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ABSTRACT

This report gives the main features of the general prediction
method for heat mass and momentum transfer embodied in the TEACH3D
Computer Program. The program was originally written for steady,
two-dimensional, turbulent (or laminar) recirculating flows, by
Gosman and Ideriah (1976). It has been extended to cover also
transient and three-dimensional flows. We do not wish to make any
secret of the fact that most of the material here was taken from
Gosman and Ideriah’s report. We have on the whole added relevant
parts to describe the transient treatment and rewritten the two-
dimensional formulations into three-dimensional forms. A few other

extensions have also been made.
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CHAPTER 1 INTRODUCTION

1.1 Scope of Present Chapter

Definition of objectives of the report

Indication of Main features of the program

*
*
* Circumstances for application of Method
* Examples of numerical predictions

*

Structure of the mathematical foundation

* This, the first chapter of the report, defines the objectives
of the report and also gives a broad guide line to the computer
program.

* Some circumstances in which the program can be adapted to
predict the physical behavior of the flow fields will be given as
well as a demonstration of examples of numerical predictions.

* Successful application of the program requires an understanding
of the basic mathematical foundation, the structure of which will

also be given in this introductory chapter.

1.2 Objectives

To Convey:
* Main features of the prediction method

% The Structure and use of the computer program

This report has been written with two specific aims:

* Firstly, to convey the essential feature of the general predic-
tion method for heat, mass, and momentum transfer that is embodied
in the computer program.

* Secondly, to give a clearer understanding of the structure and

the use of the computer program to the intending user.



1.3 Main Features of the Program

* Solves conservation equations for heat, mass, momentum,
etc. by a finite-difference method

* Uses "primitive" wvariables, with the velocities and pres-
sure derived from SIMPLE algorithm (Patankar & Spalding,
1972), and all equations solved by line-by-line method of
TDMA

* Treatment covers steady, unsteady, turbulent, laminar, 3D,
incompressible or compressible flows in a cartesian coor-

dinate system.

* The program operates by solving the relevant conservation equa-
tions by means of a hybrid finite-difference technique.

* The main hydrodynamic variables wused in the program are
velocities and pressure ("primitive" wvariables), and a special
procedure, called SIMPLE algorithm, is employed to solve for the
velocity and pressure fields, and each equation is solved by a
Line-by-Line solution procedure using the Tri- Diagonal Matrix
Algorithm (TDMA).

* In 1its standard form, the  program is presented for
steady/unsteady, compressible/incompressible, turbulent/laminar,
three-dimensional flows, in a cartesian coordinate system.

But the possibilities exist of extending this standard form to

cylindrical polar coordinate system.



1.4 Circumstances for Application of Method

Power generation
Chemical Plants

Environmental Studies

* % % %

Aerospace

A

Domestic

* Physiological Studies

* In the field of power generation, the program can be wused for
the study of various flows in gas turbines, reciprocating engines,
furnaces and boilers, and nuclear reactors.

* Chemical plants, like heat exchangers, blast furnaces, packed-
reactors, and fluidised beds provide further  areas for
application.

% Predictions of pollution hazards due to disposal of thermal,
chemical, and radioactive effluents into the atmosphere and
rivers, as well as the prediction of weather, are areas where the
program may be adapted in environmental studies.

% In the field of aerospace, drag and lift, kinetic heating, in-
ternal flow in aircraft and rockets are just a few of the
circumstances where the program may be used.

* Heating, ventilation and air conditioning of homes and auditoria
provide further areas where the program may be employed in domes-
tic 1life.

* Airflow, and blood flow through veins and arteries are amenable

to prediction by the program, in physiological studies.



1.5 Structure of the Mathematical Foundation

Conservation Laws Transport Laws Source Laws

Differential

Equations

Finite Difference Equations

Solution Algorithm

Computer Program

Solution of Equations

Predictions

* As in most physical theories, the structure of the theory em-
bodied in the code starts from the laws of nature as shown at the
top of the boxes: conservation, transport, and source laws.

* These laws of nature may be combined into differential equations

which may then be transformed into finite-difference forms.



* On the other hand, as will be shown later, the laws may be
transformed directly into finite-difference forms using control-
volume analysis. As the number of grid used tends to infinity,
correctly formed finite-difference equations approach these of the
differential ones.

* To achieve the solutions to the finite-difference equations a
solution algorithm (i.e. a systematic set of operations from which
values satisfying the equations may be obtained) 1is necessary.
Since such an algorithm will involve thousands of operations, it
is embodied in a computer program in order to take advantage of
the capability of the computer to perform millions of operations
in seconds.

* Thus, as 1is shown in the boxes, the computer program yields
solutions to the set of equations. And, if the natural laws as
well as the finite-difference equations have been adequately for-

mulated, the predictions will depict physical reality.



CHAPTER 2 THE CONSERVATION EQUATIONS AND THEIR
FINITE DIFFERENCE FORMS

2.1 Purpose and Scope of Chapter
1. Purpose : To demonstrate how the laws of nature may be

combined into differential equations and their finite-

difference forms.

2. Contents :
% Derivation of p.d.e.’'s from combination of natural laws
* Derivation of f.d.e.’'s from combination of natural laws

* Insertion of boundary conditions

* The aim of this chapter is to demonstrate the manner in which
both partial differential equations (p.d.e.’s) and finite dif-
ference equations (f.d.e.’s) may be obtained from the natural
laws.

* The contents of the chapter therefore include brief illustration
of the derivation of the p.d.e.’'s from the conservation laws, and
the manner in which the f.d.e.’'s may also be obtained. In addi-
tion, the method of insertion of boundary conditions is also

explained.



2.2 Combination of Natural Laws (Typical Example)

Conservation of momentum in direction x :

* Newton'’s Second Law:
* Statement: rate of change of momentum plus
sum of direction-i momentum flows (Mi) must equal
net force in i-th direction (Si)
* Mathematical expression:

M e Mo My ot My o My M g =Sy

* Change of momentum in time: MX = gE(pU).

, t

* Transport Law: for Newtonian turbulent fluid, total flux is

L

MX = pUU - pt(aU/ax) + . . . . other terms
* Source Law: Sx= - gg + Sx

* Momentum equation for direction - x :

3 3 3 3 8  8U. 3, aU. & , AU
gt (PO Gr(PUD+ o PO+ o (PN - G2 (bean) ™ oy Heay) ™ a2 Peaz) ~

_ % ’
ax + Sx

* Here, we have taken the transport of momentum to illustrate how
the laws of nature may be combined into a differential equation.

* The law governing the transport of momentum is the rather
familiar Newton’s second law of motion which has been expressed in

the slide in both verbal and mathematical forms.



* The mathematical expression involves fluxes, M's, which express
the rate of change of momentum and the transport of momentum by
both convection and diffusion (viscous action). These are derived
from "transport (or flux) laws", e.g. Newton's law of viscosity,
etc.

* Furthermore, there are additional factors (or sources) which
contribute to the transport of momentum. These are derived from
"source laws" which cover, for example, contribution due to pres-
sure gradient, buoyancy, etc.

* The differential equation for momentum for other directions, as
well as for any other conserved property, may be derived in iden-

tical manner.



2.3 General Form of Conservation Equations

* The general form”

steady 3D problems is:
S0+ S(pUBY+ S oV8)+ S (o) -

* ¢_=' Urv)w,k,e,T, etc.
I's p_,T F F etc.

ety

of the equations to be solved, for un-

¢ d_(rd¢,. 5 ¢

# Continuity equation has special form

* The beauty of the transport equations for the conservation of

various properties (except mass) is that they can all be written

in a general form as shown in the panel.

* Here S, represents the "sources" relevant to the transport of

¢

the variable ¢.

* The continuity or mass conservation equation has special form

which will be dealt with later when the "pressure-correction"

equation is derived.

¢

=0



2.4.1 Derivation of Finite Difference Equations (FDE’s)

(1) The Grid, Storage, Locations, and Control Volumes

* Grid, shown by solid lines, is N/H
regular and rectangular with d - -
arbitrary spacing (i.e. 6wa# SXEP) U-ce11--“igf}ar-cell
* Typical-control volumes or cells shown ) WH-—H—-P|1 Eft
in dotted lines: each cell surrounds -

the point of location of the relevant

variables. ‘ t [t _ I’__ =.___T__ll
* Scalar quantities (i.e. p,k,¢,T,etc) V/W—cell\\§ r
are located at intersection of grid i -L~.__..__L
nodes t t tS/L 1
* Velocities are located at boundaries - - -

of control volumes for scalar quantities

y/z
L.
location Variable stored
* p,T,k,e
-+ U
t V,W

* The forms of the differential equations having been introduced,
the stage is now set for the derivation of the fde's.

* The first step in deriving the fde’s is the establishment of a
suitable grid and storage locations of variables. The grid
employed,viewed in the X - y/z plane, is regular and rectangular
with arbitrary spacing and is shown by solid lines in the panel.

* A typical cluster of U- , V-, W-, and scalar-cells or control
volumes is shown in dotted lines. Each cell surrounds the point of
location of the relevant variable: note that the variables are

stored at different locations of the grid.



* The pressure p and other scalar variables are located at inter-
section of grid nodes.

* The velocities are located at the boundaries of the scalar
cells.

* This "staggered grid" system has the advantage that the wvari-
ables U, V, and W are easy to evaluate; moreover, the velocities
are located where they are needed for the calculation of convec-

tive fluxes.

11



2.4.2 Derivation of FDE's :(II1) Expression of Conservation Laws

by Control Volume Analvysis

* For transport of any extensive property % (i.e. mass,
momentum, energy, etc.): .
rate of increase of ; in cell = (net rate of infloy of ¢ to
cell by convective fluxes) + (net rate of inflow of ¢ to cell
by diffusive fluxes) + (rate of generation of ; within cell)

* If ¢ is the corresponding intensive property of ;, above

statement becomes

A(pd) . . . . . .
AL dv + q, - 4, + 9, - 4, + 4 - 4 + £S¢dv

i
O

where ¢=U,V,W,T,k,e (or unity for ¢=mass)

g= total convective + diffusive fluxes

A(p¢)dv

AL = 0 for steady

S¢= generation per unit volume;
flow

* Next, the q's and generation term need to be determined

* Here, the basis of the control volume approach in deriving the
fde's is shown. This approach is similar to the integral method,
but it is more physical in its basis.

* A control volume or cell is pictured in space, and the node-
point wvalue of any property ¢ refers to the average over the
control volume. The conservation law for the transport of ¢ may
then be expressed both verbally and mathematically as shown in the
panel. (Note that n,s,w,e,h,l denote cell boundaries)

* The convective and diffusive fluxes §'s are represented as sum-
mation around the cell Dboundaries, thus aiding  physical
understanding and emphasizing conservation. These fluxes as well
as the generation term next need to be determined, and this is
done on the basis of further macroscopic physical laws (entailing
some approximation) as is shown in the next three panels. (Note

that in this approach no referens is made differential equations).

12



2.4.3 Derivation of FDE's :(III) "Exact" Convective and Diffusive

Flux Expression

* Consider one-dimensional transport across cell boundaries
* Then, e.g. for the west boundary, the "exact" solution

gives: area A

——CT———

qu pWUWAW [ fw¢w+( 1 - fW) ¢P ] l qW
. |
* Here, wa exp(Pew)/[exp(Pew)-l] W Y
PewE pwasxPW/rw ; Aw=6ynsX 5Zhl —‘——'——1—'-—'"~‘JL
p= Coytep) /2 ; T = (TTp) /2 6Xp;

* The convective and diffusive fluxes are derived with the aid of
a one-dimensional analysis, since we require that, in 1-D limit,
the fluxes should be accurately calculated.

* 1f transport across cell boundaries is regarded as 1-D, the
"exact" solution, e.g. for the west boundary, is as shown in the
panel: this gives the convected ¢ as weighted mean, with weight-
ing factor depending on the local Peclet number.

* If p and T are non-uniform, average values are used in order to

ensure continuity of flux.

13



2.4.4 Derivation of FDE's :(IV) Approximate Convective and

Diffusive Flux Expression ("hybrid" Scheme)

* Exponential expensive to compute
* Hence "exact" expression approximated, with little loss of
accuracy, by employing "central" differencing for -2<Pe<2

and "upwind" differencing for Pe=2 or Pe<-2, resulting in

1/2[(1+2Pe;1)¢w+(l-2Pe;1)] , for -2<Pe <2
qw
= ¢W , for PewZZ

¢P , for PeWSZ

* Remaining q's are similarly treated

* in order to avoid expensive calculation of exponentials, a
method using piece-wise linear fit is adopted to approximate the
"exact" qw~ Pew relation with little loss of accuracy.

* In this method, a central-difference scheme is employed for low
lPewl, and an "upwind" difference scheme (asymptotes of upwind
formula) is used for large }Pew] — hence the method 1is called
"hybrid" scheme

)

* q ,49 ,4 ,4, ,and 4, are derived in a similar manner.
qe’qn»qs’qh’ q]_

14



2.4.5 Derivation of FDE's :(V) Expression for Generation

or Source Term

* Express the total generation or source term by a linear

relation:

-fS¢dV=b¢>+c
\Y
* b and ¢ to be deduced from integrated and linearised form

of the source

* Note: b and c will in general be functions of ¢

The total generation over the control volume cannot be derived
without a knowledge of the particular expression of the source S¢.
* However, whatever the form of the particular expression, the
total generation can be reduced to a linearized form as shown in
the panel. Of course, b and c¢ will then be functions of ¢ in
general.

* This approach proves to be advantageous and convenient in the
setting up of a single computer program for various flow situa-

tions.

15
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2.4.6 Derivation of FDE's :(VI) Assembly of Final Equation

* Substitution of the flux and generation expressions into
the conservation law given in section 4.3.2 yields, with the
aid of continuity:

o 0,0
(aP -b +ap)¢P= Ean¢n+c +ap¢P

* Here, aP=Zan ; Z= summation over neighbours (H,L,N,S,E,W)
ot
ao _ po AxAyAz
P P At
aW=pwaAwfw
aSzpsVsAsfS o
etc. = value at previous timestep

* The flux and generation expressions can now be assembled,
resulting in a final fde.
* a ,a,,a ,a_,a_, and a_ are combined convective/diffusive

h’ 1’ ™n’"s’ e w
coefficients
* With the aid of continuity, ap turns out to be the summation of
the combined-flux coefficients over H,L,N,S,E,W : thus, when b=c=0

and the flow is steady, ¢P represents weighted mean of neighbours.



2.5.1 Insertion of Boundary Conditions: (I) Outline of Procedure

* Grid arranged such that boundaries y
coincide with control-volume walls. pd
7
* Usual flux expression now inappropriate, f:—-- - —“T— -
hence suppress by setting coefficient to %) q, P E
—s
zero (e.g. a,~0) which breaks normal 7] ¢ o
¢P~¢wllnk ;__._...___.J__.__
7
7
* Correct expression may be conveniently :j
as a "false" source by appropriate
func-

specification of b and ¢ (e.g. ¢ = b¢_ + ¢ , where b and ¢ will be
& Iy P

tions of ¢boundary)

* At the boundaries of the calculation domain, the general fde is
not applicable. Hence special measures are required for the cells
next to the boundaries.

* The grid arrangement is such that the boundaries coincide with
the cell walls. This is advantageous for ensuring conservation and
for flux calculation.

* Here, a typical cell whose west wall coincides with the boundary
of the calculation domain is shown. There is now no 1link between
¢P and ¢W through the general fde. Hence, the usual ¢P ~ ¢W link
is suppressed by setting the coefficient ay to zero.

* However, we still need to insert qw. Note that for the cell
shown, normal expressions for qe, qn, qs, qh and ql are not af-
fected.

* There are several ways of inserting qw. But that adopted is a
"false" source treatment through specification of b and c¢. This

approach is particularly convenient for programming.

17



2.5.2 Insertion of Boundary Conditions: (II) Some Examples

* Boundary flux, 4._. prescribed

D
Set aw=0 ; b=0 c=qB

* Boundary value, éB’ prescribed

q,= may be written as q, = aw(gbB - ¢P)

Then, set aw=0 ;b = -al ;oCc o= aw¢B

* To fix ¢ for any internal node at ¢_.
I 11X
Set b=-y ; ¢= 7¢fix

where v = large number, e.g. 10

s,

* Here are shown some typical examples of insertion of qw of the
previous panel. Three possible conditions are covered: prescribed
boundary flux qB, or boundary value ¢B’ or indeed a fixed value
¢fix for an internal node remote from boundaries.

* If the boundary flux qB is prescribed, the problem is much

simplified as qw= q,. Hence b=0 and ¢ = qB.

* If the boundarvaalue ¢B is prescribed, qw may then be reduced
to the linearised form shown, with b and ¢ having the indicated
values. If the relevant boundary of the calculation domain is a
wall, a& will be obtained from wall functions.

* Sometimes (e.g. for flow past an obstruction) ¢ needs to be
fixed within the flow field. The "false" source treatment becomes

a very wuseful tool in such cases with the desired condition

achieved by setting b and c¢ as shown.

18



2.6.1 Finite Difference Momentum Equations: (I) Outline of Treatment

Development same as for scalar variables apart from:

%

Control volumes centred around velocity locations (see section
.4.1)

Pressure-gradient purposely separated from remaining sources

B

>

Interpolation practices for cell-boundary velocities, densities,

etc. (to ensure continuity of total flux)
* E.g. u-equation pertaining to shaded N/H
volume is: - -+ -
(ap- b)U, = ganUn + A (py- Pp) +oc U-cell

* Here, e.g. a=p UA f + Wit n/h Pf1

w W W ew w

£~ fap(Re) 5 Re = p U §xpu/u - W > e o
pwa= (pWUW + pPUP)/2 ; Aew= Synsgzhl + P A

s/1
suffix HD = hybrid difference - 5

* While the foregoing derivation of the fde's is based on scalar
variables, the finite-difference momentum equations are derived in
similar manner except that the control volumes are displaced be-
cause the velocities are displaced. The convention is otherwise
the same.

* However, the pressure gradients are singled out for later atten-
tion in the derivation of the "pressure-correction" equation.

This is a consequence of the special solution procedure adopted,
and it is dealt with in the next chapter. .

* The cell-boundary velocities, densities, etc. are interpolated
so as to satisfy continuity of total flux.

* Here, an example of the U-momentum equation is given. Note the
similarity with panel (2.4.6). fw is now function of the cell-

boundary Reynolds number. Also note how pwa is evaluated.

19



2.6.2 Finite Difference Momentum Equations: (I1) Insertion of

Boundary Conditions

* Velocity tangential to boundary

* Usual b.c.’s are: prescribed stress, o’
prescribed velocity UB; or prescribed U UB relation

(i.e. drag law)

* All may be inserted by manipulation of flux and

source coefficients

* Velocity normal to boundary

Standard practices apply again (see however 3.4.3)

* Various boundary conditions may be encountered. Where a tangen-
tial velocity is prescribed at the boundary, through flux or drag
laws, for example, the appropriate value may be inserted by way of
the usual source treatment.

* Velocities normal to the boundary may be prescribed as being
fixed, or as a function of the boundary pressure. When the
velocity is fixed, the correct value may be inserted through
source treatment. However, when the velocity is a function of
pressure, reference to the pressure equation 1is necessary —

further comments on this point is made in panel 3.4.3.

20



2.7 Summary

* Use of "primitive" variables and Eulerian co-ordinates

* General form of pde’s illustrated: all conservation equa-
tions of similar form except that for mass

* Staggered grid system

* Derivation of fde'’s by control volume analysis with
emphasis on accuracy of total flux

* Use of hybrid scheme to procure numerical stability and
accuracy

* Manner of insertion of various boundary conditions il-

lustrated

* This chapter will have given the reader considerable insight
into the manner in which both pde’s and fde's may be derived from
the physical laws. In setting up the equations, "primitive" wvari-
ables (U,V,W,p) and Eulerian co-ordinates are employed, and it has
been shown that all conservation equations of similar form (except
that for mass).

* In the derivation of the fde's, a staggered grid system is used
with the advantage that pressure gradients are easy to evaluate
and velocities are most conveniently located for calculation of
convective fluxes.

* The fde’'s are directly obtained from the conservation and macro-
scopic physical laws by a control volume analysis: this promotes
correct expression of the conservation laws; also, the concentra-
tion on total-flux expressions ensures maximum accuracy for 1-D
problems. The approach adopted highlights the fact that the con-
servation laws mneed mnot be expressed first as differential
equations before deriving the fde's.

* A hybrid differencing scheme, in which central differencing is
used at low |Pe| and upwind differencing at high |Pe], is
employed. This offers good compromise between accuracy and

economy, and is numerically stable.

21



* The general method of inserting boundary conditions through

linearized source treatment has also been illustrated.

22



CHAPTER 3 SOLUTION OF THE FINITE DIFFERENCE EQUATIONS

3.1 Purpose and Scope of Chapter

1. Purpose: To describe the general 1line-by-line iteration
procedure of solving all the f.d.e.’s, and the special f.d.
SIMPLE procedure for the hydrodynamic variables.

2. Contents:
* The line-by-line iteration procedure
* The SIMPLE procedure algorithm for the main hyrdo-
dynamic equations
* Miscellaneous matters: convergence, under-relaxation,

etc.

* The aim of this chapter is to describe the method of solving the
finite difference equations: this involves the brief description
of the line-by-line procedure for all equations, and a special
algorithm (called SIMPLE) for the hydrodynamic equations.

* The contents of the chapter include both the line-by-line proce-
dure which employs a Tri-Diagonal Matrix Algorithm, and the SIMPLE
algorithm. Some miscellaneous matters, including convergence and

accuracy of the solution procedure as well as an under-relaxation

method, are also covered.



3.2 General Solution Procedure: Line-by-line Iteration

(Background)
* Procedure is iterative, line-by-line & ¢ &
A\ 74 3
method
* Re-cast equation for point P as ) Py d}
follows:
apfp= ayfy + aghg + © © ¢ @
c'=a_ ¢ + .. + a. . + a o + ao¢0 + c
B’ T wPw T e T APl T %pPpe D -+ @
(known) and ap = ap- b + ap
& o &
Y oL o
jt
I . &
© L &
& - &
> . 5>
+Line
Solved
O = temporarily known

® = unknown



* Set of equations for points j=2 to j=n on N-S line becomes:

"Bpfy * Doty - epdy =%
"B3by * D3ty - agd, - <3

-Bid. + D.¢. - a.o, = c,

Pi%5-1 % P3%5 7 %% ]

-ﬂn¢n-1 + Dn¢n } an n+1 Cn

[

where D = a a ay B = ag ; ¢1 and ¢n+1 are known.

’
P ’

* Set of equations easily solved by Tri-Diagonal Matrix Algorithm

(TDMA)

* The general solution employed is an iterative line-by-line (LBL)
method: 1initial guess of values for the flow field is made, and
these are improved upon from one line to the other.

* For the solution of the equations for points on each line (e.g.
N-S line), values on neighbouring lines are assumed to be tem-
porarily known. The equation for each point on the N-S line then
reduce to one where only three values (¢P, ¢N and ¢S) are unknown.
* The set of equations for all points on the N-S line then take a
particularly simple form in which the non-zero coefficient matrix
is tri-diagonal. Note that, generally, ¢1 and ¢n+l will be known
in our application.

* Equations of this type are especially easy to solve by the Tri-
Diagonal Matrix Algorithm (TDMA), the main features of which is

subject of the next panel.

25



3.2.1 General Solution Procedure: Line-by-Line Iteration (TDMA)

* Re-arrange jth equation as

By = Qubyg *+ Ryby g+ 2
where
—a./D. , R.= B./D. , Z.=c'/D.
Qg= @y/Dy + Ry= £y/Dy 3= ¢3/P5

* Then equations become:

97 Qby F Rydy v 2, > ()

37 Qb T Rydy + 23 = (D)

b= Qg + Ryby + 2, - (iiD)
! I

¢n= Qn¢n+1+ Rn¢n-1+ z

* ¢1 is known. Hence, eliminate ¢2 from (ii), and ¢3 from

(iii), etc., yielding a general formula for ¢j:

.= A.¢, + c!’ -+ recurrence
¢J J¢J+1 j

relation

where

A= a./(D. - B.A, ) , c''= (B.c''  + c')/(D.- B.A.
3= %3/ Py - PRy ) jm Byeyliy t o)/ (Dym Bhy )
-+ recurrence
formulae

(Note: A.= 0, and c" ¢ )




* Here, the highlights of the TDMA are illustrated.

* By straightforward algebraic manipulation, the set of equations
is converted into one expressible by a general, recurrence rela-
tion for ¢j as indicated in the panel, with the coefficients Aj
and cj' obtained from recurrence formulae.

* It is from this general recurrence relation for ¢j that all
values for ¢ from j=2 to j=n are calculated, and the process is
particularly easy as one only needs to evaluate the A's and c¢''’s

in order to get the ¢'s. Note that A1= 0 and ci'= ¢l.

27



3.2.2 General Solution Procedure: Line-by-Line Iteration

(Application)

* Calculate and store A's and ¢’'’’s from j=2 to j=n from
recurrence formulae
* Finally, obtain ¢j's from general formula, starting with

¢n and up to ¢2 in that order. (Note: ¢l and ¢n+1 must be

known)
* "Traverse" = movement along fixed grid line
"Sweep" = movement from one grid line to the other

* Apply TDMA along N-S line ("traverse"). Proceed to neigh-
bouring line, using most recently-calculated ¢'s in c¢’.

Scan through the whole volume.

* Apply TDMA along E-W line ("traverse"). Proceed to neigh-
bouring line, using most recently-calculated ¢'s in c’.

Scan through the whole volume.

* Apply TDMA along H-L line ("traverse"). Proceed to neigh-
bouring line, using most recently-calculated ¢'s in c¢’.

Scan through the whole volume.

* "Sweep" through grid, line-by-line, and repeatedly until
desired solution obtained: many variants possible

* Next timestep

* To apply the TDMA to the N-S line, the A's and c¢’''’s are calcu-
lated from j=2 to j=n from the recurrence formulae.

% Then, the ¢.'s are obtained from the general recurrence rela-
tion, starting with ¢n and ending with ¢2 in that order.

* To apply the TDMA to the entire field, the process is started
from the N-S line (traverse) at I=2, K=2. Next, it 1is repeated
along successive neighbouring N-S lines, i.e. I=3, I=4 ......
I=NI-1 at K=2, with most recently-calculated ¢'s used in c’' (see
panel 3.2). Then the plane is switched to K=3 and the process con-
tinues at I=2, I=3 ...... The entire grid is T"swept" through.

After this TDMA 1is applied along W-E lines starting at I=2, K=2
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and the process continues at the neighbouring line at I=3. And in
a similar pattern the field is swept through.

Finally TDMA is applied along H-L lines starting at I=2, J=2 and
the process continues at I=3.

* The entire grid is swept through, for the three traverse direc-
tions, and as many sweeps as necessary may be employed until the
desired solution is obtained.

* Do the same procedure for the next timestep until final timestep

is reached
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3.3 Special Procedure for Main Hydrodyvnamic Equations:Introduction

* Why a Special Procedure?

* Unknown variables are: Main hydrodynamic variables - U,V,W,p
Additional Scalar variables - k,e,T

* Each unknown requires own equation

* k,e,T satisfy this requirement

* U,V,W also satisfy this requirement (in momentum egns.)

* p does not (remaining continuity eqn. does not contain p)

* Hence special measure required to obtain p

* The Special Procedure:

* Procedure employed is called SIMPLE (= Semi-Implicit Method
for Pressure-Linked Equations) algorithm (Patankar and

Spalding, 1972)

* The fde'’'s for non-hydrodynamic variables (k,e,T,etc.) can be
solved for directly by the TDMA. However, an additional procedure
is employed together with the TDMA to solve for the hydrodynamic
variables: this panel seeks to satisfy the enquiring mind about
why some special, additional measure is needed.

* To solve for a particular ¢, an equation where that ¢ is the
dominant variable is needed. All the non-hydrodynamic wvariables
satisfy this requirement. U, V and W also satisfy this requirement
via the momentum equations.

* However, the pressure has no equation of its own. There is an
additional equation — the continuity equation -— but pressure
does not appear in it.

* Some special measure is therefore needed to obtain the pressure.
The measure employed is one where the momentum equations are
solved by first estimating a pressure field, the obtaining es-

timates of U,V and W, and finally correcting the pressure field



into conformity with the continuity equation. This procedure

known as SIMPLE, and it is the subject of the next few panels.

is
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3.4.1 The SIMPLE Algorithm: (I) Algebraic Development of Procedure

* Definitions

* b * ’ * b
p=p+p ; G=G+G ; U=U+TU (G=pU)

b

*
* p is the "guessed" value of p; p is correction on guessed value

’ ’

*  _* *
* G, U correspond to guessed pressure field p , and G , U

s * 9
are corrections (for nearly-incompressible flow G = p U )

K

b
* Use linearized flux relation to obtain G ’'s in terms of p '

b b b *
’ AW(pP_ Pw) . ) * an
G = - ————" | with X = - p éx — e
835 PW a¢ * *)
Pp~ Py
+% ’
b * 6Uw b 3 3 GW k)
or, G = p ;z—;j——;; (py~ Pp) *Py o *Pp
Py~ Pp *pu

* From momentum equation (see panel 2.6.1), using * wvalues,

*
aUW Aew , * , ,
D = » = *) = b ; thus Gw= P Dw(pw- pP)
Py~ Pp P

* This panel illustrates the preliminary algebraic manipulation
involved in the development of the SIMPLE algorithm,

* First, the field of p 1is guessed (Starred values), and the
momentum equations may then be solved by the LBL method to yeild
corresponding  values U*,V* and W*. The resulting set of
"incorrect" wvalues (p*,U*,V* and W*) require the imposition of
some corrections (primed wvalues: p,,U,,V’ and W’), as defined in
the panel.

* Advantage is taken of the staggered grid system in deriving the

corrections for the velocities or flux (G ) by expressing the G 's



2 )
as coefficients X 's times gradients of p ’'s. The coefficient X

"

is further obtained from linearization of "resistance law about

*
Pp-

I *
* Employing the momentum equations in terms of UK,V ,w“ and p ,

)

the expression for G; finally reduces to a simple form, with coef-
ficient Dw in terms of ap and b.

* Note: It is assumed that the fluid is nearly incompressible. If
there are appreciable compressibility effects, care is mneeded in

calculating the p's.
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3.4.2 The SIMPLE Algorithm: (II) Pressure-Correcton Equation

* Mass Conservation equation N

For a typical main control volume: [—— S o —-1

AR A |

G 6V+GA-GA+GA-GA ® -+ - —®
t e€e WWwW =nn ss P | W
+ GhAh_ G1A1= Sm &V |

o
where ?t?,(pP- pP)/At

and Sm (ideally zero) is generation == t= -

per unit volume Gls: ?svs

* Pressure-Correction Equation

<% ’
Substituting GW= G+ G etc. in mass conservation equation

gives:
y H
(aP-b)pP = Eanpn + MP + c
where
aP= gan ; aw= wawAw , etc.

M. = G*A G*A + G*A G*A + G*A G* G, 6V
p= O™ Cefle® Cfigm Gt €181 Gy Cp
= residual mass source associated with guessed G 's

* If the velocities are correct, the mass conservation equation

0?1

will be satisfied and the mass source SmA will be zero. However,

* % * *
the starred velocities (U ,Vv and W ), and hence G , will in



general not satisfy continuity, but will produce a net mass
source.
* The major objective, therefore, is to correct the velocities and

pressures so as to eliminate the mass source.

1.
N

* The previous panel has already indicated how U*,V*,W*and G as
well as U,,V,,W’ or G, may be obtained. Now, substituting

GW= G*+ G’, etc. into the mass conserYation equation yields a
Poisson equation for pressure-correction p

* Solution of the p’- equation, also by the LBL method, therefore
completes the process, of seeking to obtain the desired set of
corrections U’,V,,W’ and p’which are required to make up for

* % % *
U,V ,W and p .
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3.4.3 The SIMPLE Algorithm: (III) Boundary Conditions for Pressure

Correction

* When normal velocity UB is prescribed

* UB must remain unchanged, hence:
*

Uy~ Up~ U = Dy(py- pp) = 0
* Hence set Dw= 0 (or, a= 0 in pP)

3

* Amounts to prescription of zero normal gradient on p

* Boundary pressure therefore not required

* When pressure Dp is prescribed
* = M =
Now Py = Py consequently Py 0
* Uw and Dw either obtained in usual way or from special
momentum equation, e.g. linearised Bernoulli:
3 ’
Uw= opp + B ; hence UW = opp

* Insertion by standard procedure

* Here, an illustration of some possible boundary conditions are
given.

* Where normal velocities are prescribed, no further pressure cor-
rections are necessary. Hence, e.g. for a west boundary, the
coefficient Dw must be zero, and this may be achieved by setting
ay = 0 in the pressure equation.

* When the boundary pressure is prescribed, e.g. Py~ Py the pres-
sure correction pé must be zero. Then Uw and Dw may be obtained in
the wusual way, or from special momentum equation: for example,
linearization of Bernoulli’s equation

(Pyeag = Pyt L/20U)

* The final form may often be inserted through the wusual source

treatment or by other more convenient forms.
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3.4.4 General, Unified, Solution Procedure: Qutline of Steps in

Complete Solution Procedure

(1) Guess or initialise fields of all wvariables

(2) Assemble coefficients of momentum equations and solve
for U*,V* and W*, by means of LBL procedure, using
prevailing pressures:

b U* U* A * *
e.g. (aP- ) p = g a U + ew(pw— pP) + c

(3) Calculated coefficients and mass sources for p, by LBL
procedure. Evaluate U,'s T e.g. U;= Dw(p%- p;)
(4) Obtain new values of p,U,V,W from
P = p*+ p’ ;0 U = U*+ U, ;0 Vo= V*+ V, ; W= W*+ W,
(5) Assemble coefficients and solve equations for other
variables by means of LBL procedure
(6) Test for convergence: if not attained, use prevailing
fields as new guesses and repeat from (2).
(7) Next timestep. Use calculated fields from previous

timestep and repeat from (2) until final timestep.

* The various stages in the SIMPLE algorithm may now be combined
with the solution of equations for the non-hydrodynamic variables
in order to form a general, unified, solution procedure.

* The fields of all variables (U,V,W,p,T,k,e,etc.) are guessed or
initialised.

* The coeeficients of the momentum equations are assembled, and
the improved wvalues U*,V*,W* are then solved for by means of the
LBL procedure, using prevailing pressures. More than one "sweep"
may be made, but without updating the coefficients. Note: At this
point, the momentum equations are satisfied but not the continuity

equation.
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* The coefficients of the p - equation are next assembled and p,
solved for by the LBL method. Usually more than one sweep may be
necessary without updating the coefficients.

* The U”s ,V,’s and W,'s are next evaluated. Then, new values of
p, U, V, and W are obtained from p = p* + p’, etc.

Note: At this point continuity is exactly satisfied, but the
momentum equations are no longer satisfied.

* Next, the coefficients of the non-hydrodynamic equations are
assembled (one variable at a time), and the relevant ¢’'s solved
for by means of the LBL procedure. The number of sweeps required
without updating the coefficients for each ¢ may depend on the
nature of the problem, but 1 to 3 sweeps may often be sufficient.
* A test for convergence is made (see next panel), and if this is
not attained, the prevailing fields are used as new guesses and
the process repeated is from (2).

* Next Timestep. The prevailing fields are used as old timestep
values and as the initially guessed values for the next timestep.

The process is repeated from (2) until final timestep is reached.
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3.5.1 Miscellaneous Matters

(1) Convergence
* All equations satisfy conditions for convergence of

matrix (Scarborough, 1966) that
laP- b| =< Z|an| , provided b <= 0
n

* Main convergence test based on "residual sources"
1] : . _ - - -
(R¢ s) defined by: R¢ (aP b)qSP Ean¢n c

We require that )|R < A are

n ARy ver 0 A Ry

constants

(2) Under-Relaxation

* Non-linearity of equations necessitates under-

relaxation: ¢§ - f¢P+ (l-f)¢;1d :

where f = wunder-relaxation factor; ¢§, ¢P= ¢P of
present iteration with and without under-relaxation;
¢;1d= ¢P of previous iteration

* All our equations satisfy the conditions under which a succes-
sive substitution method can converge (Sometimes called the
Scarborough Criterion), since b is usually =< 0.

* In the process of the solution procedure, convergence 1is as-
sessed at the end of each iteration on the basis of the "Residual-
Source” criterion which compares the residual sources of each fde
with some reference value R¢,ref (typically the fixed flux of the
relevant extensive property fde into the domain of calculation).
By so doing, it is ensured that the fde’s are solved. (Note: A is
typically of order 10—3).

* By the use of an appropriate relaxation method for an iterative
process, convergence may be improved, and, in some instances,
divergence may be avoided. Since the equations solved are non-

linear, under-relaxation as illustrated in this panel proves to be

a very useful tool.



3.5.2 Miscellaneous Matters (Continued)

(3) Allowance for mass-flow imbalance

* If mass flows do not satisfy continuity, all an’s may be zero

* Equations the singular, since aj= Zan 16
n
* Add "false" linearized source, S_. : G G
. old £ we oo
Sf - Imnet!(¢P ) ¢P) - bf¢P * e iGs
where m__ = )m_ , withm = G A , etc. ; suffix f = false
net ~'n W OwWw

* Form of fde solved the becomes

o 0,0
(ap- b + a- b)gp = gan¢n + c + ap¢p +cp

(4) Accuracy

* Function of degree of convergence and grid
* Main source of error is false diffusion, which occurs when

Peclet number is large and flow is inclined to mesh

* If the mass flows do not satisfy continuity, e.g. as shown in

'

the diagram in this panel, a situation may arise where all a,

S
are zero. The fde'’s may then become singular.

* The solution is to add a “"false" source through the linearized
source treatment. The form of the final fde then has additional
constants bf and Cg- Note: While this addition of false source
makes provision for stabilizing the solution procedure, it has no
effect on the final solution.

* The accuracy of the solution procedure will in general be a
function of the number of grid nodes employed. For each flow con-
figuration, a grid-independent solution is sought by increasing
the number of grid lines until no further changes are observed in
the final solution.

* A major source of error at high Peclet number in all finite dif-

ference schemes is "false" diffusion which occurs owing to
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evaluation of ¢P as a weighted mean of surrounding ¢'s. However,
its effect may be made considerably small by arranging the grid
such that the stream lines are parallel to the mesh, or reducing

the cell size which leads to smaller Peclet number.



3.6 Summary

* Difference equations solved by LBL iteration procedure

* Using primitive variables, solution of momentum equations
similar to that for scalar transport, provided pressure
field is available.

* Pressure recovered by "guess and correct" procedure called
SIMPLE algorithm which employs a pressure-correction equa-
tion based on continuity and momentum equations together
with linearized resistance law.

* Major source of error is "false diffusion" which affects

all fd schemes at high Pe.

* All the fde's are solved by LBL iteration method which employs
the TDMA.

* A consequence of using "primitive" variables (U,V,W and p) is
the need to obtain the pressure field by some special method. The
procedure employed in doing this is the SIMPLE algorithm: this
involves a "guess and correct” method, with the pressures obtained
by solving a pressure-correction equation whose basis are the con-
tinuity and momentum equations coupled with linearized resistance
law.

* "False diffusion" poses a major threat to accuracy at high
Peclet number for all fd schemes. Solution is to set grid mesh

parallel to streamlines, or to make cell Pe's small.
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CHAPTER 4 INCORPORATION OF TWO-EQUATION TURBULENCE MODEL

4.1 Purpose and Scope of Present Chapter

1. Purpose: to illustrate the incorporation into the numeri-
cal procedure of a turbulence model of the two-equation,

effective-viscosity variety.

2. Contents:

* Basis of the turbulence model

* Differential equations for steady and transient 3D tur-
bulent flows

* Finite difference forms of the equations and boundary
conditions

* Factors influencing stability, accuracy and economy

* This chapter seeks to illustrate the incorporation into the
solution procedure of a turbulence model in which closure of the
time-averaged equations of mean flow is obtained from two tur-
bulence quantities k and € which are derived from their own
transport equations.

* The contents of the chapter include a brief introduction to the
turbulence model, statements of the differential and finite-
difference equations, and the boundary conditions. Also discussed

are the factors influencing stability, and economy.
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4.

2

Two-Equation Model: An Introduction

* Instantaneous: Ui= Ui+ u, ; d=9¢+0¢

* Time-averaged Equations of mean motion:

ap a
% —~L _— =
ar ¥ axi(pUi) 0

ap . au,
ax. " ax. (3%, )* Sy,
1 1 1 1

d ) d —
* = = = =— (- -
87<pUi)+ Bxi(pUjUi) axj( puiuj)

a_ a_ _98 . — 4 u 8¢
*ar(P9) * 53 (PU8) = 5p Crwe) + oo (- go )+ S4
i i i "¢ i

where g = laminar viscosity; a¢= laminar Prandtl number

* Closure: 'gradient transport hypotesis' (Hinze, 1976):

i’j t' 9x, %, ’ i ax,
J ¢, 1
where Bo= turbulent viscosity ; o¢ = turbulent Prandtl num-

ber
* Dimensional analysis gives p= Cppkz/e ; Cu= constant
at  high Reynolds number

* k and e from their transport equations

* This panel illustrate the basis of the turbulence model employed

in TEACH3D.

Using the familiar Reynolds method, the instantaneous values

(Ui’g) and fluctuating components’(ui ©).

*

Using cartesian tensor notation the time-averaged equations for

continuity, momentum and scalar transport take the form given in

the panel. Unfortunately, these equations contain unknown Reynolds

stresses pu U, and scalar fluxes pu @: these turbulent diffusional
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fluxes play a significant role in determinating the flow behaviour
as the fine-scale effects are expressed through them.

* The method employed in obtaining closure is an 'effective vis-
cosity’ model in which the unknown turbulent diffusional fluxes
are expressed by means of 'gradient transport hypotesis’ wherein
the fluxes are assumed proportional to the gradient of mean flow
properties. The constant of proportionality is B oT “t/a¢,t'

* O¢,t is often assumed known, and from dimensional analysis, B
turns out to be a function of the turbulent kinetic energy k and
its dissipation rate e. k and e are derived from their own

transport equations: hence the name 2-equation model. Note: the

form of e shown in the panel is for high Reynolds number.
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4.3 The Equations of Mean Motion in 3D

* Continuity: g% + g; (pU) + %; (pV) + g; (pW) = 0

* Momentum, x-direction:

ad d d a
5;@U)+5;<mm>+5§<mw>+5;<mm>=

S L8 au 3u 38U

ax ‘Feff 5§) (#eff 6y) (#eff dz

% + ax 3z) T8

U

* Scalar transport (e.g. ¢ = T, k etc.)

57 + 5o (U8 + S (oV8) + S (o) -

+ 8 0 9% L8 (p 9,

ag
ax eff ax ay eff 3y )+ S

52 Terf 32 4

* Auxiliary: SU is given by
i

ou,

- _]
U. 8x, (#eff %, )
i j i

S

BN R N A AT

* It may be useful to recast the time-averaged equations for con-
tinuity, momentum (x-direction only) and scalar transport for 3D,
transient turbulent flows to which TEACH3D adresses itself.

* Here, and T are the effective exchange coeffients which

Petf eff

represent summation of both laminar and turbulent transport ef-
fects. At high Reynolds number (i.e. fully turbulent flows), to
which the k-e¢ model is restricted, the molecular transport effects

p and T' are comparatively neglible.

* The source SU covers additional terms associated with non-
i
uniform viscosity. Their influence is generally small except where
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changes in fluid property have considerably effects. The source

SU is deactivated in TEACH3D; it is, however, easily activated by
i

replacing the 'C’ comment characters in column 1 of each line

with blanks in the subroutines CALCU, CALCV and CALCW.



4.4 The k and ¢ Equations

* Turbulence Energy k:

3 3 3 3
ar (PR F gy (PUK) + 52 (pVk) + 57 (pWk) = G - Cppe

e gk, , 8 ok, ok,
x ere/%k 3% T ay Wert/%k 3y) T 3z Pers/%k 32

* Energy dissipation Rate, e€:

i) 8 ) 3 € 2
a‘r(pe) + ax (pUe) + 5§ (pVe) + 37 (pWe) = Cl i G - Czpe /k

55 ars/o 5 * 3y (Pere/%e ay v Lo, 35
where
G=p L 21 (6U2+(av2 (awzl+(%+%)2+ (%’S“Lgli‘z

* C's are constants at high Reynolds number.
* Constants (Launder and Spalding, 1974):
= 0.09; C =1.0; Cl 1.44; Cz= 1.92; ak=l.0; ae=l.3
which correspond to the FORTRAN symbols CMU, CD, Cl,
C2, PRTE and PRED.

* This panel shows the forms of the required additional k- and -
equations. Note the similarity between these equations and those

of the mean flow (panel 4.3) when the substitutions Sk= G - CDpe
5 ‘

€
and Sé= C G - Czp X are made.

£
1k
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* G represents generation of k from the mean flow by turbulent

shear stress and, to be precise, e¢ is the rate of viscous dissipa-

tion of k to heat by the smallest turbulent eddies.
* The C's and o's are generally emperical functions, but they turn

out to be constants for high Reynolds number flows (note cor-

responding FORTRAN symbols).
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4.5 Finite Difference Equations for Turbulent Flows

1. Equations of Mean Motion: U, V, W and ¢ as for lamimar
flows apart from
* ' '
replacement of u'’s by Bogg and I''s by Feff
* insertion of additional source terms in momentum equa-
tion (which have to be set explicitely by the user, see

panel 4.3)

2. Turbulent Equations: treatment of k and ¢ as for ¢'s,

with S. and Se as follows

k
2. %
C CDp kPSV
*fskdv=bkp+c,withb=-—————-———“ - , C =G 6V
Fe
C *SV c *G Y
p € €
#[SdV=b eyt G, withb=- 22 ca= 12
kP kP
where
* * *
* §V = cell volume; kP € and Be = previous values
Ue- Uw 2 vn~ Vs 2
* G =
G=p 2 [ () +( 5y )T+ o+ )
ew ns

* Well, one might ask if our finite difference procedure developed
in Chapter 2 and 3 do change for turbulent flows. The answer is,
of course, no.

* For the equations of mean flow, all that needs to be done is to
replace pu's by Pogg ans T's by Féff, and to insert any additional
source terms by means of the linearized source treatment.

* Indeed, the k and ¢ equations are not even a shade different
from the other scalar-transport equations (see panel 4.3) if we

note that Sk and S€ (panel 4.4) are just additional source terms



which are conveniently introduced through the normal source treat-
ment.

* A point to note about the treatment of S and S6 is that in

k
either case b is negative which promotes stability.
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4.6 Boundarv Conditions: General Remarks

1. At Inlets: distributions of U, V, W, ¢, k and e are
3/2
/2 L)

specified (or estimated, e.g. ¢ = const k

2. At Outlets: specification 1is normally wunimportant (at
large Reynolds number); wusual practice 1is to set normal
gradients to zero, and to obtain exit velocities from mass
balance.

3. At Walls: special formulae (wall functions) and other
modifications necassary due to steep variation in
properties, and inadequacy of the turbulence model at low

Reynolds number.

* Having got to grips with the equations of turbulent transport,
both in the finite-difference forms and otherwise, we now turn our
attention to the boundary conditions.

* At inlets to computation domains, the distribution of all wvari-
ables 1is specified or estimated. More often than not, € will be
estimated from dimensional analysis based on the fact that tur-
bulence 1is characterized by 1its energy k and a length scale L
representing the size of the energy containing eddies. The other
variables can often be prescribed from knowledge of the particular
flow situation.

* At outlets of the computation domains, and at large Reynolds
number, upwind difference renders specification of variables unim-
portant. The wusual practice is to set normal gradients to zero,
and to obtain exit velocities from mass balance.

% Near walls, the locai Reynolds number becomes very small and our
turbulence model, which is designed for high Reynolds number, be-
comes inadequate. Both this fact and the steep variation of

properties near walls necessitate special attention for grid nodes
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close to walls. This rather important aspect forms the basis of

the next few panels.
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4.7.1 Basis of Wall Boundary Conditions: i) Equations of Mean

Motion

1. General: one-dimensional, constant shear-stress and heat

transfer layer

u +
2. Momentum Equations: 7 = (g + u ) 9y ,0r I . (1 + —E) 9uv
t’ dy T u +
w ay
* For y+s 11.63, ut/ uw<<1l, 7= T thus U+ = y+
+ +
* For y > 11.63, ut/ u>>1, r= T thus U =&k vy UT

(see Hinze, 1976)

+ 1 + _1 +
thus U = p loge(y ) + const = - 1oge(E y )
Uy
L S C e =
where y = — s U=g5;U-~- j(rw/p) : k = von Karman

T

constant (=0.435) and E func{roughness, shear stress

variation} (=9.0).

3. Wall Shear Stress: Ur= [ L A— ]

+
1oge(Ey )

where V= resultant velocity paralell to the wall

* This and the next panel give the background to our wall treat-
ment for the the equations of mean flow. Generally, close to the
walls, a 1-D couette flow analysis is made. The layer is assumed

to be one of constant shear stress (7 = rw) and constant heat flux
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(q = qw): these conditions are, however, true only for an imperme-

able wall, with zero or mneglible stream-wise pressure gradient
(i.e. rw/ldP/dxl >> y)

* The momentum equation can then be reduced to a particularly
simple non-dimensional form as shown in the panel.

* The region close to the wall is one where the local Reynolds
number changes considerably, and the approach adopted is dependent
upon the value of the local Reynolds number, y+, based on the dis-
tance from the wall and the friction velocity, UT

* The wall region is made up of three zones (Hinze, 1976): the
viscous sublayer (0 < y+< 5) where viscous effects dominate, the
inertial sublayer where the flow is assumed to be completly tur-
bulent but r = T and the transition ( or 'buffer’) zone (5 <
y+< 30) of vigorous turbulence dynamics where the flow is neither
completly dominated by viscous effects nor completly turbulent.
Our approach, as is indeed done in many engineering calculation,
is to dispose of the 'buffer’' layer by defining a point y+=ll.63
(where the linear velocity profile in the viscous sublayer meets
the logarithmic velocity profile in the inertial sublayer) below
which the flow is assumed to be purely viscous and above which it
is purely turbulent.

* The forms to which the momentum equation finally reduces for y+s
11.63 and y+> 11.63 are rather familiar. Note that « is the von
Karman constant, and E is integration constant that depends on the
magnitude of the variation of shear stress across the layer and on
the roughness of the wall. The value of E given in the panel is
for smooth walls with constant shear stress.

* Effects of mass transfer across the layer (suction or
transpiration), and severe pressure gradients may be incorporated
by modifying E which will then no longer be constants.

% The wall shear stress is obtained from the log-law of the wall
from which both k and € is calculated (see i.e. Rodi, 1980). It
may be noted that this type of wall function is different from
that commonly used [also in TEACH-T; see Gosman and Ideriah

(1976)] where the friction velocity UT is calculated from a, near
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the wall, modified k-equation. The advantage of using the

present

type of wall function is that it can be used in connection with

zero- and one-equation turbulence models.
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4.7.2 Basis of Wall Boundary Conditions: ii) Equations of Mean

Motion (continued)

dT
4. Scalar Transport (e.g. ¢=T): q = (T + Pt) cp ay or
g L, t,a
* For y+$ 11.63, T >> Ft, q=4q,; thus T = a¢ y+

* For y+>11.63, << Ft, q =9, Pt/p = Vt/a¢ I UT/0¢ e

g o
2. 1og_(y") + Cploy) =0, (U4 P(;ﬁ‘t ]

thus T =

* = . . — .
where T p Ur cp(Tw T)/qw, U¢ cpp/A ;
o = turbulent Prandtl number

* P(r)=9.24( r3/a-l)[l+0.28 exp( -0.007/1)]

o
where r = ;é (see Jayatillika, 1969)
$.t

* It 1is also of main engineering interest to be able to predict
heat-transfer characteristics of walls. The same treatment goes
for heat (or other scalar) transport as for the momentum transport
illustrated in the last panel: the corresponding non-dimensional

T-equation is shown in the panel.

* Note that constant heat-flux across the layer 1is . assumed.
Following similar lines as before, the distinguishing wall

Reynolds number y+ is 11.63. For y+5 11.63 transport is assumed to



be due solely to molecular activity, and the expression for the
heat flux parameter T4 is a simple one.

* For y+> 11.63, transport is assumed to be due entirely to tur-
bulence. The heat flux parameter T' becomes a logarithmic function

+ . . . .
of y with the constant of integration G expressible as a P-

function. There are many forms of the g—function, but the
particular form employed (shown in the panel) is due to
Jayatillaka (1969) and is valid only for impermable, smooth walls.
* For rough, impermeable walls, Jayatillaka also indicated how E
and the P-function may be made as functions of the 'roughness
height’. However, there is yet no information on how E and the P-

function may be modified to take account of simultaneous effects

of mass transfer, roughness and pressure gradient.
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4.8 Basis of Wall Boundarv Conditions: iii) Turbulence Energy and

Dissipation

1. General: 1-D, constant shear stress, 'equilibrium’ layer

(Inertial Sublayer)

. . s . — dU
2. k-equation: production = dissipation ;thus -uv 55 =€ ,

yielding

T
w

1/2
c
"

* k =

* €=U >/(xy)

3. €e-equation: * Reduces to Cl= C2- .‘cz/(a6 C”l/z)

2 1/2
* Thus g, =K /(C2— Cl)/Cp

* In this panel, the basis of the wall treatment for k- and e-
equations 1is presented. Again, the approach is based on 1-D,
constant shear-stress couette layer.

* The approach adopted 1is strictly valid only for the inertial
sublayer where the flow is assumed to be completely turbulent,
approximately 30<y+<100 (see Rodi, 1980). In this region, the lo-
cal rate of production of turbulence is balanced by the <viscous
dissipation rate e¢e. This local equilibrium forms the main basis
for our wall treatment.

* The e-equation reduces to a form which indicates modification of

o, for this region.
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4.9 Incorproration of Wall Boundary Conditions: i) Momentum

Equations.

1. Tangential Velocity:

S

[ 5XPW N
| -
. | e
y —
f
l v |y
|

e

* Up from usual momentum balance, but with usual shear force

(FS) expression supressed by setting a_= 0; then
* For P within the turbulent region (y+> 11.63):

2
Fo= 7a8%pybp1™ - AU 0%pyby

* For P within viscous sublayer (y+s 11.63):

Fs= Ts8%pydn1= # Up8¥pyfy1 /Y,

* Fs incorporated through source coefficients b and G

2. Normal Velocity

* No special practice required (nor for pressure)

* Attention is now directed towards the incorporation of the wall
boundary conditions dealt with in the last few panels.

* A tangential velocity UP for a node next to a wall is obtained
from wusual momentum balance. For the configuration shown in the

panel, the usual expression for a is no longer valid; therefore,
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it 1is set to zero. The correct shear force expression is now in-
+ + . . . .
serted from U ~ y relations of panel 4.7. The incorporation is

made via the source treatment.

* For velocities normal to a wall, no special wall treatment 1is

necessary.
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4 .10 Incorporation of Wall Boundary Conditions:

ii) Passive Scalar

Property (e.g. T)

]
- 5 1, ,
| ]

L ew
foa

bt}

* T from the usual energy balance, but usual flux (Q) ex-

P
pression supressed by setting aS=O; then

* For P within turbulent region (y+> 11.63):

QS= ! 6Xew6h1=

where T+= o [ U++ P(o

bt arns

+
) pUT<TP-TS) 6Xew5hl/T

* For P within viscous sublayer (y+s 11.63):

- B -
p (TP TS) 6x

é ewahl/yP

QS= 4 6ew6hl=

* QS incorporated through source coeffients b and C

* The incorporation of scalar wall boundary conditions follows

similar lines as for the momentum case: the usual flux expression

S
derived from the T ~ y+ relation of panel 4.7

a is supressed and the scalar flux Q contributed by the wall is

* Again, the incorporation is made by way of the source treatment
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4.11 Incorporation of Wall Boundary Conditions: iii) Turbulence

Equations

P

— ]
S A &

T
o)
<
[

* kP not from usual k-balance, but fixed according to ex-

perimental data for a flat-plate boundary layer:

k. =c¢ '1/2U 2
P u T

* Effective replacement by overwriting through source

coefficients, i.e. b=-1030; C=kP1030

* ¢p DOt from usual e-balance, but fixed by equilibrium

relations:
= U /(k y)
P T K yp

* Effective replacement by overwriting through source

coefficients, i.e. b=—1030; C=eP103O

* UT obtained from the log-law of the wall

* The turbulent energy k is fixed according to experimental data
where it is found that k/Uf is constant in a inertial sublayer. k
is fixed using the usual source treatment. »

* The expression for ¢, is obtained from a simpified form of the

P
k-equation for a boundary layer (production=dissipation), U§= -uv
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and the log-law of the wall. ¢ is also fixed using the source

treatment.

* The friction velocity is obtained from the log-low of the wall

(see panel 4.7).
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4.12 Numerical Stability (Convergence)

Instabilities may be provoked by:

* Bad specification of initial fields.

Cure: improve, or under-relax.

* Inappropriate choice of under-relaxtion factors.

Cure: adjust and re-run.

* Incomplete solution of equations during iteration.

Cure: increase number of application of line-iteration pro-

cedure.

* Numerical instabilities may be encountered for many complex
flows. It requires much computational art to achive convergence
for such complex flows. However, there are some three major cases
of instability for even simple flows:

* Firstly, a bad specification of the initial field may result in
instability. This case of instability may be eliminated by improv-
ing the 1initial field or by wusing improved under-relaxation
factors.

* Secondly, an inappropriate choice of under-relaxation factors
may in 1itself be a source of instability. The cure in such cases
is to adjust the relaxation factors.

* Thirdly, an incomplete solution of the finite difference equa-
tions during iteration may also provoke instability. The P’'-
equation is the most sensitive in this case because for each
iteration the starting P'-field is zero. Increasing the number of

application of the LBL method eliminates this instability.
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4.13 Accuracy

Accuracy is influenced by:

* Degree to which solution satisfies fde's.

To asses: examine residual sources.

* Degree to which solution satisfies the pde's.

To asses: refine grid.

* Location of, and conditions imposed at, boundaries.
To asses: adjust conditions and locations.

* Adequacy of turbulence model.

To asses: compare with experiments.

* Many factors contribute towards inaccurate solutions as shown in
the panel.

* Accuracy is influenced by the extent to which the solution
satisfies the fde's. The degree of satisfaction is mirrored by the
residual sources. For a satisfactory solution, the residual
sources should be of the order 10"3 of the reference values (see
panel 3.5.1)

* The degree to which the solution of the fde's satisfies the par-
tial differential equations also strongly influences the accuracy
of the solution. Generally, smaller and smaller grid size should
be used until grid-independent solution is obtained.

* In addition, both the conditions imposed at boundaries and the
location of the boundaries may affect accuracy of the solution.
Improvement can be obtained by adjusting the conditions and/or the
location.

* Finally, given a fully converged, grid-independent solution
based on satisfactory boundary conditions and location, how very
well the predictions reflect reality as compared with experiments
depends on the adequacy of the turbulence model. Indeed, in some

complex flows, inadequacy of the turbulence model may in itself
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also provoke severe instability. Note: it is important to
guish between computational errors/instability (which

eliminated) from those due to physical modelling.

distin-

can be
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4.14 Economy

Demands on computing time and storage may be minimized by:

* Good specification of initial fields (e.g. values from
previous calculation)

* Optimisation of grid: concentrate nodes in regions of
steep gradients and reduce elsewhere; minimize extent of
calculation domain.

* Optimisation of under-relaxation factors (trial and error)
* Realistic specification of convergence criterion (about 1%

on residual sources)

* Computer resources regarding computing time and storage are
limited, and measures should always be taken to minimize them.
This panel shows some of the major techniques in doing this.

* Good specification of initial field, e.g. starting from previous
calculation, reduces the computing time considerably.

* In addition, the grid should be arranged so that the nodes are
concentrated in areas where steep gradients occur, and reduced
where the gradient are nearly uniform. Reduction in the size of
the computing domain also proves very useful for the grid-economy.
* Also, by trial-and-error, the under-relaxation factors may
be improved upon in order to achive faster convergence.

* Finally, while convergence criteria in general should be based
on the residual sources being about 0.1 % of the reference values,
it should be noted (especially for complex flows) that about 1%

may suffice.
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4.15 Summary

* Two-equation viscosity model wused, employing transport
equations for k and e
* Main step required are:
* derivation of fde'’s for k and ¢
* linearization of sources in appropriate fashion
* use of wall functions to calculate shear stresses,
heat flux, etc near walls

* solution of fde’s as usual, with under-relaxation

* The practical route to prediction of turbulent flows is the use
of turbulence models to achive closure of the mean flow equations.
Here, a two-equation viscosity model, which employs transport
equations for k and €, is used.

* The additional steps involved in the prediction of turbulent
flows are the derivation of the fde's for k and ¢ with source
linearized in appropriate manner, the use of wall functins for
grids in the vicinity of walls, and the solution of the equations

by the usual LBL method with appropriate under-relaxation for k, e

and Fosg:
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CHAPTER 5 THE STRUCTURE OF TEACH3D COMPUTER PROGRAM

5.1 Purpose and Scope of Present Chapter

1. Purpose: to describe the capabilities, principles of or-
ganisation and structure of the TEACH3D program for
calculation of 3-D transient, turbulent and recirculating

flows.

2. Contents:
* Outline of main features of the program
* Details of grid specification, storage of wvariables,
control of iteration, etc.

* Description of individual subroutines

* This chapter aims at describing the capabilities and limita-
tions, and of the structure of the TEACH3D program.

* The contents include the main features of the program
(capabilities and limitations, programming philosophy, etc.), and
of the details of grid specification, storage of wvariables, etc.
Also included is a description of the structure and functions of

the individual subroutines.
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5.2 Capabilities and Limitations

1. Class of flows: transient or steady, 3D, variable-
property, laminar or turbulent.

2. Geometry and Grid: cartesian, arbitrary spacing.

3. Dependent variables: U, V, W, T, p, k and ¢ (others may
be added).

4. Programming language and computers: FORTRAN 77; various
computers e.g. VAX, CDC, IBM, UNIVAC etc.

5. Programming philosophy: teaching-oriented, modular struc-

ture, most subroutines independent of the type of problem,

* TEACH3D 1is essentially a general program for steady or tran-
sient, 3D flows. The flows may be laminar or turbulent, and of
variable properties - it can certainly be made to handle compres-
sible flows.

* The program is for flows which can be represented in cartesian

coordinates, and the grid may be non-uniform.

b

While the standard TEACH3D embodies equations for only U, V, W,
T, p, k and €, any other variables may be added with ease.

* The programming language is FORTRAN 77, and the program may be
run on various computers including VAX, CDC, and UNIVAC.

* As the program is teaching-oriented it is written in a very
simple a straightforward form which is really amenable to

modifications. Most subroutines are independent of the flow type.
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5.3 Program Flow Chart

MAIN
START &
finTT]
> CALCU
RESTR1} CALCV ———PROMOD ALl
CALCW BLOCK
{UPDATE}— CALCP LISOL
CALCT
PROPS] CALCTE
4 ~—CALCED
PRINT —{PROPS)
—UPDATH
{PRINT]
4PRINT]
—[sAvE]]

STOP

* Here the overall structure of TEACH3D is illustrated.

* There are eight general subroutines relevant for any particular
variable to be solved, namely, INIT, RESTRI, UPDATE, PROPS, SAVE1l,
PROMOD, LISOLV, PRINT, WALL and BLOCK. In addition, there is a
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major set of CALC4 subroutines, where ¢ is the particular variable
solved.

* The inter-connection between various subroutines is shown in the
panel.

* Overall control is exerted by MAIN which performs the initial
and final operations, and also controls the iteration. The CALGC¢
subroutines make the main calculations of the fde for each wvari-
able ¢. Modification of sources and boundary conditions are made
in PROMOD.

* In subroutine WALL, which should be be used in connection with
PROMOD, boundary conditions according to the wall functions in
panels 4.7-4.11 are set; zero flux boundary conditions is also
provided as an option. The fluid properties (viscosity, density,
etc.) are calculated in subroutine PROPS.

* BLOCK sets, for a prescribed region, the variable for which it
is called to zero and applies boundary conditions (by calling
WALL) at the boundaries of the 'blocked’ region.

* INIT performs initialization tasks, PRINT provides output of
variable arrays, and LISOLV performs the LBL iteration.

* UPDATE wupdate variables (including the density) in transient
calculations.

* RESTR1 and SAVEl makes it possible to save calculated results on
a disc-file and to make a restart using the previous calculated

results as initial fields.
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5.4 Domain of Solution and Grid

NJ
//// Z A7 paray ¥4 ////
7 .
/
’/ //1
/l
Yy J y %
/ /
/
3 / s
y 7
2 / <
WV 7V 27 A7 V77 7377V 7
1 |
1 2 3 4 I NI

1. Co-ordinates:
* X(I), I=1,NI and
* Y(J), J=1,NJ and
* Z(K), K=1,NK.

2. Domain of Solution: rectangular region bounded by

I=2 to (NI-1), and J=2 to (NJ-1), and K=2 to (NK-1)

3. Domain of Flow: flow bounding surfaces coincide with
boundaries of main control volumes (i.e. storage locations

of normal velocities).

* The manner in which the co-ordinates are specified is shown in
the panel. The domain of calculation is the entire cubic region
bounded by I=2 to (NI-1), and J=2 to (NJ-1), and K=2 to (NK-1).
However the region of calculation may always be altered if
desirable.

* Note that the boundaries of the flow domain (shaded 1lines) al-

ways coincide with boundaries of main control volumes.
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5.5 Conventions and Notation: i) Storage of dependent Variables

1. Scalar Variables (main nodes):

T+ T(1,J,K) *

p + P(I,J,K) t

p'~+ PP(I,J,K) (1,J3,K)

k - TE(I,J,K) * E’.__,_*} o %
¢ - ED(I,J,K) L1J

popg VIS(I,J,K) *

Feffq GAMH(I,J,K)

p -+ DEN(I,J,K)

2. Velocities (displaced locations):

U -+ U(1,J,K)

vV -+ V(I,J,K) )} (I,J,K) refers to main node in direction of
W -+ W(1,J,K) increasing X, Y or Z.

Note: U calculations start at I=3, V at J=3 and W at K=3

* Some conventions and notation regarding storage of dependent
variables are illustrated here. Subscript (I,J,K) refers to the
node whose co-ordinates are X(I), Y(J) and Z(K).

* The diagram in the panel futher illustrates the 'staggered grid'’
system: the scalar variables are stored at the main nodes (%)
while the associated velocities are displaced (=) and (t). Hence
the storage locations of the variables form a triad as shown by
the dotted lines.

* Note further that while calculations for scalar variables, ex-
cept modified by the user, start at point (2,2,2), U-calculation
start at (3,2,2), that for V at (2,3,2) and that for W at (2,2,3).
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5.6 Conventions and Notation: ii) Selection of Variables. Number

of Sweeps, and Under-relaxation

1. Selection of Variables:

* Set INCALU=.TRUE., if U-momentum is to be solved;

and INCALU=.FALSE., if its calculation is to be supressed.
* Similarily, other equations are controlled by

INCALV, INCALW, INCALP, INCALK, INCALD, INCALT, INPRO.

2. Number of Sweeps:

* Set NSWPU=1, if line-iteration of U-momentum is once.

* For other wvariables: NSWPV, NSWPW, NSWPP, NSWPK, NSWPD,
NSWPT.

3. Under-relaxation:
* Set URFU=0.5, if under-relaxation of U is 0.5
* For other variables: URFV, URFW, URFP, URFK, URFD, URFT.

* This panel illustrates some futher conventions and notations,
but this time relating to selection of variables, number of
sweeps, and under-relaxation.

* The solution of the fde for any variable ¢ (=U, V, W, p, etc) is
obtained by setting INCAL¢=.TRUE.; if INCAL$ is set to .FALSE. the
calculation of the particular ¢-equation is supressed. INPRO
similarily controls the calculation of fluid properties.

* The notation used for setting the number of application of the
LBL procedure without updating the coefficients for any particular
variable ¢ is NSWP¢. Often, this will take values between 1 and 6,
depending on the particular ¢ and the flow.

* In much the same manner, the under-relaxation for any variable ¢
is set by specifying wvalues for URF4. This will generally have

values between 0.3 and 1.0, according to the particular 4.
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5.7 lterating Monitoring, Control, and Preliminary Results

1. Iterating Monitoring:

* Niter=cumulative number of iterations at the current ex-
ecution

* RESORU, RESORV, etc.=absolute sum of residual sources

(RESORM for mass in p’'-equation).

2. Iteration Control: calculation terminated if

* SORCE > 104*SORMAX (divergent), or

* SORCE < SORMAX (converged), or NITER=MAXIT

Note: SORCE=max{ RESORM, RESORU, RESORV, RESORW, RESORT)

3. Pressure Level:

* P(IPREF,JPREF,KPREF) pre-specified and remains unaltered

4. Printout:
* Every INDMON iteration: NITER+FITER (FITER=First ITERation
for the current run; it may be larger than 1 when restarts
are made), RESOR's (usually normalized), all variables at
location (IMON, JMON, KMON).
* Of variable arrays:

i) before and after iteration sequence

ii) every INDPRI iteration

iii) during transient runs every INDPRT time-step

* Iteration monitoring, control, and printout of results give the
user a better understanding of the succes/failure of the calcula-
tion procedure for any particular problem.

* For iteration monitoring, the cumulative number of iterations
performed for the current run is calculated and stored as NITER
and the absolute sum of the residual sources are stored as RESOR¢
(¢=U, V, W, p, etc.) - for the p'-equation the absolute mass

sources are stored as RESORM. The RESOR's are usually normalized.
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* The iteration is controlled such that the calculations may be
terminated for three reasons: the maximum residual source SORCE is
excessively large after 20 iterations (i.e. a diverging solution);
SORCE has fallen below a maximum acceptable value, specified as
SORMAX; or NITER has reached a maximum value allowed, MAXIT.

* The p'-equation can be satisfied by several pressure fields.
Hence, the pressure 1is pre-specified at the location (IPREF,
JPREF, KPREF) and fixed at this value, with all other pressures
measured relative to it: thus, if this location is within the flow

domain, the pressure level is thereby fixed.

* At every INDMON iteration, output is provided of NITER+FITER,

RESOR’'s and all wvariables at a specified location (IMON, JMON,
KMON) . The variable arrays are printed out before and after the
iteration sequence - values during the sequence are printed out at
intervals of INDPRI iteration, and, in the case of transient cal-

culations, every INDPRT time step.
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5.8.1 FORTRAN Variables for Coeffients of Finite-difference

Equations

1. Finite-difference Equations: form of programmed equa-

tions:
* (a_,-b+C )b = a ¢ +a ¢ ta b ta ¢ +a ¢ +a b +a’sC+cic ¢2td
pPTUp)PpT ayfytaptptaggtaydyta; by taydytapdptCiCody

o
* = N =
Here, aP aw+aE+aS+aN+aL+aH+aP, CP aX(O,MP)

N

FORTRAN Symbols:

~+ AP(I,J,K); a;»

%

a APO(I,J,K); ay AW(I,J,K); etc.

P
* (C+CP) -+ SU(I,J,K); (b-CP) - SP(I,J,K).
* In velocity-correction formula: Du+ DU(I,J ,K); DV»

DV(I,J,K); D = DW(L,J K).

* Here the FORTRAN symbols used in the programmed fde's are ex-
plained. Note that the final form of the fde’'s solved is that
given in panel 3.5.2. M, 1is the net outflow from the control

P
volume. It should be remembered that C, is employed only as an

artifice which ensures stability: thiough its use, the coeffient
of ¢P remains finite if there is a net outflow.

* The FORTRAN symbols have been carefully chosen so as to bear
direct relationship with their equivalents in the fde's (e.g.

AS(1,J,K) for a etc.)

S ’
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5.8.2 FORTRAN Variables related to the grids: i) Scalar-cell

i) Scalar-cell (p, T, k, €, etc.)

2 (1)'_*‘ DXEP(I) -

] TDYNP(J)
F— 1.7 71
Ky @ T a f E sNs(J) {—
l
L1 4 DYPS(J)
Y(J)
Y
S .
O
o SEW(T) -
x(1) ]
. '}
=t — -1 DZHP(K)
W E
T ® ; - - : SHL(K) .‘V_
z2(K
) ey ——d pzPL(K)
- Y

* This and the next two panels illustrate the FORTRAN wvariables
relating to the dimensions/co-ordinates of the various cells. The

scalar-cell is the subject of this panel.
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* The panel 1is self-explanatory, and the user will find it (as
well as the next three panels) a wuseful companion in adapting
TEACH3D for various problems.

* Note that the boundaries of the scalar cell lie mid-way between

main grid nodes.
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5.8.3 FORTRAN Variables related to the grid: ii) U-cell

ii) U-cell.

. N
© | :

[ | |
I L.__.__.]...__..__.l
|
| = 5
l
|
|
l
l

it .  t——. —  Oo——

| DXPWU (T zl DXEPU(1)

I
Xu(1) —,

XU(I+1)

L__.._L_.__-.__.-_..___;L

* This is another self-explanatory panel relating to the grid, but
this time for a typical U-cell.

* Note that the west wall of the cell does not 1lie mid-way of
DXPWU(I); neither does the east cell lie mid-way of DXEPU(I). The
south, north, low and high walls lie mid-way of distances PS, NP,

PL and HP respectively.
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5.8.4. FORTRAN Variables related to the grid: iii) V-cell

iii) V-cell.

~ — —f

| DYPSV(J1 DYNPV(J)

|
w(z) |

YV(J+1)

_L_.____.L_—_-_._-._____{.

* This is another self-explanatory panel relating to the grid: the
V-cell.

* Note that the north boundary of the cell does not lie mid-way of
DYNPV(J). Neither does the south boundary lie mid-way of DYPSV(J).
The west, east, low and high boundaries lie mid-way of WP, PE, LP

and HP respectively.
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5.8.5. FORTRAN Variables related to the grid: iv) W-cell

W-cell.

~— —f
| =pe——

DZHPW (X)

|
|
|
|
|
I
f
|
|
|

DZPLW (X

.

ZW(K)

ZW(K+1)

L____.._L____-_.._M_..___‘L

* This panel completes the picture of the FORTRAN variables relat-
ing to the grid, by illustrating the case for a typical W-cell.

* Note that the high boundary of the cell does not lie mid-way of
DZHPW(K). Neither does the low boundary lie mid-way of DZPLW(K).
The west, east, south and boundaries lie mid-way of WP, PE,SP and

PS respectively.
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5.9 Structure and Functions of MAIN

* Chapter 1: specification of grid, control parameters, con-
stants of problem, etc.

* Chapter 2: calculation of grid parameters, initialisation
of arrays (via INIT or from disc-file via RESTR1), prescrip-
tion of fixed boundary values, preliminary output, etc.

* Chapter 3: iteration and output control.

* Chapter 4: final output and, if prescribed, results saved

on disc-file.

* The remaining part of this Chapter is devoted to the structure
and functions of the various subroutines of TEACH3D. Generally,
each subroutine is divided into chapters to faciliate easy under-
standing of the entire program. In this panel, the functions of
the various chapters of MAIN are given.

* Chapter 1 of MAIN carries out the initial specification of the
grid, as well as the control parameters, constants of the problem,
and any other relevant specification.

* In Chapter 2 the calculation of the grid parameters and in-
itialization of arrays are made wvia INIT. When it has been
prescribed that a restart is to be made, these arrays are initial-
ized from a disc-file via RESTR1; in the latter case and when the
run 1is transient, the variables are updated in the subroutine
UPDATE so that the arrays read from the disc-file are stored as
'old’' wvalues. After the initialization via INIT, improved initial
field may be specified as well as fixed boundary conditions.
Before actual iteration starts, an output of the initial variable
fields (or fields stored on the disc-file) as well as other
preliminary outputs may be mnecassary, and this is also done in
Chapter 2.

* Chapter 3 initiates and controls the iteration. It also gives
intermediate outputs of NITER+FITER, RESOR’'s, ¢ (IMON,JMON,KMON)
every INDMON iteration. The ¢-fields are printed out every INDPRN
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iteration, and, in transient runs, every INDPRT time step. In
transient runs ITSTEP, DT and TIME are printed out every time
step.

* Final operations, 1like saving the results on a disc-file, as

well as the final output, are carried out in Chapter 4.



5.10 Structure and Functions of CALCé Subroutines

General structure for all but CALCP:

Enter (from MAIN)

1
Ch. 1 Calculate coefficients over entire field

Ch. 2 Modify sources and boundary coefficents{k\

n

Ch. 3 Assemble coefficients and calculate

residual sources.

Y
)
Is
F
v
o]
E]

Ch. 4 Solve equations

Return to MAIN <+

* This panel illustrates the general structure of all CALC¢é sub-
routines, with the exception of only CALCP.

* Entry to each of these subroutines is made from, and finally
exit also made to, MAIN.

* Chapter 1 calculates the coefficients over the entire field.
This is done from the standard total-flux expressions. The cal-
culations made here is irrespective of the type of problem.

* Then, in Chapter 2 a call is made to PROMOD in order to modify
the sources and boundary coeffients to suit the particular
problem. The subroutine WALL can be called from PROMOD where
boundary conditions according to the wall-functions in panels 4.7-

4.11 are set. BLOCK may also be called from PROMOD where a
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particular variable is set to zero in a prescribed region; bound-
ary conditions are automatically applied at the boundaries of the
'blocked’ region by use of WALL.

* Chapter 3 then gathers all the coefficients, and also calculates
the residual sources RESOR¢’s from the ¢ of the previous itera-
tion.

* Finally, a call is made to LISOLV for the application of the LBL

procedure before a return to MAIN is made.
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5.11 Structure and functions of CALCP Subroutine

Special features of CALCP:

1. an’s are unlikely all to become zero, so no special
precautions are taken.

2. 1In Chapter 1 absolute mass sources are summed and stores
as RESORM.

3. Residual source of p’-equation provide no useful informa-
tion, so they are not calculated.

4. Corrections are applied to pressure and velocities in

(additional) Chapter 5.

* The special features of CALCP which distinguish it from the
other CALC¢ subroutines are given in this panel.

* The P'-equation is unlikely to become singular since the an’s
are unlikely to become zero. Hence no special precautions are
taken regarding introduction of ‘false’ sources.

* Chapter 1 has an additional feature: the absolute mass sources
are summed and stored as RESORM.

* No residual sources of P’'-equation are calculated because they
provide no useful information.

* Finally, an additional chapter (Chapter 5) is provided to carry

out the calculation of the pressure- and velocity-corrections.
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5.12 Structure and function of PROMOD

1. Function: to enable problem-dependent sources and bound-
ary conditions to be embodied in fde's.
2. Structure:
* Subdivided into chapters, each pertaining to particular
variable.
* Each chapter has individual ENTRY and RETURN point:
former are labelled MODU for U, MODV for V, etc.

* User must supply all instructions.

* PROMOD plays a very important role in the program as it 1is the
major area where the sources and boundary conditions can be
modified to suit individual problems. The reader might want to
study this subroutine carefully, to make sure modifications for
the standard case are well understood.

* It 1is divided into chapters, each chapter pertaining to a par-
ticular variable ¢. There are separate ENTRY and RETURN point for
each chapter. The entry point are labelled MOD¢ where ¢ reflects
the relevent variable (U, V, etc.)

* The wuser is advised to make in PROMOD all mayor modifications
necassary for any particular problem, and he must be aware he

bears full responsibility for such modifications.
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5.13 Structure and functions of WALL

* This subroutine should normally be called from PROMOD.

* Boundary conditions according to the wall functions
described in panels 4.7-4.11 are set here.

* Zero gradient boundary conditions are also possible to
prescribe with this subroutine.

* Arguments: PHI, FACE, ISTART, IEND, JSTART, JEND, KSTART,
KEND and VALUE.

* Boundary conditions according to the wall functions for the de-

pendent variables U, V, W, T, k and ¢ described in panels 4.7-4.11

are conveniently set by using this subroutine. WALL is really an
extension of PROMOD for the convenience of the user and can maybe
serve to reduce some errors in prescribing boundary conditions;

WALL should normally be used only in connection with PROMOD.

* As an option, zero gradient boundary conditions may conveniently

be chosen; the argument VALUE is then given a value LE.-100., (see

below).

* The arguments in the CALL WALL statement are:

PHI=name of dependent variable, i.e. U, V, W, T, TE, or EP

FACE=side of the cell(s) which faces the boundary, i.e. WEST,
EAST, SOUTH, NORTH, LOW or HIGH

ISTART, IEND, JSTART, JEND, KSTART, KEND=the nodes (note: scalar
nodes) which are near the boundary of the region for which the
boundary condition is to be applied. Note: the nodes ISTART,
IEND, etc. are in the region.

VALUE: For any other variable than T the exact value of VALUE is
of no meaning exept that if VALUE.LE.-100. zero gradient
boundary condition is applied, otherwise boundary conditions
according to the wall functions. For the variable T VALUE=wall

temperature; if VALUE.LE.-100. adibatic wall is prescribed.
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* The FORTRAN types of the arguments are: PHI and FACE are

CHARACTER wvariables, VALUE is REAL and the rest are INTEGER vari-

ables.
* The wuser 1is advised to study the subroutine in order to fully

understand what is carried out in it.
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5.14 Structure and functions of BLOCK

* This subroutine should normally be called from PROMOD.

* Regions within the calculation domain are conveniently
'blocked’ by using this subroutine.

* Boundary conditions are automatically applied at the
boundaries of the ’blocked’ region.

* Arguments: PHI, ISTART, IEND, JSTART, JEND, KSTART, KEND
and VALUE.

* Regions are ’'blocked’ by setting the variable, for which BLOCK

is called, to zero. BLOCK is an extension of PROMOD for the con-

venience of the user and should normally be wused only in
connection with PROMOD.

* As an option, symmetry plane boundary conditions may con-

veniently be chosen; the argument VALUE is then given a value LE.-

100. (see below).

* Note that if a region with zero velocities is prescribed wusing

BLOCK, the subroutine BLOCK must also be called for the pressure

correction equation, PP, in order to avoid divison by zero in

LISOLV.

* The arguments in the CALL BLOCK statement are:

PHI=name of dependent variable, i.e. U, V, W, PP, T, TE, or EP

ISTART, IEND, JSTART, JEND, KSTART, KEND=the nodes (note: scalar
nodes) which are mnear the boundary of the region which the
variable PHI (¢) is set to zero. Note: the nodes ISTART, IEND,
etc. are in the region.

VALUE: For any other variable than T the exact value of VALUE is
of no meaning exept that if VALUE.LE.-100. symmetry boundary
condition is applied, otherwise boundary conditions according
to the wall functions.” For the variable T VALUE=wall tempera-
ture; if VALUE.LE.-100. adibatic wall is prescribed.
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* The FORTRAN types of the arguments are: PHI and FACE are
CHARACTER variables, VALUE is REAL and the rest are INTEGER wvari-
ables.

* It may be noted that when VALUE.LE.-100 symmetry boundary condi-
tions are applied whereas in WALL zero gradient are applied; the
difference is that in the former case the normal velocity com-
ponent 1is set to zero at the boundaries while in the latter case
the normal gradient of the normal velocity component is set to
zero.

* The user is advised to study the subroutine in order to fully

understand what is carried out in it.
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5.15 Structure and functions of PROPS and LISOLV

1. PROPS: calculates values over entire field of ther-
modynamic and transport properties (e.g. »p, Pogg Peff’
etc.)

2. LISOLV: applies line-iteration algorithm, arranged to
solve along, consequtively, E-W lines, N-S lines and finally
H-L lines sweeping over the entire field. Important argu-
ments are:

PHI(I,J,K) - array containing the variable to be computed.
ISTART, JSTART and KSTART - starting indices of traverses
and sweeps. This means that for every NSWP¢ (see panel 5.6)

three sweeps are performed; one in each direction.

* Subroutine PROPS evaluates the fluid properties based on user-
supplied formulae. The form of PROPS in the standard TEACH3D will,
however, be found useful for many problems.

* The LBL iteration method is performed in subroutine LISOLV which
is arranged so as to solve along, consequtively, E-W 1lines, N-S
lines and H-L lines. It may be noticed that the LBL procedure thus
is applicated three times when NSWP¢=1 (see panel 5.6). The most
important arguments of LISOLV are PHI(I,J,K), ISTART, JSTART, and
KSTART which are defined in the panel.
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5.16 Structure and functions of INIT and PRINT

1. INIT:
* Calculates from grid co-ordinates, inter-cell distances,
cell dimensions, etc. (Chapter 1)
* Initialize dependent variable arrays (Chapter 2)
2. PRINT:
Prints out  dependent-variable arrays, according  to
specification of arguments:
PHI(I,J,K) - array in question
X(I), Y(J), Z(K) - co-ordinates of storage locations
HEAD - alphanumeric array containing variable name
ISTART, JSTART, KSTART - starting values of indices I,J,K
ILAST, JLAST, KLAST - last values of indices I,J,K

* Subroutine INIT calculates from grid co-ordinates, inter-node
distances, cell dimensions and so on in Chapter 1. In Chapter 2,
initial values of the dependent variable arrays are specified:
specially, the starting variable fields (except p and u) are set
to a small value (=SMALL).

* The printing of the dependent variable arrays is performed by
subroutine PRINT. The particular arguments to note are PHI(I,J,K),
X(I), Y(J), Z(K), HEAD, ISTART, JSTART, KSTART, ILAST, JLAST and
KLAST, all of which are defined in the panel.
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5.17 Structure and functions of SAVEl and RESRTI1

* SAVELl writes the dependent variable arrays as well as X, Y
and Z on logical unit 17.

* RESTR] reads the variables (except X, Y and Z) from logi-
cal unit 15.

* All dependent variables (i.e. U, V, W, T, k, ¢ and p) in-
cluding X, Y, Z are written (SAVEl) and read (RESTR1)

irrespectively of if they are being solved or not.

* The subroutines SAVEl and RESTR1 handle the restart facilities:
this means that the user can make a number of (say) 50 iterations,
store the results on a disc-file, examine the results, and, if
they are to his satisfaction, making further calculations using
the calculated results as initial fields.

* All dependent variables are stored on the disc-file irrespec-
tively if they are solved or not. This may be convenient if, for
example, the user wants to make thermal calculations using pre-
viously iso-thermal calculated results as initial fields: the
temperature field is then stored from the iso-thermal calculations
on the disc-file.

* The results are written/read on logical unit number 17/15; these
are preferably assigned to appropriate files.

* The grid arrays X, Y and Z are also stored on the disc-file in
order to make it convenient for the user when he is plotting his

results. X, Y and Z are not read by RESTRl since they have
allready been specified by the user in MAIN.
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5.18 Summary

1. Capability of TEACH3D:
* 3D flows in cartesian co-ordinates.
* Transient or steady, laminar or turbulent.
* Constant- or variable-property.
2. Standard form:
* Solves for U, V, W, T, p, k and «.
* Additional variables may be added.
3. Subroutines:
* MAIN, PROPS and PROMOD to be modified to suit particular
problem.

* All other subroutines are general-purpose.

* TEACH3D is a program for 3D, transient or steady, laminar or
turbulent flows in cartesian co-ordinates.

* In its standard form, it solves for the variables U, V, W, T, p,
k and e€: any unlimited set of additional variables may con-
veniently be added.

* The program is particularly written to aid quick understanding,
and most of the subroutines (except MAIN, PROPS, and PROMOD) re-

quire no modifications for all types of problems.



A(I)

AE, AH, AL,

AN, AS

AW(I,J,K)

AP(I,J,K)

APO(I,J,K)

B, C(I)

Cl, c2

CAPPA

CD

CE, CH, CL

cMU

CMUCD

CN

CPp

CPO
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FORTRAN SYMBOLS

coefficient of recurrence formula

coefficients of convective/diffusive flux through

east, high, low, north wall of control volume

sum of coefficients AE, AW, AN, AS, AH, AL and APO
and source SP

coefficient for old time step

coefficients of recurrence formula

constants of turbulence model (=1.44 and 1.92)

von Karman'’s constant (=0.435)

constant of turbulence model (=1.0)

coefficient of convective flux through east, high

and low wall of control volume

constant of turbulence model (=0.09)

constant of turbulence model (=CMU*CD)

coefficient of convective flux through north wall

of control volume

maximum of zero and net outflow (SMP) from control

volume



CS, CW

D(I)

DEN(I,J,K)

DENSIT

DFE, DFH,

DFL, DFN,
DFS, DFW

DU(I,J,K)

DUDX, DUDY
DUDZ

DUDXM, DUDXP

DUDYM, DUDYP

DUDZM, DUDZP

DV(I,J,K)
DVDX, DVDY
DVDZ

DVDXM, DVDXP

coefficient of convective flux through south and

west wall of control volume

coefficient of recurrence formula

density of fluid

constant density of fluid set in INIT

coefficient of diffusive flux through east, high,

low, north, south and west wall of control volume

coefficient of wvelocity-correction term for U

velocity

dUu/8x, 8U/8y and 8U/8z at main grid node (I,J,K)

dU/3x at main grid nodes [(I-1,J,K) and (I,J,K)]

dU/3y at midpoint of south and north face of the U-

velocity control volume

dU/8z at midpoint of low and high face of the U-

velocity control volume

coefficient of wvelocity-correction term for V

velocity

8v/3x, 8V/dy and 8V/dz at main grid node (I,J,K)

dV/dx at midpoint of west and east face of the V-

velocity control volume
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DVDYM, DVDYP dV/3y at main grid nodes [(I,J-1,K) and (I,J,K)]

DVDZM, DVDZP dU/dz at midpoint of low and high face of the V-

velocity control volume

DW(I,J,K) coefficient of wvelocity-correction term for W
velocity

DWDX, DWDY

DWDZ oW/3x, 8W/8y and 8W/8z at main grid node (I,J,K)

DWDXM, DWDXP dW/8x at midpoint of west and east face of the W-

velocity control volume

DWDYM, DWDYP 48W/dy at midpoint of south and north face of the W-

velocity control volume

DWDZM, DWDZP dW/dz at main grid nodes [(I,J,K-1) and (I,J,K)]

DXEP(T) =X(I+1)-X(I)
DXEPU(I) =XU(T+1)-XU(I)
DXPW(I) =X(1)-X(I-1)
DXPWU(I) =XU(I)-XU(I-1)
DYNP(J) =Y(J+1)-Y(J)
DYNPV (J) =YV (J+1)-YV(J)
DYPS(J) =Y(J)-Y(J-1)

DYPSV(J)= =YV(J)-YV(J-1)



DZHP (K)

DZHPW(K)

DZPL(K)

DZPLW(K)

ED

ELOG

FITER

FLOWIN

GAMM, GAMP

GAME, GAMHX,

GAML, GAMN,

GAMS, GAMW

GAMH(I,J,K)

GE,GH,GL

GN,GS,GW

GEN(I,J,K)

GP

GREAT

102
=Z(K+1)-Z(K)
=ZW(K+1) - ZW(K)
=Z(K)-Z(K-1)
=ZW(K)-ZW(K-1)
energy dissipation rate, e
constant of P-function for heat transfer at walls
first iteration
mass flux at inlet of domain

viscosity at mid-point of downstream and upstream

wall of cell

coefficients of diffusion for scalar <wvariables at

east, high, low, north, south and west wall
coefficient of diffusion for temperature

mass flux through east, high, low, north, south and
west wall of cell

generation of turbulence by shear from mean flow
mass flux at location of velocity

a very large value (i.e. 1010)



HEATIN

HEDD

HEDK

HEDM

HEDP

HEDT

HEDU

HEDV

HEDW

IMON

INCALD, INCAIK

INCALP, INCALT

INCALU, INCALV

INCALW

INDMON

INDPRI

INDPRT

IPREF

heat flux at inlet of domain

heading

heading

heading

heading

heading

heading

heading

heading

I-index

"Energy Dissipation’

'Turbulent Energy’

'Viscosity'’

'Pressure’

'Temperature’

'U-Velocity'

'V-Velocity'

'W-Velocity'’

of monitoring location

logical parameter for solution of ¢, k, P', T, U,

V, W-equation

monitoring output each INDMON iteration

intermediate output of variable fields each INDPRI

iteration

intermediate output of variable fields each INDPRT

time step (transient runs)

I-index of location where pressure is fixed
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INPRO logical variable for updating of fluid properties
IT I-index of maximum dimension of dependent variable
JMON J-index of monitoring location

JPREF J-index of location where pressure is fixed

JT J-index of maximum dimension of dependent wvariable
KMON K-index of monitoring location

KPREF K-index of location where pressure is fixed

KT K-index of maximum dimension of dependent variable
MAXTIT maximum number of iterations to be completed in the

current run if iteration is not stopped by test on

value of SORCE

NI maximum value of I-index for the calculation domain
NIM1 =NI-1

NITER number of iterations completed

NJ maximum value of J-index for the calculation domain
NJIM1 =NJ-1

NK maximum value of K-index for the calculation domain
NKM1 =NK-1

NSWPD,NSWPK
NSWPP,NSWPT
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NSWPU,NSWPV
NSWPW number of application of line iteration for e, k,

P, T, U, V and W-equation

P(I,J,K) pressure

PHI(I,J,K) general representation for all dependent variables
PP(I,J,K) pressure-correction, P’

PRANDL laminar Prandtl number for temperature

PRANDT, PRTE turbulent Prandtl number for temperature and

turbulent kinetic energy

RESOR residual source for individual control volume

RESORE,RESORK
RESORM,RESORT
RESORU,RESORV
RESORW sum of absolute residual sources within calculation

domain for ¢, k, P', T, U, V and W-equation

SEW(I) 0.5%[DXEP(I)+DXPW(I)]

SEWU(I) 0.5%[DXEPU(I)+DXPWU(I)]

SMP net outflow from control volume
SHL(K) 0.5%(DZHP(K)+DZPL(K) ]

SHLW(K) 0.5%[DZHPW (K)+DZPLW(K) ]

SMALL a very small value (i.e. 1010)

SNS(J) 0.5%[DYNP(J)+DYPS(J) ]



SNSV (J)

SORCE

SORMAX

SP,SU(I,J,K)

TAUE, TAUW(J,K)
TAUS , TAUN(I,K)
TAUL, TAUH(I,J)

TE(I,J,K)

TMULT

U(1,J,K)

URFE,URFK

URFP,URFT

URFU,URFV

URFW

v(I,J,K)

VIs(1,J,K)

VISCOS

VISE,VISH

VISL,VISN
VISS,VISW
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0.5%[DYNPV(J)+DYPSV(J) ]
maximum of RESORM, RESORU, RESORV and RESORW

maximum acceptable value of SORCE for converged

solution

coefficient b and C of linearized source treatment

shear stress at east, west, south, north, low and

high boundary of flow domain
turbulent kinetic energy
coefficient of wall shear expression

U-velocity

under-relaxation factor for ¢, k, P', T, U, V and

W-equation
V-velocity
effective viscosity (p+ut)

laminar viscosity (u)

effective viscosity at midpoint of east, high, low,

north, south and west wall of cell



VISOLD

VOL

X(1)

XMOMIN

XPLUSE
XPLUSW (J,K)

XU(I)

Y(J)

YPLUSN
YPLUSS (I,K)

YV(J)

Z(K)

ZPLUSH
ZPLUSL(I,J)

ZW(K)

value of effective viscosity  before under -

relaxation

volume of control wvolume

X co-ordinate of main cells

momentum of fluid at inlet of flow domain

local Reynolds number based on the friction

velocity and distance from east and west wall-

boundary of flow domain

X co-ordinate at storage location of U

y co-ordinate of main cells

local Reynolds number based on  the friction

velocity and distance from north and south wall-

boundary of flow domain

y co-ordinate at storage location of V

z co-ordinate of main cells

local Reynolds number based on  the friction

velocity and distance from high and low wall-

boundary of flow domain

z co-ordinate at storage location of W
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APPENDIX 1. A THREE-DIMENSIONAL ROOM

The flow in a three-dimensional isothermally ventilated room, Fig.
1, 1is calculated using two different turbulence models: the stan-
dard k-¢ model (which is 1incorporated in TEACH3D) and a one-
equation model (herafter denoted by KL1), see Davidson and Olsson
(1986). The predictions are compared with experimental data by
Restivo (1979). The plane y=0 is a symmetry plane which means that

it suffices to calculated the flow in one half of the room.

— |

Inlet
|

Figure 1. Flow configuration.

Listings of MAIN, the subroutines PROMOD and ©PROPS, and the
common-block KASECOM are to be found at the end of this appendix.

Modifications are made in PROPS because a one-eqgation turbulence
model is wused; when the k-¢ model is used no modifications in

PROPS is necessary.

In PROMOD boundary conditions are set. In MODPRO (MODify
PROperties) the turbulence viscosity is set in the wall jet when
the KL1 model is used. In MOD¢ zero streamwise gradient is imposed

at the outlet for all variables using WALL (VALUE.LE.-100.). This
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treatment is not necassary for this problem because the Peclet
number at the outlet is larger than two, which means that the
coefficients at the east boundary of the cells at the outlet

[AE(NIM1,J,K), J=2,JOUTLET, K=KOUTLET,NKM1] are zero anyway .

Results

Velocity vectors are presented in Figs. 2-3. Profiles of the U-
velocity are compared with experimental data in Fig. 4 (y=0) and
Fig. 5 (y=0.4 x width of the room). As can be seen the predictions
are 1in good agreement with the experiments. The required CPU time
on a VAX-750 machine for obtaining a converged solution was 2
hours and 14 minutes with the k-¢ model; the number of iterations
was 290. A run was also made setting
NSWPU=NSWPV=NSWPW=NSWPK=NSWPE=2, and NSWPP=5; the CPU time was

then 3 hours and 6 minutes and the number of iterations was 295.

This problem was also, for comparison, solved using the PHOENICS
computer program, see Spalding (198l1) and Rosten and Spalding
(1985). The velocity profiles predicted with PHOENICS were more or
less identical with those predicted by TEACH3D in Figs. 4-5. The
required CPU time was, however, considerably larger, namely &
hours and 55 minutes. For readers familiar to PHOENICS it may be
interesting to know which relaxation parameters, etc. that was
used. LITER(P1)=5 and LITER(¢)=2, DTFALS=0.5 for all wvariables
(except Pl), whole-field solution of Pl, and z-axis in the direc-
tion of the inlet wvelocity. LITER(P1)=10 and LITER(¢4)=1,
DTFALS=0.1 and 1, z-axis as in Fig. 1 was also tested. It may be
mentioned that the option "whole-field solution of all wvariables"
does not work (confirmed by CHAM) in the current version of

PHOENICS-84; use of this option may reduce the CPU time.
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Figure 3. Predicted velocity vectors. KL1 model.



z/H

z2/H

2/H

Figure 4.

1.80 100
: P
2.75 8.75 -
.50 |- 1/H .50 F
F p.25 [ [!
g.25 |- T % y/H= 0.08
F - x/H= 1 .00
2.00 F 8.08 ot
2.2 2.6
o) b) U/Uin
1.00 [T T T—TT {1.00 [ T LI S B
s r
B.75 :— p.75 -
2.50 [- /R B.58
2.25 -
N y/H= 2.008 .26 - y/H= 0.00
r x/H=1.50 r x/H= 2.00
2.00 T T T T T T T ?.00 LIS SR B S B B e R e
2.9 0.6 2.0 2.6
¢) U/Vin d) U/Uiy
1.00
i
8.75 -
0.50 |
8.25 |-
0.00 | .
e)
Profiles of the U-velocity. Plane y=0. Solid lines: k-e

model. Dashed lines: KLl model. Expts. by Restivo (1979).




‘4m [ T ? T T T l T T T
.75 b
o +
[ +
z/H 2.59 +
9 +
- +
B.251 4 y/H= B.40
5 x/H= B.58
g~m T l T T T I T T T
8.0 2.6
o) U/Uia
l-m [ T T ] T T
8.75 F
/i .58
.25 |
C y/H= 0.40
I x/H=1.50
.00 r——T
2.6
¢) U/Uia
1-m [ T T T T ‘ T T
.75 [P
z/H .50 [
B.25 |
- y/H= 0.4
F x/H= 2.50
ﬂ-m L} ] T T T ' T T
2.0 2.6
e) U/Uga
Figure 5.

room) .

Restivo (1979).

/R

2/H

1.00

B.75

0.50

B.25

B2.75

0.50

0.25

LELALALIS RUELEL AR BN BLALEL L )

T

LA B

y/H= .40
x/H= 2.00

T T I T T
.6
U/Uja

Profiles of the U-velocity. Plane y=0.4 x (width of the
Solid lines: k-e model. Dashed lines: KL1 model. Expts. by



File KASECOM.FOR

115

In this file the problem specific COMMON block KASE is found. The

meaning of the FORTRAN-variables are explained below.

EDIN

FLOWIN

ITURB

JINLET

KINLET

NIHALF,NJHALF
NKHALF

TEIN

UIN

XL, YL, ZL

XYZL

inlet turbulent dissipation

inlet mass flow

ITURB=0: selects the k-¢ model; ITURB=2:

selects the KL1 model

the inlet is covered by the nodes between

J=2 and J=JINLET in the y-direction

the inlet is covered by the nodes between
K=KINLET and NKM1 in the z-direction

number of cells from the wall to the centre
of the room in the x, y and z direction
inlet turbulent kinetic energy

inlet U-velocity

turbulent length scale in the x, y, and =z
direction respectively, wused in the KIL1

model

resulting turbulent length scale wused in

the KL1 model



Program listings

C
C

O o o o R B R B R R AR g

C

C
C

C

CAee ek dodododododededo oo s ook st s s s e sk b o s s s e s s s s st s s s stk s s s s s s s s s sk s s s b s e sk s e e e o

PROGRAM MAIN

* A COMPUTER PROGRAM FOR THE CALCULATION OF
* THREE-DIMENSIONAL TURBULENT RECIRCULATING

* TRANSIENT FLOWS.

A

......................................

%
*%
*x

CHAPTER 0 0 0 O O O O O PRELIMINARIES 0 0 O O O O O O

C

1
2

1

Cedededk

Ck%x K

INCLUDE 'COMMON.FOR'
INCLUDE 'KASECOM.FOR'

DIMENSION HEDU(6),HEDV(6) ,HEDW(6) ,HEDP(6) ,HEDT(6) ,HEDK(6)

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

,HEDD (6) ,HEDM(6) ,HEDA(6) ,HEDB(6)
,HEDX (6) ,HEDY(6) ,HEDZ(6) ,HEDXYZ(6) ,HEDR(6)

HEDU/4HU V,4HELOC,4HITY ,4H
HEDV/4HV V,4HELOC,4HITY ,4H
HEDW/4HW V,4HELOG,4HITY ,4H
HEDP/4HPRES, 4HSURE, 4H ,4H
HEDT/4HTEMP,4HERAT,4HURE ,4H

HEDK/4HTURB, 4HULEN,4HCE E,4HNERG, 4HY
HEDD/4HENER,4HGY D,4HISSI,4HPATI,4HON

HEDM/4HVISC,4HOSIT,4HY  ,4H

,4H
,4H
,4H
,4H
,4H

,4H

HEDX/4HLENG,4HTH S,4HCALE,4H/X ,4H
HEDY/4HLENG,4HTH S,4HCALE,4H/Y ,4H
HEDZ/4HLENG,4HTH S,4HCALE,4H/Z ,4H

HEDR /4HDENS , 4HITY ,4H ,4H

HEDXYZ/4HLENG,4HTH S,4HCALE,4H/XYZ,4H
LOGICAL INCALU, INCALV,INCALW, INCALP,INPRO,INCALK, INCALD,
INCAIM, INCALA, INCALB, INCALT ,RESTRT, SAVEM

k-eps
ITURB=0

Ll

ITURB=2

STORE/RESTART PARAMETERS
RESTRT=.TRUE.
SAVEM=.TRUE.
C----- UNSTEADY/STEADY
STEADY=.TRUE.
TFIRST=0.
NFTSTP=1
NLTSTP=1
IF(STEADY)NFTSTP=1
IF(STEADY)NLTSTP=1
C----- ALL

DATA
DATA

GREAT/1.E10/
SMALL/1.E-10/

ITERATION CONTROL PARAMETERS
NFITER=1

,4H

,4H
,4H
,4H
,4H
,4H
,4H
, 4H
,4H
,4H
,4H
,4H
,4H

,4H

NN N N

PO N
KRK
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NLITER=300
MAXIT=NLITER-NFITER
NSWPU=1
NSWPV=1
NSWPW=1
NSWPP=3
NSWPK=1
NSWPD=1
NSWPT=1
c
CHAPTER 1 1 1 1 1 PARAMETERS AND CONTROL INDICES 1 1 1 1 1

NIM1=NI-1
NIJM1=NJ-1
NKM1=NK-1
KINLET=14 !lowest cell in the inlet
KOUTLET=4 !highest cell in the outlet
JINLET=4 !northest ell in the inlet
DATA X/-.05,.05,.15,.25,.35, .45,.55,.65,.8,.95,1.05,1.35,
&1.65,1.95,2.25,2.55,2.85,3.15,7*0.0/
DATA Y/-0.01,.01,.025,0.04,.06,0.09,
&0.13,0.175,0.225,0.275,0.325,0.375,0.425,0.475,0.525,10%0.0/
DATA Z/-0.025,0.025,0.075,0.12,0.2,0.33,0.46,0.59,
&0.67,0.74,0.79,0.84,0.89,0.91,0.93,0.95,0.97,0.99,1.01,6*0.0/
C----- DEPENDENT VARIABLE SELECTION
INCALU=.TRUE.
INCALV=.TRUE.
INCALW=.TRUE.
INCALP=.TRUE.
INCALK=.TRUE.
INCALD=.TRUE.
IF(ITURB.NE.O)INCALD=, FALSE.
INPRO=.TRUE.
INCALT=.FALSE.
C----- FLUID PROPERTIES
DENSIT =1.189
PRANDL~=0.72
VISCOS =18.1E-6
C-nm-- TURBULENCE CONSTANTS
IF(ITURB.EQ.O)THEN
CMU=0.09
CD=1.00
END IF
IF(ITURB.NE.O)THEN
CMU=0.5477
CD=0.1643
END IF
CMUCD=CMU*CD
Cl=1.44
C2=1.92
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C

CHAPTER 2 2 2 2 2 2 JINITIAL OPERATIONS

2000

203

CAPPA=0.435
ELOG=9.0

PRED=CAPPA*CAPPA/(C2-C1) /(CMU** . 5)

PRTE=1.0

PRANDT=0.9

PFUN=PRANDL/PRANDT

PFUN=9 . 24% (PFUN**0.75-1.0)*(1.0+0 . 28+*EXP(-0.007*PFUN) )
BOUNDARY VALUES

UIN=1.368

TURBIN=0. 04

TEIN=(TURBIN*UIN)**2

EDIN=0.1643*TEIN**1.5/0.01

PRESSURE CALCULATION

IPREF=10

JPREF=5

KPREF=5

PROGRAM CONTROL AND MONITOR

IMON =5

JMON =5

KMON =5

URFU=0.
URFV=0.
URFW=0.
URFP=1.
URFE=0.
URFK=0.
URFT=1.
URFVIS=0.5
INDMON=10
INDPRT=1
INDPRI =1000
SORMAX =0.01

UL O,

CALCULATE GEOMETRICAL QUANTITIES AND SET VARIABLES TO ZERO

CALL INIT

search NIHALF & NKHALF

DO 2004 1I=1,NI

IF(X(I).GE.XU(NI)/2.AND.X(I-1).LT.XU(NI)/2)NIHALF=I

DO 2006 K=1,NK

IF(Z(K).GE.ZW(NK) /2 .AND.Z(K-1).LT.ZW(NK) /2)NKHALF=K

INITIALISE VARIABLE FIELDS

DO 2000 1I=1,NI

DO 2000 J=1,NJ

DO 2000 K ,NK
E-
E-4

]

TE(I,J,K)
ED(I,J,K)
CONTINUE
DO 203 K=1,NK
bo 203 J=1,NJ
XPLUSE(J,K)=11.0
XPLUSW(J,K)=11.0
DO 204 K=1,NK

1
1.
3.

I

2 2 2 2 2 2 2

2

2
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DO 204 1I=1,NI
YPLUSS(I,K)=11.0

300 NITER=NITER+1

IF(INCALU) CALL CALCU
IF(INCALV) CALL CALCV
IF(INCALW) CALL CALGW
IF(INCALP) CALL CALCP
IF(INCALK) CALL CALCTE
IF(INCALD) CALL CALCED
IF(INCALT) CALL CALCT

204 YPLUSN(I,K)=11.0
DO 205 J=1,NJ
DO 205 I=1,NI
ZPLUSL(I,J)=11.0
205 ZPLUSH(I,J)=11.0

IF(RESTRT)CALL RESTR1 (INPRO)
IF(INCALU.AND. .NOT.STEADY) CALL UPDATE(U,UO,NI,NJ,NK,IT,JT, KT)
IF(INCALV.AND. .NOT.STEADY) CALL UPDATE(V,VO,NI,NJ,NK,IT,JT,KT)
IF(INCALV.AND. .NOT.STEADY) CALL UPDATE(W,WO,NI,NJ,NK,IT,JT,KT)
IF(INCALK.AND. .NOT.STEADY) CALL UPDATE(TE,TEO,NI,NJ,NK,IT,JT,KT)
IF(INCALD.AND. .NOT.STEADY) CALL UPDATE(ED,EDO,NI,NJ,NK,IT,JT, KT)
IF(INCALT.AND. .NOT.STEADY) CALL UPDATE(T,TO,NI,NJ,NK,IT,JT,KT)
IF(INCALT.AND. .NOT.STEADY) CALL UPDATE(DEN,DENO,NI,NJ,NK,IT,JT,KT)

Comnn- INITIAL OUTPUT

c OPEN(UNIT=16,FILE='OUTDAT' , FORM='FORMATTED' , STATUS='NEW')
WRITE(6,210) DENSIT
WRITE(6,211) VISCOS
WRITE(6,212)
WRITE(6,213)
WRITE(6,214)URFU,URFV,URFW, URFP,URFT, URFK , URFE
IF(INCALU) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,XU,Y,Z,U,HEDU)
IF(INCALV) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,YV,Z,V,HEDV)
IF(INCALW) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,ZW,W, HEDW)
IF(INCALP) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,P,HEDP)
IF(INCALK) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,TE,HEDK)
IF(INCALD) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,ED,HEDD)
IF(INPRO) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z, VIS, HEDM)
IF(INCALT) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,T,HEDT)
IF(INCALP) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,DEN,HEDP)

Covnn CALCULATE RESIDUAL SOURCES NORMALIZATION FACTORS................
FLOWIN=DENSIT*0.1%0.05*UIN
XMOMIN=FLOWIN*UIN
HEATIN=0.002

c

CHAPTER 3 3 3 3 3 3 3 TITERATION LOOP 3 3 3 3 3 3 3 3

C

Cenmm- TIME STEP LOOP
TIME=TFIRST
DO 3000 ITSTEP=NFTSTP,NLTSTP
NITER=0
IF(.NOT.STEADY) TIME=TIME+DT (ITSTEP)
IF(.NOT.STEADY)WRITE(6,404)
IF(.NOT.STEADY)WRITE(6,405)TIME, DT (ITSTEP) , ITSTEP

Covmm-- ITERATION LOOP
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C

CHAPTER 4 4 4 4 4 4 FINAL OPERATIONS AND OUTPUT 4 4 4 4 4 4

C

UPDATE FLUID PROPERITIES

IF(INPRO) CALL PROPS

INTERMEDIATE OUTPUT

RESORM =RESORM/FLOWIN

RESORU =RESORU/XMOMIN

RESORV =RESORV/XMOMIN

RESORW =RESORW/XMOMIN

RESORK =RESORK/FLOWIN

RESORE =RESORE/FLOWIN

RESORT =RESORT/HEATIN
IF(MOD(NITER+NFITER, INDMON) .NE.O) GO TO 320
WRITE(6,310)NITER+NFITER,RESORU,RESORV,RESORW,RESORM,RESORT,

&RESORK,RESORE

WRITE(6,312) IMON,JMON,KMON,U(IMON,JMON,KMON),V(IMON,JMON,KMON),

2W(IMON, JMON, KMON) , P (IMON, JMON,KMON) , T (IMON, JMON, KMON) ,
3TE(IMON, JMON,KMON) , ED (IMON, JMON , KMON)

320 IF(MOD(NITER+NFITER, INDPRI).NE.O.OR.NITER.EQ.MAXIT) GO TO 301

3000

3002

IF(INCALU) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,XU,Y,Z,U,HEDU)

IF(INCALV) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,YV,Z,V, HEDV)
IF(INCALW) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,ZW,W, HEDW)
IF(INCALP) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,P,HEDP)

IF(INCALK) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,TE, HEDK)
IF(INCALD) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,ED,HEDD)
IF(INPRO) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,VIS, HEDM)

IF(INCALT) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,T, HEDT)
TERMINATION TESTS

SORCE=AMAX1 (RESORM, RESORU , RESORV , RESORW, RESORT)
IF(NITER.EQ.20.AND.SORCE.GT.1.0E4*SORMAX) GO TO 3002
IF(NITER.EQ.MAXIT) GO TO 302

IF(SORCE.GT.SORMAX) GO TO 300

IF(STEADY)GOTO 3002

INTERMEDIATE OUTPUT OF FIELDS (TRANSIENT CALC.)
IF(MOD(ITSTEP, INDPRT) .NE.O.OR.ITSTEP.EQ.NLTSTP) GO TO 3003
IF(INCALU) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,XU,Y,Z,U,HEDU)
IF(INCALV) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,YV,Z,V,HEDV)
IF(INCALW) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,ZW,W, HEDW)
IF(INCALP) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,P, HEDP)
IF(INCALK) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z, TE,HEDK)
IF(INCALD) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z, ED,6HEDD)
IF(INPRO) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,VIS,6HEDM)
IF(INCALT) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,T,HEDT)
UPDATE VARIABELS

IF(INCALU) CALL UPDATE(U,UO,NI,NJ,NK,IT,JT,KT)

IF(INCALV) CALL UPDATE(V,VO,NI,NJ,NK,IT,JT,KT)

IF(INCALV) CALL UPDATE(W,WO,NI,NJ,NK,IT,JT,KT)

IF(INCALK) CALL UPDATE(TE,TEO,NI,NJ,NK,IT,JT,KT)

IF(INCALD) CALL UPDATE(ED,EDO,NI,NJ,NK,IT,JT,KT)

IF(INCALT) CALL UPDATE(DEN,DENO,NI,NJ,NK,IT,JT,KT)
IF(INCALT) CALL UPDATE(T,TO,NI,NJ,NK,IT,JT,KT)

CONTINUE

CONTINUE
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IF(.NOT.STEADY)WRITE(6,404)
IF(.NOT.STEADY)WRITE(6,405)TIME, DT (NLTSTP) ,NLTSTP
IF(SAVEM)CALL SAVEl

IF(INCALU) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,XU,Y,Z,U,HEDU)
IF(INCALV) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,YV,Z,V, HEDV)
IF(INCALW) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,ZW,W,HEDW)
IF(INCALP) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,P,HEDP)
IF(INCALK) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,TE,HEDK)
IF(INCALD) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,ED,HEDD)

IF(INPRO) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z, VIS,HEDM)
IF(INCALT) CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z,T, HEDT)
CALL PRINT(2,2,2,NI,NJ,NK,IT,JT,KT,X,Y,Z, XYZL HEDXYZ)

C CLOSE(UNIT=16)
STOP
Covwn- FORMAT STATEMENTS

210 FORMAT(1X,15X,'FLUID DENSITY ',T60,1H=,3X,1PE1l.3)

211 FORMAT(1X,14X,' LAMINAR VISCOSITY ’,T60,1H=,3X,1PE11.3)

212 FORMAT(1X,//'I1',28(’'-'), 'RELAXATION PARAMETERS’,29(’'-'),'1')

213 FORMAT(6X,'URFU’,5X, 'URFV',5X, 'URFW',S5X, 'URFP’,5X, 'URFT',SX,
&'URFTE' ,5X, 'URFE')

214 FORMAT(5X,7(F5.2,4%))

310 FORMAT(1X,///1X,79('*')/'ITER ','I’',17('-'),'ABSOLUTE RESIDUAL
1 SOURGE SUMS',25('-'),'I' / 2X,'NO.’,5X, 'UMOM’,6X,'VMOM',6X,
2'WMOM' , 6X,'MASS',6X, 'TEMP' ,6X, ' TKIN',6X,'DISP’,
3/1X,14,2X,1P7E10.3)

312 FORMAT(1X,/'I’',15('-'),'FIELD VALUES AT MONITORING LOGATION',
12X,'(',12,",",12,",",12,")",16('-'),'I' / 6X,'U’,10%, 'V’ 10X, W',
210%,'P’,10X, 'T',10X, 'K’ ,10X, 'D’ /1X,1P7E11. 3)

404 FORMAT(//1X,5('*'),1X,'TIME',7X,'DELTA T',6X, 'TIME STEP NO.',
11X,5('*"))

405 FORMAT(/3X,1PE10.2,3X,1PE10.2,6X,15)

END
SUBROUTINE PROPS
c
CHAPTER 0 0 0 O O O O O PRELIMINARIES O O O 0 O O O O
c
INCLUDE ' COMMON . FOR'
INCLUDE 'KASECOM.FOR'
IF(ITURB.EQ.0.)GOTO 200
CHAPTER 1 1 1 LENGTH SCALE 1 1 1
C BOUNDARY CONDITIONS
BCW=(X(2) -XU(2) )*CAPPA
BCE=(XU(NI) -X(NIM1))*CAPPA
BCS=(Y(2)-YV(2))*CAPPA
BCN=(YV(NJ) -Y(NJM1) ) *CAPPA
BCL=(Z(2)-ZW(2))*CAPPA
BCH=(ZW(NK) - Z (NKM1) ) *CAPPA
DO 1020 K=2,NKM1
DO 1020 J=2,NJM1
C WEST WALL
XL(2,J,K)=BCW
YL(2,J,K)=BCW
ZL(2,J,K)=BCW
C EAST WALL



ZL(NIM1,J,K)=BCE

YL(NIM1,J,K)=BCE

1020 XL(NIM1,J,K)=BCE

DO 103 K=2,NKM1
DO 103 I=2,NIM1

C NORTH WALL

103

C LOW

ZL(I,NJM1,K)=BCN
XL(I,NJM1,K)=BCN
YL(I,NJM1,K)=BCN
DO 104 J=2,NJM1
DO 104 I=2,6NIMI
WALL
XL(I,J,2)=BCL
YL(I,J,2)=BCL
ZL(I,J,2)=BCL

C NORTH WALL

104

XL(I,J,NKM1)=BCH
YL(I,J,NKM1)=BCH
ZL(I,J,NKM1)=BCH
XLMAX=.09%XU (NI)
YLMAX=. 09%YV (NJ)
ZIMAX=. 09%ZW (NK)
DO 105 J=3,NJ-2

DO 105 K=3,NK-2

C WEST WALL

110

GI=0.

DO 110 I=3,NIHALF
GI=GI+SEW(I)/SQRT(TE(I,J,K))
XL(I,J,K)=AMIN1(SQRT(TE(I,J,K))*GI+BCW,XLMAX)

C EAST WALL

111
105

GI=0.
DO 111 I=NI-2,NIHALF+1,-1
GI=GI+SEW(I)/SQRT(TE(I,J,K))
XL(I,J,K)=AMIN1(SQRT(TE(I,J,K))*GI+BCE,XLMAX)
CONTINUE

DO 120 K=3,NK-2

DO 120 I=3,NI-2

C NORTH WALL

131 YL(I,J,K)=AMIN1(SQRT(TE(I,J,K))*GI+BCN, YLMAX)
120 CONTINUE
DO 140 J=3,NJ-2
DO 140 I=3,NI-2
C LOW WALL
GI=0.
DO 150 K=3,NKHALF
GI=GI+SHL(K) /SQRT(TE(I,J,K))
150 2ZL(I,J,K)=AMIN1(SQRT(TE(I,J,K))*GI+BCL,ZLMAX)
C HIGH WALL

GI=0.
DO 131 J=NJ-2,2,-1
GI=GI+SNS(J)/SQRT(TE(I,J,K))

GI=0.
DO 151 K=NK-2,NKHALF+1,-1
GI=GI+SHL(K)/SQRT(TE(I,J,K))
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151 ZL(I,J,K)=AMIN1(SQRT(TE(I,J,K))*GI+BCH,ZLMAX)
140 CONTINUE
C IN THE CENTRE
DO 134 K=1,NK
DO 134 J=1,NJ
XLCENTRE=0. 5% (XL(NIHALF,J ,K)+XL(NIHALF-1,J,K))
XL(NIHALF,J,K)=XLCENTRE
134 XL(NIHALF-1,J,K)=XLCENTRE
DO 136 J=1,NJ
DO 136 I=1,NI
ZLCENTRE=0.5% (ZL(I,J ,NKHALF)+ZL(I,J,NKHALF-1))
ZL(I,J,NKHALF)=ZLCENTRE
136 ZL(I,J,NKHALF-1)=ZLCENTRE
C CALCULATE XYZL
DO 191 K=1,NK
DO 191 J=1,NJ
DO 191 I=1,NI
191 XYZL(I,J,K)=AMIN1(XL(I,J,K),YL(I,J,K),ZL(I,J,K),0.09%0.5)
c
CHAPTER 1 1 1 VISCOSITY 1 1 1
c
200 CONTINUE
DO 100 K=2,NKM1
DO 100 J=2,NJM1
DO 100 I=2,NIM1
VISOLD=VIS(I,J,K)
IF(ITURB.EQ.0.AND.ED(I,J,K).EQ.0.) GO TO 102
IF(ITURB.EQ.0)
&VIS(I,J,K)=DEN(I,J,K)*TE(I,J,K)**2*CMU/ED(I,J,K)+VISCOS
IF(ITURB.GT.O0)
&VIS(I,J,K)=DEN(I,J,K)*SQRT(TE(I,J,K))*CMU*XYZL(I,J,K)+VISCOS
GO TO 101
102 VIS(I,J,K)=VISCOS
Comm-- UNDER-RELAX VISCOSITY
101 VIS(I,J,K)=URFVIS*VIS(I,J,K)+(l.-URFVIS)*VISOLD
GAMH(I,J,K)=VISCOS/PRANDL+(VIS(I,J,K)-VISCOS)/PRANDT
100 CONTINUE

CHAPTER 2 2 2 2 2 PROBLEM MODIFICATIONS 2 2 2 2 2 2 2 2 2

CALL MODPRO

RETURN

END

SUBROUTINE PROMOD
C

CHAPTER 0 0 O O O O O PRELIMINARIES 0 0 O O O O O O O

C
INCLUDE 'COMMON.FOR'’
INCLUDE 'KASECOM.FOR'

CHAPTER 1 1 1 1 1 1 1 1 PROPERTIES 1 1 1 1 1 1 1 1 1

c
ENTRY MODPRO
IF(ITURB.EQ.O)RETURN
DO 100 K=KINLET-3,NKM1
DO 100 J=2,JINLET+3
DO 100 I=2,11

2
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VIST=0.003*X(I)*(U(I,J,NKM1)+U(I+1,J,NKM1)) /2.
VIS(I,J,K)=VIST+VISCOS
100 CONTINUE
RETURN
c
CHAPTER 2 2 2 2 2 2 2 2 UMOMENTUM 2 2 2 2 2 2 2 2 2
c
ENTRY MODU
C
C SYMMETRY PLANE
CALL WALL('U’,’SOUTH',2,NIM1,2,2,2 NKMI1,-101.)
C
CALL WALL('U’,'NORTH',2,NIM1,NJM1 ,6NJM1,2,NKM1,0.)
C
CALL WALL('U’,’LOW',2,NIM1,2,NJM1,2,2,0.)
CALL WALL('U’,'HIGH’,2,NIM1,2,NJM1,6NKML,6NKM1,0.)
C INLET
DO 200 K=KINLET,NKM1
DO 200 J=2,JINLET
200 U(2,J,K)=UIN
C OUTLET
DATA AREOUT/0.08/
UOUT=FLOWIN/AREOUT/DEN(3, 3, 3)
DO 201 K=2,KOUTLET
DO 201 J=2,NJM1
201 U(NI,J,K)=UOUT
CALL WALL('U','EAST' ,NIM1,NIM1,2,NJM1,2,KOUTLET, -101.)
C INLET
RETURN
CHAPTER 3 3 3 3 3 3 3 3 VMOMENTUM 3 3 3 3 3 3 3 3 3
C
ENTRY MODV
CALL WALL('V’,'WEST',2,2,JINLET+1,NJM1,2,NKM1,0.)
CALL WALL('V','WEST',2,2,2,JINLET,2,KINLET-1,0.)
CALL WALL('V','EAST' ,NIM1,6NIM1,2,NJM1,KOUTLET+1,NKM1,0.)
c
C SYMMETRY PLANE
CALL WALL('V','SOUTH',2,NIM1,2,2,2,NKM1,-101.)

c
CALL WALL('V','LOW ',2,NIM1,2 ,NJM1,2,2,0.)
CALL WALL('V ','HIGH ',2,NIM1,2,NJM1,NKM1 NKM1,0.)

C OUTLET
CALL WALL('V','EAST’ ,NIM1,NIM1,2,NJM1,2 KOUTLET,-101.)
RETURN

CHAPTER &4 &4 &4 4 &4 4 4 4 WMOMENTUM &4 &4 &4 &4 4 & 4 4 4
c
ENTRY MODW
CALL WALL('W','WEST',2,2,JINLET+1,NJM1,2,NKM1,0.)
CALL WALL('W','WEST',2,2,2,JINLET,2,KINLET-1,0.)
CALL WALL('W',’EAST ' ,NIM1,NIM1,2,6NJM1,KOUTLET+1,NKM1,0.)
c
C SYMMETRY PLANE
CALL WALL('W’,’SOUTH',2,NIM1,2,2,2,NKM1,-101.)
c
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CALL WALL('W','NORTH’,2,NIM1,NJM1,NJM1,2,NKM1,0.)
C

C OUTLET
CALL WALL('W','EAST’,NIM1,NIM1,2,NJM1,2,KOUTLET,-101.)
RETURN

C

CHAPTER 5 5 5 5 5 5 PRESSURE CORRECTION 5 5 5 5 5 5 5 5
c
ENTRY MODP
RETURN
c
CHAPTER 6 6 6 6 6 6 6 TEMPERATURE 6 6 6 6 6 6 6 6 6 6
c
ENTRY MODT
RETURN
c
CHAPTER 7 7 7 7 7 TURBULENT KINETIC ENERGY 7 7 7 7 7 7 7
c
ENTRY MODTE
CALL WALL('TE’,'WEST',2,2,JINLET+1,NJM1,2,NKM1,0.)
CALL WALL('TE','WEST',2,2,2,JINLET,2,KINLET-1,0.)
CALL WALL('TE','EAST’,NIM1,NIM1,2,NJM1,KOUTLET+1,NKM1,0.)
c
C SYMMETRY PLANE
CALL WALL('TE','SOUTH’,2,NIM1,2,2,2,NKM1,-101.)
c
CALL WALL('TE', 'NORTH’,2,NIM1,NJML,NJM1,2,NKM1,0.)
c
CALL WALL('TE','LOW',2,NIM1,2,NJM1,2,2,0.)
CALL WALL('TE’, 'HIGH',2,NIMI1,2,NJM1,NKM1,6NKMI1,0.)
C INLET
DO 700 K=KINLET,NKM1
DO 700 J=2,JINLET
700 TE(1,J,K)=TEIN

C OUTLET
CALL WALL('TE’,'EAST',NIM1,NIM1,2,NJM1,2,KOUTLET,-101.)
RETURN

C

CHAPTER 8 8 8 8 8 8 DISSIPATION 8 8 8 8 8 8 8 8 8 8
c
ENTRY MODED
CALL WALL('ED’,'WEST',2,2,JINLET+1,NJM1,2,NKM1,0.)
CALL WALL('ED’,'WEST',2,2,2,JINLET,?2 ,KINLET-1,0.)
CALL WALL('ED','EAST',NIM1,NIM1,2,NJM1,KOUTLET+1,NKM1,0.)
C
C SYMMETRY PLANE
CALL WALL('ED','SOUTH’,2,NIM1,2,2,2,NKM1,-101.)
c
CALL WALL('ED','NORTH',2,NIM1,NJM1,NJM1,2 ,NKM1,0.)
c
CALL WALL('ED','LOW’,2,NIM1,2,NJM1,2,2,0.)
CALL WALL('ED','HIGH',2,NIM1,2,6NJM1,NKM1,6NKM1,0.)
C INLET
DO 800 K=KINLET,NKM1
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DO 800 J=2,JINLET
800 ED(1,J,K)=EDIN

C OUTLET
CALL WALL('ED','EAST',NIM1,NIM1,2,NJM1,2,KOUTLET, -101.)
RETURN
END
C
PROGRAM KASECOM
C
COMMON/KRASE/UIN, TEIN, EDIN,KINLET ,KOUTLET,JINLET, FLOWIN,
1 CL,FX(IT),FY(JT),FZ(KT),XL(IT,JT,KT),YL(IT,JT,KT),
2 ZL(IT,JT,KT),XYZL(IT,JT,KT),ITURB,NIHALF,NJHALF,

3 NKHALF ,NITER



