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Machine Learning

Machine learning (ML) is a method where known data are used for
teaching the algorithm to classify another set of data.

I Photographs where the machine learning algorithm should recognize,
e.g., traffic lights [4].

I ECG signals where the machine learning algorithm should recognize
certain unhealthy conditions of the heart [2].

I Detecting fraud for credit card payments [3].
I Machine learning methods such as Support Vector Machines (SVM)

and neural networks are used for solving this type of problems.
I Through as much data as possible at ML?

In my case, input and output are numerical values. Regression
methods should then be used [2]; I use support vector regression
(SVR) methods available in Python.
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Training: I need a target database
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]
Fully-developed Channel flow

IDDES. 96× 96× 96, Reynolds number is 5 200

Database: average in x and z

Ū1st (x , z) =
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ūdxdz
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Machine Learning

LES with wall
functions: the
object is to develop
a model for the wall
shear stress,
τw = ρu2

τ

Input data: UP , yP ,
∂Ū/∂y , ∂2Ū/∂2y

output data: uτ

Non-dimensional:
uτ
〈uτ 〉 =

f
(
Re, y+,T∂Ū/∂y , ∂2Ū/∂y2/(ŪT 2)

)
T = ν/Ū2

wall

1st cell

2nd cell

3rd cell

1st cell 〈∆y+〉
Location 1 12
Location 2 31
Location 3 49
Location 4 66
Location 5 76
Location 6 88
Location 7 135
Location 8 155
Location 9 207

300 independent instan-
taneous samples of Ū
stored at all 3× 9 cells
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output data: uτ

Non-dimensional:
uτ
〈uτ 〉 =

f
(
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Predicted output using ML: 1st attempt

(a) N: IDDES, Location 1; N: IDDES,
Location 2; N: IDDES, Location 3; H:
IDDES, Location 4; H: IDDES, Location 5;
H: IDDES, Location 6. ◦: svr.

Output on y axis

Input on x axis

Location 1 – 6 of data

Difficult to interpolate

Remedy: I included 〈y+〉 as
input parameter = Location
uτ
〈uτ 〉 = f (Re, 〈y+〉)
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Bad choice of input/output: 2nd attempt

Traditional wall laws:
U
uτ

= f
(uτ y
ν

)

Do the same in ML

y+ : influence par.

U+ : output par.

uτ : ū/U+

ρu2
τ : ū eq.

C−1/2
µ u2

τ : k eq.

u3
τ

κy
: ε eq.

: 〈ū〉, IDDES; H: svrLINEAR: •:
IDDES, test data. 9% normalized error.

: 〈ū〉, IDDES; H: svr; •: IDDES, test
data. 9% normalized error
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Standard wall functions

• The machine-learning wall functions will be compared to wall functions
based on Reichardt’s law

ūP
uτ
≡ U+ =

1

κ
ln(1− 0.4y+) + 7.8

[
1− exp

(
−y+/11

)
− (y+/11) exp

(
−y+/3

)]
• The friction velocity is then obtained by solving the implicit equation

uτ − ūP
(
ln(1− 0.4y+)/κ+

7.8
[
1− exp

(
−y+/11

)
− (y+/11) exp

(
−y+/3

)])−1
= 0

using the Newton-Raphson method scipy.optimize.newton in Python.

• ūP denotes the wall-parallel velocity in the first, second or third
wall-adjacent cell.

Workshop Hybrid RANS-LES, FSI, Aeroacoustics 7 / 20



Results, channel flow, ML, Reτ = 16 000

(a) Ny = 66, stretching 11%. (b) Ny = 68, stretching 14.7%.

Figure: Channel flow. svr. Reτ = 16 000. Velocity. •: Reichardt’s law.
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Reichardt’s wall function, Reτ = 16 000

(a) Ny = 66, stretching 11%. (b) Ny = 68, stretching 14.7%.

Figure: Channel flow. Reichardt’s wall function. Reτ = 16 000. Velocity.
•: Reichardt’s law.
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New Grid Strategy

(a) Low-Re number IDDES grid. (b) Wall function grid. New grid strategy.

Figure: Different grids. : grid lines.

• This strategy was used in [1] for channel flow and impinging jets (RANS)

Workshop Hybrid RANS-LES, FSI, Aeroacoustics 10 / 20



Channel flow, ML, Reτ = 16 000, new grid

(a) Ny = 78. (b) Ny = 92.

Figure: Channel flow. Reτ = 16 000. Velocity. svr. •: Reichardt’s law.
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Reichardt’s wall function, Reτ = 16 000

(a) Ny = 78. (b) Ny = 92.

Figure: Channel flow. Reτ = 16 000. Velocity. Reichardt’s wall function.
•: Reichardt’s law.
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Developing Boundary Layer Flow

Reθ = Ufreeθ/ν = 2 550 at the inlet.

Domain (96× 7× 5)δin.

Grid (550× 82× 64).
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Developing Boundary Layer Flow
• uτ computed using 3rd cell

(a) Skin friction. (b) Velocity at Reθ = 4 000.
Markers: DNS [5]

Figure: Boundary layer flow. Reθ = 2 500 at inlet. svr. Ny = 82
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Developing Boundary Layer Flow, 2∆x, 2∆z

(a) Skin friction. (b) Velocity at Reθ = 4 000.
Markers: DNS [5]

Figure: Boundary layer flow. svr. Ny = 82, Nk = 32, ∆xin = 2∆xin,base
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Conclusions

Machine Learning (svr) wall functions have been developed

Good results for channel flow placing the wall-adjacent cell at
different locations

Good results for developing boundary layer flow
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Attempt 3? I

Instantaneous data are used for training svr

svr finds the time-averaged regression line (shown by H in Fig. A)

If I want instantaneous uτ , I could find nearest neighbour (shown by •
in Fig. B)

(a) : 〈ū〉, IDDES; H: svr: •:
IDDES, target data. 9% normalized
error.

(b) Nearest neighbor using Python’s
scipy.spatial.KDTree H: KDTree; •:
IDDES, target data; 0.7% normalized
error.

Workshop Hybrid RANS-LES, FSI, Aeroacoustics 17 / 20



Attempt 3? II

I have trained svr using instantaneous data but the model gives
time-averaged regression line

Maybe better to train svr using time-averaged data.
I In this case many time-averaged 〈ū〉 (and 〈p̄〉) profiles can be used for

training
I Maybe svm (Support Vector Machines) and/or Neural Network could

be used to find the most appropriate profile
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