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MACHINE LEARNING

* Machine learning (ML) is often a method where known data are used for teaching the
algorithm to classify a set of data.

* Photographs where the machine learning algorithm should recognize, e.g., traffic
lights [11].

* ECG signals where the machine learning algorithm should recognize certain unhealthy
conditions of the heart [9].

® Detecting fraud for credit card payments [10].

* In my case, input and output are numerical values.
e The ML will then be some form of regression method.
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INITIAL WORK [6]

Machine Learning (svr) wall functions were developed

Good results for channel flow placing the wall-adjacent cell at different locations
Good results for developing boundary layer flow

Training the svr with steady or instantaneous data: same results

Training nearest neighbor (Python’s scipy.spatial.KDTree) with instantaneous
data: same results
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MACHINE LEARNING

KDTree will be used for finding y .
It is essentially a fast look-up table
There will be two sets of data points.

* One is the target data set, i.e. low-Re IDDES (X = [Uj,ger: Vibrgerl)
* The other one is the wall-function IDDES (x = [U}zp, Vo]

KDTree computes the distance between the vectors as

ds = X; — x; (1)

for all samples i and j and finds the k nearest neighbors for each j.
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THE NUMERICAL METHOD
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THE NUMERICAL METHOD

¢ The Python finite volume code pyCALC-LES [5] is used.
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THE NUMERICAL METHOD

e The Python finite volume code pyCALC-LES [5] is used.
¢ Fully vectorized (i.e. no for loops).

e Fractional step. For velocities, second-order central differencing in space and
Crank-Nicolson in time.

® For k and ¢, hybrid central/upwind scheme

e The discretized equations are solved with Python sparse matrix solvers.
¢ |t runs either on the CPU or the GPU (the GPU is up to 70 times faster)

¢ On the GPU, the Algebraic Multigrid solver in AMGX is used; it very fast.
* cupy is used to switch from CPU to GPU (import cupy)
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CREATE TARGET DATABASE 1: DIFFUSER

1!
ol
2 slip wall > _ql
e
) L, 5 Ly “wall Ls ‘ -2
Geometry. 0 20 40

X

Grid, x — y plane (not to scale). 700 x 90 cells. Every
10" grid line is shown.

Diffuser, o = 15°.
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TARGET DATABASE: RESULTS

e 700 x 90 x 96. k — < IDDES.
¢ Inlet b.c. from pre-cursor IDDES channel flow at Re, = 5200.

0.4 0.003
% )
0.0 0.000
0 20 40 0 20 0 5 10 15
X X o
Pressure coefficient. Skin friction. Velocity.

*

Diffuser flow. Target data base.
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TARGET DATABASE FOR KDTREE . BASELINE: K = 5 (FIVE NBRS)

!

10

o

5

d+
o

0 20 40 0 50 100
X d+

Data points of y* vs. x. Scatter plot of U™ and y™.

Diffuser flow. The target database consists of time-averaged 41 profiles of Ut vs. y* with 26
points in each profile. d the is wall distance. Every second x line and y point are shown.
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INPUT/OUTPUT IN THE KDTREE .

y;,r inlet and outlet parameter
ut inlet and output parameter
ur yov/yp
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INPUT/OUTPUT IN THE KDTREE .

Yp
U+
Ur

pu;

12,2
C, 2L

www.tfd.chalmers.se/lada

inlet and outlet parameter

inlet and output parameter

Yav/yp

Uequation

k equation

€ equation

CHALMERS
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CREATE TARGET DATABASE 2: HUMP

0.8 I I

0.6 ' i

_ >0.4 |

slip wall !

0.2 :

H
0.0 " ‘ ‘ :
X1 -2 0 2 4
L c Lo X
h=0128 H=0.909, L =21, c=1, L, =41, Grid. 582 x 128 x 64 cells. Every 10,

Hump flow.
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TARGET DATABASE 2:

035 00 o5 10 15
X

Pressure coefficient.

0.20
0.15
g
7\0.10 2
>
0.05
0.00 0.0 0.5 1.0
u)

Velocity at x = 0.80.

Hump flow, low-Re IDDES.+: experiments [8, 7].

www.tfd.chalmers.se/lada

RESULTS

0.010

0.005

-

Q
0.000

—00035 550 05 10 15
X

Friction coefficient.

0.20 :
015 + 0.0050
= * 0.0025
3
=
>0.10
>
0.05
000457 0.5 1.0
(U)

Velocity at x = 1.10.

CHALMERS

0'0%.0 0.5 1.0
(v)

Velocity at x = 0.65.

0.20 gome0
*Looo7s
015 " L o.00s0
oones
=1 0.0000
0.10b% o5 o o5 o
0.05
0-0075% 0.5 1.0
(U)

Velocity at x = 1.30.

Lars Davidson, M2 Fluid Dynamics
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TARGET DATABASE FOR KDTREE . BASELINE: K = 1 (ONE NBR).

501
200 ot
| "
ko] =)
100 !
mm =501 :
oLtor-to il L ~1001
2 0 2 2 0 100 200
X d*
Data points of y* vs. x. Scatter plot of U™ and y™.

Hump flow. d is the wall distance. The target database consists of time-averaged 582 profiles (all
grid lines) of U vs. y* with 24 points in each profile. Every 20" x line and every 4 y point are

shown.
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NEW WALL FUNCTION GRID STRATEGY

0.01 0.01 0.01
> > >
O.OOE 0.00 0.00
Low-Re number grid. Wall function grid. New wall function grid.
Different grids. — : grid lines.
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DIFFUSER FLOW, WALL FUNCTIONS: SETUP

Wall functions based on KDTree or Reichardt wall functions
Wall functions based Reichardt’s law

# =U" = %In(1 —04y")+78[1 —exp (—yt/11) — (y" /1) exp (—y"/3)]

is solved using the Newton-Raphson method scipy.optimize.newton in Python.
Turbulence model: IDDES based on the AKN low-Re k — & model

Instantaneous inlet b.c. from pre-cursor channel IDDES using KDTree wall functions
Grid: 462 x 70 x 48 (low-Re IDDES grid: 600 x 90 x 96)
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RESULTS, DIFFUSER FLOW, o = 15°

* 468 x 70 x 48 cells (every 27 in x and z)

0

0.003
$ 71
0.000 e -2

0 20 40 0 20
X X u
Pressure coefficient. Skin coefficient. Velocity profiles.
Diffuser flow, « = 15°. — : KDTree using hump flow data; - - - : KDTree using diffuser flow data;

— —: Reichardt’s law; : low-Re IDDES.
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RESULTS, DIFFUSER FLOW, o = 10°

* 387 x 70 x 48 cells (every 2" in x and z)

0 10 20 0 10 20

X X U
Pressure coefficient. Skin coefficient. Velocity profiles.
Diffuser flow, « = 10°. — : KDTree using hump flow data; - - - : KDTree using diffuser flow data;

— —: Reichardt’s law; : low-Re IDDES.
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HumP FLOW, WALL FUNCTIONS: SETUP

The Reynolds number is Re; = 936 000. Spanwise extent is zyax = 0.2.

The mesh has 291 x 106 x 64/32 cells [x, y, z] (low-Re IDDES 582 x 106 x 64)
Inlet b.c.

* Mean from 2D RANS
® |nlet turbulence: fluctuation from STG
® Inlet k and e: 2D RANS plus commutation term in k eq. [3, 1] (Model 3)

e Comparison with
® Experiments [8, 7]
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RESULTS, HUMP FLOW.

1.0 0.010 0.20
0.15
0.5 0.005 s
o G |>§~0.10
0.0 0.000 >
0.05
_0'20.5 0.0 0.5 _0'00—50.5 0.0 0.5 1.0 0'0%.0
X X
Pressure coefficient. Friction coefficient. x = 0.65.
0.20 0.20 -
0.15 0.15 : 0002
7\010 |>,010 po 01 02 03 o4
> >
0.05 0.05 /
0.00 0.0 0.5 0.00 0.0 0.5 1.0 0.00 0.0 ’ 0.5 1.0
) ) )
x = 0.80. x =1.10. x =1.30.
— : KDTree hump data; - - - : KDTree diffuser data; = = : Reichardt’s law; +: exp.
CHALMERS Lars Davidson, M2 Fiuid Dynarmics

583 x 106 x 64 CELLS.
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REsSULTS, HUMP FLOW. 583 x 106 x 64 CELLS. SHEAR STRESSES

0.05 0.20
0.04 0.15 total modeled
§0_03 modeled E
> To.10
> 0.02 total >
0.01 0.05
0005510 —0.005 0.000 099 02 —0.02 0.00
(U/V’) (U’V’)
x = 0.65. x = 0.80.
0.20 0.20
0.15 total 0.15 total modeled
3 3 o
2 = e
To.10 To.10 _ E
> > . -
0.05{ 4., 0.05{ #
0.00 —0.015 0.000 099702 —0.01 0.00
(U/V’) (U’V’)
x =1.10. x =1.30.
—— : KDTree hump data; - --: KDTree diffuser data; — — : Reichardt’s law; +: exp.
CHALMERS Lars Bividsar, M2 Filid Dyraris
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RESULTS, HUMP FLOW.

035 00 o5 10 15
X

Pressure coefficient.

291 x 106 x 32 CELLS.

0.010

0.005

-

Q
0.000

—0.005

05 00 05 1.0 15
X

Friction coefficient.

0.20
0.15 0003
<
>~0.10 0.000
| lo.o
>
0.05
0-09% 05 1.0
()
x = 0.65.

0.20 0.207=
0.15 0.15 : 0002
7\010 2 TOlo 0.1 |>,010 20 025 030 035 040
> > >
0.05 0.05 0.05
0.00 0.0 0.5 1.0 0.00 b.O 0.5 1.0 0.00 0.0 0.5 1.0
) ) )
x = 0.80. x =1.10. x =1.30.
— : KDTree hump data; - - - : KDTree diffuser data; = = : Reichardt’s law; +: exp.
CHALMERS Lars Davidson, M2 Fluid Dynamics
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RESULTS, HUMP FLOW. 291 x 106 x 32 CELLS. SHEAR STRESSES

0.05 0.20
0.04 0.15 total modeled
EO 03 modeled
T .
> 0.02 total
0.01 )
0'00—0.010 —.—(-).005 0.000 —-0.04 —0.02 0.00
(U/V’) (U’V’)
x = 0.65. x = 0.80.
0.20 0.20
0.15 total 0.15 total modeled /
T\O.lO |>‘0.10
> >
0.051 0.05
0.00 -0.015 0.000 09902 0.00
(u'v')
x =1.10.
—— : KDTree hump data; - - - : KDTree diffuser data; — — : Reichardt’s law; -+: exp.
CHALMERS Lars Davidson, M2 Fluid Dynamics
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RESULTS, HUMP FLOW.

1.0

035 00 o5 10 15

X
Pressure coefficient.

0.20 ‘
0.15 B
Solopr
>
0.05
000575 0.5 1.0
(U)
x = 0.80.

—— : KDTree hump data; - - - : KDTree diffuser data; ==:

www.tfd.chalmers.se/lada

291 x 106 x 32 CELLS, K = 5.

0.010

0.005

-

Q
0.000

—0.005

05 00 05 1.0 15
X

Friction coefficient.

00047 05 )
(U)
x =1.10.

CHALMERS

0.20

“w
x = 0.65.

0.004

0.15 * loooz

+0.000

3

2 ottt e
0.

>

7/

00055 o5 10
(U)
x = 1.30.

Reichardt’s law; +: exp.
Lars Davidson, M2 Fluid Dynamics
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HumP FLOW. 291 x 106 x 32 CELLS. SHEAR STRESSES, K = 5.

0.05 0.20
0.04 0.15 total modeled
§0_03 modeled E
>|~ |>~0.10
> 0.02 total >
0.01 0.05
0005516 —0.008 0.000 099 02 —0.02 0.00
(U/V’) (U’V’)
x = 0.65. x = 0.80.
0.20 0.20
0.15 0.15 total modeled
B 3 ~
= =
|>~O.10 |>~0.10
> >
0.051 0.05
0.00 —0.015 0.000 099702 0.00
(u'v')
x =1.10.
—— : KDTree hump data; - --: KDTree diffuser data; — - : Reichardt’s law; +: exp.
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RESULTS, HUMP FLOW.

1.0 0.010 0.20 a—
0.15 0003
0.5 0.005 s 0002
5 0.001
¢ S >o0.10
0.0 —— KDTree 0.000 >
---- KDTree 0.05
---- Reichardt
Expts
_0'20.5 0.0 0.5 1.0 15 _0'00—50.5 0.0 0.5 1.0 1.5
X X
Pressure coefficient. Friction coefficient.
0.20 0.20
0.15 0.15
g g
7\0.10 TO.lO o
> >
0.05 0.05
0.00 0.0 0.5 1.0 0.00 0.0 0.5 1.0 0.00 0.0 0.5 1.0
) ) ()
x = 0.80. x =1.10. x =1.30.
— : KDTree hump data; - - - : KDTree diffuser data; = = : Reichardt’s law; +: exp.
CHALMERS Lars Davidson, M2 Fluid Dynamics
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REsULTS, HUMP FLOW. 291 x 106 x 16 CELLS. SHEAR STRESSES

0.05 0.20
0.04 0.15 total  modeled
§0_03 modeled E
> Do0.10
1,0.02 N
001 > ) 0.05
0-005%10  —0.005 0.000 9:28 050 -0.025 0.000
(U/V’) (U’V’)
x = 0.65. x =0.80.
0.20 0.20
0.15 total modeled/’ 0.15 total modeled
To.10 To.10
> > -
0.05{ 4., 0.05{ ¥
0-00 -0.015 0.000 %2902 -0.01 0.00
(U/V’) (U’V’)
x =1.10. x =1.30.
—— : KDTree hump data; - - - : KDTree diffuser data; — — : Reichardt’s law; +: exp.
CHALMERS
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RESULTS, HUMP FLOW. STANDARD WALL FUNCTION MESH, N, = 80

1.0 0.010 0.20
0.15
0.5 0.005 s
Q = 0.001
Q IS} TO.lO
0.0 0.000 >
0.05
035 00 o5 10 15 —0.005, 5006 o5 10 15 009% 05 1.0
X X (U)
Pressure coefficient. Friction coefficient. x = 0.65.

0.20 0.20
0.15 0.15
g g
>0.10 >0.101
> >
0.05 0.05
0-00757% 0.5 1.0 0-0075% 0.5 1.0
(u) ()
x = 0.80. x =1.10.

— : KDTree hump data; - - -

www.tfd.chalmers.se/lada

: KDTree diffuser data; — — : Reichardt’s law; +: exp.
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URANS/LES INTERFACE.

Hump flow. Diffuser flow.

— : Number of cells in the URANS region (left y axis); == : y* of wall-adjacent cells (right y
axis).

CHALMERS T ———



BOUNDARY LAYER FLOW.

Inlet b.c. taken from a pre-cursor k — w simulation at Rey ~ 2500
Grid: 550 x 90 x 64

Domain: 63 x 4.6 x 3.2.

Inlet boundary layer thickness: §;, = 0.86

Inlet k and e: 2D RANS plus commutation term in k eq. [4, 1].
Synthetic fluctuations [12, 2] are superimposed on the mean flow
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BOUNDARY LAYER FLOW. RESULTS. 3™ CELL.

X/Gin
0 75
20 . .
e rmeecrsomnaser . o Z y //,/’ Lt N
.0e-03{ ==t 104 Bl P
] F P ’ modeled
2.0e-03 0 J : _fotal i
He 3000 4000 5000 10t 102 103 -1.0 -0.5 0.0
Reg y* shear stresses
(A) Friction coefficient. (B) Mean velocity. (C) Shear stresses.

u, is computed by using U* and y* at the 4% cell. Velocity and shear stresses are shown at
Rey = 4000. — : KDTree , hump flow - - - : KDTree , diffuser flow data, K = 5; — : KDTree,
diffuser flow data, K = 1; = =: Reichardt’s wall function; e: cell centers; = = : low-Re IDDES; =:
C; =2(1/0.384In(Rey) + 4.127)72; =- = : +6%; +: DNS.
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CHANNEL FLOW.

Re,. = 16 000, Inlet-outlet

Grid: 96 x 32 x 32

Domain: 9 x 2 x 1.6

Inlet k and e: 2D RANS plus commutation term in k eq. [4, 1].
Synthetic fluctuations [12, 2] are superimposed on the mean flow
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CHANNEL FLOW. RESULTS.

1.10 30 16000
. total
20 >
g 8000 \,/
" i S—target
0.95 target 101 y modeled
0'9%.0 2.5 5.0 7.5 (:)101 102 ¢ 103 91.2 ) -0.6 0.0
X/6 y+ (U’V’)+
(A) Friction velocity. (B) Mean velocity. (C) Shear stress.

Velocity and shear stress are shown at x/§ = 6. — : KDTree , hump flow - - - : KDTree , diffuser
flow; — = : low-Re IDDES; — : KDTree , hump flow , K = 5; — — : Reichardt’s wall function; e: cell

centers; +: Reichardt’s law
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CONCLUSIONS

* A new wall function based on KDTree (look-up table) has been presented
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* A new wall function based on KDTree (look-up table) has been presented
* Two sets of target data are evaluated: diffuser flow (« = 15°) and hump flow.
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boundary layer flow and channel flow
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* Two sets of target data are evaluated: diffuser flow (« = 15°) and hump flow.
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boundary layer flow and channel flow
e The diffuser target data set gives in general better results: it’s a much simpler,
cleaner flow than the hump flow
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CONCLUSIONS

¢ A new wall function based on KDTree (look-up table) has been presented

* Two sets of target data are evaluated: diffuser flow (« = 15°) and hump flow.
* Four flows are usee as test cases: diffuser flow (o« = 15° and a. + 10°), hump flow,
boundary layer flow and channel flow

e The diffuser target data set gives in general better results: it’s a much simpler,
cleaner flow than the hump flow

¢ Much more target data (many more x profiles) are needed in the hump flow than in
the diffuser flow
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CONCLUSIONS

A new wall function based on KDTree (look-up table) has been presented
* Two sets of target data are evaluated: diffuser flow (« = 15°) and hump flow.
* Four flows are usee as test cases: diffuser flow (o« = 15° and a. + 10°), hump flow,
boundary layer flow and channel flow

The diffuser target data set gives in general better results: it’s a much simpler,
cleaner flow than the hump flow

¢ Much more target data (many more x profiles) are needed in the hump flow than in
the diffuser flow

You can downlload Python scripts here
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