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Abstract

Turbulent wall-bounded flows are commonly encountered girexering practice and are of
considerable interests in a variety of industrial appiaa. This presence of wall significantly
affects turbulence characteristics. If we want to solvertbar-wall region a very fine mesh is
necessary. The number of points needed increases at lea&lli®. This requirement makes
LES application of LES for high Reynolds (orderf® — 108) practically impossible.

One solution is to apply near-wall modification, or wall mtsdeith a coarse mesh near
the wall. When the grid is not fine enough to resolve near-walcture, the near-wall must be
modeled by specifying a correlation between the velocitfirst node and shear stress at the
wall.

The objective of this study was to implement wall-functian EES simulation of channel
flow. The sub-grid scales are modelled using SmagorinskyVealé model. The first node is
placed aty* ~ 49 for Re, = 4000 and54 < y* < 200 for Re, = 16000. So the first node
was located in log-law region and standard wall function eglied. Other modification was
introduced in the calculation of the length-scale in the §onasky model using the model
proposed by Mason-Callen [7]. Another model introduced \wast¥erner-Wengler model [6].
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] Dynamic viscosity
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Chapter 1
LES

1.1 Introduction

Analytical or numerical solution of turbulent flow problersan be accomplished using
various levels of approximation, yielding more or less detbdescriptions of the state of flow.

The most used approximation is RANS (Reynolds-averaged N&tkes equations), that
has one main draw back: the fact that all scales are modelix isame way. While the small
scales tend to depend only on viscosity, and may be somewiadrsal, the large ones are
affected very strongly by the boundary conditions. Thudpigsn’'t seem possible to model the
effect of the large scales of turbulence in the same way insflihnat are very different.

The most straightforward approach to the solution of tuebuflow is DNS (Direct Numer-
ical Simulations), but it has some limitations. The mainilation is that one needs to solve all
the scales of motion, which requires a number of grid pointp@rtional to thed /4 power of
the Reynolds numbefie, and the cost of computation scales like’.

The most convenient way between RANS and DNS is to use LES ¢lexddy simulations).
In LES the contribution of the large scales are computedtixamnd only the effect of the
smallest scales is modeled. Since the smallest scales aechmmogeneous and universal, and
less affected by the boundary conditions than large oneg isehope that their models can be
simpler. In LES each quantityis decomposed as

g=g+49" (1.1)

whereg is resolvable-scale component agitlis small scale or sub-grid (unresolved) compo-
nent. Theg is the result of applying a filtering procedure to the local amstantaneous quan-
tities. Filtering is the operation which let us separatel#inge from the small scales. A filtered
variable, denoted by an overbar, is defined as:

5(z) = /D o()G () (z, ')’ (12)

whereD is entire domain and; is filter function. The filter function determines the size and
structure of small scales. The most common-used filter fonstare the sharp Fourier cutoff
filter, best defined in wave space:

~ Lifk< X
G=J "T=A (1.3)
0: otherwise
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Large Eddy Simulation of Channel Flow using Wall Functions

G(z) = \/gexp (-Z-‘f) (1.4)

and the top-hat filter in real space:

the Gaussian filter,

1.. A
Gla) =4 nifll=g (1.5)
0 : otherwise

For finite volume method the filtering is the same as the disaton (integration over the
control volume is the same as filtering). The incompressitdwier-Stokes equation before

filtering reads:
ou; 0 1 0p 0 Ou,;

() = —— — 1.6
ot * Oz, (i) p Ox; * ”axj Oz, (1.6)
After filtering the Navier-Stokes reads:
ou, 0 1 9p 9 Ou; Oy
— (W) = ——=—— — 1.7
ot + (9xj (Uzu]) p(‘?xz + Vaxj 8(13]' (91:1 ( )
The effect of the small scales is obtained through a subgaldSGS) stress term,
Tij = W - ﬂiﬂj (18)

that must be modeled. To solve sub-grid compongnthere are several models, the models
used in this work are discussed below.

1.2 Eddy viscosity models

Most sub-grid scale models are eddy-viscosity models ofdima,

0ij =
Tij — ?]Tkk = _2VTSij (19)
that relate the sub-grid-scale stressgso the large-scale strain-rate tenss;,
- 1 (0u; Ouy
B 1.1
Sl] 2 <8CCJ * 8:1:1) 7 ( O)

In most case$/ is obtained algebraically to avoid solving additional etprss that would

increase the cost of calculation. Equation (1.9) can beesgad as
1 2 .
Tij — géikak = Tij — géwp kf (111)

where we assumed that;,, /p = &’ Using Eq.(1.11) and Eq.(1.9) into Eq.(1.7), we get

aﬂi +i(a.a,)—_laﬁi + v (922%
ot Oz, " pox Ox;0x;
0 2 , ou;  0u;
+a—x] {—géz]pk + vr |:aCL’J + ax2:| } (112)
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Chapter 1. LES

Defining pressure as:

P=p+ gpk' (1.13)
we obtain:
8@1‘ n i (l_Ll_L) o _18]2 . 827]2'
ot dx; " powy Ox;0x;
0 ou;  0u,
— 1.14
" o, {VT [3%’ i 3%]} (19

To solve Eq.(1.14) we need a relation fgr. How to obtain; is described below.

1.3 The Smagorinsky model
For the Smagorinsky model the is obtained:
vy = I?|S] (1.15)

where the strain-rate tensi#| is calculated as:

5] = (28;55;)"” (1.16)
| = CA (1.17)
C, = 0.09 (1.18)

When the grid is inhomogeneous the filter width is given/by= (AxAyAz)%. Furthermore
in the presence of solid boundaries the length scale nedmsrmodified by the introduction of
van Driest damping function to account for the reduced gnafthe small scales near the wall;
hence the model will look like:

vr = (C.Af)?]S) (1.19)

wheref is damping function:
f=1—¢¥'/?» (1.20)

1.4 TheWale Modd

The Smagorinsky model by construction gives a non zero Value, as soon as there is a
velocity gradient. Near the wall however the turbulent fladions are damped so that — 0.
One way to produce zero eddy viscosity is to makeéo go to zero as was proposed by Germano
with his dynamical model. However this procedure often $etda negative value af'; and
thus may generate numerical instability. In LES, the eddgasity ;- must not change when
the frame of reference is changed. Clearly the velocity grdensog;; = 0u,/Jz; is a good
choice to represent velocity fluctuations at the lengtheséalThe Smagorinsky model is based
on the second invariant of the symmetric péigtof this tensor. There are two major drawback
associated with this choice:
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e this invariant is only related to the strain rate of the tlebtistructure but not the rotation
rate,

e this invariant is of orde©(1) near wall

A better way to build a better operator is to consider thedliess symmetric part of the square
of the velocity gradient tensor:

1, _ 1.

85 = 5 (a5 + 33) — 30460 (1.21)
whereg?; = gi.gr; andd;; is the Kronecker symbol. Let us dendtehe anti-symmetric part of
: 1 (0u; Ou

=5\ " an 1.22

The tensob‘fj can be rewritten in terms of and{). One obtains:

o o 1 _ _

v

By construction, the trace ¢¥? is zero and its second invariant remains finite and propuatio
to S%ng By using the relation above and making use of the Cayley-Hamiheorem of linear
algebra, this quantity can be developed as (assuming inessipility):

Sd gd

ijig

(5257 +Q*Q0%) + §S2Q2 +21Vsq (1.24)

[N

with the notations:
S? = 8;;Sij, 0 = Q;Q;, IVsq = SirSk; L

From the last relation, a LES model based%j5;; will detect turbulence structures with either
(large) strain rate, rotation strain or both. In the caseuséshear (e.gg;; = 0, except gyo, it
yields S? = O? = 45, and Vs = —3525?, so that the considered invariast; S¢., is zero.
This point is in agreement with the fact that the shear zopnasribute to energy dissipation to
a smaller extent than convergence zones and eddies. Moyduigemean that almost no eddy
viscosity would be produced in the case of wall-bounded mamflow (Poiseuille flow). Thus
the amount of turbulence diffusion would be negligible irtlsa case and the development
of linearly unstable waves would be possible. This is a gaglaantage over the Smagorinsky
model which is unable to reproduce the laminar to turbulemdition of such flow due to the
invariant S;;S;; is large in case of pure shear. Using Taylor expansion favcitéés can be
shown that-uw behaves like;® while S%S;’j behaves like/%. We know that/; should behave
like 1® so the expression farr is [8]:

(52542

13~

vr = (CsA)? (1.25)

(5:555)* + (S454)"

1y



Chapter 2

Wall Functions

2.1 Introduction

At solid walls, the momentum flux must be known. Since the wealbcity is assigned, the
no-slip condition allows the determination of the conveetpartu;u,; of the momentum flux
at the wall. Differentiation of the velocity profile to deteine the viscous stress, however is
accurate only if the wall layer is well-resolved.

To represent accurately the structures in the near-waibmeghe first grid point must be
located aty™ < 1, and the grid spacing must be of ord®s™ ~ 50 — 150, Az*T ~ 15 — 40
for LES[9]. As Re — oo, an increasing number of grid points must be used to resolve a
layer of decreasing thickness. This may also result in hgpeet-ratio cells, with subsequent
degradation of the numerical accuracy.

Alternatively, approximate boundary conditions, or watiagels may be used in LES. When
the grid is not fine enough to resolve the gradients near thiethvare should be specified a law
which correlate the outer flow (the velocity in first grid ppiand the shear stress at the wall.
This allows us to place the first nodeiat ~ 30 — 200.

This idea practically means that the first computationalensdplaceutside the viscous
sublayer, and that suitable assumptions about how thewedhxelocity profile behaves are
made, in order to obtain the wall shear stress.

The drawback of this method is that it will not give an accergdproximation of the velocity
gradient, and hence the shear stress, at the wall.

The advantage is in improving convergence and reducing onepatational time, with
accepted deterioration in results.

2.2 Log-law

According to Lumley[5] the boundary layer region can be diéd into three different
regions:
e viscous sub-layeb < y™ <5

At the surface all the stress is viscous stress. The queidinthe Reynolds stress
contribute to the stress at small valueyof? Experimental evidence has shown that the
Reynolds stress remains a small fraction:6f up to abouty™ = 5. This layer is called

5



Large Eddy Simulation of Channel Flow using Wall Functions

viscous sublayer. In viscous sublayer, the flow is not stelaatythe velocity fluctuations
do not contribute much to the total stress because of thesiitycin the viscous sublayer
we should have ™ = y™.

e buffer layer5 < y* < 30

The region where neither one of the stresses can be negisatatled the buffer layer.
This is the region where the linear velocity in the viscouygelas linked to logarithmic
velocity profile in the inertial sublayer.

e inertial sub-layeB0 < y* < 200

In the literature, the inertial layer is called the logamiilc region because its mean-
velocity profile is logarithmic.

1
U= -Iny" + B (2.1)
R
or using the definition for,™ andy™ we obtain:

U, = —In (y”“ ) +B (2.2)

K 14

2.3 Standard wall Functions

The logarithmic law (2.2) is directly applied to first interinode. In a turbulent boundary-
layer, the strongest velocity gradient is found near thd.Walith a wall function based tur-
bulence model, which utilizes a relatively coarse mests itripossible to resolve these wall

viscous buffer inertial
sublayer layer sublayer

30 T T

Figure 2.1: The law of the wall

6



Chapter 2. Wall Functions

gradient [1]. The predicted wall friction would thus be lakgin error if a modification is not

introduced: 5U 5U U
Tw = Py > fles = flo—" (2.3)

Ay 0y Yp
where the subscriptis used for first interior node. The necessary modificatiarictceither be

made through:
1. an added source term simulating the correct wall friction

2. a modified viscosity, an effective viscosity,, that ensures the correct friction even
though the velocity gradient is erroneous.

Through the law-of-the-wall:

1
v = —In (Ey+) (2.4)
u* K
the wall friction is computed as:
pu Uk
= 2.5
" I (By) (2:9)

with 7, = pu*?.

2.4 TheWerner-Wengle model

According to Werner-Wengler[6] the boundary conditionfiatizontal walls are specified
by assuming that at the grid poinfp) closest to the wall{a) the instantaneous velocity
components tangential to the wéll,, w,) are in phase with the instantaneous wall shear stress
components ., 7.,) and(b) the instantaneous velocity distribution is assumed t@volihe
linear law-of-the-wall,
ut =yt for yT <11.81 (2.6)

and it is continued by power-law description
ut =A@yHE  for oyt =y, > 1181 (2.7)

with A=8.3 and B=1/7. The velocity components tangentialtead at the grid point next to the
wall (u,,w,) can be related to the corresponding wall shear stress camnfmhy integrating
the velocity distribution over the height of the first coritvolume.

According to definition:

U
ut = L

u
oo
14

_

Vv = —

p

The intersection of the two laws, linear and power will giw u

7
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where subscripit: denotes the intersection point.

Up _pu" o _ U (2.8)
u* v Yp
2
T = pU? = p% _ 2Upp (2.9)
Yor Ay
For theAy™ <y we get:
.
oo Y y+dy+:Ly_+2 Ayt
Ayt J, Ayt 2 1°
1 2
In Eq.(2.10) using the definition aft andy™,
U, =-—F Ars (2.11)

- 2pAy

The Eq.(2.11) expresses the maximum velocity for lineat-la
So forAyt <y we have

2,U|Up’
= 2.12
for I
2
< ——A1- 2.13
|Up’ — QPA?J =B ( )

If for our next node to the wall we havdy™ > ¢ we should use the power law description for
velocity Eqn.(2.7). We have to integrate velocity along lleeght (Ay) of the first cell near the
wall.
1A
+ + (ot +
R v (y")dy

+

1 Y Ay
= ar [ e [ weh (2.14)
Y 0 Y

where foru; (y™) we will use linear-law Eqn.(2.6) and fat (™) power-law profile Eqn.(2.7)
see Fig.2.2. Using enq.(2.6) and Egn.(2.7) in enq.(2.149tain:

Y Ayt B
utAyt = / y"dyt+ / Ay")” dyt
0 Y

+
A

m

+2

_ YT £\ (1+B) [ay*
= Tt ¥
_ U A O ()
T2 +1+B((Ay) (vn)

8



Chapter 2. Wall Functions

y* u™t
Ay+ ***********************************
P us,
®
Yo | 1 A it
yl

Figure 2.2: The Werner-Wengler model

Uy, Ayu” 1, » Ayu* B4 A e
1+B 1+8B

1+
Up1+B% Lyt 8 (%) OB _ ATR

u*t v 2 v

A v 2 A

From Eqn.(2.15) we can write an expressiondor

B
pu+B) _ 118 <L) g1t B s (L)HB L AR (L

B B 4B
A Ay 2 Ay

with 7, = pu*? we obtain,

_2
1+B/ v \”? e /v \"B 1B\ |7
nen |5 (&) et (5) (5
Hence,
2
1_B 4B . p B B
‘Tw| =p —A% (L) L (L) |Up|
2 pAy A pAy
poo 2
f; Uy > ——AT=5
or ‘ P| QpAy

(2.15)

(2.17)

(2.18)

(2.19)
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2.5 TheMason-Callen model

To simulate a channel flow a second-order numerical scheused The sub-grid parametriza-
tion is of form proposed by Mason-Callen [7].

2.5.1 Sub-grid parametrization

This model is the local equilibrium limit of transport equet to determine the sub-grid-
scale energy, i.e.

ou;  Ouj
Tij =V <3xj + c%vi) (2.20)
vr = ()|, (2.21)

wherel(y) is a prescribed function varying witlh The computational mesh used to resolve
the y-direction has a fairly uniform value in the interior of théamnel but is refined near
walls. Since there is no corresponding refinement in the-sps@ and stream-wise meshes
there is little scope for resolving small eddies near thdswély) is thus not linked to mesh
variations. A fixed basic valug is specified and near the walls small three-dimensionakesddi
are represented by a Prandtl mixing-length. This in turovadla match to the law of the wall,
l.e. we require
W(y) ~ K (y+yo) asy — 0 (2.22)

To link this near-wall Prandtl mixing length to the interialue we take

1 1 1 1
Z=_4 + 2.23
Il kK+wy) K(20—y+yo) ( )

wherex is Von Karmans constant and= 0 andy = 2§ are the boundaries of the channel
with midpointy = 4, y, is the surface roughness length for a high-Reynolds number Tlbe
relation betweem, andC, defined as,

lo

C, = -
(ATAYmarAz)3

(2.24)

where Az and Az are the constant grid intervals in the stream-wise and sps@-directions
respectively and\y,,.. represent the maximum (in practice a typical value) gridrvell across
the channel.

10



Chapter 3

Test Case

The case chosen for simulation in this work is a flow in a chanflee geometry of the
computational domain is given in Fig (3.2). The Reynolds nemRe,,, based on the half
height of channef is 4000 and 16000.

3.1 Thebalance of mean forces

We consider a fully developed channel flow. We assume thaimgpthanges in direction
and that(1V) is zero. We also assume th@f) is not a function ofr, since the profile is fully
developed. With this assumptions the continuity equatéztuces to,

d(V)
dy
With the boundary conditiond’),,_,, this dictates thatl”) is zero for ally, so that the boundary
condition at the top wall/'),—,5 is also satisfied. From-direction momentum, we have,

d 19(P)
0=——@?) — 21
dy< ) p Oy

=0 (3.1)

(3.2)

which, with the boundary conditiofv?),—, = 0 and(v?),_s; # 0, integrates to,

(v*) + (P)/p = Pu(x)/p (3.3)

whereP,, is the mean pressure on the bottom of the wall. An importamiltérom this equation
is that the mean axial pressure gradient is uniform acreas#dtv:

o(P) dP,
= — 3.4
ox dx (3-4)
The momentum equation irtdirection,
dU) d 1 0(P)

0= _ il il & 3.5
Y T (uv) > on (3.5)

can be rewritten, ; p

-

oL 3.6
dy dx (3.6)

11
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where the total shear stresg)) is

T= pu%ﬁj> — pluw) (3.7)
For this flow there is no acceleration, so the mean momentwatem Eqn.(3.6) amounts to a
balance of forces: the axial pressure gradient is balangéadbshear-stress term.

Sincer is a function ofy, andP,, is a function only ofr it is evident from Eqn.(3.6) that both
dr/dy anddP,,/dx are constant. The solution fofy) anddP,, /dx can be written explicitly in
terms of thewall shear stress.

Becauser(y) is antisymmetric about mid-plane, it follows tha()) is zero; and at the top
wall the stress (24) = —,, see Fig.3.1.

Tw
P, U P,
— o - 2
y
Tw
X

AN

z
Figure 3.1: The balance of mean forces
Hence, the integration of Eqn.(3.6) frairo 26 yields,
dP, 1o,  O(P)
“dr 5 or (3.8)
and y
T(y) = Tw (1 — 5) (3.9)
dP  dr
. A
dr dy (3.10)
after integration from 0 t@J
w_ 4Py (3.11)
0 T

The termdP/dx = 1 is added in source term.

12



Chapter 3. Test Case

3.2 Boundary conditions

The following boundary conditions were applied:
e In y direction we have no-slip conditions@t= 0 andy = 26
¢ in z andz directions we have periodic boundary conditions.

Periodic boundary conditions implies that the computaiaomain repeats itself an infinite
number of times. Periodic boundary conditions are convengnce they eliminate the need
to specify inflow and outflow conditions. They are easy to npént and efficient, since they
allow use of small computational domain. The use of peribdigndary conditions is similar to
studying time development, rather than the spatial dewvedoyt, of a flow.

13
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Mesh| Nodes | Ax Az | Stretching ratio| Re; Yy
A 34x34x34| 0.094| 0.0467| 1.115 4000 | 49
B 34x60x34| 0.094| 0.0467| 1.100 16000| 54
C 34x60x34| 0.094| 0.0467| 1.060 1600 | 108
D 34x60x34| 0.094| 0.0467| 1.022 1600 | 200
E 34x34x60| 0.094| 0.0129| 1.115 4000 | 49
F 50x34x60| 0.031| 0.0129| 1.115 4000 | 49
G 50x82x60| 0.031| 0.0129| 1.00122 4000 | 49
H 34x82x34| 0.094| 0.0467| 1.00122 4000 | 49

Table 3.1: Geometrical and numerical details of the meshes
Indexp denotes the wall adjacent node

3.3 Computational Grid

Several grids were used, and they are given in Table (3.1)idstretching was used in the

y directions and a uniform grid in the other two directions.

20

30

Figure 3.2: Geometry of the test case

14
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Chapter 4

| mplementation of Wall Functions

4.1 General description of the code

Calculation are performed using the CALC-BFC code. The code CALC-BFased on
a 3 - D finite volume method for solving the incompressible ie®tokes equations. The
code uses collocated variable arrangement in which alhlbbes are stored at the same control
volume. The convective fluxes are approximated using cediffarencing scheme. Because of
periodic boundary condition a CTDMA (Cycle-Tri-Diagonal-Wa Algorithm) is utilized to
solve the algebraic relations obtained after discretsath Crank-Nicolson scheme is used for
time integration [4].

4.2 TheMethod

The CALC-BFC code uses an implicit two-step time-advancemeathad [3]. Integration
of Eq.(1.14] fromt andt + At gives:

opntt 1 op™
ultt = AtH (a, a'tt) — —aAt - = At 4.1
it (@ 7™) Ox; p( @) Ox; “.1)
The intermediary velocity at time step+ 1/2 is,
n+1/2 1 Op™
2 g A () = Lam @ _ Ly s 4.2
at = A () < T — - (- a) Mg (42)

The theory behind this method is the idea that a vector fietdoeabroken in two parts, one
part that is of zero curl and a portion that is of zero divergen
For the moment we have to ignore pressure (no implicit pre3su

op" —n+1/2

o (4.3)

] Z R

1
it = +AtH( n -"“/2) —aAt

where H (u?, u"*1/2) includes the convective term and viscous and SGC stresses; 0.5
(Crank-Nicholson method). In SIMPLE notation Eqgn.(4.3) tiesform,

" a—n+1/2
ai; 2 Z anmp@" V% + Sy — aAt pa

AV (4.4)

T

15
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whereSy; include all source terms except implicit pressure.
From Eqn.(4.3) we obtaif’™/* which doesn't satisfy continuity. An intermediate velgcit
field is computed,

1 a—n+1/2
a = a4 —ant? (4.5)
p Ox;
The pressure is recovered by definidg ' as follows:
1 n+1
=g — Lot (4.6)
P Ox;
By solving (4.5) foru* and inserting in (4.6), we see that we obtain,
n+1 _ n
=+ A eH (@) — Sl (1=a) \, 9P 4.7)
P Ox; P Ox;
Now if we take divergence from Eq.(4.6),
*T_H-l i 1 2, n+1
ou;™  0uj 0°p (4.8)

Now we require that the face velocitiagj Y(which are obtained by linear interpolation) satisfy

the continuity equatio@a;f}fl/c‘)xi = 0, we will end with Poisson equation for the pressure:
d2pnt p 8@;‘7]@
or;0r; Ata Oz

(4.9)

The numerical procedure at each time step is following:

1. Solve the Navier-Stokes equation fom, w.

2. Create an intermediate velocity field using Eqn.(4.5)
3. Solve Poisson equation (4.9)
4

. Compute the face velocitiei'{JT1 (which satisfy continuity) from the pressure and the
intermediate velocity using

1 a n-+1

=g — Zant (2 (4.10)

i, f i,f O
P Ti )¢

5. Compute turbulent viscosity;
6. Step 1 to 5 until convergence is reached.

7. Nexttime step

16



Chapter 4. Implementation of Wall Functions

4.3 Computation of vy

To calculate/; the Smagorinsky and the Wale model were used. For the Srmaggmnodel
the length scale was calculated in two different ways:

e Firstly the length scale was calculated like:

bmin min (lrans, lLES) (4.11)
where
lrans = kyp
lres = Cs (AxAyAz)%
e Secondly the Mason-Callen model was implemented
1: ! -+ , ! (4.12)
Lo (AzAyAz)s k& min(yp, 2 —yp)

In both cases the length scale is a function of (i,j,k). A cangbn of length scales usdg,;.,
andl,,qson, IS Shown in Fig. (4.1). The length scdlg,, is almost two times larger thdp, .., N
the near wall region, resulting in difference of sub-grigsippation. Even with the damp function
Egn.(1.20), the classical Smagorinsky model is more cagisg than the Mason-Callen model.

x10°

+ 10

Figure 4.1: Comparison of length scale for Smagorinsky medell,,...., —lnason, = * * lmin = f

4.4 Implementation of wall function

The wall function are implemented via modified viscosity et tvall and via source term
for the Werner-Wengler model.

17
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e According to log-law,

oUu
Tw = M%Lﬁzl
oUu U
Tw — ,UT,wa_|y+>30 ~ UTw— (413)
4 Y
Tw = pu*®
we obtain
ut o,
HTw = FPPU Yp
using log — law
U 1
£ = ZIn (Ey*)
u* K
the result is
pUYpk
w = 4.14
i, By (4.14)
¢ In the discretized momentum equation,
apUp - ane + awa + anUn + asUs + atUt + abUb + Su (415)

as arises from the shear stress at the south face of the cellige@4R2). Because we
obtain the wall shear stress from an assumed velocity proféecan set, = 0 and then
add the wall shear stress Az Az directly into the source term.

The general source termis expressed as:

S =5,0,+ 8,

(4.16)

whered® = U because the Werner-Wengler model was implemented only foompo-
nent; the Werner-Wengler equation foyis

1+B [/ v\” 148
|Tw|:P<T (A_y) |Up| + AT=5

(4.17)

()" (52)"

The model was implemented in ’lazy’ way, becauseShéerm was considered zero and
S. = —mwAzAy. The source term was added only in the first node near to tHe wal

18
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Azx

U
— & Ay

Tw

AN

Figure 4.2: Near Wall region
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Chapter 5

Results

10 1
5, i
O L L
2 3
10 10
y+
Figure 5.1: Time-averaged velocity profile foRe,=4000, — Smagorinsky model,

—— Wale modelo Log-law

The main objective of this report is to implement wall-funas for simulation of channel
flow with LES. The Fig.(5.1) illustrates time-averaged ety profile for Re, = 4000 using
the Smagorinsky and the Wale model. The Wale model givesroaiproximation of velocity
profile than the Smagorinsky model. The Fig.(5.2) showsuthe /u* fluctuations. Near the
wall the Wale model gives higher fluctuations than the Smiagky model. This is mainly
due to the SGS viscosity, see Fig.(5.5), because near tHemgahave very high velocity
gradient and consequently the SGS viscosity is too high duleet nature of the Smagorinsky
model. Higher SGS viscosity will damp velocity fluctuatiods is evident from Fig.(5.3) the
(u'v") Ju*? quantity determined by the Wale model has some 'wigglese &planation for this
could be that the velocity gradients are too high for this méiswe look at Fig.(5.4) for the
value plotted on faces there is no 'wiggles’. The face valigeeraore relevant because this is
what the code is using.
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Acording to Eqn.(3.11),, = 1 which is satisfied for averaged val(g,) for the Smagorin-
sky model Fig.(5.6) and also for the Mason-Callen model Big)(

4
3.5,

3

25

Upms /1" 2}

15

1

0.5 ]

00 1 1 1 1
0 0.2 0.4 Y 0.6 0.8 1

Figure 5.2:— Smagorinsky modek- o — Wale model

15

0 0.2 0.4 Y 0.6 0.8 1

Figure 5.3:— Smagorinsky modek- o — Wale model
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15

(V") Jux®

Figure 5.4:— x — Wale model at p nodes; o — Wale model at faces

20

v /v

Figure 5.5:— Smagorinsky modek- o — Wale model

23



Large Eddy Simulation of Channel Flow using Wall Functions

11
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Tw 1

0.95¢

0'90 20 40 60 80 100

time

Figure 5.6: Time history for,, Smagorinsky model. Mesh A
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0.95¢
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Figure 5.7: Time history for,, Mason-Callen model. Mesh A
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Chapter 5. Results

The derivativedu/dy near the wall can be calculated in two different modes

1. in aclassical way

Ou) up(2) —up(1)
(5).= v &4
2. using log-law:
(@) — (5.2)
9y /)y Ky

This can be applied only at the first node near the wall. Thetepresented in Fig.(5.8) for the

Smagorinsky model and in Fig.(5.9) for the Wale model shattthe viscosity is reduced in the

second node and also slightly at the other nodes. Note tbatime happens for the fluctuating
velocity u,.,s/u* see Fig.(5.10).

20

v /v

oO 012 014 Y 016 018 1
: : ou u(2) —u(l) <8u) u*
Figure 5.8: Smagorinsky model:| — | = ———=,—o—( — | =
k gorinsky (334)2 y(2) —y(1) /)y Ky
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00 012 0:4 Y 016 018 1
, ou u(2) —u(l) (8u> u*
Figure 5.9: Walemodek (| — ) =——F——F=,—0— — | =
’ ((9@/)2 y(2) —y(1) /)y Ky
3.5

urms/U*

0.5¢ :
06 012 0:4 y 0:6 018 1
: : ou w(2) — u(l) (8u>
Figure 5.10: Smagorinsky model;l — | = —~——~, —0o— | — | =
° ’ d (81/)2 y(2) —y(1) o/,
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Chapter 5. Results

length scale | viscosity at the wall
SmagorinskyLog-law Smagorinsky Log-law
Mason-CalleriLog-law Mason-Callen Log-law

SamgorinskyWerner-Wengler Smagorinsky| Werner-Wengler

Table 5.1: Length scale model and viscosity model

Next the wall function based on the log-law is used togethien tihe Mason-Callen and
the Smagorinsky model. Also the wall function based on paaerusing the Werner-Wengler
model together with the Smagorinsky model is used. Velqmitfile Fig.(5.11) calculated with
the Werner-Wengler model gives the best approximationdedda except near the wall where
the velocity is forced to be too low. The Mason-Callen modekgian intermediate profile
between the Smagorinsky and the Werner-Wengler model. @l calculated for fluctuating
velocity and SGS viscosity Fig.(5.12) and Fig.(5.14) witle iSmagorinsky/Log-law and the
Smagorinsky/Werner-Wengler model are the same. This nteatrthie velocity gradients are
the same but not velocity profile.

30
25¢
20

ut 15

10r ]

O I I
10° . 10°

Y

Figure 5.11: Time-averaged velocity profile faRe,=4000. — SmagorinskylLog-law,
.-~ Mason-CallefiLog-law, —— SmagorinskyWerner-Wengler

How v is calulated and how the viscosity at the wall is defined, sd8e1(5.1).
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4

3.5¢ 1
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Upms /0" 2]

1.5

1
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06 0.2 0.4 0.6 0.8 1

Figure 5.12: —  SmagorinskyLog-law, --- o ... Mason-CallefiLog-law,
—— SmagorinskyWerner-Wengler
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0 0.2 0.4 0.6 0.8 1

Figure 5.13: —SmagorinskyLog-law, e o ---Mason-CalleriLog-law,
——SmagorinskyWerner-Wengler

28



Chapter 5. Results

20

v /v

0 0.2 0.4 Y 0.6 0.8 1

Figure  5.14: —  Smagorinsky/Log-law, --- o --- Mason-Callen/Log-law,
—— Smagorinsky/Werner-Wengler
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The main idea with wall-functions is to go as far as possibayafrom the wall. For
Re, = 16000 the flow was analyzed using differept 54, 108, 200. The velocity profiles
Fig.(5.15) compared with Log-law show almost the same idifiees for all cases. All three
cases are quite close to each other. The same happens,fgi.* Fig.(5.16) and théu'v') /u*?
Fig.(5.17); the only problem is near the wall where we havaesdlifferences. Not the same
can be noticed for the viscosity Fig.(5.18) where for = 200 we have the lowest viscosity.
The main reason is that the viscosity is very sensitive terfitidth A = (AaszAz)l/ ? and
Ay+:200 < Ay+:108 < Ay+:54.

30 :
25

20

ut 15

10} ]

P S S n n I S S S |
0 2 3

10 10
yt

Figure 5.15: Time-averaged velocity profile fBe,.=16000 using the Smagorinsky modebg-

., [0 * .
law with <—u) — at differenty™; x Log-law, — y* = 54, — — y* =108, ---0--- yT =
200 Wl
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urms/u*

0.5}

0 : : w w
0 0.2 0.4 0.6 0.8 1

Y

Figure 5.16— y* =54, — — y* =108, ---0--- yT =200

15

-1. : ‘ w ‘
K 0.2 0.4 ) 0.6 0.8 1
Figure 5.17— y* =54, — — yT =108, ---0--- y* =200
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35
30}
251!,
20f!

ViV
1/ 15|

10

> — —

[e]
o -~
OOOOO‘O'OOO‘O S~
o -

OO 0.2 0.4 y 0.6 0.8 1

Figure 5.18— y+ =54, — — y+ =108, ---0--- y+ =200
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Figure 5.19: Time history for,, Smagorinsky model. Mesh C
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11
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Figure 5.20: Time history for,, Smagorinsky model. Mesh D

From Fig.(5.19) and Fig.(5.20) it is clear th@at,) = 1 which means that the flow is fully

developed and there is no acceleration.
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Because the comparison for the velocity profile was done altithe with the log-law the
question is how should be the mesh in order that the velocdfile to be the same as log-law.
In other words how fine the mesh should be? Should the meshéeriwugh in all directions
or is it enough to have fine mesh in the direction perpendidalavall?

As is evident from Fig.(5.21) the best result was obtainedmtine number of nodes was
increased in all three directions. For the finest mesh in(5i@1) the size of length scales are
Azt ~ 205, AzT ~ 103 andAy! .~ 97.

The mesh was changed in the following way, first onlysgkairection was increased andz
kept the same, the result was not good; nextjtaérection was kept constant andz increased
the result was better. This mean that it is not enough to hagenfiesh normal to the wall it is
also important that the mesh in other two directions to bedimaugh and respectz* < 100,
Azt < 50 to get good results.

301

251

201

ut 15¢~ 1

1 2 1 3
10 10
y—i-

Figure 5.21: - % --- 34 x 82 x 34, — — 50 x 34 X 60, --- 0 --- 50 x 82 x 60, x Log — Law
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Conclusions

The Log-law and the Werner-Wengler model have been implésdeto define the SGS
viscosity at the wall and the Mason-Callen model to calcullagelength scale for large eddy
simulations. All models give acceptable results compaviitty Log-law, when LES are per-
formed using very coarse mesh.

Although the velocity profile is sensitive to model useds ttén be improved by increasing

Azt andAz". FOr t, s, Urms, Wrms, anduv the propagation into the flow of error introduced
by approximate boundary condition are acceptable.
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Future Work

First to run a case where we have some experimental or DN&ddtabe able to compare
not only velocity with log-law but als@,...s, Vrms, Wrms-
Second to see how it works in a case where we have flow aroumaotdswith sharp edges and
corners, or flow with recirculation.
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