
Publ. Nr 93/3 CHALMERS TEKNISKA H�OGSKOLAInstitutionen f�or Termo- o
h Fluiddynamik

GOTEBORG

C
H

A
L

M
E

RSTEKNISKAHO
G

SK
O

LA

CHALMERS UNIVERSITY OF TECHNOLOGYDepartment of Thermo- and Fluid Dynami
s
A Multiblo
k-Moving Mesh Extensionto the CALC-BFC CodebyThomas Hellstr�om and Lars DavidsonThermo and Fluid Dynami
sChalmers University of Te
hnology412 96 Gothenburg, Sweden

||||||G�oteborg, Januari 1993
1

Contents1 Introdu
tion 3I User's guide 32 De�nitions 32.1 General . 32.1.1 Computational domain . 32.1.2 Boundary treatment . 42.1.3 Moving mesh . 42.2 Blo
ks and fa
es . 42.2.1 indexing of blo
ks and numbering of fa
es . 42.2.2 indexing of fa
es . 42.2.3 Spe
ifying a window . 53 Spe
ifying the
omputational domain 53.1 Compile-time parameters . 53.2 Running time initial settings . 53.2.1 overview . 53.2.2 The subroutine `initfa' . 63.2.3 The subroutine `snowin' . 63.2.4 The subroutine `setwin' . 63.2.5 A
tion.f - The boundary type library . 73.2.6 The user spe
i�ed routines `setbou' and `setio' . 93.2.7 Corre
ting the out
ow
onve
tion . 123.2.8 Spe
ifying the pressure referen
e node . 123.2.9 Optimizing for two-dimensional
al
ulations . 123.2.10 Spe
ifying the number of ghost
ell layers used . 133.2.11 Spe
ifying the time dis
retization s
heme. 133.2.12 Initializing the
ow�eld . 133.2.13 Initializing the turbulent quantities . 133.2.14 Sele
ting the blo
ks to use . 143.2.15 Setting
onvergen
e
riterion . 143.2.16 Debugging blo
k
onne
tivity . 143.2.17 Spe
ifying
onstants for Rhie & Chow interpolation 144 Examples 144.1 Spe
ifying setup data with subroutine
alls . 144.2 Reading setup data from data �les . 165 Moving mesh spe
i�
ation 19II Te
hni
al des
ription 206 Brief multiblo
k subroutine des
ription 206.1 Sele
ting a blo
k . 206.2 Data types . 206.3 The routine `store' - store variable layer . 216.4 The routine `sind' - store index layer . 216.5 The routine `fa
ret' - Transfer ghost
ell bu�er ba
k to blo
k 22
2

6.6 The ghost
ell value extrapolation routines . 226.6.1 The routine `tfa
e' - Build ghost
ell values from a remote fa
e layer bu�er 226.6.2 The routine `xtrapl' - Transfer values from a layer bu�er to a ghost
ell bu�er . . . 246.6.3 The routine `setval' . 246.6.4 The routine `ioval' . 246.6.5 The routine `xxtra' . 256.7 The window information database `winbas.f' . 256.8 The layer bu�er data base - `base.f' . 266.9 The general ghost
ell building routines . 287 The geometry of the ghost
ells 287.1 Required geometri
al quantities . 287.1.1 Treatment at multiblo
k boundaries . 297.1.2 Treatment at domain boundaries . 298 Modi�
ations to standard routines 308.1 The routine `wallf' - Set wall fun
tions . 308.2 The routine `md
on' -
ompute
onv at domain boundaries 308.3 The global
onve
tion
orre
tion routines `
onset' and `up
onv' 308.4 `Up
oef' - Zero domain boundary
oeÆ
ients . 318.5 `U
oef' - Zero out
ow
oeÆ
ients . 318.6 Splitting of the routine `
al
p' . 318.7 Modi�
ations to `Coe�' . 318.8 Modi�
ations to `Update' . 319 Moving mesh routines 3110 Theoreti
al explanation of some implementations 3210.1 The QUICK s
heme . 3210.2 Adaptive under-relaxation . 3310.3 The se
ond-order BDF time-dis
retization s
heme . 361 Introdu
tionThis report presents an extension to the CALC-BFC
ode whi
h makes it possible to divide the
ompu-tational domain into several blo
ks and to make use of meshes that moves in time. It is assumed thatthe reader is already familiar with the CALC-BFC
ode.Part IUser's guide2 De�nitions2.1 General2.1.1 Computational domainIn the present
ode the
al
ulation domain is divided into blo
ks, and ea
h blo
k has six fa
es. Ea
h fa
eis in turn divided into windows. The maximum number of blo
ks in the
omputational domain, as well asthe maximum number of windows on a fa
e may be spe
i�ed in the �le `
ommon.for'. For ea
h window,
3

a boundary type may be spe
i�ed. In parti
ular it is possible to mat
h a window of a fa
e to any otherwindow spe
i�ed, as long as the mesh at the two windows' lo
ation
oin
ides.2.1.2 Boundary treatmentEa
h blo
k is automati
ally supplied with two layers of ghost
ells. The values of these ghost
ellsare
omputed so that, by use of linear interpolation, the value at the blo
k boundary
oin
ides withthe desired one. At a multiblo
k boundary, the values of a ghost
ell is simply set to the value of the
orresponding
ell in the neighboring blo
k.2.1.3 Moving meshIf a solution to a time-dependent problem is to be
omputed, it is possible to spe
ify the
urrent velo
ityof ea
h
ell fa
e, and the
urrent lo
ation of ea
h grid point, and in this way
ompute a solution on amoving mesh. This fa
ility is not suitable for Lagrangian
omputations, but should be seen as an aidto adapt the mesh to a
omputational domain, the dimensions of whi
h
hange in time, for example a
ylinder with a moving piston.2.2 Blo
ks and fa
es2.2.1 indexing of blo
ks and numbering of fa
esThe
ells in ea
h blo
k is numbered, as in standard CALC using the indi
es i,j and k, and the fa
es arede�ned as follows:� East fa
e,
orresponding to the highest i index, fa
e number 1.� North fa
e,
orresponding to the highest j index, fa
e number 2.� West fa
e,
orresponding to the lowest i index, fa
e number 3.� South fa
e,
orresponding to the lowest j index, fa
e number 4.� High fa
e,
orresponding to the highest k index, fa
e number 5.� Low fa
e,
orresponding to the lowest k index, fa
e number 6.The fa
es `West', `South' and `Low' are negative fa
es and the other fa
es are positive.For the negative fa
es, the outer ghost
ell has dependent index 0, and the �rst
ell in the
omputationaldomain has dependent index 2. For the west fa
e, for example, the outer ghost
ell has i index 0, andthus the dependent index is the i index.2.2.2 indexing of fa
esSin
e the fa
es are two-dimensional, we need only two indi
es to spe
ify a window. These indi
es are
alled the m and n indi
es and
an be obtained by omitting the dependent index, whi
h is
onstant ona fa
e in the following way:� For fa
e number one, or the east fa
e, the m index is index j and the n index is index k.� For fa
e number two, or the north fa
e, the m index is index i and the n index is index k.� For fa
e number three, or the west fa
e, the m index is index j and the n index is index k.� For fa
e number four, or the south fa
e, the m index is index i and the n index is index k.� For fa
e number �ve, or the high fa
e, the m index is index i and the n index is index j.
4

� For fa
e number six, or the low fa
e, the m index is index i and the n index is index j.One simple way to remember this rule is to determine whi
h two indi
es are independent for the parti
ularfa
e and order them in alphabeti
 order. For the high fa
e, for example, the dependent index is index k,and the independent indi
es are i and j, ordered alphabeti
ally. Thus the m index
orresponds to indexi and the n index to index j.2.2.3 Spe
ifying a windowA window is always re
tangular and is spe
i�ed by the lower left and upper right
orners in the m,n
oordinate system. If we, for example want to spe
ify a window on the east fa
e, ranging from k = 2to k = 6 and from j = 5 to j = 10, we �rst have to order the indi
es in alphabeti
 order to obtain them;n
oordinate system. Following the above rule we see that index m equals index j and index n equalsindex k. The lower left
orner in the m;n system thus be
omes (5; 2) and the upper right
orner (10; 6).3 Spe
ifying the
omputational domain3.1 Compile-time parametersFirst of all, the �le `
ommon.for' has to be adjusted to be able to
ope with the amount of data beingspe
i�ed. The parameters that need to be spe
i�ed are� it = Max number of
ells in i dire
tion + 4.� jt = Max number of
ells in j dire
tion + 4.� kt = Max number of
ells in k dire
tion + 4.� msiz = Number of
ells in the longest blo
k fa
e = max it; jt; kt.� maxbl = Max number of blo
ks.� ifsiz = Total number of ghost
ells / 2. The program stops and warns if this parameter is toosmall.� iomax = Total number of
ells in the whole domain in
luding ghost
ells. The program stops andwarns if this parameter is too small.� imwin = Max number of windows on a blo
k fa
e.3.2 Running time initial settings3.2.1 overviewWhen this is done, the subroutine `setup' should do the following:� Set the variable ngrid to the number of blo
ks used.� The logi
al variable twodim should be set to it's appropriate value, see below.� The logi
al variable mmesh should be set to the appropriate value, see se
tion 5.� Before the mesh is read in for ea
h blo
k, the subroutine `initfa' should be
alled with the dimensionsof the blo
k. The subroutine `key' will then be able to address the new blo
k. It is the routine`initfa' that gives the warnings if the parameters ifsiz and iomax are too small.� Read the mesh.
5

� Spe
ify the blo
k
onne
tivity and the boundary
onditions using the subroutines `snowin' and`setwin'.� Do the usual setup.It is possible to add a blo
k using `initfa' and to rede�ne the blo
k
onne
tivity and the boundary
onditions using `snowin' and `setwin' when the
omputations have already started. It is, however, notpossible to remove a blo
k at running time.3.2.2 The subroutine `initfa'The subroutine `initfa' is lo
ated in �le `base.f' and has the following de
laration:subroutine initfa(blo
k,imax,jmax,kmax)Here blo
k is the number of the
urrent blo
k, and imax; jmax and kmax are the number of grid verti
esin ea
h dire
tion +1. All parameters are integers.3.2.3 The subroutine `snowin'The subroutine `snowin' is lo
ated in fa
e `winbas.f' and it has the following de
laration':subroutine snowin(blo
k,side,nowin)It must be
alled for ea
h fa
e in ea
h blo
k, and upon
all the parameters should
ontain:� blo
k The number of the
urrent blo
k.� side The number of the
urrent fa
e a

ording to the above de�nitions.� nowin The number of windows on this fa
e.All parameters are integers.3.2.4 The subroutine `setwin'The subroutine `setwin' spe
i�es the dimension of and the boundary types for a window and must be
alled for ea
h window on ea
h blo
k. The routine
an also be used during the
omputation to, forexample,
hange a boundary type for a window, simulating, for example, the
losing of a valve.The de
laration of the routine is the following:subroutine setwin(blo
k,side,window,wmst,wnst,wmend,wnend,. wbtyp,wbmst,wbnst,wmdir,wndir,wblo
k,wside,wshift)and upon
all, the parameters should
ontain the following:� blo
k The number of the
urrent blo
k.� side The number of the
urrent fa
e a

ording to the above de�nitions.� window The number of the
urrent window.� wmst The lower left m
oordinate of the window.� wnst The lower left n
oordinate of the window.� wmend the upper right m
oordinate of the window.� wnend the upper right n
oordinate of the window.6

� wbtyp the boundary type for the window taken from the boundary library 'a
tion.f'. wbtyp = 1
orresponds to a multiblo
k boundary, wbtyp = 2 to a wall et
. See below.� wbmst If the boundary type for the window is not a multiblo
k boundary this parameter shouldbe set to 1. Otherwise it should be set to the lower left m
oordinate for the mat
hing multiblo
kboundary window in that window's
oordinate system.� wbnst If the boundary type for the window is not a multiblo
k boundary this parameter shouldbe set to 1. Otherwise it should be set to the lower left n
oordinate for the mat
hing multiblo
kboundary window in that window's
oordinate system.� wmdir If the boundary type for the window is not a multiblo
k boundary this parameter should beset to 1. Otherwise if the multiblo
k windows are aligned in opposite m dire
tions, the parametershould be set to -1. If the mat
hing windows are aligned in the same m dire
tions, it should be setto 1.� wndir If the boundary type for the window is not a multiblo
k boundary this parameter should beset to 1. Otherwise if the multiblo
k windows are aligned in opposite n dire
tions, the parametershould be set to -1. If the mat
hing windows are aligned in the same n dire
tions, it should be setto 1.� wblo
k The number of the blo
k of the mat
hing window. Should be set to 1 if the boundary typeis not multiblo
k.� wside The number of the fa
e of the mat
hing window. Should be set to 1 if the boundary type isnot multiblo
k.� wshift If the mat
hing windows are aligned, so that the m dire
tion of a window
orresponds tothe n dire
tion of the mat
hing window, this variable should be set to .true. otherwise .false. The.true. option is probably extremely seldom used and is in
luded only for generality. If wshift isset to :true:, we have to rede�ne the meaning of wmdir and wndir. The variable wmdir should beset to �1 if the m index on the lo
al window is aligned in the opposite dire
tion of the n index ofthe remote window. If the m index on the lo
al window is aligned in the same dire
tion as the nindex on the remote window, wmdir should be set to 1. In the same manner, the variable wndirshould be set to �1 if the n index on the lo
al window is aligned in the opposite dire
tion of them index on the remote window and to 1 if the n index on the lo
al window is aligned in the samedire
tion as the m index on the remote window. The letters m and n in the variable names wmdirand wndir are thus always referring to the indi
es of the lo
al window, regardless of the value ofwshift:3.2.5 A
tion.f - The boundary type libraryA boundary type
onsists of a set of a
tions to be taken for di�erent variables at the boundary. Thea
tions implemented are:� 1 - Homogenous Diri
hlet.� 2 - Diri
hlet. The value at the boundary is spe
i�ed in the user supplied routine `setbou'.� 3 - Homogenous Neumann.� 4 - �2�=�n2 = 0 Used for the pressure at, for example, walls.� 5 - Multiblo
k.
7

� 6 - In
ow/Out
ow dependent a
tion. For in
ow, the a
tion 2 is imposed, and the boundary valueis spe
i�ed in user supplied subroutine `setbou'. For out
ow, a homogenous Neumann a
tion (3)is imposed. The user supplied routine setio determines whi
h
ell fa
es are in
ow fa
es and whi
h
ell fa
es are out
ow fa
es.It is important to be aware of the di�eren
e between an `a
tion' and a `boundary type'. A boundary typeis built up by spe
ifying whi
h a
tions should be taken for di�erent variables. This is done by settingdi�erent �elds in the two-dimensional array whtodo. Some standard boundary types are already suppliedin `a
tion.f' These are:� 1 - General multiblo
k boundary, a
tion 5 is imposed for all variables.� 2 - Wall boundary. A
tion 3 is imposed for ap, a
tion 1 is imposed for u,v and w, a
tion 4 is imposedfor p, a
tion 4 is imposed for pp (sometimes a
tion 3 gives faster
onvergen
e than a
tion 4, Beware,however that this may not be a
onsistent boundary
ondition), �nally a
tion 1 is imposed for kand ".� 3 - Symmetry in yz - plane (x
onstant). A
tion 3 is imposed for all variables but u, for whi
h ahomogenous Diri
hlet a
tion (1) is imposed.� 4 - Symmetry in xz - plane (y
onstant). A
tion 3 is imposed for all variables but v, for whi
h ahomogenous Diri
hlet a
tion (1) is imposed).� 5 - Symmetry in xy-plane (z
onstant). A
tion 3 is imposed for all variables but w, for whi
h ahomogenous Diri
hlet a
tion (1) is imposed.� 6 - Given pro�le boundary. A
tion 3 is taken for ap, (whi
h in fa
t always should be done ex
ept formultiblo
k boundaries). A
tion 2 is imposed for u, v and w, and the velo
ity pro�le is thus givenby the user supplied subroutine `setbou'. A
tion 4 is imposed for p, a
tion 3 is imposed for pp, anda
tion 6 is imposed for k and ". The reason a
tion 6 is imposed for the two last variables is, thatthis boundary type
an be used for both given in
ow and given out
ow pro�les, and a homogenousNeumann
ondition should be imposed on k and " at out
ow boundaries. To be able to use this
ondition, the user must supply the routines `setbou' and `setio'. The purpose of these routines aredes
ribed below. In fa
t, in the momentum equation, upwinding is used at the out
ow boundary,so that the out
ow boundary
ondition in the momentum equations is �u=�n= 0. This does nota�e
t the a

ura
y of the solution.� 7 - Out
ow pro�le boundary. When this boundary type is spe
i�ed, the
ondition �u=�n= 0.is imposed for the momentum equations at out
ow windows (a
tion 6). This means, that the
onve
tion at the out
ow window will be adjusted a

ordingly and a velo
ity pro�le will be builtat the boundary. For in
ow windows, the routine `setbou' will be
alled to determine the velo
itypro�le. As usual the routine `setio' will determine whi
h
ell fa
es are out
ow and whi
h arein
ow. When the out
ow window is small
ompared to the
omputational domain, the solutionwill
onverge very slowly, be
ause of the fa
t that the
al
ulated out
ow
onve
tion may not havethe same value as the in
ow
onve
tion. To avoid this, the variable ad
onv may be set to :true:(see below).Now, to spe
ify a boundary type for a window, the user only sets the parameter wbtyp in the
all to`setwin' to the desired boundary type. If a window
orresponds to a wall boundary, for example, wbtypshould be set to two.It is straightforward to implement new boundary types given the a
tions de�ned above. The implemen-tation of some of the standard boundary types looks like this:subroutine a
tion
8

in
lude '
ommon.for'
 1 - Multiblo
kwhtodo(1,0)=5whtodo(1,u)=5whtodo(1,v)=5whtodo(1,w)=5whtodo(1,p)=5whtodo(1,pp)=5whtodo(1,te)=5whtodo(1,ed)=5
 2 - Wallwhtodo(2,0)=3whtodo(2,u)=1whtodo(2,v)=1whtodo(2,w)=1whtodo(2,p)=4whtodo(2,pp)=3whtodo(2,te)=1whtodo(2,ed)=1Note that the value 0 is used for ap, and that, the a
tion for ap must be homogenous Neumann (3) ex
eptin the multiblo
k boundary type. This is be
ause this a
tion is also used when, for example, the volumesof the ghost
ells are
omputed, whi
h is done by linear extrapolation.3.2.6 The user spe
i�ed routines `setbou' and `setio'The purpose of the routine `setbou' is to spe
ify values for
ertain quantities at the boundaries, forexample a velo
ity pro�le or a pressure distribution. It's de
laration is as follows:subroutine setbou(blo
k,iside,iwin,nmst,nnst,nmend,nnend,variab,. inner,res)in
lude '
ommon.for'integer variab,blo
kreal res(0:msiz,0:msiz),inner(0:msiz,0:msiz)The routine is
alled from the program with the following parameters spe
i�ed:� blo
k The number of the blo
k for whi
h the value at the boundary is to be spe
i�ed.� iside The fa
e for whi
h the value at the boundary is to be spe
i�ed.� iwin The window for whi
h the value at the boundary is to be spe
i�ed.� nmst The lower left m
oordinate for that window.� nnst The lower left n
oordinate for that window.
9

� nmend The upper right m
oordinate for that window.� nnend The upper right n
oordinate for that window.� variab The variable for whi
h the boundary value is to be spe
i�ed.� inner An array (m,n)
ontaining the values of the variable in the
ell layer just inside the boundary.The values at the boundary for the parti
ular variable should be pla
ed in res(m;n) with (m,n), as beforebeing the lo
al
oordinate system for the window.Let's take a
on
rete example: We have spe
i�ed a domain
onsisting of two blo
ks. On the west fa
eof blo
k 1 we have spe
i�ed an in
ow window (boundary type 6), for whi
h we want the velo
ity to be(1,0,0). The turbulent quantities k and " are set to zero on the in
ow boundary. On the east fa
e ofblo
k 2 we have spe
i�ed an out
ow window (boundary type 6) for whi
h we want the velo
ities to be 1:1times the velo
ity in the
ell layer in the
omputational domain just inside the window. The turbulentquantities automati
ally gets a homogenous Neumann
ondition on the out
ow boundary. There are noother windows in the domain that would give rise to a
all to `setbou'. The routine may then be writtenin the following way:subroutine setbou(blo
k,iside,iwin,nmst,nnst,nmend,nnend,variab,. inner,res)in
lude '
ommon.for'integer variab,blo
kreal res(0:msiz,0:msiz),inner(0:msiz,0:msiz)if (variab .eq. u) thendo mi=nmst+1,nmenddo ni=nnst+1,nnendif (blo
k .eq. 1) thenres(mi,ni)=1.elseres(mi,ni)=1.1*inner(mi,ni)end ifend doend doelse if (variab .eq. v .or. variab .eq. w) thendo mi=nmst+1,nmenddo ni=nnst+1,nnendif (blo
k .eq. 1) thenres(mi,ni)=0.elseres(mi,ni)=1.1*inner(mi,ni)end ifend doend doelse if (variab .eq. te .or. variab .eq. ed) thendo mi=nmst+1,nmenddo ni=nnst+1,nnend 10

res(mi,ni)=0.end doend doend ifreturnendSin
e `setbou' will never be
alled for other blo
ks than 1 and 2 or for other variables than u,v,w,k and" in this parti
ular
ase, we need not spe
ify what happens with the other variables. Note that we neveruse the values of iside and iwin.The subroutine setio is used to spe
ify whi
h
ell fa
es are in
ow and whi
h are out
ow. This is so thatthe internal routines will know when to apply a homogenous Neumann and when to apply a Diri
hletboundary
ondition when a
tion 6 has been spe
i�ed for a variable. Sin
e we have
hosen standardboundary type 6 for our variables at the in
ow and out
ow windows, a
tion 6 is automati
ally imposedfor k and � (See �le `a
tion.f' !) We therefore need to spe
ify the subroutine `setio'. We assume thatthere is no in
ow at all on our out
ow window on the west fa
e of blo
k 2. By now spe
ifying in
ow onour in
ow fa
e and out
ow on our out
ow fa
e, the routine `setbou' will be
alled for the in
ow fa
e,setting k and " to zero, and by spe
ifying out
ow on the out
ow fa
e, a homogenous Neumann
onditionis applied.The subroutine `setio' should have the following de
laration:subroutine setio(blo
k,iside,iwin,nmst,nnst,nmend,nnend,. res)in
lude '
ommon.for'integer res(0:msiz,0:msiz)integer blo
k,iside,iwin,nmst,nnst,nmend,nnendThe meaning of the parameters are the same as for the routine `setbou' with the ex
eption that variaband inner is left out. Upon return, the routine `setio' should spe
ify 1 for an out
ow
ell fa
e and -1 foran in
ow
ell fa
e in the array res(m;n). In our
ase it would be something like this:subroutine setio(blo
k,iside,iwin,nmst,nnst,nmend,nnend,. res)in
lude '
ommon.for'integer res(0:msiz,0:msiz)integer blo
k,iside,iwin,nmst,nnst,nmend,nnenddo mi=nmst+1,nmenddo ni=nnst+1,nnendif (blo
k .eq. 1) then
 Inflow
ell fa
esres(mi,ni)=-1else
 Outflow
ell fa
esres(mi,ni)=1end ifend do 11

end doreturnendAgain, `setio' will not be
alled for other windows than our in
ow and out
ow windows.3.2.7 Corre
ting the out
ow
onve
tionIf boundary types 6 or 7 are used for an out
ow window the total out
ow
onve
tion may be di�erentfrom the total in
ow
onve
tion. This will lead to a global
ontinuity error and slow
onvergen
e. If thevariable ad
onv is set to :true: the program will multiply the out
ow pro�les with a fa
tor C, determinedfrom C = Pin
ow fa
es��~U � ~nAPout
ow fa
es ����~U � ~nA��� (1)3.2.8 Spe
ifying the pressure referen
e nodeEven if there is a Diri
hlet boundary
ondition for the pressure, one usually has to spe
ify a node in ablo
k for whi
h the pressure is zero. This is done in the same way as in standard CALC, but one also hasto spe
ify a blo
k in whi
h the zero-pressure node is lo
ated. If there is a homogenous Diri
hlet boundary
ondition for the pressure somewhere in the
omputational domain, The pressure referen
e node shouldbe lo
ated in the node layer next to this boundary. Let's assume that we want the pressure to be zero innode (2,3,4) in blo
k 5. This is done the following way:ipref=2jpref=3kpref=4
all setref(5)refnod=.true.If we do have a Diri
hlet
ondition for the pressure somewhere on a boundary, and we do not want tohave a pressure referen
e node, refnod should be set to zero. :false:3.2.9 Optimizing for two-dimensional
al
ulationsIf we want to perform a two-dimensional
al
ulation it is possible to greatly redu
e the amount of memoryneeded and also the
omputational time by setting the
ag twodim to :true: before the �rst
all to `initfa'.This
an however only be done if the
omputational domain is spe
i�ed in the x-y plane and in the i-jplane. The e�e
ts of setting twodim to .true. are the following:� The fun
tion `dphidz' always returns zero.� The number of ghost
ell layers is redu
ed from two to one on the high an low fa
es.� The TDMA
oeÆ
ients ah and al are never
omputed, but are always set to zero.For the high and low fa
es (5 and 6) the boundary type 5 (x-y symmetry) must be spe
i�ed if twodim isset to :true:For all other
al
ulations, twodim should be set to :false:
12

3.2.10 Spe
ifying the number of ghost
ell layers usedSome dis
retization s
hemes, like QUICK use both ghost
ell layers. Other s
hemes like the hybrids
heme, however, need only use one layer. It is possible to save some
omputational time if s
hemes thatonly use one ghost
ell layer are used by setting the values in the variable numlay(1 : 6) to 1. The sixelements in the array represent the six di�erent fa
es, but for all pra
ti
al
ases all elements should beset to the same value. If a s
heme that uses both ghost
ell layers is used, the elements in numlay mustbe set to two. Thus, for QUICK, Van Leer, et
., in
lude the followingdo i=1,6numlay(i)=2end doFor the hybrid s
heme and other s
hemes only using the nearest neighbor, in
lude the following instead:do i=1,6numlay(i)=1end doIt should be mentioned, that with a modest number of blo
ks, the CPU-time saved by setting numlayto 1 is negligible. The safest thing to do is to always have numlay set to 2.3.2.11 Spe
ifying the time dis
retization s
heme.The time dis
retization s
hemes available are the Ba
kward Euler s
heme (�rst order) and a se
ond orderBDF s
heme. The �rst timestep is always taken with the Ba
kward Euler s
heme. Both s
hemes havethe same stability properties as the
ontinous problem. The se
ond order BDF s
heme may, however,
ause s
alar quantities to be
ome negative and should therefore be used with
are when applied to, forexample, the turbulent quantities. The s
heme is spe
i�ed in the one-dimensional array ts
hem. If we, forexample, want to use the se
ond order BDF s
heme for the velo
ities and the Ba
kward Euler s
heme forthe turbulent quantities, we use the following assignments (2 for se
ond order BDF and 1 for Ba
kwardEuler): ts
hem(u)=2ts
hem(v)=2ts
hem(w)=2ts
hem(te)=1ts
hem(ed)=13.2.12 Initializing the
ow�eldThis is done in the user-spe
i�ed routine `
owini'. A default routine
omes with the
ode. The valuesspe
i�ed here will also be the initial values for a transient
omputation.3.2.13 Initializing the turbulent quantitiesIf the
ag initur is set to :true: in the routine `setup', a
all will be made to the built in routine `turini'after the
ow�eld has been spe
i�ed. This routine will provide guessed values for the turbulent quantities.
13

3.2.14 Sele
ting the blo
ks to useIn some
al
ulations, it may not be nesse
ary to use all the blo
ks all the time, for example in transient
al
ulations where one wishes to dis
onne
t some part of the domain at
ertain timesteps. To make thispossible there is a boolean array
alled use in whi
h one spe
i�es whi
h blo
ks to use and whi
h not touse. Let's assume we want to use blo
k 1 and 3 but not blo
k 2. This would be done as follows:use(1)=.true.use(2)=.false.use(3)=.true.The default is to set the whole ve
tor to :true:3.2.15 Setting
onvergen
e
riterionAs in standard CALC the residual referen
e value is set in the ve
tor reref . Sometimes, however, theresidual of a spe
i�
 variable is signi�
antly larger than the residuals of the other variables, withouta�e
ting the mean
ow�eld. This is, for example sometimes the
ase for ". It is possible to sele
t whi
hresiduals are signi�
ant by setting the
orresponding �eld in the logi
al ve
tor m
rit to :true:, whi
h isthe default. If, for example, " is to be left out, the following line should be in
luded in the routine `setup':m
rit(ed)=.false.3.2.16 Debugging blo
k
onne
tivityThe routine `
on
' performs a printout of the mass
ux through all the fa
es of all the blo
ks. If the blo
k
onne
tivity is set up
orre
tly, the out
ow through a multiblo
k boundary should be exa
tly the sameas the in
ow through the
orresponding boundary in the neighboring blo
k (down to ma
hine pre
ision)if, of
ourse, the gridpoints in the di�erent blo
ks at the multiblo
k boundary are perfe
tly aligned. Theroutine is
alled automati
ally at iteration number i
he
k, where the value of i
he
k should be spe
i�edin the routine `setup'.3.2.17 Spe
ifying
onstants for Rhie & Chow interpolationThe Rhie & Chow interpolation uses ap as a weighting
onstant for the pressure gradients in the
om-putation of the mass
ux at the
ell fa
es. This gives, however, di�erent solutions if one uses di�erenttimesteps and, in parti
ular, a result from a steady
al
ulation will
hange if set as initial data in atransient
omputation. This is be
ause ap
hanges with the length of the time step. To remedy thisproblem, a new variable, apr
, is used as the weighting value instead of ap. The value of apr
 is, likeap
omputed in the routine `assemb', but instead of using the standard values of the timestep, dt, theunder-relaxation fa
tor urf and the false timestep dtfals, the value of apr
 is
omputed with the userde�ned values dtmin, urfmin and dtfmin. These values should typi
ally be set to the minimum valuesof the quantities dt, urf and dtfals respe
tively. This is done as default in the �le `setup.f'. However,should the user de
ide to
hange one or more of these values it is possible to do so. Remember, however,that a too large di�eren
e between for example dtmin and dt will
ause the iteration pro
ess in thepressure
orre
tion equation to be unstable.4 Examples4.1 Spe
ifying setup data with subroutine
allsIn the �rst example the
ow domain
onsists of two
ubi
 blo
ks as seen in �gure 1. The domain islimited by rigid walls ex
ept for an in
ow window on the high fa
e (5) on blo
k 1 and an out
ow window14

Block 1

Block 2

Window
1

Window
2

Window
3

Window
4

Window
1

Window
2

Window
3

Window
4

Inflow

Outflow

5 17
1 13 17

13

1

17

5

17

1
1 Figure 1:on the high fa
e (5) on blo
k 2. Sin
e a window has to be re
tangular, the high fa
es on the blo
ks ishere divided into four windows. (It is possible to use only three). The in
ow and out
ow velo
ity pro�lesare �xed to u = 0,v = 0, and w = �1 for in
ow and w = 1 for out
ow: The
onne
tivity and boundarydata would then be spe
i�ed as follows:
 17 grid points in ea
h dire
tion for blo
k 1
all initfa(1,18,18,18)
 For blo
k 1, fa
e 1 we have a multiblo
k window interfa
ing
 with fa
e 3 on blo
k 2. For both blo
ks, the m index is index j
 and the n index is index k. Thus wshift in
all to setwin
 should be set to :false: In
reasing index m on blo
k 1 will
 also in
rease index m on blo
k 2 (on the interfa
ing fa
es.
 Thus wmdir and wndir should be set to 1.
all snowin(1,1,1)
all setwin(1,1,1,1,1,17,17,1,1,1,1,1,2,3,.false.)
 1 window on fa
e 2-4. It is a wall. Lower left
orner is (1,1).
 Upper right
orner is (17,17)do i=2,4
all snowin(1,i,1)
all setwin(1,i,1,1,1,17,17,2,1,1,1,1,1,1,.false.)end do
 For fa
e 5 we have 4 windows
all snowin(1,5,4)
 Window 1 is inflow, thus boundary type 6. it ranges from (1,1)
 to (5,5)
all setwin(1,5,1,1,1,5,5,6,1,1,1,1,1,1,.false.)15

all setwin(1,5,2,1,5,5,17,2,1,1,1,1,1,1,.false.)
all setwin(1,5,3,5,5,17,17,2,1,1,1,1,1,1,.false.)
all setwin(1,5,4,5,1,17,5,2,1,1,1,1,1,1,.false.)
all snowin(1,6,1)
all setwin(1,6,1,1,1,17,17,2,1,1,1,1,1,1,.false.)
 17 grid points in ea
h dire
tion for blo
k 2!
all initfa(2,18,18,18)
 Fa
es 1,2 are walls.do i=1,2
all snowin(2,i,1)
all setwin(2,i,1,1,1,17,17,2,1,1,1,1,1,1,.false.)end do
 Fa
e 3 interfa
es with fa
e 1, blo
k3. Be
ause of symmetry,
 wshift,wmdir and wndir must be set to :false:,1
 and 1 respe
tively.
all snowin(2,3,1)
all setwin(2,3,1,1,1,17,17,1,1,1,1,1,1,1,.false.)
all snowin(2,4,1)
all setwin(2,4,1,1,1,17,17,2,1,1,1,1,1,1,.false.)
all snowin(2,5,4)
all setwin(2,5,1,1,1,13,13,2,1,1,1,1,1,1,.false.)
all setwin(2,5,2,1,13,13,17,2,1,1,1,1,1,1,.false.)
 Window 3 is outflow, thus boundary type 6. it ranges from (13,13)
 to (17,17)
all setwin(2,5,3,13,13,17,17,6,1,1,1,1,1,1,.false.)
all setwin(2,5,4,13,1,17,13,2,1,1,1,1,1,1,.false.)
all snowin(2,6,1)
all setwin(2,6,1,1,1,17,17,2,1,1,1,1,1,1,.false.)4.2 Reading setup data from data �lesInstead of spe
ifying the
omputational domain and the blo
k
onne
tivity by
alls to subroutines, it ispossible to spe
ify the data in two data�les, one
ontaining the grid layout and one
ontaining the blo
k
onne
tivity and the boundary spe
i�
ations. The mesh is read in from the �le \multimesh" by a
allto the routine `rdmesh', whi
h has no parameters. The �le \multimesh" should have one of two formats:For two-dimensional
al
ulations the following format should be used: (Text inside fg's indi
ates that
16

it should be repla
ed by a number. Don't in
lude the fg's in the �le. Text inside <>'s indi
ates thatdes
ription follows.)fnumber of blo
ksg T<Blo
k1><Blo
k2><Blo
k3>...where a <blo
k> should be repla
ed withfnim1gfnjm1gfx(1,1)gfy(1,1)gfx(2,1)gfy(2,1)gfx(3,1)gfy(3,1)gfx(4,1)gfy(4,1)g...fx(1,2)gfy(1,2)gfx(2,2)gfy(2,2)g...The other format is for three-dimensional
al
ulations and readsfNumber of blo
ksg F<blo
k1><blo
k2><blo
k3><blo
k4>...and a <blo
k> is now spe
i�ed byfnim1gfnjm1gfnkm1gfx(1,1,1)gfy(1,1,1)gfz(1,1,1)gfx(2,1,1)gfy(2,1,1)gfz(2,1,1)gfx(3,1,1)gfy(3,1,1)gfz(3,1,1)g...fx(1,2,1)gfy(1,2,1)gfz(1,2,1)gfx(2,2,1)gfy(2,2,1)gfz(2,2,1)g...fx(1,1,2)gfy(1,1,2)gfz(1,1,2)g...Note that what
auses the routine `rdmesh' to sele
t between the two formats is the letter behind thespe
i�
ation of the number of blo
ks. A `T' will sele
t the two-dimensional format and a `F' will sele
tthe three-dimensional. This letter is also read into the logi
al
ag `twodim', so that the memory usagewill be optimized for the
al
ulation spe
i�ed.The blo
k
onne
tivity is read from the �le \boundary" when a
all to the routine `bourd' is made. Thismust be done after a
all to `rdmesh'.The �le \boundary" should have the following format:<blo
k1><blo
k2> 17

<blo
k3>...where now a <blo
k> has the following format:<fa
e1><fa
e2><fa
e3><fa
e4><fa
e5><fa
e6>A <fa
e> is spe
i�ed as follows:fnumber of windowsg <window1><window2><window3>...and, �nally, a <window> is spe
i�ed as followsfwmstgfwnstgfwmendgfwnendgfwbtypg<<fwbmstgfwbnstgfwmdirgfwndirgfwblo
kgfwsidegfwshiftg>>where the names have exa
tly the same meaning as the parameters to the routine `setwin'. Text inside<<>>'s indi
ates that this information should only be in
luded if wbtyp = 1 that is, if the window is amultiblo
k window. The information inside the <<>>'s must be ex
luded otherwise.One may insert blank lines in the �les, but no
omments.As an example we present a \boundary" �le for the
ow
ase spe
i�ed above. Here we in
lude
ommentspre
eded with a per
ent sign only for readability.%Blo
k 1, fa
e 1 one window1%window 11 1 17 17 11 1 1 1 2 3 F%Fa
e 2 - 4, one window ea
h. boundary type is wall, therefore%multiblo
k information is ex
luded11 1 17 17 211 1 17 17 211 1 17 17 2 18

%Fa
e 5, four windows. No multiblo
k window information41 1 5 5 61 5 5 17 25 5 17 17 25 1 17 5 2%Blo
k 2, Fa
e 1 to 2 are walls, 1 window ea
h11 1 17 17 211 1 17 17 2%Fa
e 3, one multiblo
k window11 1 17 17 11 1 1 1 1 1 F%Fa
e 4, wall, one window11 1 17 17 2%Fa
e 5, four windows41 1 13 13 21 13 13 17 213 13 17 17 61 17 13 2 1%Fa
e 6, one window; wall.11 1 17 17 25 Moving mesh spe
i�
ationAt the beginning of ea
h timestep, the routine `main'
he
ks if the global
ag mmesh is set to true. If itis, the user - spe
i�ed routine `mvmesh' is
alled. The routine has the following de
laration:subroutine mvmesh(blo
k,time)The parameters blo
k and time are in - parameters and from these parameters, the routine should spe
ify� The grid vertex
oordinates x
,y
 and z
 if they di�er from the startup setting in `setup'.� The
ontrol volume fa
e velo
ities in the global arrays fue, fve, fwe, fun, fvn, fwn, fuh, fvhand fwh. The se
ond letter in the variable names indi
ates the velo
ity
omponent and the thirdletter the fa
e dire
tion.� The global
hange rate of density, ��=�t, stored in the s
alar variable ddendt.19

The routine may also do other things, su
h as
hange in
onne
tivity, boundary
onditions et
.If the
ag mmesh instead is set to :false:, the routine `main' will
all the built - in routine nomove whi
hsets the
ontrol volume fa
e velo
ities and the
hange rate of density to zero.Part IITe
hni
al des
ription6 Brief multiblo
k subroutine des
ription6.1 Sele
ting a blo
kTo save storage spa
e, all data is stored in one-dimensional arrays. Sin
e a blo
k is a three-dimensionalstru
ture, a mapping routine
alled `key' is provided. Imagine that you would like to address the velo
ityin node i; j; k in blo
k p. This would then be done in the following way:
all key(p,lst,ist,dummy,dummy,dummy)
ursor = lst(k)+ist(i)+jphi(
ursor,u)= ...An index-variable to the one-dimensional arrays holding the values is in the following
alled a `
ursor'.Note that there are three dummy variables to `key' that are not
urrently used. The details of the routinewill be des
ribed later.6.2 Data typesBefore we enter the dark world of multiblo
k boundary routines, we have to dis
uss some data-types.One is the layer bu�er whi
h is a two-dimensional quadrati
 array of size msiz spe
i�ed in the �le`
ommon.for', and is used to temporarily hold values of a layer of
ells in the
omputational domain, ora layer of
ursors pointing to su
h a
ell layer. Sin
e Fortran does not re
ognize an integer or a
oatingpoint value unless expli
itly told to do so, we may se these bu�ers as possible
ontainers of either integers(
ursors) or
oating point values. There are �ve su
h bu�ers de
lared in `
ommon.for': layer1, layer2,extra, ma1, ma2. The bu�ers ma1 and ma2 are primarily used for
ursors and the others for
oatingpoint values (Boundary information).Another important data type is the ghost
ell bu�er whi
h is a three dimensional array of size msiz xmsiz x 2. The ghost
ell bu�er is ment only for
oating point values and is used to build up the ghost
ell layers in before they are transferred ba
k to the a
tual blo
k for whi
h they were built up. There isonly one ghost
ell bu�er de
lared in `
ommon.for' and it is
alled
fa
e.Finally we shall des
ribe the boundary data base, whi
h
an be seen as an array(1:6,1:2,0:nphit) of layerbu�ers. That is one layer bu�er for ea
h fa
e, ea
h of the two layers near a boundary, and ea
h of thevariables, in
luding one extra variable lo
ation for ap, whi
h is number 0. However, this would demand anex
essive use of storage spa
e, and therefore the program keeps tra
k of how mu
h storage spa
e ea
h fa
eon ea
h blo
k requires. The a
tual de
laration of the base type is the following (lo
ated in �le `base.f')
ommon /fbase/ base(1:ifsiz,2,0:nphit)and the parameter ifsiz should be adjusted so that there is room to store all fa
es in the
omputationaldomain. More about this later. What is important to know is that it is possible to store and retrieve alayer bu�er in the boundary data base by spe
ifying� The layer bu�er,� Whi
h blo
k it belongs to, 20

� Whi
h fa
e it represents,� Whi
h layer it is
ontaining (1 or 2) and �nally� Whi
h variable it is
ontaining (0..) where 0 is ment for ap.All routines for managing the boundary data base is lo
ated in the �le `base.f'.It should be mentioned here, that it is not really nesse
ary to have a boundary data base, sin
e there isno need to temporarily store
ertain
ell layers; they may be
olle
ted dire
tly from the
omputational�eld. However, in a typi
al three-dimensional appli
ation, the extra CPU time overhead for managingsu
h a data base is very small (about 1%) and it is primarily designed to simplify the extension of the
ode to a multi-workstation system where one workstation holds the boundary data base, and the othersare solving one blo
k ea
h.6.3 The routine `store' - store variable layerThe subroutine `store' stores the
ontents of the desired
ell layer into a layer bu�er. It's de
laration isthe following:subroutine store(side,variab,
urmat,layer,imax,jmax,lmax,any,ifany)Upon
all, the following
onditions should be met:� The routine `key' should have been
alled to spe
ify the
urrent blo
k.� The parameter side should
ontain the fa
e for whi
h the variables should be stored(1-6).� The parameter `variab' should
ontain the number of the variable to be stored, and 0 if a spe
ialquantity should be stored (for example ap,
onvh or whatever desired).� The parameter
urmat is the name of the layer bu�er.� The parameter layer is the number of the layer (1 is
losest to the fa
e and 2 is the next one in the
omputational domain. It is in fa
t possible to store a ghost
ell layer by spe
ifying 0 for the innerghost
ell layer and -1 for the outer.� The parameters imax, jmax, lmax
ontrols the number of values stored in a parti
ular dire
tion.These are usually set to nim1(kblo
k), njm1(kblo
k) and nkm1(kblo
k). Depending on whi
h fa
eis spe
i�ed, only two of these parameters are used. The routine automati
ally keeps tra
k of whi
hones to use.� The parameters any and ifany are used to store another variable than the ones stored in phi(::; ::).If another variable is to be stored into the layer bu�er, any should hold the name of the variable,for example ap and ifany should then be set to :true: If one of the variables in phi(::; ::) is to bestored, ifany should be set to :false: and the parameter variab should, as des
ribed above
ontainthe number of the variable.Finally it should be noted that `store' transfers a
ell layer into a layer bu�er. Not to the boundary database.6.4 The routine `sind' - store index layerThe subroutine `sind' stores the
ursors of all the
ells in a layer into a layer bu�er. It's de
laration isthe following:subroutine sind(side,
urmat,layer,imax,jmax,lmax)
21

The parameters are the same as to the routine `store' ex
ept that the variable referen
es are ex
luded.Note that the information put in the layer bu�er
urmat now should be treated as integers (
ursors)rather than
oating point values. An example of the
exibility of this routine is the following short
ode,whi
h
omputes the total in
ow from the
omputational domain to the
ell layer just below the high fa
e:
all sind(5,ma3,1,nim1(kblo
k),njm1(kblo
k),nkm1(kblo
k))inflow=0.do n=2,njm1(kblo
k)do m=2,nim1(kblo
k)io=ma3(m,n)inflow=inflow+smp(io)-
onvh(io)end doend do6.5 The routine `fa
ret' - Transfer ghost
ell bu�er ba
k to blo
kThe routine `fa
ret' is used to transfer one of the layers in the ghost
ell bu�er to the ghost
ells of ablo
k. Unfortunately, for this routine the ghost
ell layers has been numbered the other way around thanfor the `store' routine. The ghost
ell layer
losest to the
omputational domain is number 2 and the onemost far out is number 1. The irritated user is hereby granted to modify the routine and all it's
allersto use the same
onvention as does the routine `store'.The routine de
laration has the following appearan
e:subroutine fa
ret(
urfa
,side,variab,any,ifany,imax,jmax,. lmax,layer)Upon
all, the following
onditions should be met:� The routine `key' should have been
alled to spe
ify the
urrent blo
k.� The parameter
urfa
 is the ghost
ell bu�er.� The parameters side, variab, any, ifany, imax, jmax and lmax are de�ned in the same way asfor the routine `store'.� The parameter `layer' should
ontain the number of the ghost
ell layer to be transferred to theblo
k (1 or 2) as des
ribed above.6.6 The ghost
ell value extrapolation routinesThere are a number of routines used to build up the ghost
ell values in the ghost
ell bu�ers, and all ofthem are lo
ated in the �le `wallset.f' The routines are used by the general ghost
ell layer building routine`bound' and they would probably never be used dire
tly by the user. For
ompleteness a des
ription isin
luded here. The routines are:6.6.1 The routine `tfa
e' - Build ghost
ell values from a remote fa
e layer bu�erThis routine is used to set the ghost
ell values in a ghost
ell bu�er from a layer bu�er with values fromanother fa
e, i. e. it is for multiblo
k boundaries. It's de
laration is:subroutine tfa
e(
urfa
,la1,la2,mst,mend,mdir,. nst,nend,ndir,bmst,bnst,lshift,nolay)Upon
all the following
onditions should be met:
22

� The parameter
urfa
 should
ontain the ghost
ell bu�er to whi
h the values are transferred.� The parameter la1 should
ontain the layer bu�er that
ontains the layer of values
losest to thefa
e on the remote fa
e.� The parameter la2 should
ontain the layer bu�er that
ontains the other layer of values from theremote fa
e.� The parameter mst should
ontain the �rst m index of the ghost
ell bu�er for whi
h values shouldbe transferred minus one.� The parametermend should
ontain the last m index of the ghost
ell bu�er for whi
h values shouldbe transferred.� The parameter mdir should be set to 1 if the m dire
tions of the remote fa
e and the fa
e for whi
hthe ghost
ell layer is built have the same n dire
tions. It should be set to -1 if the m dire
tionsare opposite.� The parameters nst, nend, ndir are the same as mst, mend, mdir but for the n index.� The parameters bmst, bnst should be set to the lowest m and n indi
es respe
tively that should betransferred from the remote fa
e, The data layers of whi
h are stored in la1 and la2. They shouldbe spe
i�ed in the remote fa
e's
oordinate system.� The parameter lshift is a logi
al parameter and should be set to :true: if the m index for the fa
efor whi
h the ghost layer bu�er is built
orresponds to the n index of the remote fa
e. It should beset to :false: otherwise.� The parameter nolay spe
i�es the number of layers to transfer. If nolay is set to 1, the parameterla2 may be repla
ed with a dummy parameter, sin
e it is never used.As an example we imagine a situation where we shall transfer values from fa
e 3 of blo
k 2 to build aghost
ell layer on fa
e 1 of blo
k 1. The m and n indi
es
oin
ide, but when the n index is in
rementedon fa
e 1 of blo
k 1, the n index on fa
e 3 of blo
k 2 should be de
reased to mat
h the other blo
k.The transferring
ode should look something like this if the variable to be transferred is, for example thepressure
orre
tion.
 Sele
t blo
k 2.
all key(2,lst,ist,nim1(2),njm1(2),nkm1(2))
 Store the values of pp at fa
e 3 of blo
k 2 in the layer buffer
 layer1 (
losest to the fa
e.) Store the next layer in layer2
all store(3,pp,layer1,1,nim1(2),njm1(2),. nkm1(2),dummy,.false.)
all store(3,pp,layer2,2,nim1(2),njm1(2),. nkm1(2),dummy,.false.)
 Call tfa
e to transfer the values to the ghost
ell buffer
 `
fa
e'. The m dire
tion
orresponds to the i index and the
 n dire
tion
orresponds to the k index, whi
h explains the
 use of `njm1' and `nkm1'. ndir and mdir are set to -1. Two
 layers are transferred. Note that we use njm1 and nkm1 for the
 blo
k for whi
h the ghost
ell layer is built!
all tfa
e(
fa
e,layer1,layer2,1,njm1(1),-1,23

. 1,nkm1(1),-1,1,1,.false.,2)
 Transfer the ghost
ell buffer `
fa
e' to the ghost layers of
 blo
k 1, fa
e 1
all key(1,lst,ist,nim1(1),njm1(1),nkm1(1))
all fa
ret(
fa
e,1,pp,dummy,.false.,nim1(1),. njm1(1),nkm1(1),1)
all fa
ret(
fa
e,1,pp,dummy,.false.,nim1(1),. njm1(1),nkm1(1),2)6.6.2 The routine `xtrapl' - Transfer values from a layer bu�er to a ghost
ell bu�erThe routine `xtrapl' is used to do a simple transfer of values from a layer bu�er to a ghost
ell bu�er,and is typi
ally used for extrapolation of values at boundaries
orresponding to, for example, a symmetryboundary.The routine has the following de
laration:subroutine xtrapl(
urfa
e,myfa
e,mst,mend,nst,nend,. nolay)The following
onditions should be met upon
all:� The parameter
urfa
e is the ghost
ell bu�er.� The parameter myfa
e is the layer bu�er from whi
h the values are transferred to the ghost
ellbu�er.� The parameters mst,mend,nst,nend and nolay all have the same meaning as in the routine `tfa
e'.6.6.3 The routine `setval'The routine `setval' builds ghost
ell values, so that by using linear interpolation, one gets a prede�nedvalue at the boundary.The routine has the following de
laration:subroutine setval(
urfa
e,myfa
e,vts,mst,mend,nst,nend,nolay)The following
onditions should be met upon
all:� The parameters
urfa
e,mst,mend,nst,nend,nolay are spe
i�ed in the same way as for the routine`tfa
e'.� The layer bu�er myfa
e should
ontain the layer of values
losest to the boundary in the
ompu-tational domain.� The layer bu�er vts - value to set, should
ontain the desired
ell fa
e value for ea
h
ell at the fa
e.6.6.4 The routine `ioval'The routine `ioval' is a
ombination of `setval' and of `xtrapl'. It
he
ks if the
ell fa
e
orresponding toa
ell in the ghost
ell bu�er is in
ow or out
ow. If it is in
ow, the same thing is done for the ghost
ellas would be done in `setval'. If it is out
ow, the same thing is done as would be done in `xtrapl' Theroutine thus requires information of whi
h
ell fa
e is out
ow and whi
h is in
ow.The routine has the following de
laration. 24

subroutine ioval(
urfa
e,myfa
e,vts,
on,mst,mend,nst,nend,. nolay)As
an be seen, the only thing that di�ers from the routine `setval' is the extra parameter
on. Thisparameter is a layer bu�er
ontaining integers that tells the routine whi
h
ell fa
es are out
ow andwhi
h are in
ow. The value 1 denotes out
ow and the value �1 denotes in
ow. The meaning of theother parameters are des
ribed above.6.6.5 The routine `xxtra'The routine `xxtra' is used to build ghost
ell layers so that the normal se
ond derivative of the boundaryis zero. The routine requires information from the two layers of
ells in the
omputational domain thatare nearest to the blo
k fa
e. The de
laration of the routine is the following:subroutine xxtra(
urfa
e,myfa
e,vts,mst,mend,nst,nend,. nolay)Upon
all, the layer bu�er vts should hold the layer
losest to the blo
k fa
e and the layer bu�er myfa
eshould hold the other layer. The other parameters follow the same
onvention as above.It should be noted that this routine assumes that all the
ells
on
erned have the same size. This istrue for the two layers of ghost
ells and the
ell layer
losest to the fa
e in the
omputational domain,sin
e the ghost
ells are given the same dimensions as the
ells in this layer, unless it is a multiblo
k fa
efor whi
h this routine would never be used. The next layer in the
omputational domain may well haveanother geometry, and therefore it is appropriate to adjust the values in the layer bu�er `myfa
e' for thegeometry before
all, so that the right interpolation is made. (See the routine `bound' !)6.7 The window information database `winbas.f'This subroutine library
ontains a number of subroutines that are used to store and retrieve informationabout windows. The reader that is not familiar with the window
on
ept is re
ommended to �rst readthe Users guide. The routines are the following:subroutine setwin(blo
k,side,window,wmst,wnst,wmend,wnend,wbtyp,. wbmst,wbnst,wmdir,wndir,wblo
k,wside,wshift)The parameters of this routine has been explained in the users guide. The routine simply stores thesevalues into the window data base.subroutine getwin(blo
k,side,window,wmst,wnst,wmend,wnend,wbtyp,. wbmst,wbnst,wmdir,wndir,wblo
k,wside,wshift)This routine retrieves the window data stored in the window data base. The parameters blo
k, side andwindow should be given upon
all. The other parameters are out-parameters provided by the subroutine.subroutine snowin(blo
k,side,nowin)integer fun
tion gnowin(blo
k,side)These routines are used to set and get the number of windows on a parti
ular fa
e on a parti
ular blo
k.The routine `snowin' is typi
ally used by the user as des
ribed in the users guide. The routine `gnowin'is used internally in the program to retrieve the information the user has spe
i�ed.logi
al fun
tion
hkbou(blo
k,side,type)This routine is used internally to
he
k whether any of the windows on a parti
ular fa
e on a blo
k hasthe boundary type `type' (See the User's guide). If so, it returns :true: Otherwise it returns :false:25

6.8 The layer bu�er data base - `base.f'This subroutine library
ontains the
omplete multiblo
k management
on
erning mapping to one-dimensional arrays, storage of global data et
. The routines in
luded are the following:subroutine sfa
e(
urfa
,blo
k,side,variab,layer)This routine stores a layer bu�er into the boundary data base. Upon
all the following
onditions shouldbe met:� The parameter
urfa
 is the layer bu�er to be stored.� The parameter blo
k is the number of the blo
k from whi
h the layer in
urfa
 was retrieved.� The parameter side is the number of the fa
e from whi
h the layer was retrieved.� The parameter variab is the variable number (0 for ap).� The parameter layer is the number of the layer where 1 is the layer
losest to the fa
e, and 2 is thenext layer.subroutine rfa
e(
urfa
,blo
k,side,variab,layer)This routine is used to retrieve a layer bu�er from the layer bu�er data base. The des
ription of theparameters is the same as for the routine `sfa
e', with the ex
eption that `
urfa
' is now an out parameterand is not given by the
aller.subroutine
baseThis routine is used to
lear all information in the boundary data base. All entries are set to zero.subroutine initfa(blo
k,imax,jmax,lmax)This routine should be
alled by the user when the blo
k
onne
tivity is spe
i�ed. The des
ription of theparameters may be found in the User's guide. The routine initializes all the information that is neededby the routines `key' and `fa
key' to map the three-dimensional stru
ture of a blo
k to a one-dimensionalarray. Sin
e the exa
t amount of memory needed is
omputed here, the routine is able to warn if theallo
ated spa
e is too small, i. e. if a re
ompilation is ne
essary. If this is the
ase, the routine stops andwarns. If the global
ag twodim is set to :true: when this routine is
alled, the storage spa
e is managedin a slightly di�erent way. The routine then assumes that only one ghost
ell layer is ne
essary in the kdire
tion, and thus saves a large amount of memory spa
e in the
ase of a two-dimensional
al
ulation.subroutine key(blo
k,lsta,ista,dummy1,dummy2,dummy3)This routine maps the three-dimensional blo
k into a one-dimensional array. The blo
k is assumed dividedinto k� slabs
ontaining all the values for a parti
ular k - index. The
ursor pointing to the �rst positionin slab k is given in lsta(k). Thus, for blo
k 1, lsta(0), whi
h
orresponds to the start of the �rst ghost
elllayer on fa
e 6 (The low side,
orresponding to k small) should be equal to zero. The value of lsta(1) wouldbe 0+(nim1(1)+4) �(njm1(1)+4) et
. (The extra four
orresponds to the ghost
ell layers). The value oflsta(0) for blo
k p would be lsta(0) for blo
k p�1+(nkm1(p�1)+4) �(nim1(p�1)+4) �(njm1(p�1)+4).The k � slabs are then divided into i � rows. The o�set to row i from the start of slab k is stored inista(i). The
ursor pointing to the start of row i in slab k is thus given by lsta(k)+ista(i). In ea
h i -row, the j� elements is stored in order. To
on
lude all this: If the following
all has been made to key:
all key(kblo
k,lst,ist,dummy,dummy,dummy)
26

The
ursor pointing to element i; j; k for blo
k kblo
k is given by lst(k) + ist(i) + jAn earlier implementation of the routine required three extra parameters. With the implementation ofthe boundary data base, these parameters be
ame unnesse
ary and were, for
ompatibility with earlierroutines that used the routine `key' repla
ed with dummy parameters. The interested user may removethese dummy parameters from the routine and all its
allers.subroutine fa
key(blo
k,side,bsstar,mst)This routine is used internally by the routines `sfa
e' and `rfa
e'. It maps the two-dimensional arraystru
ture of a layer bu�er into the one-dimensional array stru
ture used in the boundary layer data base.The blo
k number should be spe
i�ed in blo
k and the fa
e number should be spe
i�ed in side. Uponreturn, the routine gives the start position in the array for this layer bu�er in bsstar. The layer bu�er isthen assumed divided into m� rows. The o�set to the start of row m from the start-position bsstar isstored in mst(m). As an example: Imagine that you would like to get a
ursor to where the w-velo
ity inlayer 1 on the east fa
e of blo
k 2, m-index 3 and n� index 4, is stored. Sin
e the east fa
e has numberone, we would �rst make the following
all:
all fa
key(2,1,bsstar,mst)
ursor = bsstar+mst(3)+4We would then address the boundary base array:theval = base(
ursor,1,w)Note that the boundary base has two extra indi
es, one for the layer and one for the variable. Theseindi
es are not in
luded in the one-dimensional storage stru
ture be
ause they have �xed length. Thereare always two indi
es and nphi+ 1 variables. It should be mentioned that the end user should not usethis routine dire
tly. The des
ription is only in
luded to provide a base for the understanding of theimplementation.subroutine nmmax(blo
k,side,mmax,nmax)Given the blo
k number and the fa
e number in blo
k and side this routine returns the number of
ellsin the
omputational domain in the m and n dire
tion of the fa
e. This is used by routines that operateson the whole fa
e rather than on a window. Note that the indi
es in the routine name has
hanged pla
e.This may be
onfusing.subroutine sendpp(blo
k,ppr)subroutine setref(blo
k)integer fun
tion getref()real fun
tion getpp()These three routines are provided to make it easier to extend the
ode to a multi
omputer system.With the routine `setref' The blo
k in whi
h the pressure referen
e node is lo
ated is spe
i�ed. When thepressure
orre
tion has been
omputed for ea
h blo
k, the referen
e value of the spe
i�ed
ell (but possiblythe wrong blo
k) is sent to the database by the routine `sendpp'. If the blo
k number mat
hes the onespe
i�ed with `setref', the referen
e value is stored. Otherwise it is dis
arded. The latest referen
e valuestored may then be retrieved with the fun
tion `getpp'. The number of the blo
k holding the pressurereferen
e node may be retrieved with `getref'.subroutine zerres(blo
k,ppr)subroutine setres(blo
k,variab,res)real fun
tion getres(blo
k,variab)
27

These routines take
are of the residual storage for ea
h blo
k and variable. The subroutine `zerres' zeroesall the residuals, the routine `setres' sets a residual for a given blo
k and a given variable. Finally thefun
tion `getres' retrieves a residual for a given blo
k and a given variable.6.9 The general ghost
ell building routinesThe des
ription of the previous routines now provide a foundation for the understanding of the generalghost
ell building routines `bound' and `sbound'. The routine `sbound' has the following spe
i�
ation:subroutine sbound(blo
k,variab,any,nlay)This routine s
ans all the fa
es of the blo
k `blo
k' too see if any window on the fa
e has a multiblo
kboundary type. If so, it stores the required number of layers (1 or 2) in a layer bu�er and �nally storesthe layer bu�er in the boundary data base. With the parameter `variab' the number of the variable inquestion is spe
i�ed. If the number is 0, the routine does not take the values from phi, but rather fromthe variable spe
i�ed in `any' (usually ap). The parameter nlay is an array(1:6) spe
ifying the number oflayers to be stored on ea
h fa
e (1 to 6). There are two arrays of this type spe
i�ed in the initialization ofthe program. One is lay1 whi
h only
ontains 10s and the other is lay2 that only
ontains 20s. A typi
al
all to this routine, storing two layers of
ell volumes in the boundary data base in the variable lo
ationfor ap (number 0) would look like this:
all sbound(blo
k,0,vol,lay2)The other routine in this pair is `bound', and it has the following spe
i�
ation:subroutine bound(blo
k,variab,any,nlay)This routine is used to build a ghost
ell layer in a ghost
ell bu�er and then transfer it to the parti
ularblo
k for whi
h it was built. It loops over all the fa
es of the blo
k and all the windows of the fa
e.It retrieves information about the window and depending on the window's boundary type
olle
ts layerbu�ers either from the blo
k itself or from the boundary layer database in
ase of a multiblo
k boundarytype. It then uses the ghost
ell value extrapolation routines des
ribed above to build a ghost
ell bu�er,and when all windows on a fa
e are visited, the routine transfers the ghost
ell bu�er ba
k to the blo
kfor whi
h is was built. The parameters are the same as for the routine `sbound'.There is also modi�ed version of the routine `bound'
alled `ppboun'. This routine is designed for thepressure
orre
tion. It only sets ghost
ell values for multiblo
k windows and is thus somewhat faster. Itis used only for the pressure
orre
tion and is
alled from the routine `relax'.7 The geometry of the ghost
ells7.1 Required geometri
al quantitiesSin
e no variables are solved for in the ghost
ell
ontrol volumes, the geometri
al quantities that needto be present are very few. The following is needed.� The ghost
ell volume.� The interpolation fa
tors fx, fy, and fz, whi
h are needed for the extrapolation of the pressureand the pressure
orre
tion and also for
omputing the
ell
enter and
ell fa
e distan
es when theQUICK s
heme is used.� The quantities xksi, yksi, zksi, xeta, yeta, zeta, xzeta, yzeta and zzeta whi
h are needed for theRhie & Chow interpolation at multiblo
k boundaries.28

7.1.1 Treatment at multiblo
k boundariesAt multiblo
k boundaries the ghost
ells are given the same dimensions as the
orresponding
ell in theneighboring blo
k.� The ghost
ell volume is obtained by storing all volumes for the
ells nearest to the multiblo
kboundary by
alling `sboun' for the volume and put it in the ap lo
ation. When the volumes for allblo
ks have been stored in the boundary data base, the routine `bound' is
alled, giving the ghost
ells the right volumes, sin
e ap is also taken from the neighboring blo
k at multiblo
k boundaries.This is done dire
tly in the `main.f' routine.� The interpolation fa
tors are
al
ulated by �rst storing the
ell
enter values in the multiblo
k database (the routine `s
ent') and then retrieving them with the routine `g
ent'. In this way, the ghost
ells obtain the same
ell
enter
oordinates as the
orresponding
ell in the neighboring blo
k.� The
omputation of the Rhie & Chow interpolation fa
tors a
ross multiblo
k boundaries are very
ompli
ated and bugs may well have entered here. First of all we have nine quantities to ex
hange,but we
annot expe
t to have more than six variable lo
ations in the boundary data base. On theother hand the boundary data base has room for two layers of values whereas the Rhie & Chowgeometri
al quantities are only needed in the inner ghost
ells. We therefore use a routine `ja
obi',whi
h, given a number to the geometri
al quantity, maps it to a spe
i�
 variable lo
ation and aspe
i�
 layer in the data base. The other
ompli
ated thing is, that dependent on how the blo
ksare aligned, the geometri
al quantities
hange sign a
ross a multiblo
k boundary. This is solvedusing spe
ial sign- and dire
tion tables. A rule that should be remembered is that if the signsare not
omputed
orre
tly by the routine, the mass
ux through the boundary is not exa
tly thesame (down to ma
hine pre
ision) for the both blo
ks, thus indi
ating a bug in the routine. Theopposite is not true however; a di�eren
e in mass
ux through a boundary when
omputed in thetwo neighboring blo
ks is probably due to in
orre
t boundary spe
i�
ations.7.1.2 Treatment at domain boundariesAt the domain boundaries the ghost
ells are given the same dimensions as their nearest nieghbour inthe
omputational domain. This is done in the following way:� The ghost
ell volume is
al
ulated by simply giving it the same value as the nearest neighbor inthe
omputational domain. This is done by
alling the routine `bound' with the volume put in thevariable lo
ation reserved for ap, whi
h implies that the volume will be extrapolated to the ghost
ells in the same manner as ap will be when the
omputations have started.� The interpolation fa
tors are
omputed in a rather spe
ial way. Instead of setting them to 0:5,whi
h is the value they should have at domain boundaries, the
ell
enter
oordinates for the
omputational domain is
omputed and also the
oordinates for the fa
e
enters in the standardCALC way. The
oordinates are then `mirrored' to the ghost
ells using the routine `g
ent' whi
hsets a Diri
hlet boundary
ondition for the
ell
enter
oordinates with the
ell fa
e
oordinates asthe boundary value, and then using the standard diri
hlet boundary extrapolation routine `setval'to set the ghost
ell
enter
oordinates. The interpolation fa
tors are then
al
ulated in a standardmanner in the routine `
weigh' lo
ated in `init.f'.� The geometri
al quantities required for the Rhie & Chow interpolation routines are simply extrap-olated in the routine `ggeom', using the spe
ial mapping fun
tion `ja
obi' des
ribed above. No sign
hange is required at the domain boundaries.
29

8 Modi�
ations to standard routines8.1 The routine `wallf' - Set wall fun
tionsThe routine wallfun

al
ulates the wall fun
tions for k, " or the velo
ities by reading window informationfrom the window data base and
alling the routine `wall' with the
orre
t parameters. The
alls to `wallf'are made from routines in the �le `modify.f' and from the routine `relax', so that the
orre
t vis
osity isused in the u dis
retization matrix. The fun
tion itself is lo
ated in �le `wf.f'. Note that `wallfun
' willonly
all the routine `wall' if the boundary type wall (#1) has been spe
i�ed for a window on a fa
e, andthen only for that window. The de
laration of the routine `wallf' is:subroutine wallf(blo
k,variab)Before a
all to the routine, the
urrent blo
k has to be spe
i�ed with a
all to `key'.8.2 The routine `md
on' -
ompute
onv at domain boundariesThe routine `
onv' has been modi�ed to
ompute the mass
ux even on the boundaries of ea
h blo
k,using Rhie & Chow interpolation. However, on the domain boundaries the
onve
tion should be
omputedwithout Rhie & Chow interpolation. This routine re
omputes the
onve
tion on the domain boundarieswithout Rhie & Chow interpolation. It is
alled from `modify.f' (`mod
on').It`s de
laration issubroutine md
on(blo
k)8.3 The global
onve
tion
orre
tion routines `
onset' and `up
onv'The routine `
onset'
omputes the global in
ow to and out
ow from the
omputational domain. Theroutine gets information about whi
h
ell fa
es are in
ow fa
es from the user spe
i�ed routine `setio'.In
ow may be both positive and negative, whereas all mass
ux through out
ow
ell fa
es is
onsideredout
ow, although it may
ow inwards. This helps stabilizing the out
ow
orre
tion on �U=�n = 0boundaries. The routine de
laration is:subroutine
onset(blo
k,
onin,
onout)Upon
all the
urrent blo
k should be spe
i�ed in blo
k. The routine will then add in
ow to the domainto
onin and add out
ow to
onout. Note that the two latter parameters need not be zero when theroutine is
alled. The routine simply adds the mass
ux to the previous value of the parameters. Thissimpli�es multiple
alls to the routine in a multiblo
k environment. The routine is
alled from `relax'.The routine `up
onv' multiplies the
onve
tion on out
ow fa
es with a fa
tor. In the implementation in`relax' The routine `
onset' is �rst
alled for ea
h blo
k determining the global in
ow and out
ow. Thena multipli
ation fa
tor is
omputed, so that the out
ow will equal the in
ow. Finally `up
onv' is
alledto
orre
t the out
ow so that global
ontinuity is a
hieved. It should, however, be mentioned that inheavily a

elerating
ows, the Rhie & Chow interpolation will make the
ow somewhat
ompressible.Therefore spe
ifying global
ontinuity may
ause the residual of the
ontinuity equation to hang at avalue dependent of the a

eleration.The routine de
laration is :subroutine up
onv(blo
k,mulfa
,totout)Upon
all, mulfa
 should
ontain the multipli
ation fa
tor (real number), the routine will then add the
orre
ted out
ow to the value of totout. 30

8.4 `Up
oef' - Zero domain boundary
oeÆ
ientsThe purpose of this routine is to zero all
oeÆ
ients ae, an et
. on the domain boundaries, so that ahomogenous Neumann
ondition is ful�lled. The routine is used by the pressure
orre
tion routine `
al
p'.8.5 `U
oef' - Zero out
ow
oeÆ
ientsThis routine zeroes all
oeÆ
ients on out
ow
ell fa
es, so that a homogenous Neumann
ondition isful�lled. The routine gets the information about whi
h
ell fa
es are out
ow from the user-suppliedroutine `setio'. The routine is
alled from `modify.f' and is lo
ated in �le `Up
oef.f'8.6 Splitting of the routine `
al
p'The SIMPLE algorithm usually requires several sweeps with the Gauss - Seidel solver for the pressure
orre
tion equation. Experien
e has shown that the boundary
onditions for ea
h blo
k has to be updatedafter every sweep. This demands a splitting of the routine `
al
p' into four routines.� `
al
p' sets up the
oeÆ
ient matrix.� `
al
p2' performs a solver sweep.� `
al
p3' updates pressure and
onv.� `
orre
' updates the nodal velo
ities.8.7 Modi�
ations to `Coe�'The QUICK s
heme in the `
oe�' routine has been modi�ed to take use the interpolation fa
tors fx, fyand fz to
ompute the
oeÆ
ients instead of the
ell volume divided by a
hara
teristi
 area s
ale. Thisis be
ause the interpolation fa
tors are available in the ghost
ells whereas the area s
ale is not. Thederivation of the expression for the
oeÆ
ients are given in se
tion 10.1.8.8 Modi�
ations to `Update'In order to a

urately solve transient problems a se
ond order multistep time dis
retization has beenimplemented. Sin
e the s
heme uses the values from two previous timesteps, the �rst timestep must betaken with the �rst order BDF s
heme (Ba
kward Euler). The se
ond order BDF s
heme is obtained by�tting a se
ond order polynomial to the
urrent value and the values from the previous two timesteps,with the boundary
ondition that the di�erential equation shall be ful�lled at the
urrent timestep. Thisyields an impli
it method that is A - stable, i. e. it has the same stability properties as the
ontinousNavier - Stokes equations, whi
h implies that arbitrarily large timesteps may be taken, as long as no
onstraints are pla
ed on the values at the di�erent timesteps. The turbulen
e equations however havethe restri
tion that the turbulent quantities may not be
ome negative. Due to their sti� behaviour, thiss
heme is not suitable for these equations. Although it has the desired stability properties, it
annotguarantee that the turbulent quantities may not be
ome negative.9 Moving mesh routinesThe routines `mvmesh' and `nomove' has already been des
ribed in the User's guide, In addition, someother features have been implemented that allows the
omputations on moving meshes.� When the dimensions of the geometri
al quantities have
hanged, that is if the
ag mmesh is set totrue, a
all is made to `init' to re
ompute the geometri
al quantities. The routine `init', however,uses a lot of variables as temporary storage spa
e, and these variables are needed as a solution
31

C

A

B

Φ Φ Φ ΦE EEeP

Figure 2: Nomen
lature for QUICK dis
retization s
heme.approximation on the next timestep. Therefore the routine `s�eld' is
alled before the
all to `init'.This routine is lo
ated in �le `mis
.f' and saves the
ow�eld on a temporary �le
alled \�eldsave".After the routine `init' has made it's
omputations, the �eld is read ba
k by the routine `r�eld'lo
ated in the same �le.� After a
all to `mmesh', the routine `
on
om', lo
ated in �le `mis
.f' is
alled. This routine
omputesthe rate of
hange in volume for ea
h
ell and stores the result in the global array dvoldt. It also
omputes the global virtual in
ow of mass due to the
ontra
tion of the
omputational domain,(whi
h will of
ourse, due to in
ompressibility,
ause an equal amount of out
ow, unless the
hangerate of density, ddendt is di�erent from zero. The global virtual in
ow, with the
hange rate ofdensity taken into a

ount, is then stored in the global variable
onsou. This value is used whenthe
orre
ted out
ow is
omputed for free out
ow boundaries. Note that the value of
onsou maywell be negative if the
omputational domain is expanding.� The routine `
onv' has been
hanged to take into a

ount the velo
ities of the
ontrol volume fa
eswhen the mass
ux is evaluated.� The
al
ulation of the mass error in the routines `
onv' and `
al
p3' also take into a

ount the rateof
hange in volume for ea
h
ell and also the global rate of
hange in density.10 Theoreti
al explanation of some implementations10.1 The QUICK s
hemeSin
e QUICK is derived from a se
ond order polynom �tted to the
entral point, �p , the upwind point,�e and the far upwind point �ee we
an write� �P + a1A+ a2A2 = �E�P + a1B + a2B2 = �EE (2)� a1A+ a2A2 = �E � �Pa1B + a2B2 = �EE � �P (3)Now use gaussian elimination to invert the matrix and obtain expli
it expressions for a1 and a2:a2B2 � a2A2BA = �EE � �P � BA�E + BA�P (4)32

a2 �B2 �AB� = �EE � �P �BA � 1�� �EBA (5)a2 = �EEB2 �AB + �P �BA � 1�B2 �AB � �EBAB2 �AB (6)a1 = �EA � �PA � a2A (7)(8)We now use the following to obtain the QUICK
oeÆ
ients
P ,
E and
EE :8<: �e = �P + a1C + a2C2�e =
P�P +
E�E +
EE�EE
P +
E +
EE = 1 (9)Now identify the
oeÆ
ients:
E = CA � a2AC == CA + ACBAB2 �AB + C2BAB2 �AB == CA � BA C2 �ACB2 �AB (10)
EE = ACB2 �AB + C2B2 �AB = C2 �ACB2 �AB (11)
P = 1�
E �
EE (12)Now, we want to adimensionalize the expressions and make the
oeÆ
ients
P ,
E and
EE fun
tions ofthe dimensionless quantities B=A and C=A whi
h are easily
omputed from the interpolation fa
tors fx,fy and fz. We divide the equation (11) with A2 and obtain:
EE = �CA�2 � CA�BA�2 � BA (13)
E = CA � BA
EE (14)
P = 1�
E �
EE (15)and for the east fa
e we easily identify: CA = fx(P) (16)BA = 1� CAfx(E) + 1 (17)We observe that by setting fx(P) and fx(E) to 0:5, we get the QUICK
oeÆ
ients for uniform
artesianmeshes:
E = 0:75,
EE = �0:125 and
P = 0:375.10.2 Adaptive under-relaxationThe general dis
retized equation for a
ontrol volume may be writtenap�p �Xn an�n = Su (18)
33

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Comparison between QUICK (top), Se
ond order upwind (mid) and HYBRID (bottom) s
heme.Steady temperature pro�le with u = 2 and v = 1. Boundary
onditions: T = 0 ex
ept for the �rst 12:5%of the x-axis. Note the ex
essive numeri
al di�usion of the HYBRID s
heme and the overshoots of theQUICK and Se
ond order upwind s
hemes. Mesh: 40x40.34

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Comparison between QUICK (top) and Se
ond order upwind (bottom) s
heme, both limitedwith the Van Leer limiter. The Se
ond order upwind s
heme with the Van Leer limiter is usually referredto as the Van leer s
heme. Due to the dis
ontinous nature of the limiter, these s
hemes su�er from
onvergen
e problems, and one
annot generally expe
t better
onvergen
e than about 0.5%.
35

where index n indi
ates neighboring nodes. Now, the S
arborough
riterion states that for a Gauss-Seidellike linear solver to
onverge the following expression must be satis�ed for all
ontrol volumes in the �eld:Pn janjjapj �
 (19)where
 is a
onstant depending on the iteration s
heme and the
oeÆ
ients. Loosely speaking, the moreimpli
it the iteration pro
ess is, the larger we may
hoose
. For our purpose, it is desired that thisinequality is ful�lled with
 � 1.This is generally not the
ase for a higher order
onve
tive dis
retization, and we therefore emply thefollowing adaptive under-relaxation with �po being the value of �p at the previous iteration.� =Xn janj � ap (20)and (ap + �) �p �Xn an�n = Su + ��po (21)We note that the s
arborough
riterion is ful�lled with ap repla
ed with ap + � if the right hand side is
onstant, that is if �po is never updated, and that when the solution has
onverged, �po = �p, whi
himplies that equation (18) is ful�lled, giving a
onsistent formulation. If �po is updated every iterationwe instead have to ful�ll the following
riterion:Pn janj+ �jap + �j �
 (22)If ap is positive, the adaptive under-relaxation pro
edure will guarantee that the above
riterion is ful�lledfor
 � 2 whi
h seems suÆ
ient for most iterations s
hemes applied with the SIMPLE algorithm. If thisis not the
ase, several sweeps with the solver have to be made before updating �po.10.3 The se
ond-order BDF time-dis
retization s
hemeA linear multistep time-dis
retization s
heme may be writtenh1 ���t = �1�1 + �2�2 + �3�3 (23)For the BDF s
heme of order 1 (Ba
kward Euler) �1 is 1 , �2 is �1 and �3 is 0. We will now derive the
oeÆ
ients for the se
ond order BDF s
heme:8>><>>: �2 = �1 � b1h1 � b2h21�3 = �1 � b1(h1 + h2)� b2 (h1 + h2)2h1 ���t ����1 = h1b1 (24)Now eliminating b2 by gaussian elimination we getb1 (h1 + h2)� b1h1 (h1 + h2)2h21 = ��3 +�1 + (�2 � �1) (h1 + h2)2h21 (25)b1 �h21 (h1 + h2)� h1 �h1 + h2)2�� = ��3h21 +�1h21 + (�2 � �1) (h1 + h2)2 (26)(27)
36

Φ

t

Φ1

Φ2

Φ3

h
1

h
2

Figure 5: Nomen
lature for se
ond order BDF time dis
retization s
heme.and identifying the
oeÆ
ients we get�1 = h31 � h1 (h1 + h2)2h21 (h1 + h2)� h1 (h1 + h2)2 == h2 + 2h1h2 + h1 (28)�2 = h1 (h1 + h2)2h21 (h1 + h2)� h1 (h1 + h2)2 == �h1 + h2h2 (29)�3 = ��1 � �2 (30)

37

Figure 6: Travelling pulse of length 18% of the x-axis starting at the origin at t = 0. Here shownat t = 0:25 after 10 timesteps. u = 2, v = 1. Mesh: 40x40: The QUICK s
heme is used for spa
edis
retization. Ba
kward Euler (top) and se
ond order BDF (bottom) time dis
retization results. Notethe smearing in the streamwise dire
tion due to the �rst order Ba
kward Euler s
heme, as well as theundershoot behind the pulse in the BDF plot. 38

Indexa
tion 7ad
onv 11apr
 14base 27Ba
kward Euler s
heme 12BDF s
heme 12, 31, 35bound 28boundary 17boundary type 7given pro�le 7multiblo
k 7out
ow pro�le 8symmetry 7wall 7bourd 17
al
p 30
al
p2 30
al
p3 30
base 25
hkbou 26
on
om 31
onin 30
onout 30
onset 30
onsou 31
orre
 30
ursor 20
weigh 29ddendt 19, 31dtfmin 14dtmin 14dvoldt 31extra 20fa
e 3negative 3positive 3fa
key 26fa
ret 21flowini 13fue 19fuh 19fun 19fve 19fvh 19fvn 19fwe 19fwh 19fwn 19Gauss-Seidel 33

g
ent 29getpp 27getref 27getres 27getwin 25ggeom 29ghost
ell 3ghost
ell bu�er 20gnowin 25hybrid s
heme 12i
he
k 13ifsiz 4imwin 4index 3dependent 3initfa 5, 26init 31initur 13iomax 4ioval 24it 4ja
obi 28jt 4key 26kt 4layer1 20layer2 20layer bu�er 20ma1 20ma2 20maxbl 4m
rit 13md
on 30mmesh 5, 19, 31msiz 4, 20mulfa
 30multimesh 16mvmesh 31ngrid 5nmmax 27nomove 19, 31pressure referen
e 11QUICK s
heme 12, 30, 32rdmesh 16refnod 11relax 30rfa
e 26sbound 27S
arborough
riterion 33
39

sendpp 27setbou 8setio 10setref 27setres 27setwin 6, 25sfa
e 25sind 21snowin 5, 25store 20tfa
e 22totout 30turini 13twodim 5u
oef 30up
oef 30up
onv 30urfmin 14use 13Van Leer s
heme 12wall fun
tions 29wallf 29whtodo 7window 4xtrapl 23xxtra 24zerres 27

40

