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MACHINE LEARNING
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MACHINE LEARNING

@ Machine learning (ML) is a method where known data are used for
teaching the algorithm to classify another set of data.

» Photographs where the machine learning algorithm should recognize,
e.g., traffic lights [4].

» ECG signals where the machine learning algorithm should recognize
certain unhealthy conditions of the heart [2].

» Detecting fraud for credit card payments [3].

» Machine learning methods such as Support Vector Machines (SVM)
and neural networks are used for solving this type of problems.

» Through as much data as possible at ML?

@ In my case, input and output are numerical values. Regression
methods should then be used [2]; | use support vector regression
(SVR) methods available in Python.

CHALMERS Hybrid RANS-LES, FSI, Aeroacoustics 2



TRAINING: I NEED A TARGET DATABASE

ov
o 0
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o Fully-developed Channel flow
o IDDES. 96 x 96 x 96, Reynolds number is 5200

o Database: average in x and z

— 1 x+AX,z+AZ
Upst(x,z) = AXAZ / udxdz
1 ;<+AX,Z+AZ
Ur(x,z) = AXAZ / urdxdz
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MACHINE LEARNING

15t cell | (Ay™)
. Location 1 12
e LES with wall Location 2 31

furjnctio.ns: the . 13 cell Location 3 49
object is to develop Location 4 66
a model for the wall o |2nd gl Location 5 76
shear stress, Location 6 38

= U o | 15 cell :
w = puz Location 7 135
wall Location 8 155

Location 9 207

300 independent instan-
taneous samples of U
stored at all 3 x 9 cells
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MACHINE LEARNING

o LES with wall
functions: the
object is to develop
a model for the wall
shear stress,

Tw = pU>

3" cell
2nd cell

15t cell

° InPut data: _UP, P,
aU /oy, 82Uy
@ output data: u;

@ Non-dimensional:
ur __

(ur) —

wall

f (Re,y™, TOU/8y,0%U/0dy?/(UT?))
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2nd cell
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aU /oy, 82Uy
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@ Non-dimensional:
ur __
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PREDICTED OUTPUT USING ML: 1ST ATTEMPT
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BAD CHOICE OF INPUT/OUTPUT: 2ND ATTEMPT

o Traditional wall laws:
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BAD CHOICE OF INPUT/OUTPUT: 2ND ATTEMPT

25

o Traditional wall laws:
U _r (ﬂ)

ur v

@ Do the same in ML

y+ : inﬂuence par‘ o 50_ 100 yvlio 200 250
n ——: (u), IDDES; V: svrLINEAR: e:
ur o output par.  |DDES, test data. 9% normalized error.
ur - u/ut
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3
u
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BAD CHOICE OF INPUT/OUTPUT:

o Traditional wall laws:

ur

Lor(s

@ Do the same in ML
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output par.
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2ND ATTEMPT
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——: (u), IDDES; V: svrLINEAR: e:
IDDES, test data. 9% normalized error.
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STANDARD WALL FUNCTIONS

e The machine-learning wall functions will be compared to wall functions
based on Reichardt's law

U _ v = %ln(l —0.4y")+7.8[1—exp (—y"/11) = (y" /11) exp (—y ™/

ur
e The friction velocity is then obtained by solving the implicit equation

ur — p (In(1 — 0.4y ™) /K+
7.8[1—exp (—yT/11) — (y* /1) exp (—=y*/3)]) " =0

using the Newton-Raphson method scipy.optimize.newton in Python.

e Up denotes the wall-parallel velocity in the first, second or third
wall-adjacent cell.
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RESULTS, CHANNEL FLOW, ML, Re, = 16000
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(A) Ny, = 66, stretching 11%. (B) N, = 68, stretching 14.7%.

F1GURE: Channel flow. svr. Re, = 16000. Velocity. e: Reichardt’s law.
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REICHARDT’S WALL FUNCTION, Re, = 16000
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F1GURE: Channel flow. Reichardt’s wall function. Re; = 16 000. Velocity.
o: Reichardt’s law.
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NEW GRID STRATEGY
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(A) Low-Re number IDDES grid. (B) Wall function grid. New grid strategy.

F1GURE: Different grids. == grid lines.

e This strategy was used in [1] for channel flow and impinging jets (RANS)
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CHANNEL FLOW, ML, Re, = 16000, NEW GRID
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F1GURrE: Channel flow. Re; = 16000. Velocity. svr. e: Reichardt’s law.
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REICHARDT’S WALL FUNCTION, Re, = 16000
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F1GURE: Channel flow. Re; = 16000. Velocity. Reichardt’s wall function.
o: Reichardt’s law.
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DEVELOPING BOUNDARY LAYER FLOW

@ Rey = Ugeel/v = 2550 at the inlet.
e Domain (96 x 7 X 5)dj,.
o Grid (550 x 82 x 64).
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DEVELOPING BOUNDARY LAYER FLOW

e u. computed using 3™ cell

X/6in
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4.0e-03 20
Cr .
D
3.0e-03 1 101
2.0e-0330550 2000 5000 Qo1 102 103
Reg y +
(A) Skin friction. (B) Velocity at Rey = 4000.

Markers: DNS [5]

FIGURE: Boundary layer flow. Reg = 2500 at inlet. svr. N, = 82
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DEVELOPING BOUNDARY LAYER FLOW, 2Ax, 2Az

X/0in
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Reg 1% +
(A) Skin friction. (B) Velocity at Rey = 4000.

Markers: DNS [5]

FIGURE: Boundary layer flow. svr. N, =82, Ny = 32, Axj, = 2AXin, base
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CONCLUSIONS

e Machine Learning (svr) wall functions have been developed

@ Good results for channel flow placing the wall-adjacent cell at
different locations
@ Good results for developing boundary layer flow
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ATTEMPT 37 1

@ Instantaneous data are used for training svr
e svr finds the time-averaged regression line (shown by ¥ in Fig. A)

e If | want instantaneous u;, | could find nearest neighbour (shown by e
in Fig. B)

.
!-
20 "V -.'v.
’
" Pl catall®
‘) .y 40 42 44
—

: sl dibaied
(A) =—: (T), IDDES; V: svr: e: (B) Nearest neighbor using Python's
IDDES, target data. 9% normalized scipy.spatial.KDTree V: KDTree; o:
error. IDDES, target data; 0.7% normalized

error.
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ATTEMPT 37 11

o | have trained svr using instantaneous data but the model gives
time-averaged regression line
@ Maybe better to train svr using time-averaged data.

» In this case many time-averaged (T) (and (p)) profiles can be used for
training

» Maybe svm (Support Vector Machines) and/or Neural Network could
be used to find the most appropriate profile
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