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1 The Transport Equation for the Reynolds Stresses

The filtered Navier-Stokes equation for u; reads
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where 7;;, denotes modelled SGS stress or URANS stress. The SGS/URANS
turbulent kinetic energy is defined as kr = 0.57;;. Decompose @; and p into
a time-averaged (or ensemble-averaged) value and a resolved fluctuation as
U =U+u, p=P+p,t=T+7
Ui = (w), P=(p), T = (1) (2)
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where « is the SGS fluctuation. Insert this in Eq. 1 so that
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Time (ensemble) averaging of Eq. 3 yields
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Now subtract Eq. 4 from Eq. 3
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Multiply Eq. 5 with @} and a corresponding equation for @} by ; , add them
together, and time (ensemble) average
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The two first lines correspond to the usual %;u; equation in conventional
Reynolds decomposition. The two last terms on line 2 can be re-written as
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The two first terms on the last line in Eq. 6 can be rewritten as
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Finally, we can now write the transport equation for (ulu]> as
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where the two last lines include all terms related to the SGS/URANS stresses.
The third line represents diffusion transport by SGS/URANS stresses and

the fourth line represents dissipation by SGS/URANS stresses. For an eddy-
viscosity SGS/URANS model
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1.1 Resolved turbulent kinetic energy (k)

Now we will derive the transport equation for the resolved turbulent kinetic
energy (k) = (u,u})/2. Take the trace of Eq. 9 and divide by two
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The pressure-velocity term was re-written as
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where the last term is zero due to continuity.

The last term in Eq. 11 can be both positive and negative. However, if we
introduce an eddy-viscosity model it can be shown that it is predominantly
negative. If the approximation (using Eq. 10)

i =715 — (155) = =2 (vr5ij — (vrSij)) ~ —2vrs]; (13)
is made we find that the term is always negative. This is easily seen when
inserting Eq. 13 into the last term of Eq. 11
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where w;; = 0.5(0u;/dx; — 0u}/dx;). In Eq. 14 we have used the fact that
the product of a symmetric and anti-symmetric tensor is zero.

The terms in Eq. 11 have the following physical meaning. The term on
the left-hand side is the advection. The terms on the right-hand side are

production of (k), transport of (k) by resolved fluctuations, viscous trans-

port of (k), viscous dissipation of (k) (i.e €545), production/destruction of

(k) by buoyancy, transport of (k) by SGS/URANS turbulence and produc-
tion/destruction of (k) by SGS/URANS turbulence.

To compute £445, we cannot use Eq. 14 cannot use in a CFD code, since
we cannot compute a fluctuation without knowing the mean. We could run
the CFD code twice, computing the mean the first time. However, a better

option is
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1.2 Time-averaged kinetic energy (K)

The equation for the time-averaged kinetic energy (K) = %UiUi is derived
by multiplying the time-averaged (ensemble-averaged) momentum equation,
Eq. 4, by U; so that
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The viscous diffusion term in Eq. 16 is rewritten in the same way as the
viscous term in Eq. 7, i.e.
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The turbulent diffusion term is rewritten as
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Now we can assemble the transport equation for (K) by inserting Eqgs. 17,
18 and Eq. 19 into Eq. 16
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We recognize the usual transport term on the left-hand side due to ad-
vection. On the right-hand side we have the main source term (velocity
times the pressure gradient) viscous diffusion and transport of (K). The
term in square brackets represents transport by interaction between the
time-averaged (ensemble-averaged) velocity field and turbulence. The term
(wu;)0U;/dzx; is the usual production term of the resolved kinetic energy
0.5(u,u}) which usually is negative. This term appears in Eq. 11 but with
opposite sign. The term (7,;)0U;/dx; is the production term in the turbu-
lent kinetic energy equation kr = 0.57;. This term is usually referred to as
the SGS/URANS dissipation term, and for an eddy-viscosity model we find
(cf. Egs. 13 and 14)
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It is interesting to compare this SGS dissipation term with the viscous dissi-
pation term in Eq. 19. If v44, > v, the SGS dissipation is much larger than
the viscous one. If this is not the case, then we’re doing a DNS!

1.3 Resolved kinetic energy K,

The equation for the kinetic energy K5 = %ﬁzﬁ, is derived by multiplying
the filtered momentum equation, Eq. 1, by u; so that
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Looking at the derivation in Section 1.1 and the final equation (Eq. 20) we
get
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1.4 Equation for K = u;u;/2

The equation for K is derived by multiplying Navier-Stokes (i.e. Eq. 1
without SGS stresses and non-filtered variables) by u;, i.e.
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Looking at the derivation in Section 1.1 and the final equation (Eq. 20) we
get
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This is the same equation as in Section 2.3 in [1] but there it is expressed in
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the stress tensor, o;;.

1.5 SGS turbulent kinetic energy, kr = 0.5(wu; — u;u;)
The SGS turbulent kinetic energy is defined as

kr = 0.5(% - ﬂlﬁz) =K — Rres (26)
It is obtained by subtracting Eq. 23 from the filtered Eq. 25
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Adding the term 9/0zj(u; K — u;K) on both sides and using Eq. 26 gives
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Line 1: convection and viscous diffusion.

Line 2: turbulent diffusion.

Line 3: production; it appears with opposite sign in Eq. 23.
Line 4: viscous dissipation.

Line 5: buoyancy.

1.6 Equation for modeled ik

The equation for the modelled turbulent SGS/RANS kinetic energy reads
Ok a ,_ 0 Ok
ot o, Wk = 5 [(”+”T) 0z

J
The terms on the right-hand side represent viscous and turbulent diffusion,
production and viscous dissipation.
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1.7 Equation for resolved heat flux, (ut’)

The filtered temperature equation for ¢ reads
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Use Eq. 2 in Eq. 28 so that
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Multiply Eq. 31 with @, and multiply Eq. 5 with ¢, add them together and
time (ensemble) average
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The two first lines correspond to the conventional heat flux equation. The
two terms in the middle on line 2 can be re-written as
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Using Eq. 33 in Eq. 32 and at the same time re-writing the SGS/URANS
terms we get

0 1

3—%Uk<uz‘t>

I a_T A oU; B iaﬁ _ i —/ —131
- <uzuk> oxy <ukt > ox p Ox; oxy <ukuit >

v o /_, ot o /_oul v ou, ot 2
= g _ (] _ - 1 _ i t
+P7° Ozy, <ul Bxk> + V@xk <t Ozy, (V + Pr) Oz, Oy, 9 < >

a ,.,., , Ou 0 5 1 10 O
" ozn (uihy,) + < Fom ) Drp (T'rie) + Tik—axk
(34)

The SGS/URANS heat fluxes are commonly obtain from an eddy-viscosity

model B
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1.8 Equation for resolved temperature variance, ({'?)

Multiply Eq. 31 with ¢’ and time (ensemble) average
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The first term on the right-hand side can be re-written as
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Using Eq. 37 and re-writing the SGS/URANS term, Eq. 36 can now be
written as
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Multiply Eq. 36 by 2 and we get
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