4, 1].
• Synthetic fluctuations [12, 2] are superimposed on the mean flow

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 28 / 35



BOUNDARY LAYER FLOW. RESULTS. 3rd CELL.

(A) Friction coefficient. (B) Mean velocity. (C) Shear stresses.

uτ is computed by using U+ and y+ at the 4th cell. Velocity and shear stresses are shown at
Reθ = 4 000. : KDTree , hump flow : KDTree , diffuser flow data, K = 5; : KDTree ,
diffuser flow data, K = 1; : Reichardt’s wall function; •: cell centers; : low-Re IDDES; ∗:
Cf = 2(1/0.384 ln(Reθ) + 4.127)−2; : ±6%; +: DNS.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 29 / 35



CHANNEL FLOW.

• Reτ = 16 000, Inlet-outlet
• Grid: 96 × 32 × 32
• Domain: 9 × 2 × 1.6
• Inlet k and ε: 2D RANS plus commutation term in k eq. [4, 1].
• Synthetic fluctuations [12, 2] are superimposed on the mean flow

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 30 / 35



CHANNEL FLOW. RESULTS.

(A) Friction velocity. (B) Mean velocity. (C) Shear stress.

Velocity and shear stress are shown at x/δ = 6. : KDTree , hump flow : KDTree , diffuser
flow; : low-Re IDDES; : KDTree , hump flow , K = 5; : Reichardt’s wall function; •: cell
centers; +: Reichardt’s law

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 31 / 35



CONCLUSIONS

• A new wall function based on KDTree (look-up table) has been presented

• Two sets of target data are evaluated: diffuser flow (α = 15o) and hump flow.
• Four flows are usee as test cases: diffuser flow (α = 15o and α+ 10o), hump flow,

boundary layer flow and channel flow
• The diffuser target data set gives in general better results: it’s a much simpler,

cleaner flow than the hump flow
• Much more target data (many more x profiles) are needed in the hump flow than in

the diffuser flow
• You can downlload Python scripts here

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 32 / 35

https://www.tfd.chalmers.se/~lada/wall_function_ML_kdtree.html


CONCLUSIONS

• A new wall function based on KDTree (look-up table) has been presented
• Two sets of target data are evaluated: diffuser flow (α = 15o) and hump flow.

• Four flows are usee as test cases: diffuser flow (α = 15o and α+ 10o), hump flow,
boundary layer flow and channel flow

• The diffuser target data set gives in general better results: it’s a much simpler,
cleaner flow than the hump flow

• Much more target data (many more x profiles) are needed in the hump flow than in
the diffuser flow

• You can downlload Python scripts here

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 32 / 35

https://www.tfd.chalmers.se/~lada/wall_function_ML_kdtree.html


CONCLUSIONS

• A new wall function based on KDTree (look-up table) has been presented
• Two sets of target data are evaluated: diffuser flow (α = 15o) and hump flow.
• Four flows are usee as test cases: diffuser flow (α = 15o and α+ 10o), hump flow,

boundary layer flow and channel flow

• The diffuser target data set gives in general better results: it’s a much simpler,
cleaner flow than the hump flow

• Much more target data (many more x profiles) are needed in the hump flow than in
the diffuser flow

• You can downlload Python scripts here

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 32 / 35

https://www.tfd.chalmers.se/~lada/wall_function_ML_kdtree.html


CONCLUSIONS

• A new wall function based on KDTree (look-up table) has been presented
• Two sets of target data are evaluated: diffuser flow (α = 15o) and hump flow.
• Four flows are usee as test cases: diffuser flow (α = 15o and α+ 10o), hump flow,

boundary layer flow and channel flow
• The diffuser target data set gives in general better results: it’s a much simpler,

cleaner flow than the hump flow

• Much more target data (many more x profiles) are needed in the hump flow than in
the diffuser flow

• You can downlload Python scripts here

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 32 / 35

https://www.tfd.chalmers.se/~lada/wall_function_ML_kdtree.html


CONCLUSIONS

• A new wall function based on KDTree (look-up table) has been presented
• Two sets of target data are evaluated: diffuser flow (α = 15o) and hump flow.
• Four flows are usee as test cases: diffuser flow (α = 15o and α+ 10o), hump flow,

boundary layer flow and channel flow
• The diffuser target data set gives in general better results: it’s a much simpler,

cleaner flow than the hump flow
• Much more target data (many more x profiles) are needed in the hump flow than in

the diffuser flow

• You can downlload Python scripts here

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 32 / 35

https://www.tfd.chalmers.se/~lada/wall_function_ML_kdtree.html


CONCLUSIONS

• A new wall function based on KDTree (look-up table) has been presented
• Two sets of target data are evaluated: diffuser flow (α = 15o) and hump flow.
• Four flows are usee as test cases: diffuser flow (α = 15o and α+ 10o), hump flow,

boundary layer flow and channel flow
• The diffuser target data set gives in general better results: it’s a much simpler,

cleaner flow than the hump flow
• Much more target data (many more x profiles) are needed in the hump flow than in

the diffuser flow
• You can downlload Python scripts here

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 32 / 35

https://www.tfd.chalmers.se/~lada/wall_function_ML_kdtree.html


REFERENCES

[1] S. Arvidson, L. Davidson, and S.-H. Peng. Interface methods for grey-area mitigation
in turbulence-resolving hybrid RANS-LES. International Journal of Heat and Fluid
Flow, 73:236–257, 2018.

[2] M. Carlsson, L. Davidson, S.-H. Peng, and S. Arvidson. Investigation of turbulence
injection methods in large eddy simulation using a compressible flow solver. In AIAA
Science and Technology Forum and Exposition, AIAA SciTech Forum, 2022.

[3] L. Davidson. Zonal PANS: evaluation of different treatments of the RANS-LES
interface. Journal of Turbulence, 17(3):274–307, 2016.

[4] L. Davidson. Two-equation hybrid RANS-LES models: A novel way to treat k and ω
at inlets and at embedded interfaces. Journal of Turbulence, 18(4):291–315, 2017.

[5] L. Davidson. pyCALC-LES: a Python code for DNS, LES and Hybrid LES-RANSÃ.
Division of Fluid Dynamics, Dept. of Mechanics and Maritime Sciences, Chalmers
University of Technology, Gothenburg, 2021.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 33 / 35

http://www.tfd.chalmers.se/~lada/postscript_files/py-calc-les.pdf


REFERENCES

[6] L. Davidson. Using machine learning for formulating new wall functions for Detached
Eddy SimulationÃ. In 14th International ERCOFTAC Symposium on Engineering
Turbulence Modelling and Measurements (ETMM14), Barcelona/Digital, Spain 6–8
September, 2023.

[7] D. Greenblatt, K. B. Paschal, C.-S. Yao, and J. Harris. A separation control CFD
validation test case Part 1: Zero efflux oscillatory blowing. AIAA-2005-0485, 2005.

[8] D. Greenblatt, K. B. Paschal, C.-S. Yao, J. Harris, N. W. Schaeffler, and A. E.
Washburn. A separation control CFD validation test case. Part 1: Baseline & steady
suction. AIAA-2004-2220, 2004.

[9] Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas Schön.
Machine Learning: A First Course for Engineers and Scientists. Cambridge
University Press, 2022.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 34 / 35

http://www.tfd.chalmers.se/~lada/postscript_files/paper-davidson-etmm14.pdf


REFERENCES

[10] Menneni Rachana, Jegadeesan Ramalingam, Gajula Ramana, Adigoppula Tejaswi,
Sagar Mamidala, and G Srikanth. Fraud detection of credit card using machine
learning. GIS-Zeitschrift für Geoinformatik, 8:1421–1436, 10 2021.

[11] Sudarshana S Rao and Santosh R Desai. Machine learning based traffic light
detection and ir sensor based proximity sensing for autonomous cars. In
Proceedings of the International Conference on IoT Based Control Networks &
Intelligent Systems – ICICNIS, 2021.

[12] M. Shur, P.R. Spalart, M.K. Strelets, and A.K. Travin. Synthetic turbulence
generators for RANS-LES interfaces in zonal simulations of aerodynamic and
aeroacoustic problems. Flow, Turbulence and Combustion, 93:69–92, 2014.

[13] J.A. Sillero, J. Jimenez, and R.D. Moser. One-point statistics for turbulent
wall-bounded flows at Reynolds numbers up to δ+ ≃ 2000. Physics of Fluids,
25(105102), 2014.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 35 / 35


	References

