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Abstract

Turbulent wall-bounded flows are commonly encountered in engineering practice and are of
considerable interests in a variety of industrial applications. This presence of wall significantly
affects turbulence characteristics. If we want to solve thenear-wall region a very fine mesh is
necessary. The number of points needed increases at least like Re1.8. This requirement makes
LES application of LES for high Reynolds (order of106 − 108) practically impossible.

One solution is to apply near-wall modification, or wall models with a coarse mesh near
the wall. When the grid is not fine enough to resolve near-wall structure, the near-wall must be
modeled by specifying a correlation between the velocity infirst node and shear stress at the
wall.

The objective of this study was to implement wall-function for LES simulation of channel
flow. The sub-grid scales are modelled using Smagorinsky andWale model. The first node is
placed aty+ ∼ 49 for Reτ = 4000 and54 ≤ y+ ≤ 200 for Reτ = 16000. So the first node
was located in log-law region and standard wall function wasapplied. Other modification was
introduced in the calculation of the length-scale in the Smagorinsky model using the model
proposed by Mason-Callen [7]. Another model introduced was the Werner-Wengler model [6].
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Nomenclature

Upper-case Roman

B Turbulence model constant
Cs Smagorinsky constant,Cs=0.09
E Turbulence model constant
H Non-linear term
G Filter function
P Pressure
Reτ Reynolds number based onu∗, u∗δ/ν
Sij Strain-rate tensor
U Streamwise mean velocity

Lower-case Roman

f Damping function
g Any function
g Filtered function
g′′ Sub-grid component
l Length scale
p Wall adjacent node
t Time
ui Velocity component
Up Velocity in first node near the wall
u∗ Friction velocity,

√
τw/ρ

urms =
√

〈u′2〉

vrms =
√

〈v′2〉

wrms =
√

〈w′2〉
x Streamwise direction
xi Space component
y Normal direction
z Spanwise direction

Upper-case Greek

∆t Time step size
∆x, ∆y, ∆z Streamwise, normal and spanwise mesh spacings

Lower-case Greek

τw Wall shear stress
δ Half channel height
κ Von Karman constant
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µ Dynamic viscosity
ν Kinematic viscosity
ρ Density

Abbreviations

CFL Courant, Friedrichs and Lewy number

subscripts

δ Quantity based on half channel-width
i Direction, node number
ij Tensor indices
n North face value
p Node value
w Wall value

superscripts

n Time step
u+ = Up/u

∗

y+ =ypu
∗/ν
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Chapter 1

LES

1.1 Introduction

Analytical or numerical solution of turbulent flow problemscan be accomplished using
various levels of approximation, yielding more or less detailed descriptions of the state of flow.

The most used approximation is RANS (Reynolds-averaged Navier-Stokes equations), that
has one main draw back: the fact that all scales are modeled inthe same way. While the small
scales tend to depend only on viscosity, and may be somewhat universal, the large ones are
affected very strongly by the boundary conditions. Thus, itdoesn’t seem possible to model the
effect of the large scales of turbulence in the same way in flows that are very different.

The most straightforward approach to the solution of turbulent flow is DNS (Direct Numer-
ical Simulations), but it has some limitations. The main limitation is that one needs to solve all
the scales of motion, which requires a number of grid points proportional to the9/4 power of
the Reynolds number,Re, and the cost of computation scales likeRe3.

The most convenient way between RANS and DNS is to use LES (Large eddy simulations).
In LES the contribution of the large scales are computed exactly, and only the effect of the
smallest scales is modeled. Since the smallest scales are more homogeneous and universal, and
less affected by the boundary conditions than large one, there is hope that their models can be
simpler. In LES each quantityg is decomposed as

g = ḡ + g′′ (1.1)

whereḡ is resolvable-scale component andg′′ is small scale or sub-grid (unresolved) compo-
nent. Thēg is the result of applying a filtering procedure to the local and instantaneous quan-
tities. Filtering is the operation which let us separate thelarge from the small scales. A filtered
variable, denoted by an overbar, is defined as:

ḡ(x) =

∫

D

g(x′)G(x)(x, x′)dx′ (1.2)

whereD is entire domain andG is filter function. The filter function determines the size and
structure of small scales. The most common-used filter functions are the sharp Fourier cutoff
filter, best defined in wave space:

Ĝ =

{
1: if k ≤ π

∆̄
0: otherwise

(1.3)
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Large Eddy Simulation of Channel Flow using Wall Functions

the Gaussian filter,

G(x) =

√
6

π∆̄2 exp

(
−

6x2

∆̄2

)
(1.4)

and the top-hat filter in real space:

G(x) =

{
1
∆̄

: if |x| ≤ ∆̄
2

0 : otherwise
(1.5)

For finite volume method the filtering is the same as the discretisation (integration over the
control volume is the same as filtering). The incompressibleNavier-Stokes equation before
filtering reads:

∂ui

∂t
+

∂

∂xj

(uiuj) = −
1

ρ

∂p

∂xi

+ ν
∂

∂xj

∂ui

∂xj

(1.6)

After filtering the Navier-Stokes reads:

∂ūi

∂t
+

∂

∂xj

(ūiūj) = −
1

ρ

∂p̄

∂xi

+ ν
∂

∂xj

∂ūi

∂xj

−
∂τij

∂xi

(1.7)

The effect of the small scales is obtained through a subgirdscale (SGS) stress term,

τij = uiuj − uiuj (1.8)

that must be modeled. To solve sub-grid componentτij there are several models, the models
used in this work are discussed below.

1.2 Eddy viscosity models

Most sub-grid scale models are eddy-viscosity models of theform,

τij −
δij

3
τkk = −2νT S̄ij (1.9)

that relate the sub-grid-scale stressesτij to the large-scale strain-rate tensor,S̄ij.

S̄ij =
1

2

(
∂ūi

∂xj

+
∂ūj

∂xi

)
, (1.10)

In most casesνT is obtained algebraically to avoid solving additional equations that would
increase the cost of calculation. Equation (1.9) can be expressed as

τij −
1

3
δijτkk = τij −

2

3
δijρ k′ (1.11)

where we assumed that1
2
τkk/ρ = k′ Using Eq.(1.11) and Eq.(1.9) into Eq.(1.7), we get

∂ūi

∂t
+

∂

∂xj

(ūiūj) = −
1

ρ

∂p̄i

∂xi

+ ν
∂2ūi

∂xj∂xj

+
∂

∂xj

{
−

2

3
δijρk′ + νT

[
∂ūi

∂xj

+
∂ūj

∂xi

]}
(1.12)
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Chapter 1. LES

Defining pressure as:

P̄ = p̄ +
2

3
ρk′ (1.13)

we obtain:

∂ūi

∂t
+

∂

∂xj

(ūiūj) = −
1

ρ

∂p̄i

∂xi

+ ν
∂2ūi

∂xj∂xj

+
∂

∂xj

{
νT

[
∂ūi

∂xj

+
∂ūj

∂xi

]}
(1.14)

To solve Eq.(1.14) we need a relation forνT . How to obtainνT is described below.

1.3 The Smagorinsky model

For the Smagorinsky model theνT is obtained:

νT = l2|S̄| (1.15)

where the strain-rate tensor|S̄| is calculated as:

|S̄| =
(
2S̄ijS̄ij

)1/2
(1.16)

l = Cs∆ (1.17)

Cs = 0.09 (1.18)

When the grid is inhomogeneous the filter width is given by∆̄ = (∆x∆y∆z)
1

3 . Furthermore
in the presence of solid boundaries the length scale needs tobe modified by the introduction of
van Driest damping function to account for the reduced growth of the small scales near the wall;
hence the model will look like:

νT =
(
Cs∆̄f

)2
|S̄| (1.19)

wheref is damping function:
f = 1 − e−y+/25 (1.20)

1.4 The Wale Model

The Smagorinsky model by construction gives a non zero valuefor νT as soon as there is a
velocity gradient. Near the wall however the turbulent fluctuations are damped so thatνT → 0.
One way to produce zero eddy viscosity is to makeCs to go to zero as was proposed by Germano
with his dynamical model. However this procedure often leads to a negative value ofCs and
thus may generate numerical instability. In LES, the eddy-viscosityνT must not change when
the frame of reference is changed. Clearly the velocity gradient tensor̄gij = ∂ūi/∂xj is a good
choice to represent velocity fluctuations at the length scale∆. The Smagorinsky model is based
on the second invariant of the symmetric partS̄ij of this tensor. There are two major drawback
associated with this choice:
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Large Eddy Simulation of Channel Flow using Wall Functions

• this invariant is only related to the strain rate of the turbulent structure but not the rotation
rate,

• this invariant is of orderO(1) near wall

A better way to build a better operator is to consider the traceless symmetric part of the square
of the velocity gradient tensor:

Sd
ij =

1

2

(
ḡ2

ij + ḡ2
ji

)
−

1

3
δij ḡ

2
kk, (1.21)

whereḡ2
ij = ḡikḡkj andδij is the Kronecker symbol. Let us denoteΩ̄ the anti-symmetric part of

ḡ:

Ω̄ij =
1

2

(
∂ūi

∂xj

−
∂ūj

∂xi

)
(1.22)

The tensorSd
ij can be rewritten in terms of̄S andΩ̄. One obtains:

Sd
ij = S̄ikS̄kj + Ω̄ikΩ̄kj −

1

3
δij

[
S̄mnS̄mn − Ω̄mnΩ̄mn

]
(1.23)

By construction, the trace ofSd is zero and its second invariant remains finite and proportional
to Sd

ijS
d
ij. By using the relation above and making use of the Cayley-Hamilton theorem of linear

algebra, this quantity can be developed as (assuming incompressibility):

Sd
ijS

d
ij =

1

6

(
S2S2 + Ω2Ω2

)
+

2

3
S2Ω2 + 2IVSΩ (1.24)

with the notations:

S2 = S̄ijS̄ij, Ω2 = Ω̄ijΩ̄ij, IVSΩ = S̄ikS̄kjΩ̄jlΩ̄li

From the last relation, a LES model based onSd
ijS

d
ij will detect turbulence structures with either

(large) strain rate, rotation strain or both. In the case of pure shear (e.g.,̄gij = 0, except ḡ12, it
yieldsS2 = Ω2 = 4S̄12 andIVSΩ = −1

2
S2S2, so that the considered invariant,Sd

ijS
d
ij, is zero.

This point is in agreement with the fact that the shear zones contribute to energy dissipation to
a smaller extent than convergence zones and eddies. Moreover, this mean that almost no eddy
viscosity would be produced in the case of wall-bounded laminar flow (Poiseuille flow). Thus
the amount of turbulence diffusion would be negligible in such a case and the development
of linearly unstable waves would be possible. This is a greatadvantage over the Smagorinsky
model which is unable to reproduce the laminar to turbulent transition of such flow due to the
invariant S̄ijS̄ij is large in case of pure shear. Using Taylor expansion for velocities can be
shown that−uv behaves likey3 while Sd

ijS
d
ij behaves likey2. We know thatνT should behave

like y3 so the expression forνT is [8]:

νT = (CS∆)2

(
Sd

ijS
d
ij

) 3

2

(
S̄ijS̄ij

) 5

2 +
(
Sd

ijS
d
ij

) 5

4

(1.25)
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Chapter 2

Wall Functions

2.1 Introduction

At solid walls, the momentum flux must be known. Since the wallvelocity is assigned, the
no-slip condition allows the determination of the convective partuiuj of the momentum flux
at the wall. Differentiation of the velocity profile to determine the viscous stress, however is
accurate only if the wall layer is well-resolved.

To represent accurately the structures in the near-wall region, the first grid point must be
located aty+ < 1, and the grid spacing must be of order∆x+ ≃ 50 − 150, ∆z+ ≃ 15 − 40
for LES[9]. As Re → ∞, an increasing number of grid points must be used to resolve a
layer of decreasing thickness. This may also result in high aspect-ratio cells, with subsequent
degradation of the numerical accuracy.

Alternatively, approximate boundary conditions, or wall models may be used in LES. When
the grid is not fine enough to resolve the gradients near the wall, there should be specified a law
which correlate the outer flow (the velocity in first grid point) and the shear stress at the wall.
This allows us to place the first node aty+ ≈ 30 − 200.

This idea practically means that the first computational node is placedoutside the viscous
sublayer, and that suitable assumptions about how the near-wall velocity profile behaves are
made, in order to obtain the wall shear stress.

The drawback of this method is that it will not give an accurate approximation of the velocity
gradient, and hence the shear stress, at the wall.

The advantage is in improving convergence and reducing the computational time, with
accepted deterioration in results.

2.2 Log-law

According to Lumley[5] the boundary layer region can be divided into three different
regions:

• viscous sub-layer0 < y+ < 5

At the surface all the stress is viscous stress. The questionis if the Reynolds stress
contribute to the stress at small value ofy+? Experimental evidence has shown that the
Reynolds stress remains a small fraction ofu∗2 up to abouty+ = 5. This layer is called

5



Large Eddy Simulation of Channel Flow using Wall Functions

viscous sublayer. In viscous sublayer, the flow is not steady, but the velocity fluctuations
do not contribute much to the total stress because of the viscosity. In the viscous sublayer
we should haveu+ = y+.

• buffer layer5 < y+ < 30

The region where neither one of the stresses can be neglectedis called the buffer layer.
This is the region where the linear velocity in the viscous layer is linked to logarithmic
velocity profile in the inertial sublayer.

• inertial sub-layer30 < y+ < 200

In the literature, the inertial layer is called the logarithmic region because its mean-
velocity profile is logarithmic.

U+ =
1

κ
lny+ + B (2.1)

or using the definition foru+ andy+ we obtain:

Up =
u∗

κ
ln

(
ypu

∗

ν

)
+ B (2.2)

2.3 Standard wall Functions

The logarithmic law (2.2) is directly applied to first interior node. In a turbulent boundary-
layer, the strongest velocity gradient is found near the wall. With a wall function based tur-
bulence model, which utilizes a relatively coarse mesh, it is impossible to resolve these wall

Figure 2.1: The law of the wall

6



Chapter 2. Wall Functions

gradient [1]. The predicted wall friction would thus be largely in error if a modification is not
introduced:

τw = µ
∂U

∂y
> µe

δU

δy
= µe

Up

yp

(2.3)

where the subscriptp is used for first interior node. The necessary modification could either be
made through:

1. an added source term simulating the correct wall frictionor

2. a modified viscosity, an effective viscosity,µe, that ensures the correct friction even
though the velocity gradient is erroneous.

Through the law-of-the-wall:
U

u∗
=

1

κ
ln
(
Ey+

)
(2.4)

the wall friction is computed as:

τw =
ρu∗Uκ

ln (Ey+)
(2.5)

with τw = ρu∗2.

2.4 The Werner-Wengle model

According to Werner-Wengler[6] the boundary conditions athorizontal walls are specified
by assuming that at the grid points(p) closest to the wall,(a) the instantaneous velocity
components tangential to the wall(up, wp) are in phase with the instantaneous wall shear stress
components(τub, τwb) and(b) the instantaneous velocity distribution is assumed to follow the
linear law-of-the-wall,

u+ = y+ for y+ ≤ 11.81 (2.6)

and it is continued by power-law description

u+ = A(y+)B for y+ = ym > 11.81 (2.7)

with A=8.3 and B=1/7. The velocity components tangential to awall at the grid point next to the
wall (up, wp) can be related to the corresponding wall shear stress components by integrating
the velocity distribution over the height of the first control volume.

According to definition:

u+ =
Up

u∗

y+ =
ypu

∗

ν

ν =
µ

ρ

The intersection of the two laws, linear and power will give us,

y+ = A
1

1−B = y+
m

7



Large Eddy Simulation of Channel Flow using Wall Functions

where subscriptm denotes the intersection point.

Up

u∗
=

ypu
∗

ν
⇒ u∗2 =

Upν

yp

(2.8)

τw = ρu∗2 = ρ
Upµ

ypρ
=

2Upµ

∆y
(2.9)

For the∆y+ ≤ y+
m we get:

u+ =
1

∆y+

∫ ∆y+

0

y+ dy+ =
1

∆y+

y+2

2

∣∣∣∆y+

0

=
1

2∆y+
A

2

1−B (2.10)

In Eq.(2.10) using the definition ofu+ andy+,

Up =
µ

2ρ∆y
A

2

1−B (2.11)

The Eq.(2.11) expresses the maximum velocity for linear-law.
So for∆y+ ≤ y+

m we have

|τub| =
2µ|Up|

∆y
(2.12)

for
|Up| ≤

µ

2ρ∆y
A

2

1−B (2.13)

If for our next node to the wall we have∆y+ > y+
m we should use the power law description for

velocity Eqn.(2.7). We have to integrate velocity along theheight (∆y) of the first cell near the
wall.

u+ =
1

∆y+

∫ ∆y+

0

u+(y+) dy+

=
1

∆y+

(∫ y+
m

0

u+
1 (y+) dy+ +

∫ ∆y+

y+
m

u+
2 (y+) dy+

)
(2.14)

where foru+
1 (y+) we will use linear-law Eqn.(2.6) and foru+

2 (y+) power-law profile Eqn.(2.7)
see Fig.2.2. Using enq.(2.6) and Eqn.(2.7) in enq.(2.14) weobtain:

u+∆y+ =

∫ y+
m

0

y+ dy+ +

∫ ∆y+

y+
m

A
(
y+
)B

dy+

=
y+2

2

∣∣∣y
+
m

0 +
A

1 + B

(
y+
)(1+B)

∣∣∣∆y+

y+
m

=
y+2

m

2
+

A

1 + B

((
∆y+

)1+B
−
(
y+

m

)1+B
)

8



Chapter 2. Wall Functions

y+

∆y+

y+
m

P

u+

u+
2

u+
1

y+

Figure 2.2: The Werner-Wengler model

Up

u∗

∆yu∗

ν
=

1

2
A

2

1−B +

(
∆yu∗

ν

)1+B
A

1 + B
−

A

1 + B
A

1+B

1−B

Up
1 + B

A

∆y

ν
=

1

2
A

2

1−B

1 + B

A
+

(
∆y

ν

)1+B

u∗(1+B) − A
1+B

1−B (2.15)

From Eqn.(2.15) we can write an expression foru∗

u∗(1+B) =
1 + B

A

(
ν

∆y

)B

Up −
1 + B

2
A

1+B

1−B

( ν

∆u

)1+B

+ A
1+B

1−B

( ν

∆u

)1+B

=
1 + B

A

(
ν

∆y

)B

Up +
1 − B

2

(
ν

∆y

)1+B

A
1+B

1−B (2.16)

with τw = ρu∗2 we obtain,

τw = ρ

[
1 + B

A

(
ν

∆y

)B

Up + A
1+B

1−B

(
ν

∆y

)1+B (
1 − B

2

)] 2

1+B

(2.17)

Hence,

|τw| = ρ

[
1 − B

2
A

1+B

1−B

(
µ

ρ∆y

)1+B

+
1 + B

A

(
µ

ρ∆y

)B

|Up|

] 2

1+B

(2.18)

for |Up| >
µ

2ρ∆y
A

2

1−B (2.19)

9



Large Eddy Simulation of Channel Flow using Wall Functions

2.5 The Mason-Callen model

To simulate a channel flow a second-order numerical scheme isused. The sub-grid parametriza-
tion is of form proposed by Mason-Callen [7].

2.5.1 Sub-grid parametrization

This model is the local equilibrium limit of transport equation to determine the sub-grid-
scale energy, i.e.

τij = ν

(
∂ūi

∂xj

+
∂ūj

∂xi

)
(2.20)

νT = l2(y)|S|, (2.21)

wherel(y) is a prescribed function varying withy. The computational mesh used to resolve
the y-direction has a fairly uniform value in the interior of the channel but is refined near
walls. Since there is no corresponding refinement in the span-wise and stream-wise meshes
there is little scope for resolving small eddies near the walls: l(y) is thus not linked to mesh
variations. A fixed basic valuel0 is specified and near the walls small three-dimensional eddies
are represented by a Prandtl mixing-length. This in turn allows a match to the law of the wall,
i.e. we require

l(y) ∼ κ (y + y0) as y → 0 (2.22)

To link this near-wall Prandtl mixing length to the interiorvalue we take

1

l
=

1

l0
+

1

κ (y + y0)
+

1

κ (2δ − y + y0)
(2.23)

whereκ is Von Karmans constant andy = 0 andy = 2δ are the boundaries of the channel
with midpointy = δ, y0 is the surface roughness length for a high-Reynolds number flow. The
relation betweenl0 andCs defined as,

Cs =
l0

(∆x∆ymax∆z)
1

3

(2.24)

where∆x and∆z are the constant grid intervals in the stream-wise and span-wise directions
respectively and∆ymax represent the maximum (in practice a typical value) grid interval across
the channel.

10



Chapter 3

Test Case

The case chosen for simulation in this work is a flow in a channel. The geometry of the
computational domain is given in Fig (3.2). The Reynolds number Retau based on the half
height of channelδ is 4000 and 16000.

3.1 The balance of mean forces

We consider a fully developed channel flow. We assume that nothing changes inz direction
and that〈W 〉 is zero. We also assume that〈U〉 is not a function ofx, since the profile is fully
developed. With this assumptions the continuity equation reduces to,

d〈V 〉

dy
= 0 (3.1)

With the boundary conditions〈V 〉y=0, this dictates that〈V 〉 is zero for ally, so that the boundary
condition at the top wall〈V 〉y=2δ is also satisfied. Fromy-direction momentum, we have,

0 = −
d

dy
〈v2〉 −

1

ρ

∂〈P 〉

∂y
(3.2)

which, with the boundary condition〈v2〉y=0 = 0 and〈v2〉y=δ 6= 0, integrates to,

〈v2〉 + 〈P 〉/ρ = Pw(x)/ρ (3.3)

wherePw is the mean pressure on the bottom of the wall. An important result from this equation
is that the mean axial pressure gradient is uniform across the flow:

∂〈P 〉

∂x
=

dPw

dx
(3.4)

The momentum equation inx-direction,

0 = ν
d2〈U〉

dy2
−

d

dy
〈uv〉 −

1

ρ

∂〈P 〉

∂x
(3.5)

can be rewritten,
dτ

dy
=

dPw

dx
(3.6)

11



Large Eddy Simulation of Channel Flow using Wall Functions

where the total shear stressτ(y) is

τ = ρν
d〈U〉

dy
− ρ〈uv〉 (3.7)

For this flow there is no acceleration, so the mean momentum equation Eqn.(3.6) amounts to a
balance of forces: the axial pressure gradient is balanced by the shear-stress term.

Sinceτ is a function ofy, andPw is a function only ofx it is evident from Eqn.(3.6) that both
dτ/dy anddPw/dx are constant. The solution forτ(y) anddPw/dx can be written explicitly in
terms of thewall shear stress.

Becauseτ(y) is antisymmetric about mid-plane, it follows thatτ(δ) is zero; and at the top
wall the stressτ(2δ) = −τw see Fig.3.1.

P1
P2

τw

τw

2δ

x

y

z

U

Figure 3.1: The balance of mean forces

Hence, the integration of Eqn.(3.6) from0 to 2δ yields,

−
dPw

dx
=

τw

δ
= −

∂〈P 〉

∂x
(3.8)

and
τ(y) = τw

(
1 −

y

δ

)
(3.9)

dP

dx
=

dτ

dy
(3.10)

after integration from 0 to2δ
τw

δ
= −

dP

dx
≡ 1 (3.11)

The termdP/dx ≡ 1 is added in source term.
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Chapter 3. Test Case

3.2 Boundary conditions

The following boundary conditions were applied:

• In y direction we have no-slip conditions aty = 0 andy = 2δ

• in x andz directions we have periodic boundary conditions.

Periodic boundary conditions implies that the computational domain repeats itself an infinite
number of times. Periodic boundary conditions are convenient, since they eliminate the need
to specify inflow and outflow conditions. They are easy to implement and efficient, since they
allow use of small computational domain. The use of periodicboundary conditions is similar to
studying time development, rather than the spatial development, of a flow.

13



Large Eddy Simulation of Channel Flow using Wall Functions

Mesh Nodes ∆x ∆z Stretching ratio Reδ y+
p

A 34x34x34 0.094 0.0467 1.115 4000 49
B 34x60x34 0.094 0.0467 1.100 16000 54
C 34x60x34 0.094 0.0467 1.060 1600 108
D 34x60x34 0.094 0.0467 1.022 1600 200
E 34x34x60 0.094 0.0129 1.115 4000 49
F 50x34x60 0.031 0.0129 1.115 4000 49
G 50x82x60 0.031 0.0129 1.00122 4000 49
H 34x82x34 0.094 0.0467 1.00122 4000 49

Table 3.1: Geometrical and numerical details of the meshes
Indexp denotes the wall adjacent node

3.3 Computational Grid

Several grids were used, and they are given in Table (3.1). A grid stretching was used in the
y directions and a uniform grid in the other two directions.

3δ

2δ

1.5δ

x

x

y

z

Figure 3.2: Geometry of the test case
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Chapter 4

Implementation of Wall Functions

4.1 General description of the code

Calculation are performed using the CALC-BFC code. The code CALC-BFC is based on
a 3 - D finite volume method for solving the incompressible Navier-Stokes equations. The
code uses collocated variable arrangement in which all variables are stored at the same control
volume. The convective fluxes are approximated using central differencing scheme. Because of
periodic boundary condition a CTDMA (Cycle-Tri-Diagonal-Matrix Algorithm) is utilized to
solve the algebraic relations obtained after discretisation. A Crank-Nicolson scheme is used for
time integration [4].

4.2 The Method

The CALC-BFC code uses an implicit two-step time-advancement method [3]. Integration
of Eq.(1.14] fromt andt + ∆t gives:

ūn+1
i = ūn

i + ∆ tH
(
ūn

i , ūn+1
i

)
−

1

ρ
α∆t

∂pn+1

∂xi

−
1

ρ
(1 − α) ∆t

∂pn

∂xi

(4.1)

The intermediary velocity at time stepn + 1/2 is,

ū
n+1/2
i = ūn

i + ∆ tH
(
ūn

i , ū
n+1/2
i

)
−

1

ρ
α∆t

∂pn+1/2

∂xi

−
1

ρ
(1 − α) ∆t

∂pn

∂xi

(4.2)

The theory behind this method is the idea that a vector field can be broken in two parts, one
part that is of zero curl and a portion that is of zero divergence.

For the moment we have to ignore pressure (no implicit pressure).

ū
n+ 1

2

i = ūn
i + ∆ tH

(
ūn

i , ū
n+1/2
i

)
− α∆ t

∂p̄n+1/2

∂xi

(4.3)

whereH(un
i , u

n+1/2) includes the convective term and viscous and SGC stresses;α = 0.5
(Crank-Nicholson method). In SIMPLE notation Eqn.(4.3) hasthe form,

apū
n+1/2
i =

∑
anbū

n+1/2 + SU − α∆t
∂p̄n+1/2

∂xi

∆V (4.4)
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whereSU include all source terms except implicit pressure.
From Eqn.(4.3) we obtain̄un+1/2

i which doesn’t satisfy continuity. An intermediate velocity
field is computed,

ū∗

i = ū
n+1/2
i +

1

ρ
α∆t

∂p̄n+1/2

∂xi

(4.5)

The pressure is recovered by definingun+1 as follows:

ūn+1
i = ū∗

i −
1

ρ
α∆t

∂pn+1

∂xi

(4.6)

By solving (4.5) foru∗ and inserting in (4.6), we see that we obtain,

ūn+1
i = ūn

i + ∆ tH
(
ūn

i , ū
n+1
i

)
−

α

ρ
∆t

∂pn+1

∂xi

−
(1 − α)

ρ
∆t

∂pn

∂xi

(4.7)

Now if we take divergence from Eq.(4.6),

∂ūn+1
i

∂xi

=
∂ū∗

i

∂xi

+
1

ρ
α∆

∂2pn+1

∂xi∂xi

(4.8)

Now we require that the face velocitiesūn+1
i,f (which are obtained by linear interpolation) satisfy

the continuity equation∂ūn+1
i,f /∂xi = 0, we will end with Poisson equation for the pressure:

∂2pn+1

∂xi∂xi

=
ρ

∆tα

∂ū∗

i,f

∂xi

(4.9)

The numerical procedure at each time step is following:

1. Solve the Navier-Stokes equation forū, v̄, w̄.

2. Create an intermediate velocity field using Eqn.(4.5)

3. Solve Poisson equation (4.9)

4. Compute the face velocities̄un+1
i,f (which satisfy continuity) from the pressure and the

intermediate velocity using

ūn+1
i,f = ū∗

i,f −
1

ρ
α∆t

(
∂pn+1

∂xi

)

f

(4.10)

5. Compute turbulent viscosityνT

6. Step 1 to 5 until convergence is reached.

7. Next time step
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Chapter 4. Implementation of Wall Functions

4.3 Computation of νT

To calculateνT the Smagorinsky and the Wale model were used. For the Smagorinsky model
the length scale was calculated in two different ways:

• Firstly the length scale was calculated like:

lmin = min (lRANS, lLES) (4.11)

where

lRANS = kyp

lLES = Cs (∆x∆y∆z)
1

3

• Secondly the Mason-Callen model was implemented

1

l
=

1

Cs (∆x∆y∆z)
1

3

+
1

κ · min(yp, 2 − yp)
(4.12)

In both cases the length scale is a function of (i,j,k). A comparison of length scales used,lmin

andlmason, is shown in Fig. (4.1). The length scalelmin is almost two times larger thanlmason in
the near wall region, resulting in difference of sub-grid dissipation. Even with the damp function
Eqn.(1.20), the classical Smagorinsky model is more dissipative than the Mason-Callen model.
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Figure 4.1: Comparison of length scale for Smagorinsky model:−− lmin, −lmason, · · · lmin · f

4.4 Implementation of wall function

The wall function are implemented via modified viscosity at the wall and via source term
for the Werner-Wengler model.
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• According to log-law,

τw = µ
∂U

∂x
|y+

≈1

τw = µT,w
∂U

∂x
|y+>30 ≈ µT,w

U

y
(4.13)

τw = ρu∗2

we obtain

µT,w =
u∗

Up

ρu∗yp

using log − law
Up

u∗
=

1

κ
ln
(
Ey+

)

the result is

µT,w =
ρu∗ypκ

lnEy+
p

(4.14)

• In the discretized momentum equation,

apUp = aeUe + awUw + anUn + asUs + atUt + abUb + Su (4.15)

as arises from the shear stress at the south face of the cell see Fig. (4.2). Because we
obtain the wall shear stress from an assumed velocity profile, we can setas = 0 and then
add the wall shear stressτw∆x∆z directly into the source term.

The general source termS is expressed as:

S = SpΦp + Su (4.16)

whereΦ = U because the Werner-Wengler model was implemented only forU compo-
nent; the Werner-Wengler equation forτw is

|τw| = ρ

(
1 + B

A

(
ν

∆y

)B

|Up| + A
1+B

1−B

(
ν

∆y

)1+B (
1 − B

2

)) 2

1+B

(4.17)

The model was implemented in ’lazy’ way, because theSp term was considered zero and
Su = −τw∆x∆y. The source term was added only in the first node near to the wall.
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x

z

y

U

∆x

∆y

τw

Figure 4.2: Near Wall region
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Chapter 5

Results
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Figure 5.1: Time-averaged velocity profile forReτ=4000, − Smagorinsky model,
−− Wale model,◦ Log-law

The main objective of this report is to implement wall-functions for simulation of channel
flow with LES. The Fig.(5.1) illustrates time-averaged velocity profile for Reτ = 4000 using
the Smagorinsky and the Wale model. The Wale model gives better approximation of velocity
profile than the Smagorinsky model. The Fig.(5.2) shows theurms/u

∗ fluctuations. Near the
wall the Wale model gives higher fluctuations than the Smagorinsky model. This is mainly
due to the SGS viscosity, see Fig.(5.5), because near the wall we have very high velocity
gradient and consequently the SGS viscosity is too high due to the nature of the Smagorinsky
model. Higher SGS viscosity will damp velocity fluctuations. As is evident from Fig.(5.3) the
〈u′v′〉/u∗2 quantity determined by the Wale model has some ’wiggles’. One explanation for this
could be that the velocity gradients are too high for this mesh. If we look at Fig.(5.4) for the
value plotted on faces there is no ’wiggles’. The face value are more relevant because this is
what the code is using.
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Acording to Eqn.(3.11)τw = 1 which is satisfied for averaged value〈τw〉 for the Smagorin-
sky model Fig.(5.6) and also for the Mason-Callen model Fig.(5.7).
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Figure 5.2:− Smagorinsky model,− ◦ − Wale model

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

y

〈u′v′〉/u∗2

Figure 5.3:− Smagorinsky model,− ◦ − Wale model
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Figure 5.4:−×− Wale model at p nodes,− ◦ − Wale model at faces
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Figure 5.5:− Smagorinsky model,− ◦ − Wale model

23



Large Eddy Simulation of Channel Flow using Wall Functions

0 20 40 60 80 100
0.9

0.95

1

1.05

1.1

time

τw

Figure 5.6: Time history forτw Smagorinsky model. Mesh A
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Figure 5.7: Time history forτw Mason-Callen model. Mesh A
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The derivative∂u/∂y near the wall can be calculated in two different modes

1. in a classical way (
∂u

∂y

)

2

=
up(2) − up(1)

yp(2) − yp(1)
(5.1)

2. using log-law: (
∂u

∂y

)

2

=
u∗

κyp

(5.2)

This can be applied only at the first node near the wall. The results presented in Fig.(5.8) for the
Smagorinsky model and in Fig.(5.9) for the Wale model show that the viscosity is reduced in the
second node and also slightly at the other nodes. Note that the same happens for the fluctuating
velocityurms/u

∗ see Fig.(5.10).
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Figure 5.9: Wale model:−
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Chapter 5. Results

length scale viscosity at the wall
Smagorinsky/Log-law Smagorinsky Log-law
Mason-Callen/Log-law Mason-Callen Log-law

Samgorinsky/Werner-Wengler Smagorinsky Werner-Wengler

Table 5.1: Length scale model and viscosity model

Next the wall function based on the log-law is used together with the Mason-Callen and
the Smagorinsky model. Also the wall function based on power-law using the Werner-Wengler
model together with the Smagorinsky model is used. Velocityprofile Fig.(5.11) calculated with
the Werner-Wengler model gives the best approximation to log-law except near the wall where
the velocity is forced to be too low. The Mason-Callen model gives an intermediate profile
between the Smagorinsky and the Werner-Wengler model. The value calculated for fluctuating
velocity and SGS viscosity Fig.(5.12) and Fig.(5.14) with the Smagorinsky/Log-law and the
Smagorinsky/Werner-Wengler model are the same. This mean that the velocity gradients are
the same but not velocity profile.
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Figure 5.11: Time-averaged velocity profile forReτ=4000. − Smagorinsky/Log-law,
· · · Mason-Callen/Log-law,−− Smagorinsky/Werner-Wengler

How νT is calulated and how the viscosity at the wall is defined, see Table (5.1).
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Figure 5.12: − Smagorinsky/Log-law, · · · ◦ · · · Mason-Callen/Log-law,
−− Smagorinsky/Werner-Wengler
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Figure 5.13: −Smagorinsky/Log-law, · · · ◦ · · ·Mason-Callen/Log-law,
−−Smagorinsky/Werner-Wengler
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Figure 5.14: − Smagorinsky/Log-law, · · · ◦ · · · Mason-Callen/Log-law,
−− Smagorinsky/Werner-Wengler
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The main idea with wall-functions is to go as far as possible away from the wall. For
Reτ = 16000 the flow was analyzed using differenty+ 54, 108, 200. The velocity profiles
Fig.(5.15) compared with Log-law show almost the same differences for all cases. All three
cases are quite close to each other. The same happens forurms/u

∗ Fig.(5.16) and the〈u′v′〉/u∗2

Fig.(5.17); the only problem is near the wall where we have some differences. Not the same
can be noticed for the viscosity Fig.(5.18) where fory+ = 200 we have the lowest viscosity.
The main reason is that the viscosity is very sensitive to filter width∆ = (∆x∆y∆z)1/3 and
∆y+=200 < ∆y+=108 < ∆y+=54.
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Figure 5.15: Time-averaged velocity profile forReτ=16000 using the Smagorinsky model/Log-

law with

(
∂u

∂y

)

2

=
u∗

κyp

at differenty+; × Log-law,− y+ = 54, −− y+ = 108, · · · ◦ · · · y+ =

200
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Figure 5.16:− y+ = 54, −− y+ = 108, · · · ◦ · · · y+ = 200
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Figure 5.17:− y+ = 54, −− y+ = 108, · · · ◦ · · · y+ = 200
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Figure 5.18:− y+ = 54, −− y+ = 108, · · · ◦ · · · y+ = 200
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Figure 5.19: Time history forτw Smagorinsky model. Mesh C
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Figure 5.20: Time history forτw Smagorinsky model. Mesh D

From Fig.(5.19) and Fig.(5.20) it is clear that〈τw〉 = 1 which means that the flow is fully
developed and there is no acceleration.
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Because the comparison for the velocity profile was done all the time with the log-law the
question is how should be the mesh in order that the velocity profile to be the same as log-law.
In other words how fine the mesh should be? Should the mesh be fine enough in all directions
or is it enough to have fine mesh in the direction perpendicular to wall?

As is evident from Fig.(5.21) the best result was obtained when the number of nodes was
increased in all three directions. For the finest mesh in Fig.(5.21) the size of length scales are
∆x+ ∼ 205, ∆z+ ∼ 103 and∆y+

min ∼ 97.
The mesh was changed in the following way, first only they-direction was increased andx, z

kept the same, the result was not good; next they-direction was kept constant andx, z increased
the result was better. This mean that it is not enough to have fine mesh normal to the wall it is
also important that the mesh in other two directions to be fineenough and respect∆x+ < 100,
∆z+ < 50 to get good results.
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Figure 5.21:· · · ⋆ · · · 34 × 82 × 34, −− 50 × 34 × 60, · · · ◦ · · · 50 × 82 × 60, ×Log − Law
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Conclusions

The Log-law and the Werner-Wengler model have been implemented to define the SGS
viscosity at the wall and the Mason-Callen model to calculatethe length scale for large eddy
simulations. All models give acceptable results comparingwith Log-law, when LES are per-
formed using very coarse mesh.

Although the velocity profile is sensitive to model used, this can be improved by increasing
∆x+ and∆z+. Forurms, vrms, wrms, anduv the propagation into the flow of error introduced
by approximate boundary condition are acceptable.
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Future Work

First to run a case where we have some experimental or DNS dataso to be able to compare
not only velocity with log-law but alsourms, vrms, wrms.
Second to see how it works in a case where we have flow around obstacles with sharp edges and
corners, or flow with recirculation.
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