
Publ. Nr 93/3 CHALMERS TEKNISKA H�OGSKOLAInstitutionen f�or Termo- oh Fluiddynamik

GOTEBORG

C
H

A
L

M
E

RSTEKNISKAHO
G

SK
O

LA

CHALMERS UNIVERSITY OF TECHNOLOGYDepartment of Thermo- and Fluid Dynamis
A Multiblok-Moving Mesh Extensionto the CALC-BFC CodebyThomas Hellstr�om and Lars DavidsonThermo and Fluid DynamisChalmers University of Tehnology412 96 Gothenburg, Sweden

||||||G�oteborg, Januari 1993
1

Contents1 Introdution 3I User's guide 32 De�nitions 32.1 General . 32.1.1 Computational domain . 32.1.2 Boundary treatment . 42.1.3 Moving mesh . 42.2 Bloks and faes . 42.2.1 indexing of bloks and numbering of faes . 42.2.2 indexing of faes . 42.2.3 Speifying a window . 53 Speifying the omputational domain 53.1 Compile-time parameters . 53.2 Running time initial settings . 53.2.1 overview . 53.2.2 The subroutine `initfa' . 63.2.3 The subroutine `snowin' . 63.2.4 The subroutine `setwin' . 63.2.5 Ation.f - The boundary type library . 73.2.6 The user spei�ed routines `setbou' and `setio' . 93.2.7 Correting the outow onvetion . 123.2.8 Speifying the pressure referene node . 123.2.9 Optimizing for two-dimensional alulations . 123.2.10 Speifying the number of ghost ell layers used . 133.2.11 Speifying the time disretization sheme. 133.2.12 Initializing the ow�eld . 133.2.13 Initializing the turbulent quantities . 133.2.14 Seleting the bloks to use . 143.2.15 Setting onvergene riterion . 143.2.16 Debugging blok onnetivity . 143.2.17 Speifying onstants for Rhie & Chow interpolation 144 Examples 144.1 Speifying setup data with subroutine alls . 144.2 Reading setup data from data �les . 165 Moving mesh spei�ation 19II Tehnial desription 206 Brief multiblok subroutine desription 206.1 Seleting a blok . 206.2 Data types . 206.3 The routine `store' - store variable layer . 216.4 The routine `sind' - store index layer . 216.5 The routine `faret' - Transfer ghost ell bu�er bak to blok 22
2

6.6 The ghost ell value extrapolation routines . 226.6.1 The routine `tfae' - Build ghost ell values from a remote fae layer bu�er 226.6.2 The routine `xtrapl' - Transfer values from a layer bu�er to a ghost ell bu�er . . . 246.6.3 The routine `setval' . 246.6.4 The routine `ioval' . 246.6.5 The routine `xxtra' . 256.7 The window information database `winbas.f' . 256.8 The layer bu�er data base - `base.f' . 266.9 The general ghost ell building routines . 287 The geometry of the ghost ells 287.1 Required geometrial quantities . 287.1.1 Treatment at multiblok boundaries . 297.1.2 Treatment at domain boundaries . 298 Modi�ations to standard routines 308.1 The routine `wallf' - Set wall funtions . 308.2 The routine `mdon' - ompute onv at domain boundaries 308.3 The global onvetion orretion routines `onset' and `uponv' 308.4 `Upoef' - Zero domain boundary oeÆients . 318.5 `Uoef' - Zero outow oeÆients . 318.6 Splitting of the routine `alp' . 318.7 Modi�ations to `Coe�' . 318.8 Modi�ations to `Update' . 319 Moving mesh routines 3110 Theoretial explanation of some implementations 3210.1 The QUICK sheme . 3210.2 Adaptive under-relaxation . 3310.3 The seond-order BDF time-disretization sheme . 361 IntrodutionThis report presents an extension to the CALC-BFC ode whih makes it possible to divide the ompu-tational domain into several bloks and to make use of meshes that moves in time. It is assumed thatthe reader is already familiar with the CALC-BFC ode.Part IUser's guide2 De�nitions2.1 General2.1.1 Computational domainIn the present ode the alulation domain is divided into bloks, and eah blok has six faes. Eah faeis in turn divided into windows. The maximum number of bloks in the omputational domain, as well asthe maximum number of windows on a fae may be spei�ed in the �le `ommon.for'. For eah window,
3

a boundary type may be spei�ed. In partiular it is possible to math a window of a fae to any otherwindow spei�ed, as long as the mesh at the two windows' loation oinides.2.1.2 Boundary treatmentEah blok is automatially supplied with two layers of ghost ells. The values of these ghost ellsare omputed so that, by use of linear interpolation, the value at the blok boundary oinides withthe desired one. At a multiblok boundary, the values of a ghost ell is simply set to the value of theorresponding ell in the neighboring blok.2.1.3 Moving meshIf a solution to a time-dependent problem is to be omputed, it is possible to speify the urrent veloityof eah ell fae, and the urrent loation of eah grid point, and in this way ompute a solution on amoving mesh. This faility is not suitable for Lagrangian omputations, but should be seen as an aidto adapt the mesh to a omputational domain, the dimensions of whih hange in time, for example aylinder with a moving piston.2.2 Bloks and faes2.2.1 indexing of bloks and numbering of faesThe ells in eah blok is numbered, as in standard CALC using the indies i,j and k, and the faes arede�ned as follows:� East fae, orresponding to the highest i index, fae number 1.� North fae, orresponding to the highest j index, fae number 2.� West fae, orresponding to the lowest i index, fae number 3.� South fae, orresponding to the lowest j index, fae number 4.� High fae, orresponding to the highest k index, fae number 5.� Low fae, orresponding to the lowest k index, fae number 6.The faes `West', `South' and `Low' are negative faes and the other faes are positive.For the negative faes, the outer ghost ell has dependent index 0, and the �rst ell in the omputationaldomain has dependent index 2. For the west fae, for example, the outer ghost ell has i index 0, andthus the dependent index is the i index.2.2.2 indexing of faesSine the faes are two-dimensional, we need only two indies to speify a window. These indies arealled the m and n indies and an be obtained by omitting the dependent index, whih is onstant ona fae in the following way:� For fae number one, or the east fae, the m index is index j and the n index is index k.� For fae number two, or the north fae, the m index is index i and the n index is index k.� For fae number three, or the west fae, the m index is index j and the n index is index k.� For fae number four, or the south fae, the m index is index i and the n index is index k.� For fae number �ve, or the high fae, the m index is index i and the n index is index j.
4

� For fae number six, or the low fae, the m index is index i and the n index is index j.One simple way to remember this rule is to determine whih two indies are independent for the partiularfae and order them in alphabeti order. For the high fae, for example, the dependent index is index k,and the independent indies are i and j, ordered alphabetially. Thus the m index orresponds to indexi and the n index to index j.2.2.3 Speifying a windowA window is always retangular and is spei�ed by the lower left and upper right orners in the m,noordinate system. If we, for example want to speify a window on the east fae, ranging from k = 2to k = 6 and from j = 5 to j = 10, we �rst have to order the indies in alphabeti order to obtain them;n oordinate system. Following the above rule we see that index m equals index j and index n equalsindex k. The lower left orner in the m;n system thus beomes (5; 2) and the upper right orner (10; 6).3 Speifying the omputational domain3.1 Compile-time parametersFirst of all, the �le `ommon.for' has to be adjusted to be able to ope with the amount of data beingspei�ed. The parameters that need to be spei�ed are� it = Max number of ells in i diretion + 4.� jt = Max number of ells in j diretion + 4.� kt = Max number of ells in k diretion + 4.� msiz = Number of ells in the longest blok fae = max it; jt; kt.� maxbl = Max number of bloks.� ifsiz = Total number of ghost ells / 2. The program stops and warns if this parameter is toosmall.� iomax = Total number of ells in the whole domain inluding ghost ells. The program stops andwarns if this parameter is too small.� imwin = Max number of windows on a blok fae.3.2 Running time initial settings3.2.1 overviewWhen this is done, the subroutine `setup' should do the following:� Set the variable ngrid to the number of bloks used.� The logial variable twodim should be set to it's appropriate value, see below.� The logial variable mmesh should be set to the appropriate value, see setion 5.� Before the mesh is read in for eah blok, the subroutine `initfa' should be alled with the dimensionsof the blok. The subroutine `key' will then be able to address the new blok. It is the routine`initfa' that gives the warnings if the parameters ifsiz and iomax are too small.� Read the mesh.
5

� Speify the blok onnetivity and the boundary onditions using the subroutines `snowin' and`setwin'.� Do the usual setup.It is possible to add a blok using `initfa' and to rede�ne the blok onnetivity and the boundaryonditions using `snowin' and `setwin' when the omputations have already started. It is, however, notpossible to remove a blok at running time.3.2.2 The subroutine `initfa'The subroutine `initfa' is loated in �le `base.f' and has the following delaration:subroutine initfa(blok,imax,jmax,kmax)Here blok is the number of the urrent blok, and imax; jmax and kmax are the number of grid vertiesin eah diretion +1. All parameters are integers.3.2.3 The subroutine `snowin'The subroutine `snowin' is loated in fae `winbas.f' and it has the following delaration':subroutine snowin(blok,side,nowin)It must be alled for eah fae in eah blok, and upon all the parameters should ontain:� blok The number of the urrent blok.� side The number of the urrent fae aording to the above de�nitions.� nowin The number of windows on this fae.All parameters are integers.3.2.4 The subroutine `setwin'The subroutine `setwin' spei�es the dimension of and the boundary types for a window and must bealled for eah window on eah blok. The routine an also be used during the omputation to, forexample, hange a boundary type for a window, simulating, for example, the losing of a valve.The delaration of the routine is the following:subroutine setwin(blok,side,window,wmst,wnst,wmend,wnend,. wbtyp,wbmst,wbnst,wmdir,wndir,wblok,wside,wshift)and upon all, the parameters should ontain the following:� blok The number of the urrent blok.� side The number of the urrent fae aording to the above de�nitions.� window The number of the urrent window.� wmst The lower left m oordinate of the window.� wnst The lower left n oordinate of the window.� wmend the upper right m oordinate of the window.� wnend the upper right n oordinate of the window.6

� wbtyp the boundary type for the window taken from the boundary library 'ation.f'. wbtyp = 1orresponds to a multiblok boundary, wbtyp = 2 to a wall et. See below.� wbmst If the boundary type for the window is not a multiblok boundary this parameter shouldbe set to 1. Otherwise it should be set to the lower left m oordinate for the mathing multiblokboundary window in that window's oordinate system.� wbnst If the boundary type for the window is not a multiblok boundary this parameter shouldbe set to 1. Otherwise it should be set to the lower left n oordinate for the mathing multiblokboundary window in that window's oordinate system.� wmdir If the boundary type for the window is not a multiblok boundary this parameter should beset to 1. Otherwise if the multiblok windows are aligned in opposite m diretions, the parametershould be set to -1. If the mathing windows are aligned in the same m diretions, it should be setto 1.� wndir If the boundary type for the window is not a multiblok boundary this parameter should beset to 1. Otherwise if the multiblok windows are aligned in opposite n diretions, the parametershould be set to -1. If the mathing windows are aligned in the same n diretions, it should be setto 1.� wblok The number of the blok of the mathing window. Should be set to 1 if the boundary typeis not multiblok.� wside The number of the fae of the mathing window. Should be set to 1 if the boundary type isnot multiblok.� wshift If the mathing windows are aligned, so that the m diretion of a window orresponds tothe n diretion of the mathing window, this variable should be set to .true. otherwise .false. The.true. option is probably extremely seldom used and is inluded only for generality. If wshift isset to :true:, we have to rede�ne the meaning of wmdir and wndir. The variable wmdir should beset to �1 if the m index on the loal window is aligned in the opposite diretion of the n index ofthe remote window. If the m index on the loal window is aligned in the same diretion as the nindex on the remote window, wmdir should be set to 1. In the same manner, the variable wndirshould be set to �1 if the n index on the loal window is aligned in the opposite diretion of them index on the remote window and to 1 if the n index on the loal window is aligned in the samediretion as the m index on the remote window. The letters m and n in the variable names wmdirand wndir are thus always referring to the indies of the loal window, regardless of the value ofwshift:3.2.5 Ation.f - The boundary type libraryA boundary type onsists of a set of ations to be taken for di�erent variables at the boundary. Theations implemented are:� 1 - Homogenous Dirihlet.� 2 - Dirihlet. The value at the boundary is spei�ed in the user supplied routine `setbou'.� 3 - Homogenous Neumann.� 4 - �2�=�n2 = 0 Used for the pressure at, for example, walls.� 5 - Multiblok.
7

� 6 - Inow/Outow dependent ation. For inow, the ation 2 is imposed, and the boundary valueis spei�ed in user supplied subroutine `setbou'. For outow, a homogenous Neumann ation (3)is imposed. The user supplied routine setio determines whih ell faes are inow faes and whihell faes are outow faes.It is important to be aware of the di�erene between an `ation' and a `boundary type'. A boundary typeis built up by speifying whih ations should be taken for di�erent variables. This is done by settingdi�erent �elds in the two-dimensional array whtodo. Some standard boundary types are already suppliedin `ation.f' These are:� 1 - General multiblok boundary, ation 5 is imposed for all variables.� 2 - Wall boundary. Ation 3 is imposed for ap, ation 1 is imposed for u,v and w, ation 4 is imposedfor p, ation 4 is imposed for pp (sometimes ation 3 gives faster onvergene than ation 4, Beware,however that this may not be a onsistent boundary ondition), �nally ation 1 is imposed for kand ".� 3 - Symmetry in yz - plane (x onstant). Ation 3 is imposed for all variables but u, for whih ahomogenous Dirihlet ation (1) is imposed.� 4 - Symmetry in xz - plane (y onstant). Ation 3 is imposed for all variables but v, for whih ahomogenous Dirihlet ation (1) is imposed).� 5 - Symmetry in xy-plane (z onstant). Ation 3 is imposed for all variables but w, for whih ahomogenous Dirihlet ation (1) is imposed.� 6 - Given pro�le boundary. Ation 3 is taken for ap, (whih in fat always should be done exept formultiblok boundaries). Ation 2 is imposed for u, v and w, and the veloity pro�le is thus givenby the user supplied subroutine `setbou'. Ation 4 is imposed for p, ation 3 is imposed for pp, andation 6 is imposed for k and ". The reason ation 6 is imposed for the two last variables is, thatthis boundary type an be used for both given inow and given outow pro�les, and a homogenousNeumann ondition should be imposed on k and " at outow boundaries. To be able to use thisondition, the user must supply the routines `setbou' and `setio'. The purpose of these routines aredesribed below. In fat, in the momentum equation, upwinding is used at the outow boundary,so that the outow boundary ondition in the momentum equations is �u=�n= 0. This does nota�et the auray of the solution.� 7 - Outow pro�le boundary. When this boundary type is spei�ed, the ondition �u=�n= 0.is imposed for the momentum equations at outow windows (ation 6). This means, that theonvetion at the outow window will be adjusted aordingly and a veloity pro�le will be builtat the boundary. For inow windows, the routine `setbou' will be alled to determine the veloitypro�le. As usual the routine `setio' will determine whih ell faes are outow and whih areinow. When the outow window is small ompared to the omputational domain, the solutionwill onverge very slowly, beause of the fat that the alulated outow onvetion may not havethe same value as the inow onvetion. To avoid this, the variable adonv may be set to :true:(see below).Now, to speify a boundary type for a window, the user only sets the parameter wbtyp in the all to`setwin' to the desired boundary type. If a window orresponds to a wall boundary, for example, wbtypshould be set to two.It is straightforward to implement new boundary types given the ations de�ned above. The implemen-tation of some of the standard boundary types looks like this:subroutine ation
8

inlude 'ommon.for' 1 - Multiblokwhtodo(1,0)=5whtodo(1,u)=5whtodo(1,v)=5whtodo(1,w)=5whtodo(1,p)=5whtodo(1,pp)=5whtodo(1,te)=5whtodo(1,ed)=5 2 - Wallwhtodo(2,0)=3whtodo(2,u)=1whtodo(2,v)=1whtodo(2,w)=1whtodo(2,p)=4whtodo(2,pp)=3whtodo(2,te)=1whtodo(2,ed)=1Note that the value 0 is used for ap, and that, the ation for ap must be homogenous Neumann (3) exeptin the multiblok boundary type. This is beause this ation is also used when, for example, the volumesof the ghost ells are omputed, whih is done by linear extrapolation.3.2.6 The user spei�ed routines `setbou' and `setio'The purpose of the routine `setbou' is to speify values for ertain quantities at the boundaries, forexample a veloity pro�le or a pressure distribution. It's delaration is as follows:subroutine setbou(blok,iside,iwin,nmst,nnst,nmend,nnend,variab,. inner,res)inlude 'ommon.for'integer variab,blokreal res(0:msiz,0:msiz),inner(0:msiz,0:msiz)The routine is alled from the program with the following parameters spei�ed:� blok The number of the blok for whih the value at the boundary is to be spei�ed.� iside The fae for whih the value at the boundary is to be spei�ed.� iwin The window for whih the value at the boundary is to be spei�ed.� nmst The lower left m oordinate for that window.� nnst The lower left n oordinate for that window.
9

� nmend The upper right m oordinate for that window.� nnend The upper right n oordinate for that window.� variab The variable for whih the boundary value is to be spei�ed.� inner An array (m,n) ontaining the values of the variable in the ell layer just inside the boundary.The values at the boundary for the partiular variable should be plaed in res(m;n) with (m,n), as beforebeing the loal oordinate system for the window.Let's take a onrete example: We have spei�ed a domain onsisting of two bloks. On the west faeof blok 1 we have spei�ed an inow window (boundary type 6), for whih we want the veloity to be(1,0,0). The turbulent quantities k and " are set to zero on the inow boundary. On the east fae ofblok 2 we have spei�ed an outow window (boundary type 6) for whih we want the veloities to be 1:1times the veloity in the ell layer in the omputational domain just inside the window. The turbulentquantities automatially gets a homogenous Neumann ondition on the outow boundary. There are noother windows in the domain that would give rise to a all to `setbou'. The routine may then be writtenin the following way:subroutine setbou(blok,iside,iwin,nmst,nnst,nmend,nnend,variab,. inner,res)inlude 'ommon.for'integer variab,blokreal res(0:msiz,0:msiz),inner(0:msiz,0:msiz)if (variab .eq. u) thendo mi=nmst+1,nmenddo ni=nnst+1,nnendif (blok .eq. 1) thenres(mi,ni)=1.elseres(mi,ni)=1.1*inner(mi,ni)end ifend doend doelse if (variab .eq. v .or. variab .eq. w) thendo mi=nmst+1,nmenddo ni=nnst+1,nnendif (blok .eq. 1) thenres(mi,ni)=0.elseres(mi,ni)=1.1*inner(mi,ni)end ifend doend doelse if (variab .eq. te .or. variab .eq. ed) thendo mi=nmst+1,nmenddo ni=nnst+1,nnend 10

res(mi,ni)=0.end doend doend ifreturnendSine `setbou' will never be alled for other bloks than 1 and 2 or for other variables than u,v,w,k and" in this partiular ase, we need not speify what happens with the other variables. Note that we neveruse the values of iside and iwin.The subroutine setio is used to speify whih ell faes are inow and whih are outow. This is so thatthe internal routines will know when to apply a homogenous Neumann and when to apply a Dirihletboundary ondition when ation 6 has been spei�ed for a variable. Sine we have hosen standardboundary type 6 for our variables at the inow and outow windows, ation 6 is automatially imposedfor k and � (See �le `ation.f' !) We therefore need to speify the subroutine `setio'. We assume thatthere is no inow at all on our outow window on the west fae of blok 2. By now speifying inow onour inow fae and outow on our outow fae, the routine `setbou' will be alled for the inow fae,setting k and " to zero, and by speifying outow on the outow fae, a homogenous Neumann onditionis applied.The subroutine `setio' should have the following delaration:subroutine setio(blok,iside,iwin,nmst,nnst,nmend,nnend,. res)inlude 'ommon.for'integer res(0:msiz,0:msiz)integer blok,iside,iwin,nmst,nnst,nmend,nnendThe meaning of the parameters are the same as for the routine `setbou' with the exeption that variaband inner is left out. Upon return, the routine `setio' should speify 1 for an outow ell fae and -1 foran inow ell fae in the array res(m;n). In our ase it would be something like this:subroutine setio(blok,iside,iwin,nmst,nnst,nmend,nnend,. res)inlude 'ommon.for'integer res(0:msiz,0:msiz)integer blok,iside,iwin,nmst,nnst,nmend,nnenddo mi=nmst+1,nmenddo ni=nnst+1,nnendif (blok .eq. 1) then Inflow ell faesres(mi,ni)=-1else Outflow ell faesres(mi,ni)=1end ifend do 11

end doreturnendAgain, `setio' will not be alled for other windows than our inow and outow windows.3.2.7 Correting the outow onvetionIf boundary types 6 or 7 are used for an outow window the total outow onvetion may be di�erentfrom the total inow onvetion. This will lead to a global ontinuity error and slow onvergene. If thevariable adonv is set to :true: the program will multiply the outow pro�les with a fator C, determinedfrom C = Pinow faes��~U � ~nAPoutow faes ����~U � ~nA��� (1)3.2.8 Speifying the pressure referene nodeEven if there is a Dirihlet boundary ondition for the pressure, one usually has to speify a node in ablok for whih the pressure is zero. This is done in the same way as in standard CALC, but one also hasto speify a blok in whih the zero-pressure node is loated. If there is a homogenous Dirihlet boundaryondition for the pressure somewhere in the omputational domain, The pressure referene node shouldbe loated in the node layer next to this boundary. Let's assume that we want the pressure to be zero innode (2,3,4) in blok 5. This is done the following way:ipref=2jpref=3kpref=4all setref(5)refnod=.true.If we do have a Dirihlet ondition for the pressure somewhere on a boundary, and we do not want tohave a pressure referene node, refnod should be set to zero. :false:3.2.9 Optimizing for two-dimensional alulationsIf we want to perform a two-dimensional alulation it is possible to greatly redue the amount of memoryneeded and also the omputational time by setting the ag twodim to :true: before the �rst all to `initfa'.This an however only be done if the omputational domain is spei�ed in the x-y plane and in the i-jplane. The e�ets of setting twodim to .true. are the following:� The funtion `dphidz' always returns zero.� The number of ghost ell layers is redued from two to one on the high an low faes.� The TDMA oeÆients ah and al are never omputed, but are always set to zero.For the high and low faes (5 and 6) the boundary type 5 (x-y symmetry) must be spei�ed if twodim isset to :true:For all other alulations, twodim should be set to :false:
12

3.2.10 Speifying the number of ghost ell layers usedSome disretization shemes, like QUICK use both ghost ell layers. Other shemes like the hybridsheme, however, need only use one layer. It is possible to save some omputational time if shemes thatonly use one ghost ell layer are used by setting the values in the variable numlay(1 : 6) to 1. The sixelements in the array represent the six di�erent faes, but for all pratial ases all elements should beset to the same value. If a sheme that uses both ghost ell layers is used, the elements in numlay mustbe set to two. Thus, for QUICK, Van Leer, et., inlude the followingdo i=1,6numlay(i)=2end doFor the hybrid sheme and other shemes only using the nearest neighbor, inlude the following instead:do i=1,6numlay(i)=1end doIt should be mentioned, that with a modest number of bloks, the CPU-time saved by setting numlayto 1 is negligible. The safest thing to do is to always have numlay set to 2.3.2.11 Speifying the time disretization sheme.The time disretization shemes available are the Bakward Euler sheme (�rst order) and a seond orderBDF sheme. The �rst timestep is always taken with the Bakward Euler sheme. Both shemes havethe same stability properties as the ontinous problem. The seond order BDF sheme may, however,ause salar quantities to beome negative and should therefore be used with are when applied to, forexample, the turbulent quantities. The sheme is spei�ed in the one-dimensional array tshem. If we, forexample, want to use the seond order BDF sheme for the veloities and the Bakward Euler sheme forthe turbulent quantities, we use the following assignments (2 for seond order BDF and 1 for BakwardEuler): tshem(u)=2tshem(v)=2tshem(w)=2tshem(te)=1tshem(ed)=13.2.12 Initializing the ow�eldThis is done in the user-spei�ed routine `owini'. A default routine omes with the ode. The valuesspei�ed here will also be the initial values for a transient omputation.3.2.13 Initializing the turbulent quantitiesIf the ag initur is set to :true: in the routine `setup', a all will be made to the built in routine `turini'after the ow�eld has been spei�ed. This routine will provide guessed values for the turbulent quantities.
13

3.2.14 Seleting the bloks to useIn some alulations, it may not be nesseary to use all the bloks all the time, for example in transientalulations where one wishes to disonnet some part of the domain at ertain timesteps. To make thispossible there is a boolean array alled use in whih one spei�es whih bloks to use and whih not touse. Let's assume we want to use blok 1 and 3 but not blok 2. This would be done as follows:use(1)=.true.use(2)=.false.use(3)=.true.The default is to set the whole vetor to :true:3.2.15 Setting onvergene riterionAs in standard CALC the residual referene value is set in the vetor reref . Sometimes, however, theresidual of a spei� variable is signi�antly larger than the residuals of the other variables, withouta�eting the mean ow�eld. This is, for example sometimes the ase for ". It is possible to selet whihresiduals are signi�ant by setting the orresponding �eld in the logial vetor mrit to :true:, whih isthe default. If, for example, " is to be left out, the following line should be inluded in the routine `setup':mrit(ed)=.false.3.2.16 Debugging blok onnetivityThe routine `on' performs a printout of the mass ux through all the faes of all the bloks. If the blokonnetivity is set up orretly, the outow through a multiblok boundary should be exatly the sameas the inow through the orresponding boundary in the neighboring blok (down to mahine preision)if, of ourse, the gridpoints in the di�erent bloks at the multiblok boundary are perfetly aligned. Theroutine is alled automatially at iteration number ihek, where the value of ihek should be spei�edin the routine `setup'.3.2.17 Speifying onstants for Rhie & Chow interpolationThe Rhie & Chow interpolation uses ap as a weighting onstant for the pressure gradients in the om-putation of the mass ux at the ell faes. This gives, however, di�erent solutions if one uses di�erenttimesteps and, in partiular, a result from a steady alulation will hange if set as initial data in atransient omputation. This is beause ap hanges with the length of the time step. To remedy thisproblem, a new variable, apr, is used as the weighting value instead of ap. The value of apr is, likeap omputed in the routine `assemb', but instead of using the standard values of the timestep, dt, theunder-relaxation fator urf and the false timestep dtfals, the value of apr is omputed with the userde�ned values dtmin, urfmin and dtfmin. These values should typially be set to the minimum valuesof the quantities dt, urf and dtfals respetively. This is done as default in the �le `setup.f'. However,should the user deide to hange one or more of these values it is possible to do so. Remember, however,that a too large di�erene between for example dtmin and dt will ause the iteration proess in thepressure orretion equation to be unstable.4 Examples4.1 Speifying setup data with subroutine allsIn the �rst example the ow domain onsists of two ubi bloks as seen in �gure 1. The domain islimited by rigid walls exept for an inow window on the high fae (5) on blok 1 and an outow window14

Block 1

Block 2

Window
1

Window
2

Window
3

Window
4

Window
1

Window
2

Window
3

Window
4

Inflow

Outflow

5 17
1 13 17

13

1

17

5

17

1
1 Figure 1:on the high fae (5) on blok 2. Sine a window has to be retangular, the high faes on the bloks ishere divided into four windows. (It is possible to use only three). The inow and outow veloity pro�lesare �xed to u = 0,v = 0, and w = �1 for inow and w = 1 for outow: The onnetivity and boundarydata would then be spei�ed as follows: 17 grid points in eah diretion for blok 1all initfa(1,18,18,18) For blok 1, fae 1 we have a multiblok window interfaing with fae 3 on blok 2. For both bloks, the m index is index j and the n index is index k. Thus wshift in all to setwin should be set to :false: Inreasing index m on blok 1 will also inrease index m on blok 2 (on the interfaing faes. Thus wmdir and wndir should be set to 1.all snowin(1,1,1)all setwin(1,1,1,1,1,17,17,1,1,1,1,1,2,3,.false.) 1 window on fae 2-4. It is a wall. Lower left orner is (1,1). Upper right orner is (17,17)do i=2,4all snowin(1,i,1)all setwin(1,i,1,1,1,17,17,2,1,1,1,1,1,1,.false.)end do For fae 5 we have 4 windowsall snowin(1,5,4) Window 1 is inflow, thus boundary type 6. it ranges from (1,1) to (5,5)all setwin(1,5,1,1,1,5,5,6,1,1,1,1,1,1,.false.)15

all setwin(1,5,2,1,5,5,17,2,1,1,1,1,1,1,.false.)all setwin(1,5,3,5,5,17,17,2,1,1,1,1,1,1,.false.)all setwin(1,5,4,5,1,17,5,2,1,1,1,1,1,1,.false.)all snowin(1,6,1)all setwin(1,6,1,1,1,17,17,2,1,1,1,1,1,1,.false.) 17 grid points in eah diretion for blok 2!all initfa(2,18,18,18) Faes 1,2 are walls.do i=1,2all snowin(2,i,1)all setwin(2,i,1,1,1,17,17,2,1,1,1,1,1,1,.false.)end do Fae 3 interfaes with fae 1, blok3. Beause of symmetry, wshift,wmdir and wndir must be set to :false:,1 and 1 respetively.all snowin(2,3,1)all setwin(2,3,1,1,1,17,17,1,1,1,1,1,1,1,.false.)all snowin(2,4,1)all setwin(2,4,1,1,1,17,17,2,1,1,1,1,1,1,.false.)all snowin(2,5,4)all setwin(2,5,1,1,1,13,13,2,1,1,1,1,1,1,.false.)all setwin(2,5,2,1,13,13,17,2,1,1,1,1,1,1,.false.) Window 3 is outflow, thus boundary type 6. it ranges from (13,13) to (17,17)all setwin(2,5,3,13,13,17,17,6,1,1,1,1,1,1,.false.)all setwin(2,5,4,13,1,17,13,2,1,1,1,1,1,1,.false.)all snowin(2,6,1)all setwin(2,6,1,1,1,17,17,2,1,1,1,1,1,1,.false.)4.2 Reading setup data from data �lesInstead of speifying the omputational domain and the blok onnetivity by alls to subroutines, it ispossible to speify the data in two data�les, one ontaining the grid layout and one ontaining the blokonnetivity and the boundary spei�ations. The mesh is read in from the �le \multimesh" by a allto the routine `rdmesh', whih has no parameters. The �le \multimesh" should have one of two formats:For two-dimensional alulations the following format should be used: (Text inside fg's indiates that
16

it should be replaed by a number. Don't inlude the fg's in the �le. Text inside <>'s indiates thatdesription follows.)fnumber of bloksg T<Blok1><Blok2><Blok3>...where a <blok> should be replaed withfnim1gfnjm1gfx(1,1)gfy(1,1)gfx(2,1)gfy(2,1)gfx(3,1)gfy(3,1)gfx(4,1)gfy(4,1)g...fx(1,2)gfy(1,2)gfx(2,2)gfy(2,2)g...The other format is for three-dimensional alulations and readsfNumber of bloksg F<blok1><blok2><blok3><blok4>...and a <blok> is now spei�ed byfnim1gfnjm1gfnkm1gfx(1,1,1)gfy(1,1,1)gfz(1,1,1)gfx(2,1,1)gfy(2,1,1)gfz(2,1,1)gfx(3,1,1)gfy(3,1,1)gfz(3,1,1)g...fx(1,2,1)gfy(1,2,1)gfz(1,2,1)gfx(2,2,1)gfy(2,2,1)gfz(2,2,1)g...fx(1,1,2)gfy(1,1,2)gfz(1,1,2)g...Note that what auses the routine `rdmesh' to selet between the two formats is the letter behind thespei�ation of the number of bloks. A `T' will selet the two-dimensional format and a `F' will seletthe three-dimensional. This letter is also read into the logial ag `twodim', so that the memory usagewill be optimized for the alulation spei�ed.The blok onnetivity is read from the �le \boundary" when a all to the routine `bourd' is made. Thismust be done after a all to `rdmesh'.The �le \boundary" should have the following format:<blok1><blok2> 17

<blok3>...where now a <blok> has the following format:<fae1><fae2><fae3><fae4><fae5><fae6>A <fae> is spei�ed as follows:fnumber of windowsg <window1><window2><window3>...and, �nally, a <window> is spei�ed as followsfwmstgfwnstgfwmendgfwnendgfwbtypg<<fwbmstgfwbnstgfwmdirgfwndirgfwblokgfwsidegfwshiftg>>where the names have exatly the same meaning as the parameters to the routine `setwin'. Text inside<<>>'s indiates that this information should only be inluded if wbtyp = 1 that is, if the window is amultiblok window. The information inside the <<>>'s must be exluded otherwise.One may insert blank lines in the �les, but no omments.As an example we present a \boundary" �le for the owase spei�ed above. Here we inlude ommentspreeded with a perent sign only for readability.%Blok 1, fae 1 one window1%window 11 1 17 17 11 1 1 1 2 3 F%Fae 2 - 4, one window eah. boundary type is wall, therefore%multiblok information is exluded11 1 17 17 211 1 17 17 211 1 17 17 2 18

%Fae 5, four windows. No multiblok window information41 1 5 5 61 5 5 17 25 5 17 17 25 1 17 5 2%Blok 2, Fae 1 to 2 are walls, 1 window eah11 1 17 17 211 1 17 17 2%Fae 3, one multiblok window11 1 17 17 11 1 1 1 1 1 F%Fae 4, wall, one window11 1 17 17 2%Fae 5, four windows41 1 13 13 21 13 13 17 213 13 17 17 61 17 13 2 1%Fae 6, one window; wall.11 1 17 17 25 Moving mesh spei�ationAt the beginning of eah timestep, the routine `main' heks if the global ag mmesh is set to true. If itis, the user - spei�ed routine `mvmesh' is alled. The routine has the following delaration:subroutine mvmesh(blok,time)The parameters blok and time are in - parameters and from these parameters, the routine should speify� The grid vertex oordinates x,y and z if they di�er from the startup setting in `setup'.� The ontrol volume fae veloities in the global arrays fue, fve, fwe, fun, fvn, fwn, fuh, fvhand fwh. The seond letter in the variable names indiates the veloity omponent and the thirdletter the fae diretion.� The global hange rate of density, ��=�t, stored in the salar variable ddendt.19

The routine may also do other things, suh as hange in onnetivity, boundary onditions et.If the ag mmesh instead is set to :false:, the routine `main' will all the built - in routine nomove whihsets the ontrol volume fae veloities and the hange rate of density to zero.Part IITehnial desription6 Brief multiblok subroutine desription6.1 Seleting a blokTo save storage spae, all data is stored in one-dimensional arrays. Sine a blok is a three-dimensionalstruture, a mapping routine alled `key' is provided. Imagine that you would like to address the veloityin node i; j; k in blok p. This would then be done in the following way:all key(p,lst,ist,dummy,dummy,dummy)ursor = lst(k)+ist(i)+jphi(ursor,u)= ...An index-variable to the one-dimensional arrays holding the values is in the following alled a `ursor'.Note that there are three dummy variables to `key' that are not urrently used. The details of the routinewill be desribed later.6.2 Data typesBefore we enter the dark world of multiblok boundary routines, we have to disuss some data-types.One is the layer bu�er whih is a two-dimensional quadrati array of size msiz spei�ed in the �le`ommon.for', and is used to temporarily hold values of a layer of ells in the omputational domain, ora layer of ursors pointing to suh a ell layer. Sine Fortran does not reognize an integer or a oatingpoint value unless expliitly told to do so, we may se these bu�ers as possible ontainers of either integers(ursors) or oating point values. There are �ve suh bu�ers delared in `ommon.for': layer1, layer2,extra, ma1, ma2. The bu�ers ma1 and ma2 are primarily used for ursors and the others for oatingpoint values (Boundary information).Another important data type is the ghost ell bu�er whih is a three dimensional array of size msiz xmsiz x 2. The ghost ell bu�er is ment only for oating point values and is used to build up the ghostell layers in before they are transferred bak to the atual blok for whih they were built up. There isonly one ghost ell bu�er delared in `ommon.for' and it is alled fae.Finally we shall desribe the boundary data base, whih an be seen as an array(1:6,1:2,0:nphit) of layerbu�ers. That is one layer bu�er for eah fae, eah of the two layers near a boundary, and eah of thevariables, inluding one extra variable loation for ap, whih is number 0. However, this would demand anexessive use of storage spae, and therefore the program keeps trak of how muh storage spae eah faeon eah blok requires. The atual delaration of the base type is the following (loated in �le `base.f')ommon /fbase/ base(1:ifsiz,2,0:nphit)and the parameter ifsiz should be adjusted so that there is room to store all faes in the omputationaldomain. More about this later. What is important to know is that it is possible to store and retrieve alayer bu�er in the boundary data base by speifying� The layer bu�er,� Whih blok it belongs to, 20

� Whih fae it represents,� Whih layer it is ontaining (1 or 2) and �nally� Whih variable it is ontaining (0..) where 0 is ment for ap.All routines for managing the boundary data base is loated in the �le `base.f'.It should be mentioned here, that it is not really nesseary to have a boundary data base, sine there isno need to temporarily store ertain ell layers; they may be olleted diretly from the omputational�eld. However, in a typial three-dimensional appliation, the extra CPU time overhead for managingsuh a data base is very small (about 1%) and it is primarily designed to simplify the extension of theode to a multi-workstation system where one workstation holds the boundary data base, and the othersare solving one blok eah.6.3 The routine `store' - store variable layerThe subroutine `store' stores the ontents of the desired ell layer into a layer bu�er. It's delaration isthe following:subroutine store(side,variab,urmat,layer,imax,jmax,lmax,any,ifany)Upon all, the following onditions should be met:� The routine `key' should have been alled to speify the urrent blok.� The parameter side should ontain the fae for whih the variables should be stored(1-6).� The parameter `variab' should ontain the number of the variable to be stored, and 0 if a speialquantity should be stored (for example ap, onvh or whatever desired).� The parameter urmat is the name of the layer bu�er.� The parameter layer is the number of the layer (1 is losest to the fae and 2 is the next one in theomputational domain. It is in fat possible to store a ghost ell layer by speifying 0 for the innerghost ell layer and -1 for the outer.� The parameters imax, jmax, lmax ontrols the number of values stored in a partiular diretion.These are usually set to nim1(kblok), njm1(kblok) and nkm1(kblok). Depending on whih faeis spei�ed, only two of these parameters are used. The routine automatially keeps trak of whihones to use.� The parameters any and ifany are used to store another variable than the ones stored in phi(::; ::).If another variable is to be stored into the layer bu�er, any should hold the name of the variable,for example ap and ifany should then be set to :true: If one of the variables in phi(::; ::) is to bestored, ifany should be set to :false: and the parameter variab should, as desribed above ontainthe number of the variable.Finally it should be noted that `store' transfers a ell layer into a layer bu�er. Not to the boundary database.6.4 The routine `sind' - store index layerThe subroutine `sind' stores the ursors of all the ells in a layer into a layer bu�er. It's delaration isthe following:subroutine sind(side,urmat,layer,imax,jmax,lmax)
21

The parameters are the same as to the routine `store' exept that the variable referenes are exluded.Note that the information put in the layer bu�er urmat now should be treated as integers (ursors)rather than oating point values. An example of the exibility of this routine is the following short ode,whih omputes the total inow from the omputational domain to the ell layer just below the high fae:all sind(5,ma3,1,nim1(kblok),njm1(kblok),nkm1(kblok))inflow=0.do n=2,njm1(kblok)do m=2,nim1(kblok)io=ma3(m,n)inflow=inflow+smp(io)-onvh(io)end doend do6.5 The routine `faret' - Transfer ghost ell bu�er bak to blokThe routine `faret' is used to transfer one of the layers in the ghost ell bu�er to the ghost ells of ablok. Unfortunately, for this routine the ghost ell layers has been numbered the other way around thanfor the `store' routine. The ghost ell layer losest to the omputational domain is number 2 and the onemost far out is number 1. The irritated user is hereby granted to modify the routine and all it's allersto use the same onvention as does the routine `store'.The routine delaration has the following appearane:subroutine faret(urfa,side,variab,any,ifany,imax,jmax,. lmax,layer)Upon all, the following onditions should be met:� The routine `key' should have been alled to speify the urrent blok.� The parameter urfa is the ghost ell bu�er.� The parameters side, variab, any, ifany, imax, jmax and lmax are de�ned in the same way asfor the routine `store'.� The parameter `layer' should ontain the number of the ghost ell layer to be transferred to theblok (1 or 2) as desribed above.6.6 The ghost ell value extrapolation routinesThere are a number of routines used to build up the ghost ell values in the ghost ell bu�ers, and all ofthem are loated in the �le `wallset.f' The routines are used by the general ghost ell layer building routine`bound' and they would probably never be used diretly by the user. For ompleteness a desription isinluded here. The routines are:6.6.1 The routine `tfae' - Build ghost ell values from a remote fae layer bu�erThis routine is used to set the ghost ell values in a ghost ell bu�er from a layer bu�er with values fromanother fae, i. e. it is for multiblok boundaries. It's delaration is:subroutine tfae(urfa,la1,la2,mst,mend,mdir,. nst,nend,ndir,bmst,bnst,lshift,nolay)Upon all the following onditions should be met:
22

� The parameter urfa should ontain the ghost ell bu�er to whih the values are transferred.� The parameter la1 should ontain the layer bu�er that ontains the layer of values losest to thefae on the remote fae.� The parameter la2 should ontain the layer bu�er that ontains the other layer of values from theremote fae.� The parameter mst should ontain the �rst m index of the ghost ell bu�er for whih values shouldbe transferred minus one.� The parametermend should ontain the last m index of the ghost ell bu�er for whih values shouldbe transferred.� The parameter mdir should be set to 1 if the m diretions of the remote fae and the fae for whihthe ghost ell layer is built have the same n diretions. It should be set to -1 if the m diretionsare opposite.� The parameters nst, nend, ndir are the same as mst, mend, mdir but for the n index.� The parameters bmst, bnst should be set to the lowest m and n indies respetively that should betransferred from the remote fae, The data layers of whih are stored in la1 and la2. They shouldbe spei�ed in the remote fae's oordinate system.� The parameter lshift is a logial parameter and should be set to :true: if the m index for the faefor whih the ghost layer bu�er is built orresponds to the n index of the remote fae. It should beset to :false: otherwise.� The parameter nolay spei�es the number of layers to transfer. If nolay is set to 1, the parameterla2 may be replaed with a dummy parameter, sine it is never used.As an example we imagine a situation where we shall transfer values from fae 3 of blok 2 to build aghost ell layer on fae 1 of blok 1. The m and n indies oinide, but when the n index is inrementedon fae 1 of blok 1, the n index on fae 3 of blok 2 should be dereased to math the other blok.The transferring ode should look something like this if the variable to be transferred is, for example thepressure orretion. Selet blok 2.all key(2,lst,ist,nim1(2),njm1(2),nkm1(2)) Store the values of pp at fae 3 of blok 2 in the layer buffer layer1 (losest to the fae.) Store the next layer in layer2all store(3,pp,layer1,1,nim1(2),njm1(2),. nkm1(2),dummy,.false.)all store(3,pp,layer2,2,nim1(2),njm1(2),. nkm1(2),dummy,.false.) Call tfae to transfer the values to the ghost ell buffer `fae'. The m diretion orresponds to the i index and the n diretion orresponds to the k index, whih explains the use of `njm1' and `nkm1'. ndir and mdir are set to -1. Two layers are transferred. Note that we use njm1 and nkm1 for the blok for whih the ghost ell layer is built!all tfae(fae,layer1,layer2,1,njm1(1),-1,23

. 1,nkm1(1),-1,1,1,.false.,2) Transfer the ghost ell buffer `fae' to the ghost layers of blok 1, fae 1all key(1,lst,ist,nim1(1),njm1(1),nkm1(1))all faret(fae,1,pp,dummy,.false.,nim1(1),. njm1(1),nkm1(1),1)all faret(fae,1,pp,dummy,.false.,nim1(1),. njm1(1),nkm1(1),2)6.6.2 The routine `xtrapl' - Transfer values from a layer bu�er to a ghost ell bu�erThe routine `xtrapl' is used to do a simple transfer of values from a layer bu�er to a ghost ell bu�er,and is typially used for extrapolation of values at boundaries orresponding to, for example, a symmetryboundary.The routine has the following delaration:subroutine xtrapl(urfae,myfae,mst,mend,nst,nend,. nolay)The following onditions should be met upon all:� The parameter urfae is the ghost ell bu�er.� The parameter myfae is the layer bu�er from whih the values are transferred to the ghost ellbu�er.� The parameters mst,mend,nst,nend and nolay all have the same meaning as in the routine `tfae'.6.6.3 The routine `setval'The routine `setval' builds ghost ell values, so that by using linear interpolation, one gets a prede�nedvalue at the boundary.The routine has the following delaration:subroutine setval(urfae,myfae,vts,mst,mend,nst,nend,nolay)The following onditions should be met upon all:� The parameters urfae,mst,mend,nst,nend,nolay are spei�ed in the same way as for the routine`tfae'.� The layer bu�er myfae should ontain the layer of values losest to the boundary in the ompu-tational domain.� The layer bu�er vts - value to set, should ontain the desired ell fae value for eah ell at the fae.6.6.4 The routine `ioval'The routine `ioval' is a ombination of `setval' and of `xtrapl'. It heks if the ell fae orresponding toa ell in the ghost ell bu�er is inow or outow. If it is inow, the same thing is done for the ghost ellas would be done in `setval'. If it is outow, the same thing is done as would be done in `xtrapl' Theroutine thus requires information of whih ell fae is outow and whih is inow.The routine has the following delaration. 24

subroutine ioval(urfae,myfae,vts,on,mst,mend,nst,nend,. nolay)As an be seen, the only thing that di�ers from the routine `setval' is the extra parameter on. Thisparameter is a layer bu�er ontaining integers that tells the routine whih ell faes are outow andwhih are inow. The value 1 denotes outow and the value �1 denotes inow. The meaning of theother parameters are desribed above.6.6.5 The routine `xxtra'The routine `xxtra' is used to build ghost ell layers so that the normal seond derivative of the boundaryis zero. The routine requires information from the two layers of ells in the omputational domain thatare nearest to the blok fae. The delaration of the routine is the following:subroutine xxtra(urfae,myfae,vts,mst,mend,nst,nend,. nolay)Upon all, the layer bu�er vts should hold the layer losest to the blok fae and the layer bu�er myfaeshould hold the other layer. The other parameters follow the same onvention as above.It should be noted that this routine assumes that all the ells onerned have the same size. This istrue for the two layers of ghost ells and the ell layer losest to the fae in the omputational domain,sine the ghost ells are given the same dimensions as the ells in this layer, unless it is a multiblok faefor whih this routine would never be used. The next layer in the omputational domain may well haveanother geometry, and therefore it is appropriate to adjust the values in the layer bu�er `myfae' for thegeometry before all, so that the right interpolation is made. (See the routine `bound' !)6.7 The window information database `winbas.f'This subroutine library ontains a number of subroutines that are used to store and retrieve informationabout windows. The reader that is not familiar with the window onept is reommended to �rst readthe Users guide. The routines are the following:subroutine setwin(blok,side,window,wmst,wnst,wmend,wnend,wbtyp,. wbmst,wbnst,wmdir,wndir,wblok,wside,wshift)The parameters of this routine has been explained in the users guide. The routine simply stores thesevalues into the window data base.subroutine getwin(blok,side,window,wmst,wnst,wmend,wnend,wbtyp,. wbmst,wbnst,wmdir,wndir,wblok,wside,wshift)This routine retrieves the window data stored in the window data base. The parameters blok, side andwindow should be given upon all. The other parameters are out-parameters provided by the subroutine.subroutine snowin(blok,side,nowin)integer funtion gnowin(blok,side)These routines are used to set and get the number of windows on a partiular fae on a partiular blok.The routine `snowin' is typially used by the user as desribed in the users guide. The routine `gnowin'is used internally in the program to retrieve the information the user has spei�ed.logial funtion hkbou(blok,side,type)This routine is used internally to hek whether any of the windows on a partiular fae on a blok hasthe boundary type `type' (See the User's guide). If so, it returns :true: Otherwise it returns :false:25

6.8 The layer bu�er data base - `base.f'This subroutine library ontains the omplete multiblok management onerning mapping to one-dimensional arrays, storage of global data et. The routines inluded are the following:subroutine sfae(urfa,blok,side,variab,layer)This routine stores a layer bu�er into the boundary data base. Upon all the following onditions shouldbe met:� The parameter urfa is the layer bu�er to be stored.� The parameter blok is the number of the blok from whih the layer in urfa was retrieved.� The parameter side is the number of the fae from whih the layer was retrieved.� The parameter variab is the variable number (0 for ap).� The parameter layer is the number of the layer where 1 is the layer losest to the fae, and 2 is thenext layer.subroutine rfae(urfa,blok,side,variab,layer)This routine is used to retrieve a layer bu�er from the layer bu�er data base. The desription of theparameters is the same as for the routine `sfae', with the exeption that `urfa' is now an out parameterand is not given by the aller.subroutine baseThis routine is used to lear all information in the boundary data base. All entries are set to zero.subroutine initfa(blok,imax,jmax,lmax)This routine should be alled by the user when the blok onnetivity is spei�ed. The desription of theparameters may be found in the User's guide. The routine initializes all the information that is neededby the routines `key' and `fakey' to map the three-dimensional struture of a blok to a one-dimensionalarray. Sine the exat amount of memory needed is omputed here, the routine is able to warn if thealloated spae is too small, i. e. if a reompilation is neessary. If this is the ase, the routine stops andwarns. If the global ag twodim is set to :true: when this routine is alled, the storage spae is managedin a slightly di�erent way. The routine then assumes that only one ghost ell layer is neessary in the kdiretion, and thus saves a large amount of memory spae in the ase of a two-dimensional alulation.subroutine key(blok,lsta,ista,dummy1,dummy2,dummy3)This routine maps the three-dimensional blok into a one-dimensional array. The blok is assumed dividedinto k� slabs ontaining all the values for a partiular k - index. The ursor pointing to the �rst positionin slab k is given in lsta(k). Thus, for blok 1, lsta(0), whih orresponds to the start of the �rst ghost elllayer on fae 6 (The low side, orresponding to k small) should be equal to zero. The value of lsta(1) wouldbe 0+(nim1(1)+4) �(njm1(1)+4) et. (The extra four orresponds to the ghost ell layers). The value oflsta(0) for blok p would be lsta(0) for blok p�1+(nkm1(p�1)+4) �(nim1(p�1)+4) �(njm1(p�1)+4).The k � slabs are then divided into i � rows. The o�set to row i from the start of slab k is stored inista(i). The ursor pointing to the start of row i in slab k is thus given by lsta(k)+ista(i). In eah i -row, the j� elements is stored in order. To onlude all this: If the following all has been made to key:all key(kblok,lst,ist,dummy,dummy,dummy)
26

The ursor pointing to element i; j; k for blok kblok is given by lst(k) + ist(i) + jAn earlier implementation of the routine required three extra parameters. With the implementation ofthe boundary data base, these parameters beame unnesseary and were, for ompatibility with earlierroutines that used the routine `key' replaed with dummy parameters. The interested user may removethese dummy parameters from the routine and all its allers.subroutine fakey(blok,side,bsstar,mst)This routine is used internally by the routines `sfae' and `rfae'. It maps the two-dimensional arraystruture of a layer bu�er into the one-dimensional array struture used in the boundary layer data base.The blok number should be spei�ed in blok and the fae number should be spei�ed in side. Uponreturn, the routine gives the start position in the array for this layer bu�er in bsstar. The layer bu�er isthen assumed divided into m� rows. The o�set to the start of row m from the start-position bsstar isstored in mst(m). As an example: Imagine that you would like to get a ursor to where the w-veloity inlayer 1 on the east fae of blok 2, m-index 3 and n� index 4, is stored. Sine the east fae has numberone, we would �rst make the following all:all fakey(2,1,bsstar,mst)ursor = bsstar+mst(3)+4We would then address the boundary base array:theval = base(ursor,1,w)Note that the boundary base has two extra indies, one for the layer and one for the variable. Theseindies are not inluded in the one-dimensional storage struture beause they have �xed length. Thereare always two indies and nphi+ 1 variables. It should be mentioned that the end user should not usethis routine diretly. The desription is only inluded to provide a base for the understanding of theimplementation.subroutine nmmax(blok,side,mmax,nmax)Given the blok number and the fae number in blok and side this routine returns the number of ellsin the omputational domain in the m and n diretion of the fae. This is used by routines that operateson the whole fae rather than on a window. Note that the indies in the routine name has hanged plae.This may be onfusing.subroutine sendpp(blok,ppr)subroutine setref(blok)integer funtion getref()real funtion getpp()These three routines are provided to make it easier to extend the ode to a multiomputer system.With the routine `setref' The blok in whih the pressure referene node is loated is spei�ed. When thepressure orretion has been omputed for eah blok, the referene value of the spei�ed ell (but possiblythe wrong blok) is sent to the database by the routine `sendpp'. If the blok number mathes the onespei�ed with `setref', the referene value is stored. Otherwise it is disarded. The latest referene valuestored may then be retrieved with the funtion `getpp'. The number of the blok holding the pressurereferene node may be retrieved with `getref'.subroutine zerres(blok,ppr)subroutine setres(blok,variab,res)real funtion getres(blok,variab)
27

These routines take are of the residual storage for eah blok and variable. The subroutine `zerres' zeroesall the residuals, the routine `setres' sets a residual for a given blok and a given variable. Finally thefuntion `getres' retrieves a residual for a given blok and a given variable.6.9 The general ghost ell building routinesThe desription of the previous routines now provide a foundation for the understanding of the generalghost ell building routines `bound' and `sbound'. The routine `sbound' has the following spei�ation:subroutine sbound(blok,variab,any,nlay)This routine sans all the faes of the blok `blok' too see if any window on the fae has a multiblokboundary type. If so, it stores the required number of layers (1 or 2) in a layer bu�er and �nally storesthe layer bu�er in the boundary data base. With the parameter `variab' the number of the variable inquestion is spei�ed. If the number is 0, the routine does not take the values from phi, but rather fromthe variable spei�ed in `any' (usually ap). The parameter nlay is an array(1:6) speifying the number oflayers to be stored on eah fae (1 to 6). There are two arrays of this type spei�ed in the initialization ofthe program. One is lay1 whih only ontains 10s and the other is lay2 that only ontains 20s. A typialall to this routine, storing two layers of ell volumes in the boundary data base in the variable loationfor ap (number 0) would look like this:all sbound(blok,0,vol,lay2)The other routine in this pair is `bound', and it has the following spei�ation:subroutine bound(blok,variab,any,nlay)This routine is used to build a ghost ell layer in a ghost ell bu�er and then transfer it to the partiularblok for whih it was built. It loops over all the faes of the blok and all the windows of the fae.It retrieves information about the window and depending on the window's boundary type ollets layerbu�ers either from the blok itself or from the boundary layer database in ase of a multiblok boundarytype. It then uses the ghost ell value extrapolation routines desribed above to build a ghost ell bu�er,and when all windows on a fae are visited, the routine transfers the ghost ell bu�er bak to the blokfor whih is was built. The parameters are the same as for the routine `sbound'.There is also modi�ed version of the routine `bound' alled `ppboun'. This routine is designed for thepressure orretion. It only sets ghost ell values for multiblok windows and is thus somewhat faster. Itis used only for the pressure orretion and is alled from the routine `relax'.7 The geometry of the ghost ells7.1 Required geometrial quantitiesSine no variables are solved for in the ghost ell ontrol volumes, the geometrial quantities that needto be present are very few. The following is needed.� The ghost ell volume.� The interpolation fators fx, fy, and fz, whih are needed for the extrapolation of the pressureand the pressure orretion and also for omputing the ell enter and ell fae distanes when theQUICK sheme is used.� The quantities xksi, yksi, zksi, xeta, yeta, zeta, xzeta, yzeta and zzeta whih are needed for theRhie & Chow interpolation at multiblok boundaries.28

7.1.1 Treatment at multiblok boundariesAt multiblok boundaries the ghost ells are given the same dimensions as the orresponding ell in theneighboring blok.� The ghost ell volume is obtained by storing all volumes for the ells nearest to the multiblokboundary by alling `sboun' for the volume and put it in the ap loation. When the volumes for allbloks have been stored in the boundary data base, the routine `bound' is alled, giving the ghostells the right volumes, sine ap is also taken from the neighboring blok at multiblok boundaries.This is done diretly in the `main.f' routine.� The interpolation fators are alulated by �rst storing the ell enter values in the multiblok database (the routine `sent') and then retrieving them with the routine `gent'. In this way, the ghostells obtain the same ell enter oordinates as the orresponding ell in the neighboring blok.� The omputation of the Rhie & Chow interpolation fators aross multiblok boundaries are veryompliated and bugs may well have entered here. First of all we have nine quantities to exhange,but we annot expet to have more than six variable loations in the boundary data base. On theother hand the boundary data base has room for two layers of values whereas the Rhie & Chowgeometrial quantities are only needed in the inner ghost ells. We therefore use a routine `jaobi',whih, given a number to the geometrial quantity, maps it to a spei� variable loation and aspei� layer in the data base. The other ompliated thing is, that dependent on how the bloksare aligned, the geometrial quantities hange sign aross a multiblok boundary. This is solvedusing speial sign- and diretion tables. A rule that should be remembered is that if the signsare not omputed orretly by the routine, the mass ux through the boundary is not exatly thesame (down to mahine preision) for the both bloks, thus indiating a bug in the routine. Theopposite is not true however; a di�erene in mass ux through a boundary when omputed in thetwo neighboring bloks is probably due to inorret boundary spei�ations.7.1.2 Treatment at domain boundariesAt the domain boundaries the ghost ells are given the same dimensions as their nearest nieghbour inthe omputational domain. This is done in the following way:� The ghost ell volume is alulated by simply giving it the same value as the nearest neighbor inthe omputational domain. This is done by alling the routine `bound' with the volume put in thevariable loation reserved for ap, whih implies that the volume will be extrapolated to the ghostells in the same manner as ap will be when the omputations have started.� The interpolation fators are omputed in a rather speial way. Instead of setting them to 0:5,whih is the value they should have at domain boundaries, the ell enter oordinates for theomputational domain is omputed and also the oordinates for the fae enters in the standardCALC way. The oordinates are then `mirrored' to the ghost ells using the routine `gent' whihsets a Dirihlet boundary ondition for the ell enter oordinates with the ell fae oordinates asthe boundary value, and then using the standard dirihlet boundary extrapolation routine `setval'to set the ghost ell enter oordinates. The interpolation fators are then alulated in a standardmanner in the routine `weigh' loated in `init.f'.� The geometrial quantities required for the Rhie & Chow interpolation routines are simply extrap-olated in the routine `ggeom', using the speial mapping funtion `jaobi' desribed above. No signhange is required at the domain boundaries.
29

8 Modi�ations to standard routines8.1 The routine `wallf' - Set wall funtionsThe routine wallfun alulates the wall funtions for k, " or the veloities by reading window informationfrom the window data base and alling the routine `wall' with the orret parameters. The alls to `wallf'are made from routines in the �le `modify.f' and from the routine `relax', so that the orret visosity isused in the u disretization matrix. The funtion itself is loated in �le `wf.f'. Note that `wallfun' willonly all the routine `wall' if the boundary type wall (#1) has been spei�ed for a window on a fae, andthen only for that window. The delaration of the routine `wallf' is:subroutine wallf(blok,variab)Before a all to the routine, the urrent blok has to be spei�ed with a all to `key'.8.2 The routine `mdon' - ompute onv at domain boundariesThe routine `onv' has been modi�ed to ompute the mass ux even on the boundaries of eah blok,using Rhie & Chow interpolation. However, on the domain boundaries the onvetion should be omputedwithout Rhie & Chow interpolation. This routine reomputes the onvetion on the domain boundarieswithout Rhie & Chow interpolation. It is alled from `modify.f' (`modon').It`s delaration issubroutine mdon(blok)8.3 The global onvetion orretion routines `onset' and `uponv'The routine `onset' omputes the global inow to and outow from the omputational domain. Theroutine gets information about whih ell faes are inow faes from the user spei�ed routine `setio'.Inow may be both positive and negative, whereas all mass ux through outow ell faes is onsideredoutow, although it may ow inwards. This helps stabilizing the outow orretion on �U=�n = 0boundaries. The routine delaration is:subroutine onset(blok,onin,onout)Upon all the urrent blok should be spei�ed in blok. The routine will then add inow to the domainto onin and add outow to onout. Note that the two latter parameters need not be zero when theroutine is alled. The routine simply adds the mass ux to the previous value of the parameters. Thissimpli�es multiple alls to the routine in a multiblok environment. The routine is alled from `relax'.The routine `uponv' multiplies the onvetion on outow faes with a fator. In the implementation in`relax' The routine `onset' is �rst alled for eah blok determining the global inow and outow. Thena multipliation fator is omputed, so that the outow will equal the inow. Finally `uponv' is alledto orret the outow so that global ontinuity is ahieved. It should, however, be mentioned that inheavily aelerating ows, the Rhie & Chow interpolation will make the ow somewhat ompressible.Therefore speifying global ontinuity may ause the residual of the ontinuity equation to hang at avalue dependent of the aeleration.The routine delaration is :subroutine uponv(blok,mulfa,totout)Upon all, mulfa should ontain the multipliation fator (real number), the routine will then add theorreted outow to the value of totout. 30

8.4 `Upoef' - Zero domain boundary oeÆientsThe purpose of this routine is to zero all oeÆients ae, an et. on the domain boundaries, so that ahomogenous Neumann ondition is ful�lled. The routine is used by the pressure orretion routine `alp'.8.5 `Uoef' - Zero outow oeÆientsThis routine zeroes all oeÆients on outow ell faes, so that a homogenous Neumann ondition isful�lled. The routine gets the information about whih ell faes are outow from the user-suppliedroutine `setio'. The routine is alled from `modify.f' and is loated in �le `Upoef.f'8.6 Splitting of the routine `alp'The SIMPLE algorithm usually requires several sweeps with the Gauss - Seidel solver for the pressureorretion equation. Experiene has shown that the boundary onditions for eah blok has to be updatedafter every sweep. This demands a splitting of the routine `alp' into four routines.� `alp' sets up the oeÆient matrix.� `alp2' performs a solver sweep.� `alp3' updates pressure and onv.� `orre' updates the nodal veloities.8.7 Modi�ations to `Coe�'The QUICK sheme in the `oe�' routine has been modi�ed to take use the interpolation fators fx, fyand fz to ompute the oeÆients instead of the ell volume divided by a harateristi area sale. Thisis beause the interpolation fators are available in the ghost ells whereas the area sale is not. Thederivation of the expression for the oeÆients are given in setion 10.1.8.8 Modi�ations to `Update'In order to aurately solve transient problems a seond order multistep time disretization has beenimplemented. Sine the sheme uses the values from two previous timesteps, the �rst timestep must betaken with the �rst order BDF sheme (Bakward Euler). The seond order BDF sheme is obtained by�tting a seond order polynomial to the urrent value and the values from the previous two timesteps,with the boundary ondition that the di�erential equation shall be ful�lled at the urrent timestep. Thisyields an impliit method that is A - stable, i. e. it has the same stability properties as the ontinousNavier - Stokes equations, whih implies that arbitrarily large timesteps may be taken, as long as noonstraints are plaed on the values at the di�erent timesteps. The turbulene equations however havethe restrition that the turbulent quantities may not beome negative. Due to their sti� behaviour, thissheme is not suitable for these equations. Although it has the desired stability properties, it annotguarantee that the turbulent quantities may not beome negative.9 Moving mesh routinesThe routines `mvmesh' and `nomove' has already been desribed in the User's guide, In addition, someother features have been implemented that allows the omputations on moving meshes.� When the dimensions of the geometrial quantities have hanged, that is if the ag mmesh is set totrue, a all is made to `init' to reompute the geometrial quantities. The routine `init', however,uses a lot of variables as temporary storage spae, and these variables are needed as a solution
31

C

A

B

Φ Φ Φ ΦE EEeP

Figure 2: Nomenlature for QUICK disretization sheme.approximation on the next timestep. Therefore the routine `s�eld' is alled before the all to `init'.This routine is loated in �le `mis.f' and saves the ow�eld on a temporary �le alled \�eldsave".After the routine `init' has made it's omputations, the �eld is read bak by the routine `r�eld'loated in the same �le.� After a all to `mmesh', the routine `onom', loated in �le `mis.f' is alled. This routine omputesthe rate of hange in volume for eah ell and stores the result in the global array dvoldt. It alsoomputes the global virtual inow of mass due to the ontration of the omputational domain,(whih will of ourse, due to inompressibility, ause an equal amount of outow, unless the hangerate of density, ddendt is di�erent from zero. The global virtual inow, with the hange rate ofdensity taken into aount, is then stored in the global variable onsou. This value is used whenthe orreted outow is omputed for free outow boundaries. Note that the value of onsou maywell be negative if the omputational domain is expanding.� The routine `onv' has been hanged to take into aount the veloities of the ontrol volume faeswhen the mass ux is evaluated.� The alulation of the mass error in the routines `onv' and `alp3' also take into aount the rateof hange in volume for eah ell and also the global rate of hange in density.10 Theoretial explanation of some implementations10.1 The QUICK shemeSine QUICK is derived from a seond order polynom �tted to the entral point, �p , the upwind point,�e and the far upwind point �ee we an write� �P + a1A+ a2A2 = �E�P + a1B + a2B2 = �EE (2)� a1A+ a2A2 = �E � �Pa1B + a2B2 = �EE � �P (3)Now use gaussian elimination to invert the matrix and obtain expliit expressions for a1 and a2:a2B2 � a2A2BA = �EE � �P � BA�E + BA�P (4)32

a2 �B2 �AB� = �EE � �P �BA � 1�� �EBA (5)a2 = �EEB2 �AB + �P �BA � 1�B2 �AB � �EBAB2 �AB (6)a1 = �EA � �PA � a2A (7)(8)We now use the following to obtain the QUICK oeÆients P , E and EE :8<: �e = �P + a1C + a2C2�e = P�P + E�E + EE�EEP + E + EE = 1 (9)Now identify the oeÆients: E = CA � a2AC == CA + ACBAB2 �AB + C2BAB2 �AB == CA � BA C2 �ACB2 �AB (10)EE = ACB2 �AB + C2B2 �AB = C2 �ACB2 �AB (11)P = 1� E � EE (12)Now, we want to adimensionalize the expressions and make the oeÆients P , E and EE funtions ofthe dimensionless quantities B=A and C=A whih are easily omputed from the interpolation fators fx,fy and fz. We divide the equation (11) with A2 and obtain:EE = �CA�2 � CA�BA�2 � BA (13)E = CA � BAEE (14)P = 1� E � EE (15)and for the east fae we easily identify: CA = fx(P) (16)BA = 1� CAfx(E) + 1 (17)We observe that by setting fx(P) and fx(E) to 0:5, we get the QUICK oeÆients for uniform artesianmeshes: E = 0:75, EE = �0:125 and P = 0:375.10.2 Adaptive under-relaxationThe general disretized equation for a ontrol volume may be writtenap�p �Xn an�n = Su (18)
33

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Comparison between QUICK (top), Seond order upwind (mid) and HYBRID (bottom) sheme.Steady temperature pro�le with u = 2 and v = 1. Boundary onditions: T = 0 exept for the �rst 12:5%of the x-axis. Note the exessive numerial di�usion of the HYBRID sheme and the overshoots of theQUICK and Seond order upwind shemes. Mesh: 40x40.34

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Comparison between QUICK (top) and Seond order upwind (bottom) sheme, both limitedwith the Van Leer limiter. The Seond order upwind sheme with the Van Leer limiter is usually referredto as the Van leer sheme. Due to the disontinous nature of the limiter, these shemes su�er fromonvergene problems, and one annot generally expet better onvergene than about 0.5%.
35

where index n indiates neighboring nodes. Now, the Sarborough riterion states that for a Gauss-Seidellike linear solver to onverge the following expression must be satis�ed for all ontrol volumes in the �eld:Pn janjjapj � (19)where is a onstant depending on the iteration sheme and the oeÆients. Loosely speaking, the moreimpliit the iteration proess is, the larger we may hoose . For our purpose, it is desired that thisinequality is ful�lled with � 1.This is generally not the ase for a higher order onvetive disretization, and we therefore emply thefollowing adaptive under-relaxation with �po being the value of �p at the previous iteration.� =Xn janj � ap (20)and (ap + �) �p �Xn an�n = Su + ��po (21)We note that the sarborough riterion is ful�lled with ap replaed with ap + � if the right hand side isonstant, that is if �po is never updated, and that when the solution has onverged, �po = �p, whihimplies that equation (18) is ful�lled, giving a onsistent formulation. If �po is updated every iterationwe instead have to ful�ll the following riterion:Pn janj+ �jap + �j � (22)If ap is positive, the adaptive under-relaxation proedure will guarantee that the above riterion is ful�lledfor � 2 whih seems suÆient for most iterations shemes applied with the SIMPLE algorithm. If thisis not the ase, several sweeps with the solver have to be made before updating �po.10.3 The seond-order BDF time-disretization shemeA linear multistep time-disretization sheme may be writtenh1 ���t = �1�1 + �2�2 + �3�3 (23)For the BDF sheme of order 1 (Bakward Euler) �1 is 1 , �2 is �1 and �3 is 0. We will now derive theoeÆients for the seond order BDF sheme:8>><>>: �2 = �1 � b1h1 � b2h21�3 = �1 � b1(h1 + h2)� b2 (h1 + h2)2h1 ���t ����1 = h1b1 (24)Now eliminating b2 by gaussian elimination we getb1 (h1 + h2)� b1h1 (h1 + h2)2h21 = ��3 +�1 + (�2 � �1) (h1 + h2)2h21 (25)b1 �h21 (h1 + h2)� h1 �h1 + h2)2�� = ��3h21 +�1h21 + (�2 � �1) (h1 + h2)2 (26)(27)
36

Φ

t

Φ1

Φ2

Φ3

h
1

h
2

Figure 5: Nomenlature for seond order BDF time disretization sheme.and identifying the oeÆients we get�1 = h31 � h1 (h1 + h2)2h21 (h1 + h2)� h1 (h1 + h2)2 == h2 + 2h1h2 + h1 (28)�2 = h1 (h1 + h2)2h21 (h1 + h2)� h1 (h1 + h2)2 == �h1 + h2h2 (29)�3 = ��1 � �2 (30)

37

Figure 6: Travelling pulse of length 18% of the x-axis starting at the origin at t = 0. Here shownat t = 0:25 after 10 timesteps. u = 2, v = 1. Mesh: 40x40: The QUICK sheme is used for spaedisretization. Bakward Euler (top) and seond order BDF (bottom) time disretization results. Notethe smearing in the streamwise diretion due to the �rst order Bakward Euler sheme, as well as theundershoot behind the pulse in the BDF plot. 38

Indexation 7adonv 11apr 14base 27Bakward Euler sheme 12BDF sheme 12, 31, 35bound 28boundary 17boundary type 7given pro�le 7multiblok 7outow pro�le 8symmetry 7wall 7bourd 17alp 30alp2 30alp3 30base 25hkbou 26onom 31onin 30onout 30onset 30onsou 31orre 30ursor 20weigh 29ddendt 19, 31dtfmin 14dtmin 14dvoldt 31extra 20fae 3negative 3positive 3fakey 26faret 21flowini 13fue 19fuh 19fun 19fve 19fvh 19fvn 19fwe 19fwh 19fwn 19Gauss-Seidel 33

gent 29getpp 27getref 27getres 27getwin 25ggeom 29ghost ell 3ghost ell bu�er 20gnowin 25hybrid sheme 12ihek 13ifsiz 4imwin 4index 3dependent 3initfa 5, 26init 31initur 13iomax 4ioval 24it 4jaobi 28jt 4key 26kt 4layer1 20layer2 20layer bu�er 20ma1 20ma2 20maxbl 4mrit 13mdon 30mmesh 5, 19, 31msiz 4, 20mulfa 30multimesh 16mvmesh 31ngrid 5nmmax 27nomove 19, 31pressure referene 11QUICK sheme 12, 30, 32rdmesh 16refnod 11relax 30rfae 26sbound 27Sarborough riterion 33
39

sendpp 27setbou 8setio 10setref 27setres 27setwin 6, 25sfae 25sind 21snowin 5, 25store 20tfae 22totout 30turini 13twodim 5uoef 30upoef 30uponv 30urfmin 14use 13Van Leer sheme 12wall funtions 29wallf 29whtodo 7window 4xtrapl 23xxtra 24zerres 27

40

