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SE-412 96 Göteborg, Sweden

https://www.tfd.chalmers.se/˜lada

lada@chalmers.se

September 6, 2024

Abstract

This course material is used in two courses in the International Master’s pro-

gramme Applied Mechanics at Chalmers. The two courses are TME226 Mechanics of fluids

(Chapters 1-10, part of Chapter 11), and MTF271 Turbulence Modeling (part of

Chapter 9 and 10, Chapters 11-27). MSc students who follow these courses are

supposed to have taken one basic course in fluid mechanics.

This eBook can be downloaded at

https://www.tfd.chalmers.se/˜lada/postscript files/solids-and-fluids turbulent-flow turbulence-modelling.pdf

The Fluid courses in the MSc programme are presented at

https://www.tfd.chalmers.se/˜lada/msc/msc-programme.html

The MSc programme is presented at

https://www.chalmers.se/en/education/programmes/masters-info/Pages/Applied-Mechanics.aspx

1

https://www.tfd.chalmers.se/~lada
https://www.tfd.chalmers.se/~lada
https://www.tfd.chalmers.se/~lada/MoF/
https://www.tfd.chalmers.se/~lada/comp_turb_model/
https://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf
https://www.tfd.chalmers.se/~lada/msc/msc-programme.html
https://www.chalmers.se/en/education/programmes/masters-info/Pages/Applied-Mechanics.aspx


Contents

1 Motion, flow 18

1.1 Eulerian, Lagrangian, material derivative . . . . . . . . . . . . . . . 18

1.2 What is the difference between
dv2
dt

and
∂v2
∂t

? . . . . . . . . . . . . 19

1.3 Viscous stress, pressure . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Strain rate tensor, vorticity . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Product of a symmetric and antisymmetric tensor . . . . . . . . . . 23

1.6 Deformation, rotation . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Irrotational and rotational flow . . . . . . . . . . . . . . . . . . . . 26

1.7.1 Ideal vortex line . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7.2 Shear flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.8 Eigenvalues and eigenvectors: physical interpretation . . . . . . . . 30

2 Governing flow equations 31

2.1 The Navier-Stokes equation . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 The continuity equation . . . . . . . . . . . . . . . . . . . . 31

2.1.2 The momentum equation . . . . . . . . . . . . . . . . . . . 31

2.2 The energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Transformation of energy . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Left side of the transport equations . . . . . . . . . . . . . . . . . . 35

2.5 Material particle vs. control volume (Reynolds Transport Theorem) . 36

3 Solutions to the Navier-Stokes equation: three examples 38

3.1 The Rayleigh problem . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Flow between two plates . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Curved plates . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Flat plates . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Force balance, channel flow . . . . . . . . . . . . . . . . . . 44

3.2.4 Balance equation for the kinetic energy . . . . . . . . . . . . 46

3.3 Two-dimensional boundary layer flow over flat plate . . . . . . . . . 47

3.3.1 Momentum balance, boundary layer . . . . . . . . . . . . . 50

4 Vorticity equation and potential flow 52

4.1 Vorticity and rotation . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 The vorticity transport equation in three dimensions . . . . . . . . . 54

4.3 The vorticity transport equation in two dimensions . . . . . . . . . . 57

4.3.1 Boundary layer thickness from the Rayleigh problem . . . . 58

4.4 Potential flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 The Bernoulli equation . . . . . . . . . . . . . . . . . . . . 60

4.4.2 Complex variables for potential solutions of plane flows . . . 61

4.4.3 f ∝ zn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.3.1 Parallel flow . . . . . . . . . . . . . . . . . . . . . 63

4.4.3.2 Stagnation flow . . . . . . . . . . . . . . . . . . . . 63

4.4.3.3 Flow over a wedge and flow in a concave corner. . . 64

4.4.4 Analytical solutions for a line source . . . . . . . . . . . . . 65

4.4.5 Analytical solutions for a vortex line . . . . . . . . . . . . . 66

4.4.6 Analytical solutions for flow around a cylinder . . . . . . . . 67

4.4.7 Analytical solutions for flow around a cylinder with circulation 70

4.4.7.1 The Magnus effect . . . . . . . . . . . . . . . . . . 72

2



3

4.4.8 The flow around an airfoil . . . . . . . . . . . . . . . . . . . 74

5 Turbulence 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Turbulent scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 The cascade process created by vorticity . . . . . . . . . . . . . . . 83

6 Turbulent mean flow 88

6.1 Time averaged Navier-Stokes . . . . . . . . . . . . . . . . . . . . . 88

6.1.1 Boundary-layer approximation . . . . . . . . . . . . . . . . 90

6.2 Wall region in fully developed channel flow . . . . . . . . . . . . . 90

6.3 Reynolds stresses in fully developed channel flow . . . . . . . . . . 95

6.4 Boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Probability density functions 99

8 Transport equations for turbulent kinetic energy 102

8.1 Rules for time averaging . . . . . . . . . . . . . . . . . . . . . . . . 102

8.1.1 What is the difference between v′1v
′
2 and v′1 v

′
2? . . . . . . . 102

8.1.2 What is the difference between v′21 and v′1
2
? . . . . . . . . . 103

8.1.3 Show that v̄1v′21 = v̄1v′21 . . . . . . . . . . . . . . . . . . . 103

8.1.4 Show that v̄1 = v̄1 . . . . . . . . . . . . . . . . . . . . . . . 104

8.2 The Exact k Equation . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2.1 Expressing dissipation with sij ; non-isotropic dissipation . . 108

8.2.2 Spectral transfer dissipation εκ vs. “true” viscous dissipation, ε 109

8.3 The Exact k Equation: 2D Boundary Layers . . . . . . . . . . . . . 109

8.4 Spatial vs. spectral energy transfer . . . . . . . . . . . . . . . . . . 110

8.5 The overall effect of the transport terms . . . . . . . . . . . . . . . . 111

8.6 The transport equation for v̄iv̄i/2 . . . . . . . . . . . . . . . . . . . 112

9 Transport equations for Reynolds stresses 115

9.1 Source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2 Reynolds shear stress vs. the velocity gradient . . . . . . . . . . . . 120

10 Correlations 124

10.1 Two-point correlations . . . . . . . . . . . . . . . . . . . . . . . . . 124

10.2 Auto-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.3 Taylor’s hypothesis of frozen turbulence . . . . . . . . . . . . . . . 127

11 Reynolds stress models and two-equation models 128

11.1 Mean flow equations . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11.1.1 Flow equations . . . . . . . . . . . . . . . . . . . . . . . . 128

11.1.2 Temperature equation . . . . . . . . . . . . . . . . . . . . . 129

11.2 The exact v′iv
′
j equation . . . . . . . . . . . . . . . . . . . . . . . . 129

11.3 The exact v′iθ
′ equation . . . . . . . . . . . . . . . . . . . . . . . . 131

11.4 The k equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

11.5 The ε equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

11.6 The Boussinesq assumption . . . . . . . . . . . . . . . . . . . . . . 135

11.7 Modeling assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 136



4

11.7.1 Production terms . . . . . . . . . . . . . . . . . . . . . . . 136

11.7.2 Diffusion terms . . . . . . . . . . . . . . . . . . . . . . . . 137

11.7.3 Dissipation term, εij . . . . . . . . . . . . . . . . . . . . . 138

11.7.4 Slow pressure-strain term . . . . . . . . . . . . . . . . . . . 139

11.7.5 Rapid pressure-strain term . . . . . . . . . . . . . . . . . . 142

11.7.6 Wall model of the pressure-strain term . . . . . . . . . . . . 148

11.8 The k − ε model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11.9 The modeled v′iv
′
j equation with IP model . . . . . . . . . . . . . . 151

11.10 Algebraic Reynolds Stress Model (ASM) . . . . . . . . . . . . . . . 151

11.11 Explicit ASM (EASM or EARSM) . . . . . . . . . . . . . . . . . . 152

11.12 Derivation of the Explicit Algebraic Reynolds Stress Model (EARSM) 153

11.13 Boundary layer flow . . . . . . . . . . . . . . . . . . . . . . . . . . 158

11.14 Wall boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 158

11.14.1 Wall Functions . . . . . . . . . . . . . . . . . . . . . . . . 159

11.14.2 Low-Re Number Turbulence Models . . . . . . . . . . . . . 161

11.14.3 Low-Re k − ε Models . . . . . . . . . . . . . . . . . . . . . 163

11.14.4 Wall boundary Condition for k . . . . . . . . . . . . . . . . 165

11.14.5 Different ways of prescribing ε at or near the wall . . . . . . 165

12 Reynolds stress models vs. eddy-viscosity models 167

12.1 Stable and unstable stratification . . . . . . . . . . . . . . . . . . . 167

12.2 Curvature effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

12.3 Stagnation flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

12.4 RSM/ASM versus k − ε models . . . . . . . . . . . . . . . . . . . 172

13 Realizability 173

13.1 Two-component limit . . . . . . . . . . . . . . . . . . . . . . . . . 174

14 Non-linear Eddy-viscosity Models 176

15 The V2F Model 179

15.1 Modified V2F model . . . . . . . . . . . . . . . . . . . . . . . . . . 182

15.2 Realizable V2F model . . . . . . . . . . . . . . . . . . . . . . . . . 183

15.3 To ensure that v2 ≤ 2k/3 . . . . . . . . . . . . . . . . . . . . . . . 183

16 The SST Model 184

17 Overview of RANS models 189

18 Large Eddy Simulations 190

18.1 Time averaging and filtering . . . . . . . . . . . . . . . . . . . . . . 190

18.2 Differences between time-averaging (RANS) and space filtering (LES) 191

18.3 Resolved & SGS scales . . . . . . . . . . . . . . . . . . . . . . . . 192

18.4 The box-filter and the cut-off filter . . . . . . . . . . . . . . . . . . 193

18.5 Highest resolved wavenumbers . . . . . . . . . . . . . . . . . . . . 194

18.6 Subgrid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

18.7 Smagorinsky model vs. mixing-length model . . . . . . . . . . . . . 196

18.8 Energy path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

18.9 SGS kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . 197

18.10 LES vs. RANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

18.11 The dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . 198



5

18.12 The test filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

18.12.1 2D filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 200

18.12.2 3D filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 200

18.13 Stresses on grid, test and intermediate level . . . . . . . . . . . . . . 201

18.14 Numerical dissipation . . . . . . . . . . . . . . . . . . . . . . . . . 203

18.15 Scale-similarity Models . . . . . . . . . . . . . . . . . . . . . . . . 204

18.16 The Bardina Model . . . . . . . . . . . . . . . . . . . . . . . . . . 204

18.17 Redefined terms in the Bardina Model . . . . . . . . . . . . . . . . 205

18.18 A dissipative scale-similarity model. . . . . . . . . . . . . . . . . . 205

18.19 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

18.20 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

18.20.1 RANS vs. LES . . . . . . . . . . . . . . . . . . . . . . . . 208

18.21 One-equation ksgs model . . . . . . . . . . . . . . . . . . . . . . . 209

18.22 Smagorinsky model derived from the ksgs equation . . . . . . . . . 209

18.23 A dynamic one-equation model . . . . . . . . . . . . . . . . . . . . 210

18.24 A Mixed Model Based on a One-Eq. Model . . . . . . . . . . . . . 211

18.25 Applied LES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

18.26 Resolution requirements . . . . . . . . . . . . . . . . . . . . . . . . 212

19 URANS: Unsteady RANS 214

19.1 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 215

19.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

20 DES: Detached-Eddy-Simulations 218

20.1 DES based on two-equation models . . . . . . . . . . . . . . . . . . 219

20.2 DES based on the k − ω SST model . . . . . . . . . . . . . . . . . 220

20.3 DDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

21 Hybrid LES-RANS 223

21.1 Momentum equations in hybrid LES-RANS . . . . . . . . . . . . . 225

21.2 The one-equation hybrid LES-RANS model . . . . . . . . . . . . . 225

22 The SAS model 226

22.1 Resolved motions in unsteady . . . . . . . . . . . . . . . . . . . . 226
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4.9 Line source. ṁ > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 Vortex line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.11 Flow around a cylinder of radius r0. . . . . . . . . . . . . . . . . . . 67

4.12 Flow around a cylinder of radius r0. Integration of surface pressure. . 68

4.13 Pressure coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.14 Flow around a cylinder of radius r0 with additional circulation . . . . 70

4.15 Flow around a cylinder of radius r0 with maximal additional circulation. 71

4.16 Table tennis. The loop uses the Magnus effect. Side view. . . . . . . . 72

4.17 Football. A free-kick uses the Magnus effect. Top view . . . . . . . . 73

4.18 Potential flow. Flettner rotor on a ship . . . . . . . . . . . . . . . . . 73

4.19 Potential flow around an Airfoil . . . . . . . . . . . . . . . . . . . . 74

4.20 Airfoil. Streamlines from potential flow . . . . . . . . . . . . . . . . 75

4.21 Airfoil. Streamlines from potential flow with added circulation . . . . 75

5.1 Laminar and turbulent boundary layer. . . . . . . . . . . . . . . . . . 77

5.2 Cascade process with a spectrum of eddies . . . . . . . . . . . . . . . 78

5.3 Spectrum for turbulent kinetic energy, k . . . . . . . . . . . . . . . . 81

5.4 Family tree of turbulent eddies . . . . . . . . . . . . . . . . . . . . . 84

5.5 A fluid element is stretched by
∂v′1
∂x1

> 0 . . . . . . . . . . . . . . . . 86

12



13

5.6 The rotation rate of the fluid element . . . . . . . . . . . . . . . . . . 86

6.1 Flow between two infinite parallel plates . . . . . . . . . . . . . . . . 90

6.2 The wall region of a turbulent boundary layer . . . . . . . . . . . . . 91

6.3 Reynolds shear stress. Reτ = 2000 . . . . . . . . . . . . . . . . . . 93

6.4 Velocity profiles in fully developed channel flow . . . . . . . . . . . . 93

6.5 Symmetry plane of channel flow. . . . . . . . . . . . . . . . . . . . . 94

6.6 Fully developed channel flow. Reτ = 2000. Forces in the v̄1 equation 96

6.7 Forces in a boundary layer . . . . . . . . . . . . . . . . . . . . . . . 96

6.8 Normal Reynolds stresses and turbulent kinetic energy. Reτ = 2000 . 97

6.9 Velocity profiles in a boundary layer along a flat plate . . . . . . . . . 97

7.1 Time history of v′. Horizontal red lines show ±vrms. . . . . . . . . . 99

7.2 Probability density functions of time histories . . . . . . . . . . . . . 100

8.1 The size of the largest eddies for different velocity profiles. . . . . . . 106

8.2 Zoom of the energy spectrum in Region II or III . . . . . . . . . . . . 107

8.3 Channel flow at Reτ = 2000. Terms in the k equation . . . . . . . . . 110

8.4 Velocity gradient and shear stress . . . . . . . . . . . . . . . . . . . . 110

8.5 Channel flow at Reτ = 2000. Mean and fluctuating dissipation terms 113

8.6 Transfer of energy between K , k and internal energy . . . . . . . . . 114

9.1 Channel flow at Reτ = 2000. Terms in the v′21 equation . . . . . . . . 118

9.2 One-dimensional unsteady heat conduction . . . . . . . . . . . . . . 119

9.3 Energy spectrum. Transfer of kinetic energy . . . . . . . . . . . . . . 121

9.4 Channel flow at Reτ = 2000. Terms in the v′22 equation . . . . . . . . 121

9.5 Channel flow at Reτ = 2000. Terms in the v′23 equation . . . . . . . . 122

9.6 Channel flow at Reτ = 2000. Terms in the v′1v
′
2 equation . . . . . . . 122

9.7 Sign of the Reynolds shear stress −ρv′1v′2 in a boundary layer. . . . . 122

10.1 Two-point correlation. . . . . . . . . . . . . . . . . . . . . . . . . . 124

10.2 Schematic relation between the two-point correlation and largest eddies 125

10.3 Two-point correlation and frozen turbulence. . . . . . . . . . . . . . . 127

11.1 Physical illustration of the pressure-strain term. . . . . . . . . . . . . 139

11.2 Decaying grid turbulence . . . . . . . . . . . . . . . . . . . . . . . . 141

11.3 The exact solution to the Poisson equation . . . . . . . . . . . . . . . 143

11.4 Modeling of wall correction in pressure-strain terms. . . . . . . . . . 148

11.5 Boundary layer flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

11.6 Boundary along a flat plate. Energy balance in k equation . . . . . . . 159

11.7 Wall-adjacent cell. Cell-centered finite volume grid. . . . . . . . . . . 159

11.8 Turbulent kinetic energy in a boundary layer. LES . . . . . . . . . . . 160

11.9 Flow in fully developed channel flow. Energy balance in k equation . 162

11.10 Flow between two parallel plates. Fluctuations. DNS . . . . . . . . . 163

11.11 Flow between two parallel plates. Energy balance in k equation. DNS 164

12.1 Stable stratification due to positive temperature gradient ∂θ̄/∂x3 > 0. 167

12.2 Flow in a polar coordinate system illustrating streamline curvature . . 169

12.3 Streamline curvature occurring near a separation region . . . . . . . . 169

12.4 The velocity profile for a wall jet. . . . . . . . . . . . . . . . . . . . . 170

12.5 The flow pattern of stagnation flow. . . . . . . . . . . . . . . . . . . 171

15.1 Illustration of Helmholz equation in the V2F model . . . . . . . . . . 181

16.1 Flow around an airfoil. Pressure contours . . . . . . . . . . . . . . . 184

18.1 Filtering the velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

18.2 Box filter illustrated for a control volume. . . . . . . . . . . . . . . . 192

18.3 Spectrum of velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . 193



14

18.4 The Fourier modes of a fluctuation . . . . . . . . . . . . . . . . . . . 195

18.5 Physical space and wavenumber space . . . . . . . . . . . . . . . . . 195

18.6 Energy spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

18.7 Energy spectrum with grid and test filter. . . . . . . . . . . . . . . . . 199

18.8 Control volume for grid and test filter. . . . . . . . . . . . . . . . . . 200

18.9 A 2D test filter control volume. . . . . . . . . . . . . . . . . . . . . . 201

18.10 Numerical dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . 203

18.11 Dissipation and production term from DNS data . . . . . . . . . . . 206

18.12 Time averaging in LES. . . . . . . . . . . . . . . . . . . . . . . . . 208

18.13 Spectrum for k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

18.14 Energy spectra in fully developed channel flow . . . . . . . . . . . . 212

18.15 Onera bump. Computational domain (not to scale). . . . . . . . . . . 213

18.16 Energy spectra E33(κ3) in the recirculation region and shear layer . . 213

19.1 Decomposition of velocities in URANS . . . . . . . . . . . . . . . . 214

19.2 The domain for the flow past a triangular flameholder . . . . . . . . . 216

19.3 2D URANS k − ε simulations . . . . . . . . . . . . . . . . . . . . . 216

19.4 2D URANS k − ε simulations compared with experiment . . . . . . . 217

19.5 Domain of URANS simulations: a surface-mounted cube . . . . . . . 218

19.6 URANS simulations: profiles upstream the cube [1]. . . . . . . . . . 218

20.1 Grid and a velocity profile and RANS-LES interface . . . . . . . . . 222

21.1 Illustration of near-wall turbulence (taken from [2]). . . . . . . . . . . 224

21.2 Fluctuating streamwise velocity at x+2 = 5. DNS of channel flow . . . 224

21.3 The LES and URANS region. . . . . . . . . . . . . . . . . . . . . . 224

22.1 The SAS model. Velocity profiles from a DNS of channel flow . . . . 226

22.2 The SAS model. Mean and instantaneous velocity profiles . . . . . . 226

22.3 SAS model. Turbulent length scales in fully developed channel flow . 230

22.4 SAS model. Turbulent length scales in fully developed channel flow . 230

23.1 The URANS and the LES regions. . . . . . . . . . . . . . . . . . . . 235

23.2 Control volume, P , in the LES region adjacent to the interface. . . . . 235

23.3 The URANS and the LES regions near a wall. . . . . . . . . . . . . . 238

23.4 [PANS. Embedded LES. fk near the interface . . . . . . . . . . . . . 238

24.1 Spectral energy balance in PITM. Homogeneous turbulence. . . . . . 252

25.1 The LES and URANS regions. Fully developed channel flow . . . . . 257

25.2 Hybrid LES-RANS. Velocities and resolved shear stresses . . . . . . 258

25.3 Turbulent viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

25.4 Embedded LES. The LES and RANS regions . . . . . . . . . . . . . 259

25.5 Channel flow. Velocities, fluctuations and turbulent viscosity . . . . . 259

26.1 Channel flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

26.2 Boundary layer flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 262

27.1 Synthetic fluctuations. The wave-number and velocity unit vector . . 266
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https://www.tfd.chalmers.se/˜lada, lada@chalmers.se

This eBook can be downloaded at

https://www.tfd.chalmers.se/˜lada/MoF/

Recorded lectures are found at https://www.tfd.chalmers.se/˜lada/MoF/recorded lecture.html

https://www.tfd.chalmers.se/~lada/MoF/
https://www.tfd.chalmers.se/~lada/MoF/recorded_lecture.html


1. Motion, flow 18

1 Motion, flow

1.1 Eulerian, Lagrangian, material derivative

S
EE also [3], Chapt. 3.2.

Assume a fluid particle is moving along the line in Fig. 1.1. We can choose to study

its motion in two ways: Lagrangian or Eulerian. In the Lagrangian approach we keep

track of its original position (Xi) and follow its path which is described by xi(Xi, t).
For example, at time t1 the temperature of the particle is T (Xi, t1), and at time t2 its

temperature is T (Xi, t2), see Fig. 1.1. This approach is not used for fluids because it

is very tricky to define and follow a fluid particle. It is however used when simulating

movement of particles in fluids (for example soot particles in gasoline-air mixtures in

combustion applications). The speed of the particle is then expressed as a function of

time and its position at time zero, i.e. vi = vi(Xi, t).
In the Eulerian approach we pick a position, e.g. x1i , and watch the particle pass

by. This approach is used for fluids. The temperature of the fluid, T , for example, is

expressed as a function of the position, i.e. T = T (xi), see Fig. 1.1. It may be that the

temperature at position xi, for example, varies in time, t, and then T = T (xi, t).
Now we want to express how the temperature of a fluid particle varies. In the

Lagrangian approach we first pick the particle (this gives its starting position, Xi).

Once we have chosen a particle its starting position is fixed, and temperature varies

only with time, i.e. T (t) and the temperature gradient can be written dT/dt.
In the Eulerian approach it is a little bit more difficult. We are looking for the

temperature gradient, dT/dt, but since we are looking at fixed points in space we

need to express the temperature as a function of both time and space. From classical

mechanics, we know that the velocity of a fluid particle is the time derivative of its

space location, i.e. vi = dxi/dt. The chain-rule now gives

dT

dt
=
∂T

∂t
+
dxj
dt

∂T

∂xj
=
∂T

∂t
+ vj

∂T

∂xj
(1.1)

Note that we have to use partial derivative on T since it is a function of more than one

(independent) variable. The first term on the right side is the local rate of change; by local rate

of changethis we mean that it describes the variation of T in time at position xi. The second term

on the right side is called the convective rate of change, which means that it describes Conv. rate

of change

Xi

T (Xi, t1)

T (x1i , t1)

T (Xi, t2)

T (x2i , t2)

Figure 1.1: The temperature of a fluid particle described in Lagrangian, T (Xi, t), or Eulerian,

T (xi, t), approach.



1.2. What is the difference between
dv2
dt

and
∂v2
∂t

? 19

0 1 2
0

1

2 ▽

△

x1, r1

x2, r2

Figure 1.2: Flow path x2 = 1/x1. The filled circle shows the point (x1, x2) = (1, 1). ▽: start

(t = ln(0.5)); △: end (t = ln(2)).

the variation of T in space when it passes the point xi. The left side in Eq. 1.1 is called

the material derivative and is in this text denoted by dT/dt.

Exercise 1 Write out Eq. 1.1, term-by-term.

1.2 What is the difference between
dv2
dt

and
∂v2
∂t

?

Students sometimes get confused about the difference between
dv2
dt

and
∂v2
∂t

. Here we

give a simple example. Figure 1.2 shows a flow path of fluid particles which can be

expressed in time as

r1 = X1 exp(t), r2 = X2 exp(−t) (1.2)

where ri is the location of the particle and Xi is the initial location. For X1 = X2

we get r2 = 1/r1. By varying X1 (and/or X2) we get different flow paths. The flow

path in Fig. 1.2 is steady in time and it starts at (r1, r2) = (X1, X2) = (0.5, 2) and

ends at (r1, r2) = (x1, x2) = (2, 0.5). The flow path is taken from stagnation flow, see

Fig. 4.7. Equation 1.2 gives the velocities

vL1 =
dr1
dt

= X1 exp(t), vL2 =
dr2
dt

= −X2 exp(−t) (1.3)

and Eqs. 1.2 and 1.3 give

vE1 = r1 = x1, vE2 = −r2 = −x2 (1.4)

(cf. Eq. 4.50). The superscriptsE and L denote Eulerian and Lagrangian, respectively.

Note that vL1 = vE1 and vL2 = vE2 ; the only difference is that vEi is expressed as
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function of (t, x1, x2) and vLi as function of (t,X1, X2). Now we can compute the

time derivatives of the v2 velocity as

dvL2
dt

= exp(−t)

dvE2
dt

=
∂vE2
∂t

+ vE1
∂vE2
∂x1

+ vE2
∂vE2
∂x2

= 0+ x1 · 0− x2 · (−1) = x2

(1.5)

We find, of course, that
dv2
dt

=
dvE2
dt

=
dvL2
dt

= x2 = exp(−t).
Consider, for example, the point (x1, x2) = (1, 1) in Fig. 1.2. The difference bet-

ween
dv2
dt

and
∂v2
∂t

is now clearly seen by looking at Eq. 1.5. The velocity at the point

(x1, x2) = (1, 1) does not change in time and hence
∂vE2
∂t

= 0. However, if we sit on

a particle which passes the location (x1, x2) = (1, 1), the velocity, vL2 , increases by

time,
dvL2
dt

=
dv2
dt

= 1 (the velocity, v2, gets less negative) . Actually it increases all

the time from the starting point where
dv2
dt

= 2 and v2 = −2 until the end point where

dv2
dt

= 0.5 and v2 = −0.5.

1.3 Viscous stress, pressure

See also [3], Chapts. 6.3 and 8.1.

We have in Part I [4] derived the balance equation for linear momentum which

reads

ρv̇i − σji,j − ρfi = 0 (1.6)

Switch notation for the material derivative and derivatives so that

ρ
dvi
dt

=
∂σji
∂xj

+ ρfi (1.7)

where the first and the second term on the right side represents, respectively, the net

force due to surface and volume forces (σij denotes the stress tensor). Stress is force

per unit area. The first term on the right side includes the viscous stress tensor, τij . As

you have learnt earlier, the first index relates to the surface at which the stress acts and

the second index is related to the stress component. For example, on a surface whose

normal is ni = (1, 0, 0) act the three stress components σ11, σ12 and σ13, see Fig. 1.3a;

the volume force acts in the middle of the fluid element, see Fig. 1.3b.

In the present notation we denote the velocity vector by v = vi = (v1, v2, v3)
and the coordinate by x = xi = (x1, x2, x3). In the literature, you may find other

notations of the velocity vector such as ui = (u1, u2, u3). If no tensor notation is used

the velocity vector is usually denoted as (u, v, w) and the coordinates as (x, y, z).
The diagonal components of σij represent the normal stresses and the off-diagonal

components of σij represent the shear stresses. In Part I [4] you learned that the pres-

sure is defined as minus the sum of the normal stress, i.e.

P = −σkk/3 (1.8)
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x1

x2

σ11

σ12

σ13

t
(ê1)
i

(a) Stress components and stress vector on a surface.

x1

x2
fi

(b) Volume force, fi = (0,−g, 0), acting in

the middle of the fluid element.

Figure 1.3: Stress tensor, volume (gravitation) force and stress vector, t
(ê1)
i , see Eq. C.2.

The pressure, P , acts as a normal stress. In general, pressure is a thermodynamic

property, pt, which can be obtained – for example – from the ideal gas law. In that

case the thermodynamics pressure, pt, and the mechanical pressure, P , may not be the

same but Eq. 1.8 is nevertheless used. The viscous stress tensor, τij , is obtained by

subtracting the trace, σkk/3 = −P , from σij ; the stress tensor can then be written as

σij = −Pδij + τij (1.9)

τij is the deviator of σij . The expression for the viscous stress tensor is found in Eq. 2.4

at p. 31. The minus-sign in front of P appears because the pressure acts into the surface.

When there is no movement, the viscous stresses are zero and then of course the normal

stresses are the same as the pressure. In general, however, the normal stresses are the

sum of the pressure and the viscous stresses, i.e.

σ11 = −P + τ11, σ22 = −P + τ22, σ33 = −P + τ33, (1.10)

Exercise 2 Consider Fig. 1.3. Show how σ21, σ22, σ23 act on a surface with normal

vector ni = (0, 1, 0). Show also how σ31, σ32, σ33 act on a surface with normal vector

ni = (0, 0, 1).

Exercise 3 Write out Eq. 1.9 on matrix form.

1.4 Strain rate tensor, vorticity

See also [3], Chapt. 3.5.3, 3.6.

We need an expression for the viscous stresses, τij . They are needed in the mo-

mentum equations, Eq. 1.7 (see also Eq. 1.9). They will be expressed in the velocity

gradients, ∂vi
∂xj

. Hence we will now discuss the velocity gradients.
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The velocity gradient tensor can be split into two parts as

∂vi
∂xj

=
1

2







∂vi
∂xj

+
∂vi
∂xj

2∂vi/∂xj

+
∂vj
∂xi

− ∂vj
∂xi

=0







=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

+
1

2

(
∂vi
∂xj

− ∂vj
∂xi

)

= Sij +Ωij

(1.11)

where

Sij is a symmetric tensor called the strain-rate tensor Strain-rate

tensor
Ωij is a anti-symmetric tensor called the vorticity tensor vorticity ten-

sorThe vorticity tensor is related to the familiar vorticity vector which is the curl of

the velocity vector, i.e. ω = ∇× v, or in tensor notation

ωi = ǫijk
∂vk
∂xj

(1.12)

where ǫijk is the permutation tensor, see lecture notes of Ekh [4] and Table B.1 in

Appendix B. If we set, for example, i = 3 we get

ω3 = ∂v2/∂x1 − ∂v1/∂x2. (1.13)

The vorticity represents rotation of a fluid particle. Inserting Eq. 1.11 into Eq. 1.12

gives

ωi = ǫijk(Skj +Ωkj) = ǫijkΩkj (1.14)

since ǫijkSkj = 0 because the product of a symmetric tensor (Skj) and an anti-

symmetric tensor (εijk) is zero. Let us show this for i = 1 by writing out the full

equation. Recall that Sij = Sji (i.e. S12 = S21, S13 = S31, S23 = S32) and

ǫijk = −ǫikj = ǫjki etc (i.e. ε123 = −ε132 = ε231 . . . , ε113 = ε221 = . . . ε331 = 0)

ε1jkSkj = ε111S11 + ε112S21 + ε113S31

+ ε121S12 + ε122S22 + ε123S32

+ ε131S13 + ε132S23 + ε133S33

= 0 · S11 + 0 · S21 + 0 · S31

+ 0 · S12 + 0 · S22 + 1 · S32

+ 0 · S13 − 1 · S23 + 0 · S33

= S32 − S23 = 0

(1.15)

Now let us invert Eq. 1.14. We start by multiplying it with εiℓm so that

εiℓmωi = εiℓmǫijkΩkj (1.16)

The ε-δ-identity gives (see Table B.1 at p. 287)

εiℓmǫijkΩkj = (δℓjδmk − δℓkδmj)Ωkj = Ωmℓ − Ωℓm = 2Ωmℓ (1.17)



1.5. Product of a symmetric and antisymmetric tensor 23

This can easily be proved by writing out all the components, see Table B.1 at p. 287.

Now Eqs. 1.16 and 1.17 give

Ωmℓ =
1

2
εiℓmωi =

1

2
εℓmiωi = −1

2
εmℓiωi (1.18)

or, switching indices

Ωij = −1

2
εijkωk (1.19)

It turns out that is is much easier to go from Eq. 1.14 to Eq. 1.19 by writing out the

components of Eq. 1.14 (here we do it for i = 1)

ω1 = ε123Ω32 + ε132Ω23 = Ω32 − Ω23 = −2Ω23 (1.20)

and we get

Ω23 = −1

2
ω1 (1.21)

which indeed is identical to Eq. 1.19.

Exercise 4 Write out the second and third component of the vorticity vector given in

Eq. 1.12 (i.e. ω2 and ω3).

Exercise 5 Complete the proof of Eq. 1.15 for i = 2 and i = 3.

Exercise 6 Write out Eq. 1.20 also for i = 2 and i = 3 and find an expression for Ω12

and Ω13 (cf. Eq. 1.21). Show that you get the same result as in Eq. 1.19.

Exercise 7 In Eq. 1.21 we proved the relation between Ωij and ωi for the off-diagonal

components. What about the diagonal components of Ωij? What do you get from

Eq. 1.11?

Exercise 8 From your course in linear algebra, you should remember how to compute

a vector product using Sarrus’ rule. Use it to compute the vector product

ω = ∇× v =





ê1 ê2 ê3
∂

∂x1

∂
∂x2

∂
∂x3

v1 v2 v3





Verify that this agrees with the expression in tensor notation in Eq. 1.12.

1.5 Product of a symmetric and antisymmetric tensor

In this section we show the proof that the product of a symmetric and antisymmetric

tensor is zero. First, we have the definitions:

• A tensor aij is symmetric if aij = aji;

• A tensor bij is antisymmetric if bij = −bji.

It follows that for an antisymmetric tensor all diagonal components must be zero;

for example, b11 = −b11 can only be satisfied if b11 = 0.

The (inner) product of a symmetric and antisymmetric tensor is always zero. This

can be shown as follows

aijbij = ajibij = −ajibji,
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where we first used the fact that aij = aji (symmetric), and then that bij = −bji
(antisymmetric). Since the indices i and j are both dummy indices we can interchange

them in the last expression (−ajibji = −aijbij), which gives

aijbij = −aijbij

This expression says thatA = −Awhich can be only true if A = 0 and hence aijbij =
0.

This can of course also be shown be writing out aijbij on component form, i.e.

aijbij = a11b11 + a12b12
I

+ a13b13
II

+ a21b21
I

+a22b22 + a23b23
III

+ a31b31
II

+ a32b32
III

+a33b33 = 0

The underlined terms are zero (b11 = b22 = b33 = 0); terms I cancel each other

(a12 = a21, b12 = −b21) as do terms II and III.

1.6 Deformation, rotation

See also [3], Chapt. 3.3.

The velocity gradient can, as shown above, be divided into two parts: Sij and

Ωij . We have shown that the latter is connected to rotation of a fluid particle. During rotation

rotation the fluid particle is not deformed. This movement can be illustrated by Fig. 1.4.

The vertical movement (v2) of the right end of the horizontal edge (x1 + ∆x1) of the

particle in Fig. 1.4 is estimated as follows. The velocity at the left edge is v2(x1). Now

we need the velocity at the right edge which is located at x1 + ∆x1. It is computed

using the first term in the Taylor series as1

v2(x1 +∆x1) = v2(x1) + ∆x1
∂v2
∂x1

It is assumed that the fluid particle in Fig. 1.4 is rotated the angle ∆α during the

time ∆t. The angle rotation per unit time can be estimated as ∆α/∆t ≃ dα/dt =
−∂v1/∂x2 = ∂v2/∂x1; if the fluid element does not rotate as a solid body, the rotation

is computed as the average, i.e. dα/dt = (∂v2/∂x1 − ∂v1/∂x2)/2. The vorticity

is computed as ω3 = ∂v2/∂x1 − ∂v1/∂x2 = −2Ω12 = 2dα/dt, see Eq. 1.13 and

Exercise 4. Hence, the vorticity ω3 can be interpreted as twice the average rotation per

unit time of the horizontal edge (∂v2/∂x1) and vertical edge (−∂v1/∂x2).

Next let us have a look at the deformation caused by Sij . It can be divided into two

parts, namely shear and elongation (also called extension or dilatation). The deforma-

tion due to shear is caused by the off-diagonal terms of Sij . In Fig. 1.5, a pure shear de-

formation by S12 = (∂v1/∂x2 + ∂v2/∂x1)/2 is shown. The deformation due to elon-

gation is caused by the diagonal terms of Sij . Elongation caused by S11 = ∂v1/∂x1 is

illustrated in Fig. 1.6.

In general, a fluid particle experiences a combination of rotation, deformation and

elongation as indeed is given by Eq. 1.11.

1this corresponds to the equation for a straight line y = kx+ ℓ where k is the slope which is equal to the

derivative of y, i.e. dy/dx, and ℓ = v2(x1)
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Figure 1.4: Rotation of a fluid particle during time ∆t. Here ∂v1/∂x2 = −∂v2/∂x1 so that

−Ω12 = ω3/2 = ∂v2/∂x1 > 0. The distance the upper part of the left edge is negative because

it has moved with a negative v1 velocity.
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Figure 1.5: Deformation of a fluid particle by shear during time ∆t. Here ∂v1/∂x2 = ∂v2/∂x1

so that S12 = ∂v1/∂x2 > 0.

Exercise 9 Consider Fig. 1.4. Show and formulate the rotation by ω1.

Exercise 10 Consider Fig. 1.5. Show and formulate the deformation by S23.

Exercise 11 Consider Fig. 1.6. Show and formulate the elongation by S22.
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Figure 1.6: Deformation of a fluid particle by elongation during time ∆t.
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Figure 1.7: The surface, S, is enclosing by the line ℓ. The vector, ti, denotes the unit tangential

vector of the enclosing line, ℓ.

1.7 Irrotational and rotational flow

In the previous subsection we introduced different types of movement of a fluid parti-

cle. One type of movement was rotation, see Fig. 1.4. Flows are often classified based

on rotation: they are rotational (ωi 6= 0) or irrotational (ωi = 0); the latter type is also

called inviscid flow or potential flow. We will talk more about that later on, see Sec-

tion 4.4. In this subsection we will give examples of one irrotational and one rotational

flow. In potential flow, there exists a potential, Φ, from which the velocity components

can be obtained as

vk =
∂Φ

∂xk
(1.22)

Before we talk about the ideal vortex line in the next section, we need to introduce

the concept circulation. Consider a closed line on a surface in the x1 − x2 plane, see

Fig. 1.7. When the velocity is integrated along this line and projected onto the line we
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obtain the circulation

Γ =

∮

vmtmdℓ (1.23)

Using Stokes’s theorem we can relate the circulation to the vorticity as

Γ =

∮

vmtmdℓ =

∫

S

εijk
∂vk
∂xj

nidS =

∫

S

ωinidS =

∫

S

ω3dS (1.24)

where ni = (0, 0, 1) is the unit normal vector of the surface S. Equation 1.24 reads in

vector notation

Γ =

∮

v · tdℓ =
∫

S

(∇× v) · ndS =

∫

S

ω · ndS =

∫

S

ω3dS (1.25)

The circulation is useful in, for example, aeronautics and windpower engineering

where the lift of a 2D section of an airfoil or a rotorblade is expressed in the circulation

for that 2D section. The lift force is computed as (see Eqs. 4.84 and 4.85)

L = ρV Γ (1.26)

where V is the velocity around the airfoil (for a rotorblade it is the relative velocity,

since the rotorblade is rotating). In an PhD project, an inviscid simulation method

(based on the circulation and vorticity sources) is used to compute the aerodynamic

loads for windturbine rotorblades [5].

Exercise 12 In potential flow ωi = εijk∂vk/∂xj = 0. Multiply Eq. 1.22 by εijk and

derivate with respect to xk (i.e. take the curl of) and show that the right side becomes

zero as it should, i.e. εijk∂
2Φ/(∂xk∂xj) = 0.

1.7.1 Ideal vortex line

The two-dimensional ideal vortex line is an irrotational (potential) flow where the fluid

moves along circular paths, see Fig. 1.8. The governing equations are derived in Sec-

tion 4.4.5. The velocity field in polar coordinates reads

vθ =
Γ

2πr
, vr = 0 (1.27)

where Γ is the circulation. Its potential reads

Φ =
Γθ

2π
(1.28)

The velocity, vθ , is then obtained as

vθ =
1

r

∂Φ

∂θ
=

Γ

2πr
(1.29)

To transform Eq. 1.27 into Cartesian velocity components, consider Fig. 1.9. The

Cartesian velocity vectors are expressed as

v1 = −vθ sin(θ) = −vθ
x2
r

= −vθ
x2

(x21 + x22)
1/2

= − Γx2
2π(x21 + x22)

v2 = vθ cos(θ) = vθ
x1
r

= vθ
x1

(x21 + x22)
1/2

= − Γx1
2π(x21 + x22)

(1.30)
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Figure 1.8: Ideal vortex. The fluid particle (i.e. its diagonal, see Fig. 1.4) does not rotate. The

locations of the fluid particle is indicated by black, filled squares. The diagonales are shown as

black dashed lines. The fluid particle is shown at θ = 0, π/4, 3π/4, π, 5π/4, 3π/2 and −π/6.

Inserting Eq. 1.30 into Eq. 1.27 we get

v1 = − Γx2
2π(x21 + x22)

, v2 =
Γx1

2π(x21 + x22)
. (1.31)

To verify that this flow is a potential flow, we need to show that the vorticity, ωi =
εijk∂vk/∂xj is zero. Since it is a two-dimensional flow (v3 = ∂/∂x3 = 0), ω1 =
ω2 = 0, we only need to compute ω3 = ∂v2/∂x1 − ∂v1/∂x2. The velocity derivatives

are obtained as

∂v1
∂x2

= − Γ

2π

x21 − x22

(x21 + x22)
2 ,

∂v2
∂x1

=
Γ

2π

x22 − x21

(x21 + x22)
2 (1.32)

and we get

ω3 =
Γ

2π

1

(x21 + x22)
2 (x

2
2 − x21 + x21 − x22) = 0 (1.33)

which shows that the flow is indeed a potential flow, i.e. irrotational (ωi ≡ 0). Note

that the deformation is not zero, i.e.

S12 =
1

2

(
∂v1
∂x2

+
∂v2
∂x1

)

=
Γ

2π

x22

(x21 + x22)
2 (1.34)

Hence a fluid particle in an ideal vortex does deform but it does not rotate (i.e. its

diagonal does not rotate, see Fig. 1.8).

It may be little confusing that the flow path forms a vortex but the flow itself has no

vorticity. Thus one must be very careful when using the words “vortex” and ”vorticity”. vortex vs.

vorticityBy vortex we usually mean a recirculation region of the mean flow. That the flow has

no vorticity (i.e. no rotation) means that a fluid particle moves as illustrated in Fig. 1.8.

As a fluid particle moves from position a to b – on its counter-clockwise-rotating path

– the particle itself is not rotating. This is true for the whole flow field, except at the

center where the fluid particle does rotate. This is a singular point as is seen from

Eq. 1.27 for which vθ → ∞.

Note that generally a vortex has vorticity, see Section 4.2. The ideal vortex is a very

special flow case.
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Figure 1.9: Transformation of vθ into Cartesian components.
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Figure 1.10: A shear flow. A fluid particle with vorticity. v1 = cx2
2.

1.7.2 Shear flow

Another example – which is rotational – is the lower half of fully-developed channel

flow for which the velocity reads (see Eq. 3.28)

v1
v1,max

=
4x2
h

(

1− x2
h

)

, v2 = 0 (1.35)

where x2 < h/2, see Fig. 1.10. The vorticity vector for this flow reads

ω1 = ω2 = 0, ω3 =
∂v2
∂x1

− ∂v1
∂x2

= − 4

h

(

1− 2x2
h

)

(1.36)

When the fluid particle is moving from position a, via b to position c its has vor-

ticity. Its vertical too edge move faster than its bottom edge. The horizontal edges

stay horizontal because v2 =. Its vertical edges are rotating in clockwise direction.

The diagonal is rotating which really is the definition of rotation. Note that the posi-

tive rotating direction is defined as the counter-clockwise direction, indicated by a in

Fig. 1.10. This is why the vorticity, ω3, in the lower half of the channel (x2 < h/2) is

negative. In the upper half of the channel the vorticity is positive because ∂v1/∂x2 < 0.
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Figure 1.11: A two-dimensional fluid element. Left: in original state; right: rotated to principal

coordinate directions. λ1 and λ2 denote eigenvalues; v̂1 and v̂2 denote unit eigenvectors.

It may be noted that for the flow in Fig. 1.10 the magnitude of the shear, S12, and the

vorticity, Ω12, are equal but of opposite sign, i.e. S12 = −Ω12.

1.8 Eigenvalues and eigenvectors: physical interpretation

See also [3], Chapt. 2.5.5.

Consider a two-dimensional fluid (or solid) element, see Fig. 1.11. In the left figure

it is oriented along the x1 − x2 coordinate system. On the surfaces act normal stresses

(σ11, σ22) and shear stresses (σ12, σ21). The stresses form a tensor, σij . Any tensor has

eigenvectors and eigenvalues (also called principal vectors and principal values). Since

σij is symmetric, the eigenvalues are real (i.e. not imaginary). The eigenvalues are

obtained from the characteristic equation, see [3], Chapt. 2.5.5 or Eq. 13.5 at p. 173.

When the eigenvalues have been obtained, the eigenvectors can be computed. Given

the eigenvectors, the fluid element is rotated α degrees so that its edges are aligned

with the eigenvectors, v̂1 = x̂1′ and v̂2 = x̂2′ , see right part of Fig. 1.11. Note that the

sign of the eigenvectors is not defined, which means that the eigenvectors can equally

well be chosen as −v̂1 and/or −v̂2. In the principal coordinates x1′ − x2′ (right part

of Fig. 1.11), there are no shear stresses on the surfaces of the fluid element. There

are only normal stresses. This is the very definition of eigenvectors. Furthermore, the

eigenvalues are the normal stresses in the principal coordinates, i.e. λ1 = σ1′1′ and

λ2 = σ2′2′ .
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2 Governing flow equations

S
EE also [3], Chapts. 5 and 8.1.

2.1 The Navier-Stokes equation

2.1.1 The continuity equation

The first equation is the continuity equation (the balance equation for mass) which

reads [4]

ρ̇+ ρvi,i = 0 (2.1)

Change of notation gives
dρ

dt
+ ρ

∂vi
∂xi

= 0 (2.2)

For incompressible flow (ρ = const) we get

∂vi
∂xi

= 0 (2.3)

2.1.2 The momentum equation

The next equation is the momentum equation. We have formulated the constitutive law

for Newtonian viscous fluids [4]

σij = −Pδij + 2µSij −
2

3
µSkkδij

τij = 2µSij −
2

3
µSkkδij

(2.4)

Inserting Eq. 2.4 into the balance equations, Eq. 1.7, we get

ρ
dvi
dt

= − ∂P

∂xi
+
∂τji
∂xj

+ ρfi = − ∂P

∂xi
+

∂

∂xj

(

2µSij −
2

3
µ
∂vk
∂xk

δij

)

+ ρfi (2.5)

where µ denotes the dynamic viscosity. This is the Navier-Stokes equations (sometimes

the continuity equation is also included in the name “Navier-Stokes”). It is also called

the transport equation for momentum. Note that the stress tensor, σij , depends only on

the symmetric part (i.e. Sij , see Eq. 1.11) of the velocity gradient. It is only the part

of the velocity gradient that deforms the fluid (see Figs. 1.5 and 1.6) that appears in

σij . The part of the velocity gradient that rotates the fluid (i.e. Ωij , see Eq. 1.11 and

Fig. 1.4) does not appear in σij .

For incompressible flow, the last term in the diffusion term is zero because of the

continuity equation (see Eq. 2.3) so that

ρ
dvi
dt

= − ∂P

∂xi
+

∂

∂xj

[

µ

(
∂vi
∂xj

+
∂uj
∂xi

)]

+ ρfi (2.6)

Furthermore, if the viscosity, µ, is constant it can be moved outside the derivative.

We can then re-write the first term in the parenthesis in Eq. 2.6 as

∂

∂xj

[

µ

(
∂vi
∂xj

+
∂uj
∂xi

)]

= µ
∂

∂xj

(
∂vi
∂xj

+
∂uj
∂xi

)

= µ
∂2vi
∂xj∂xj

(2.7)
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because of the continuity equation, i.e.

µ
∂

∂xj

(
∂vj
∂xi

)

= µ
∂

∂xi

(
∂vj
∂xj

)

= 0. (2.8)

Equation 2.5 can now – for constant µ and incompressible flow – be written

ρ
dvi
dt

= − ∂P

∂xi
+ µ

∂2vi
∂xj∂xj

+ ρfi (2.9)

The viscous stress tensor then reads

τij = 2µSij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)

(2.10)

In inviscid (potential) flow, there are no viscous (friction) forces. In this case, the

Navier-Stokes equation reduces to the Euler equations Euler

equations

ρ
dvi
dt

= − ∂P

∂xi
+ ρfi (2.11)

Exercise 13 Equation 1.7 states that mass times acceleration is equal to the sum of

forces forces (per unit volume). Write out the momentum equation (without using the

summation rule) for the x1 direction and show the surface forces and the volume force

on a small, square fluid element (see lecture notes of Toll & Ekh [4]). Now repeat it for

the x2 direction.

Exercise 14 Formulate the Navier-Stokes equation for incompressible flow but non-

constant viscosity.

2.2 The energy equation

See also [3], Chapts. 6.4 and 8.1.

We have in Part I [4] derived the energy equation which reads

ρu̇− vi,jσji + qi,i = ρz (2.12)

where u denotes internal energy (N.B.: in [4] it is denoted by e). qi denotes the

conductive heat flux and z the net radiative heat source. For simplicity, we neglect the

radiation from here on. Change of notation gives

ρ
du

dt
= σji

∂vi
∂xj

− ∂qi
∂xi

(2.13)

In Part I [4] we formulated the constitutive law for the heat flux vector (Fourier’s

law)

qi = −k ∂T
∂xi

(2.14)

Inserting the constitutive laws, Eqs. 2.4 and 2.14, into Eq. 2.13 gives

ρ
du

dt
= −P ∂vi

∂xi
+ 2µSijSij −

2

3
µSkkSii

Φ

+
∂

∂xi

(

k
∂T

∂xi

)

(2.15)
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where we have used Sij∂vi/∂xj = Sij(Sij + Ωij) = SijSij because the product of

a symmetric tensor, Sij , and an anti-symmetric tensor, Ωij , is zero. The dissipation

term, Φ, can be re-written as

Φ = 2µ

(

SijSij −
1

3
SkkSii

)

=

[

2µ

(

Sij −
1

3
Skkδij

)2
]

> 0

which shows that Φ is positive. The dissipation represents irreversible viscous heating

(i.e. transformation of kinetic energy into thermal energy); it is important at high-

speed flow2 (for example re-entry from outer space) and for highly viscous flows (lu-

bricants). The first term on the right side represents reversible heating and cooling due

to compression and expansion of the fluid. Equation 2.15 is the transport equation for

(internal) energy, u.

Now we assume that the flow is incompressible (i.e. the velocity should be smaller

than approximately 1/3 of the speed of sound) for which

du = cpdT (2.16)

where cp is the heat capacity (see Part I) [4] so that Eq. 2.15 gives (cp is assumed to be

constant)

ρcp
dT

dt
= Φ +

∂

∂xi

(

k
∂T

∂xi

)

(2.17)

The dissipation term is simplified to Φ = 2µSijSij because Sii = ∂vi/∂xi = 0. If we

furthermore assume that the heat conductivity coefficient is constant and that the fluid

is a gas or a common liquid (i.e. not an lubricant oil) so that the viscous dissipation is

negligible (i.e. Φ = 0), we get

dT

dt
= α

∂2T

∂xi∂xi
(2.18)

where α = k/(ρcp) is the thermal diffusivity. The Prandtl number is defined as thermal

diffusivity

Pr =
ν

α
(2.19)

where ν = µ/ρ is the kinematic viscosity. The physical meaning of the Prandtl number

is the ratio of how well the fluid diffuses momentum to how well it diffuses internal

energy (i.e. temperature).

The dissipation term, Φ, is neglected in Eq. 2.18 when one of two assumptions are

valid:

1. The fluid is a gas with low velocity (lower than 1/3 of the speed of sound); this

assumption was made when we assumed that the fluid is incompressible

2. The fluid is a common liquid (i.e. not an lubricant oil). In lubricant oils the

viscous heating (i.e. the dissipation, Φ) is large. One example is the oil flow in a

gearbox in a car where the temperature usually is more than 100oC higher when

the car is running compared to when it is idle.

Exercise 15 Write out and simplify the dissipation term, Φ, in Eq. 2.15. The first term

is positive and the second term is negative; are you sure that Φ > 0?

2High-speed flows relevant for aeronautics will be treated in detail in the course “TME085 Compressible

flow” in the MSc programme.
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2.3 Transformation of energy

Now we will derive the equation for the kinetic energy, k = vivi/2. Multiply Eq. 1.7

with vi

ρvi
dvi
dt

− vi
∂σji
∂xj

− viρfi = 0 (2.20)

Using the product rule backwards (Trick 2, see Eq. 8.4), the first term on the left side

can be re-written

ρvi
dvi
dt

=
1

2
ρ
d(vivi)

dt
= ρ

dk

dt
(2.21)

(vivi/2 = k) so that

ρ
dk

dt
= vi

∂σji
∂xj

+ ρvifi (2.22)

Re-write the stress-velocity term so that (Trick 1, see Eq. 8.2)

ρ
dk

dt
=
∂viσji
∂xj

− σji
∂vi
∂xj

+ ρvifi (2.23)

This is the transport equation for kinetic energy, k. Adding Eq. 2.23 to Eq. 2.13 gives

ρ
d(u+ k)

dt
=
∂σjivi
∂xj

− ∂qi
∂xi

+ ρvifi (2.24)

This is an equation for the sum of internal and kinetic energy, u + k. This is the

transport equation for total energy, u+ k.

Let us take a closer look at Eqs. 2.13, 2.23 and 2.24. First we separate the term

σji∂vi/∂xj in Eqs. 2.13 and 2.23 into work related to the pressure and viscous stresses

respectively (see Eq. 1.9), i.e.

σji
∂vi
∂xj

= −P ∂vi
∂xi
a

+ τji
∂vi
∂xj

b=Φ

(2.25)

The following things should be noted.

• The physical meaning of the a-term in Eq. 2.25 – which includes the pressure, P
– is heating/cooling by compression/expansion. This is a reversible process, i.e.

no loss of energy but only transformation of energy.

• The physical meaning of the b-term in Eq. 2.25 – which includes the viscous

stress tensor, τij – is a dissipation, which means that kinetic energy is trans-

formed to thermal energy. It is denoted Φ, see Eq. 2.15, and is called viscous

dissipation. It is always positive and represents irreversible heating.

• The dissipation, Φ, appears as a sink term in the equation for the kinetic energy, k
(Eq. 2.23) and it appears as a source term in the equation for the internal energy,

u (Eq. 2.13). The transformation of kinetic energy into internal energy takes

place through this source term. In incompressible flow for which the viscous

term in Navier-Stokes can be simplified (see Eq. 2.9), the viscous term reads

τji
∂vi
∂xj

= µ
∂vi
∂xj

∂vi
∂xj

(2.26)
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which is the viscous dissipation. When arriving at this expression we use the

fact that the second term in τij in the Navier-Stokes (Eq. 2.9) is zero, i.e. we use

τij = µ ∂vi
∂xj

(see 2.10). The viscous dissipation is very important in turbulent

flow, cf. Eqs. 8.14 and 8.38.

• Φ does not appear in the equation for the total energy u+k (Eq. 2.24); this makes

sense since Φ represents a energy transfer between u and k and does not affect

their sum, u+ k.

Dissipation is very important in turbulence where transfer of energy takes place at

several levels. First energy is transferred from the mean flow to the turbulent fluctua-

tions. The physical process is called production of turbulent kinetic energy. Then we

have transformation of kinetic energy from turbulence kinetic energy to thermal en-

ergy; this is turbulence dissipation (or heating). At the same time we have the usual

viscous dissipation from the mean flow to thermal energy, but this is much smaller than

that from the turbulence kinetic energy. For more detail, see Section 5.

2.4 Left side of the transport equations

So far, the left sides in transport equations have been formulated using the material

derivative, d/dt. Let ψ denote a transported quantity (i.e. ψ = vi, u, T . . .); the left

side of the equation for momentum, thermal energy, total energy, temperature etc reads

ρ
dψ

dt
= ρ

∂ψ

∂t
+ ρvj

∂ψ

∂xj
non-conservative (2.27)

This is often called the non-conservative Using the continuity equation, Eq. 2.2, it can

be re-written as

ρ
dψ

dt
= ρ

∂ψ

∂t
+ ρvj

∂ψ

∂xj
+ ψ

(
dρ

dt
+ ρ

∂vj
∂xj

)

=0

=

ρ
∂ψ

∂t
+ ρvj

∂ψ

∂xj
+ ψ

(
∂ρ

∂t
+ vj

∂ρ

∂xj
+ ρ

∂vj
∂xj

)
(2.28)

The two underlined terms will form a time derivative term, and the other three terms

can be collected into a convective term, i.e.

ρ
dψ

dt
=
∂ρψ

∂t
+
∂ρvjψ

∂xj
conservative (2.29)

Thus, the left side of the temperature equation and the Navier-Stokes, for example, can

be written in three different ways (by use of the chain-rule and the continuity equation)

ρ
dvi
dt

= ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

=
∂ρvi
∂t

+
∂ρvjvi
∂xj

ρ
dT

dt
= ρ

∂T

∂t
+ ρvj

∂T

∂xj
=
∂ρT

∂t
+
∂ρvjT

∂xj

(2.30)

The continuity equation can also be written in three ways (by use of the chain-rule)

dρ

dt
+ ρ

∂vi
∂xi

=
∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi
∂xi

=
∂ρ

∂t
+
∂ρvi
∂xi

(2.31)
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The forms on the right sides of Eqs. 2.30 and 2.31 are called the conservative form.

When solving transport equations (such as the Navier-Stokes) numerically using finite

volume methods, the left sides in the transport equation are always written as the ex-

pressions on the right side of Eqs. 2.30 and 2.31; in this way Gauss law can be used

to transform the equations from a volume integral to a surface integral and thus ensur-

ing that the transported quantities are conserved. The results may be inaccurate due

to too coarse a numerical grid, but no mass, momentum, energy etc is lost (provided a

transport equation for the quantity is solved): “what comes in goes out”.

2.5 Material particle vs. control volume (Reynolds Transport The-

orem)

See also lecture notes of Toll & Ekh [4] and [3], Chapt. 5.2.

In Part I [4] we initially derived all balance equations (mass, momentum and en-

ergy) for a collection of material particles. The conservation of mass, d/dt
∫
ρdV = 0,

Newton’s second law, d/dt
∫
ρvi = Fi etc were derived for a collection of particles in

the volume Vpart, where Vpart is a volume that includes the same fluid particles all the

time. This means that the volume, Vpart, must be moving and it may expand or contract

(if the density is non-constant), otherwise particles would move across its boundaries.

The equations we have looked at so far (the continuity equation 2.3, the Navier-Stokes

equation 2.9, the energy equations 2.15 and 2.23) are all given for a fixed control vol-

ume. How come? The answer is the Reynolds transport theorem, which converts the

equations from being valid for a moving, deformable volume with a collection of parti-

cles, Vpart, to being valid for a fixed volume, V . The Reynolds transport theorem reads

(first line)

d

dt

∫

Vpart

ΦdV =

∫

V

(
dΦ

dt
+Φ

∂vi
∂xi

)

dV

=

∫

V

(
∂Φ

∂t
+ vi

∂Φ

∂xi
+Φ

∂vi
∂xi

)

dV =

∫

V

(
∂Φ

∂t
+
∂viΦ

∂xi

)

dV

=

∫

V

∂Φ

∂t
dV +

∫

S

viniΦdS

(2.32)

where V denotes a fixed non-deformable volume in space. The divergence of the ve-

locity vector, ∂vi/∂xi, on the first line represents the increase or decrease of Vpart
during dt. The divergence theorem was used to obtain the last line and S denotes the

bounding surface of volume V . The last term on the last line represents the net flow of

Φ across the fixed non-deformable volume, V . Φ in the equation above can be, e.g., ρ
(mass), ρvi (momentum) or ρu (energy). This equation applies to any volume at every

instant and the restriction to a collection of a material particles is no longer necessary.

Hence, in fluid mechanics the transport equations (Eqs. 2.2, 2.5, 2.13, . . . ) are valid

both for a material collection of particles as well as for a volume; the latter is usually

fixed (this is not necessary).

The left hand of the momentum equation, i.e. φ = ρvi, is given on the first line in

Eq. 2.30. However, if we want to write it as dvi/dt (as in [4]) we start from the right
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side of line 1 in Eq. 2.32, i.e.

d

dt
(ρvi) + ρvi

∂vk
∂xk

= vi
dρ

dt
+ ρ

dvi
dt

+ ρvi
∂vk
∂xk

= vi
∂ρ

∂t
+ vivk

∂ρ

∂xk
+ ρ

dvi
dt

+ ρvi
∂vk
∂xk

= ρ
dvi
dt

because the underlined terms on line 2 are the continuity equation multiplied with vi.
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Figure 3.1: The plate moves to the right with speed V0 for t > 0.

0 0.2 0.4 0.6 0.8 1

t1
t2

t3

v1/V0

x2

Figure 3.2: The v1 velocity at three different times. t3 > t2 > t1.

3 Solutions to the Navier-Stokes equation: three exam-

ples

3.1 The Rayleigh problem

I
MAGINE the sudden incompressible motion of an infinitely long flat plate. For time

greater than zero the plate is moving with the speed V0, see Fig. 3.1. Because the

plate is infinitely long, there is no x1 dependency. Hence the flow depends only on x2
and t, i.e. v1 = v1(x2, t) and p = p(x2, t). Furthermore, ∂v1/∂x1 = ∂v3/∂x3 = 0 so

that the continuity equation gives ∂v2/∂x2 = 0. At the lower boundary (x2 = 0) and

at the upper boundary (x2 → ∞) the velocity component v2 = 0, which means that

v2 = 0 in the entire domain. So, Eq. 2.9 gives (no body forces, i.e. f1 = 0) for the v1
velocity component

∂v1
∂t

= ν
∂2v1
∂x22

(3.1)

where we have divided the equation by density so that ν = µ/ρ. The boundary condi-

tions for Eq. 3.1 are

v1(x2, t = 0) = 0, v1(x2 = 0, t) = V0, v1(x2 → ∞, t) = 0 (3.2)

The solution to Eq. 3.1 is shown in Fig. 3.2. For increasing time (t3 > t2 > t1), the

moving plate affects the fluid further and further away from the plate.

It turns out that the solution to Eq. 3.1 is a similarity solution; this means that the similarity

solutionnumber of independent variables is reduced by one, in this case from two (x2 and t) to

one (η). The similarity variable, η, is related to x2 and t as

η =
x2

2
√
νt

(3.3)
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If the solution of Eq. 3.1 depends only on η, it means that the solution for a given fluid

will be the same (“similar”) for many (infinite) values of x2 and t as long as the ratio

x2/
√
νt is constant. Now we need to transform the derivatives in Eq. 3.1 from ∂/∂t

and ∂/∂x2 to d/dη so that it becomes a function of η only. We get

∂v1
∂t

=
dv1
dη

∂η

∂t
= −x2t

−3/2

4
√
ν

dv1
dη

= −1

2

η

t

dv1
dη

∂v1
∂x2

=
dv1
dη

∂η

∂x2
=

1

2
√
νt

dv1
dη

∂2v1
∂x22

=
∂

∂x2

(
∂v1
∂x2

)

=
∂

∂x2

(
1

2
√
νt

dv1
dη

)

=
1

2
√
νt

∂

∂x2

(
dv1
dη

)

=
1

4νt

d2v1
dη2

(3.4)

We introduce a non-dimensional velocity

f =
v1
V0

(3.5)

Inserting Eqs. 3.4 and 3.5 in Eq. 3.1 gives

d2f

dη2
+ 2η

df

dη
= 0 (3.6)

We have now successfully transformed Eq. 3.1 and reduced the number of independent

variables from two to one. Now let us find out if the boundary conditions, Eq. 3.2, also

can be transformed in a physically meaningful way; we get

v1(x2, t = 0) = 0 ⇒ f(η → ∞) = 0

v1(x2 = 0, t) = V0 ⇒ f(η = 0) = 1

v1(x2 → ∞, t) = 0 ⇒ f(η → ∞) = 0

(3.7)

Since we managed to transform both the equation (Eq. 3.1) and the boundary conditions

(Eq. 3.7) we conclude that the transformation is suitable.

Now let us solve Eq. 3.6. Integration once gives

df

dη
= C1 exp(−η2) (3.8)

Integration a second time gives

f = C1

∫ η

0

exp(−η′2)dη′ + C2 (3.9)

The integral above is the error function

erf(η) ≡ 2√
π

∫ η

0

exp(−η′2)dη′ (3.10)

At the limits, the error function takes the values 0 and 1, i.e. erf(0) = 0 and erf(η →
∞) = 1. Taking into account the boundary conditions, Eq. 3.7, the final solution to

Eq. 3.9 is (with C2 = 1 and C1 = −2/
√
π)

f(η) = 1− erf(η) (3.11)



3.1. The Rayleigh problem 40

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f

η

Figure 3.3: The velocity, f = v1/V0, given by Eq. 3.11.
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Figure 3.4: The shear stress for water (ν = 10−6) obtained from Eq. 3.12 at time t = 100 000.

The solution is presented in Fig. 3.3. Compare this figure with Fig. 3.2 at p. 38; all

graphs in that figure collapse into one graph in Fig. 3.3. To compute the velocity, v1,

we pick a time t and insert x2 and t in Eq. 3.3. Then f is obtained from Eq. 3.11 and

the velocity, v1, is computed from Eq. 3.5. This is how the graphs in Fig. 3.2 were

obtained.

From the velocity profile we can get the shear stress as

τ21 = µ
∂v1
∂x2

=
µV0

2
√
νt

df

dη
= − µV0√

πνt
exp

(
−η2

)
(3.12)

where we used ν = µ/ρ. Figure 3.4 presents the shear stress, τ21. The solid line is

obtained from Eq. 3.12 and circles are obtained by evaluating the derivative, df/dη,

numerically using central differences (fj+1 − fj−1)/(ηj+1 − ηj−1). As can be seen

from Fig. 3.4, the magnitude of the shear stress increases for decreasing η and it is

largest at the wall, τw = −ρV0/
√
πt

The vorticity,ω3, across the boundary layer is computed from its definition (Eq. 1.36)

ω3 = − ∂v1
∂x2

= − V0

2
√
νt

df

dη
=

V0√
πνt

exp(−η2) (3.13)

From Fig. 3.2 at p. 38 it is seen that for large times, the moving plate is felt further

and further out in the flow, i.e. the thickness of the boundary layer, δ, increases. Often
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Figure 3.5: Flow in a horizontal channel. The inlet part of the channel is shown.

the boundary layer thickness is defined by the position where the local velocity, v1(x2),
reaches 99% of the freestream velocity. In our case, this corresponds to the point where

v1 = 0.01V0. Find the point f = v1/V0 = 0.01 in Fig. 3.3; at this point η ≃ 1.8 (we

can also use Eq. 3.11). Inserting x2 = δ in Eq. 3.3 gives

η = 1.8 =
δ

2
√
νt

⇒ δ = 3.6
√
νt (3.14)

It can be seen that the boundary layer thickness increases with t1/2. Equation 3.14 can

also be used to estimate the diffusion length. After, say, 10 minutes the diffusion length diffusion

lengthfor air and water, respectively, are

δair = 10.8cm

δwater = 2.8cm
(3.15)

The diffusion length can also be used to estimate the thickness of a developing bound-

ary layer, see Section 4.3.1.

Exercise 16 Consider the graphs in Fig. 3.3. Create this graph with Python/Matlab/Octave.

Exercise 17 Consider the graphs in Fig. 3.2. Note that no scale is used on the x2 axis

and that no numbers are given for t1, t2 and t3. Create this graph with Python/Matlab/Octave

for both air and engine oil. Choose suitable values on t1, t2 and t3.

Exercise 18 Repeat the exercise above for the shear stress, τ21, see Fig. 3.4.

3.2 Flow between two plates

Consider steady, incompressible flow in a two-dimensional channel, see Fig. 3.5, with

constant physical properties (i.e. µ = const).

3.2.1 Curved plates

Provided that the walls at the inlet are well curved, the velocity near the walls is larger

than in the center, see Fig. 3.5. The reason is that the flow (with velocity V ) following

the curved wall must change its direction. The physical agent which accomplish this

is the pressure gradient which forces the flow to follow the wall as closely as possible

(if the wall is not sufficiently curved a separation will take place). Hence the pressure
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Figure 3.6: Flow in a channel bend.
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Figure 3.7: Secondary flow in a duct bend.

in the center of the channel, P2, is higher than the pressure near the wall, P1. It is thus

easier (i.e. less opposing pressure) for the fluid to enter the channel near the walls than

in the center. This explains the high velocity near the walls.

The same phenomenon occurs in a channel bend, see Fig. 3.6. The flow V ap-

proaches the bend and the flow feels that it is approaching a bend through an increased

pressure. The pressure near the outer wall, P2, must be higher than that near the inner

wall, P1, in order to force the flow to turn. Hence, it is easier for the flow to sneak

along the inner wall where the opposing pressure is smaller than near the outer wall:

the result is a higher velocity near the inner wall than near the outer wall. In a three-

dimensional duct or in a pipe, the pressure difference P2 − P1 creates secondary flow

downstream the bend (i.e. a swirling motion in the x2 − x3 plane). If you sit on a fluid

particle through the bend you’re exposed to two forces:

• a centrifugal forces which tries to push you towards the outer wall

• and an opposing pressure force P2 − P1 per unit area

The pressure force is constant along the x3 direction but the centrifugal is small along

the walls a and b (because of the boundary laywers along these walls) and it is large in

the center C−C. Hence, the secondary flow is in the center (C−C) movning towards

the outer wall..

3.2.2 Flat plates

The flow in the inlet section (Fig. 3.5) is two dimensional. Near the inlet the velocity is

largest near the wall and further downstream the velocity is retarded near the walls due
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to the large viscous shear stresses there. The flow is accelerated in the center because

the integrated mass flow (from x2 = 0 to h) at each x1 must be constant because of

continuity. The acceleration and retardation of the flow in the inlet region is “paid for ”

by a pressure loss which is rather high in the inlet region; if a separation occurs because

of sharp corners at the inlet, the pressure loss will be even higher. For large x1 the flow

will be fully developed; the region until this occurs is called the entrance region, and

the entrance length can, for moderately disturbed inflow, be estimated as [6]

x1,e
Dh

= 0.016ReDh
≡ 0.016

VDh

ν
(3.16)

where V denotes the bulk (i.e. the mean) velocity, and Dh = 4A/Sp where Dh,

A and Sp denote the hydraulic diameter, the cross-sectional area and the perimeter,

respectively. For flow between two plates we get Dh = 2h.

Let us find the governing equations for the fully developed flow region; in this

region the flow does not change with respect to the streamwise coordinate, x1 (i.e.

∂v1/∂x1 = ∂v2/∂x1 = 0). Since the flow is two-dimensional, it does not depend

on the third coordinate direction, x3 (i.e. ∂/∂x3), and the velocity in this direction is

zero, i.e. v3 = 0. Taking these restrictions into account the continuity equation can be

simplified as (see Eq. 2.3)
∂v2
∂x2

= 0 (3.17)

Integration gives v2 = C1 and since v2 = 0 at the walls, it means that

v2 = 0 (3.18)

across the entire channel (recall that we are dealing with the part of the channel where

the flow is fully developed; in the inlet section v2 6= 0, see Fig. 3.5).

Now let us turn our attention to the momentum equation for v2. This is the vertical

direction (x2 is positive upwards, see Fig. 3.5). The gravity acts in the negative x2
direction, i.e. fi = (0,−g, 0). The momentum equation can be written (see Eq. 2.9 at

p. 32)

ρ
dv2
dt

≡ ρv1
∂v2
∂x1

+ ρv2
∂v2
∂x2

= − ∂P

∂x2
+ µ

∂2v2
∂x22

− ρg (3.19)

Since v2 = 0 we get
∂P

∂x2
= −ρg (3.20)

Integration gives

P = −ρgx2 + C1(x1) (3.21)

where the integration “constant”C1 may be a function of x1 but not of x2. If we denote

the pressure at the lower wall (i.e. at x2 = 0) as p we get

P = −ρgx2 + p(x1) (3.22)

Hence the pressure, P , decreases with vertical height. This agrees with our experience

that the pressure decreases at high altitudes in the atmosphere and increases the deeper

we dive into the sea. Usually the hydrodynamic pressure, p, is used in incompressible hydrodynamic

pressureflow. This pressure is zero when the flow is static, i.e. when the velocity field is zero.

However, when you want the physical pressure, the ρgx2 as well as the surrounding

atmospheric pressure must be added.
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We can now formulate the momentum equation in the streamwise direction

ρ
dv1
dt

≡ ρv1
∂v1
∂x1

+ ρv2
∂v1
∂x2

= − dp

dx1
+ µ

∂2v1
∂x22

(3.23)

where P was replaced by p using Eq. 3.22. Since v2 = ∂v1/∂x1 = 0 the left side is

zero so

µ
∂2v1
∂x22

=
dp

dx1
(3.24)

Since the left side is a function of x2 and the right side is a function of x1, we conclude

that they both are equal to a constant (i.e. Eq. 3.24 is independent of x1 and x2) . The

velocity, v1, is zero at the walls, i.e

v1(0) = v1(h) = 0 (3.25)

where h denotes the height of the channel, see Fig. 3.5. Integrating Eq. 3.24 twice and

using Eq. 3.25 gives

v1 = − h

2µ

dp

dx1
x2

(

1− x2
h

)

(3.26)

The minus sign on the right side appears because the pressure is decreasing for increas-

ing x1; the pressure is driving the flow. The negative pressure gradient is constant (see

Eq. 3.24) and can be written as −dp/dx1 = ∆p/L.

The velocity takes its maximum in the center, i.e. for x2 = h/2, and reads

v1,max =
h

2µ

∆p

L

h

2

(

1− 1

2

)

=
h2

8µ

∆p

L
(3.27)

We often write Eq. 3.26 on the form

v1
v1,max

=
4x2
h

(

1− x2
h

)

(3.28)

The mean velocity (often called the bulk velocity) is obtained by integrating Eq. 3.28

across the channel, i.e.

v1,mean =
v1,max

h

∫ h

0

4x2
h

(

1− x2
h

)

dx2 =
2

3
v1,max (3.29)

The velocity profile is shown in Fig. 3.8

Since we know the velocity profile, we can compute the wall shear stress. Equa-

tion 3.26 gives

τw = µ
∂v1
∂x2

= −h
2

dp

dx1
=
h

2

∆p

L
(3.30)

Actually, this result could have been obtained by simply taking a force balance of a

slice of the flow far downstream.

This flow is analyzed in Appendix C.

3.2.3 Force balance, channel flow

We continue to consider fully developed flow between two parallel plates. To formulate

a force balance in the x1 direction, we start with Eq. 1.7 which reads for i = 1

ρ
dv1
dt

=
∂σj1
∂xj

(3.31)
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Figure 3.8: The velocity profile in fully developed channel flow, Eq. 3.28.

The left hand side is zero since the flow is fully developed. Forces act on a volume and

its bounding surface. Hence we integrate Eq. 3.31 over the volume of a slice (length

L), see Fig. 3.9

0 =

∫

V

∂σj1
∂xj

dV (3.32)

Recall that this is the form on which we originally derived the momentum balance

(Newton’s second law) in Part I. [4] Now use Gauss divergence theorem

0 =

∫

V

∂σj1
∂xj

dV =

∫

S

σj1njdS (3.33)

The bounding surface consists in our case of four surfaces (lower, upper, left and right)

so that

0 =

∫

Sleft

σj1njdS+

∫

Sright

σj1njdS+

∫

Slower

σj1njdS+

∫

Supper

σj1njdS (3.34)

The normal vector on the lower, upper, left and right are ni,lower = (0,−1, 0), ni,upper =
(0, 1, 0), ni,left = (−1, 0, 0), ni,right = (1, 0, 0). Inserting the normal vectors and us-

ing Eq. 1.9 give

0 = −
∫

Sleft

(−p+ τ11)dS +

∫

Sright

(−p+ τ11)dS −
∫

Slower

τ21dS +

∫

Supper

τ21dS

(3.35)

τ11 = 0 because ∂v1/∂x1 = 0 (fully developed flow). The shear stress at the upper and

lower surfaces, τ21, have opposite sign becauseµ(∂v1/∂x2)lower = −µ(∂v1/∂x2)upper .

Using this and Eq. 3.22 give (p = p(x1) and τw is constant and can thus be taken out

in front of the integration)

0 = p1Wh− p2Wh− 2τwLW (3.36)

where τw = µ(∂v1/∂x2)lower and W is the width (in x3 direction) of the two plates

(for convenience we set W = 1). With ∆p = p1 − p2 we get Eq. 3.30.



3.2. Flow between two plates 46

x1

x2

τw,U

τw,L

p2p1
V h

L

walls

Figure 3.9: Force balance of the flow between two plates.

3.2.4 Balance equation for the kinetic energy

In this subsection we will use the equation for kinetic energy, Eq. 2.23. Let us integrate

this equation in the same way as we did for the force balance. The left side of Eq. 2.23

is zero because we assume that the flow is fully developed; using Eq. 1.9 gives

0 =
∂viσji
∂xj

− σji
∂vi
∂xj

+ ρvifi
=0

= −∂vjp
∂xj

+
∂viτji
∂xj

+ pδij
∂vi
∂xj

− τji
∂vi
∂xj
Φ

(3.37)

On the first line vifi = v1f1 + v2f2 = 0 because v2 = f1 = 0. The third term on

the second line pδij∂vi/∂xj = p∂vi/∂xi = 0 because of continuity. The last term

corresponds to the viscous dissipation term, Φ (i.e. loss due to friction), see Eq. 2.25

(term b). Now we integrate the equation over a volume

0 =

∫

V

(

−∂pvj
∂xj

+
∂τjivi
∂xj

− Φ

)

dV (3.38)

Gauss divergence theorem on the two first terms gives

0 =

∫

S

(−pvj + τjivi)njdS −
∫

V

ΦdV (3.39)

where S is the surface bounding the volume. The unit normal vector is denoted by nj

which points out from the volume. For example, on the right surface in Fig. 3.9 it is

nj = (1, 0, 0) and on the lower surface it is nj = (0,−1, 0). Now we apply Eq. 3.39

to the fluid enclosed by the flat plates in Fig. 3.9. The second term is zero on all

four surfaces and the first term is zero on the lower and upper surfaces (see Exercises

below). We replace the pressure P with p using Eq. 3.22 so that

∫

Sleft&Sright

(−pv1 + ρgx2v1)n1dS = −(p2 − p1)

∫

Sleft&Sright

v1n1dS

= ∆pv1,meanWh

(3.40)
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because ρgx2n1v1 on the left and right surfaces cancels; p can be taken out of the

integral as it does not depend on x2. Finally we get

∆p =
1

Whv1,mean

∫

V

ΦdV (3.41)

3.3 Two-dimensional boundary layer flow over flat plate

The equations for steady, two-dimensional, incompressible boundary layer flow reads

(x1 and x2 denote streamwise and wall-normal coordinates, respectively)

v1
∂v1
∂x1

+ v2
∂v1
∂x2

= ν
∂2v1
∂x22

∂p

∂x2
= 0

∂v1
∂x1

+
∂v2
∂x2

= 0

(3.42)

where the pressure gradient is omitted in the v1 momentum equation because ∂p/∂x1 =
0 along a flat plate in infinite surroundings. The boundary conditions are

x2 = 0 : v1 = v2 = 0 (at the wall)

x2 → ∞ : v1 → V1,∞, v2 = 0 (far from the wall)
(3.43)

Let’s introduce the stream function Ψ, which is useful when re-writing the two- stream-

functiondimensional Navier-Stokes equations. It is defined as

v1 =
∂Ψ

∂x2
, v2 = − ∂Ψ

∂x1
(3.44)

With the velocity field expressed in Ψ, the continuity equations is automatically satis-

fied which is easily shown by inserting Eq. 3.44 into the continuity equation

∂v1
∂x1

+
∂v2
∂x2

=
∂2Ψ

∂x1∂x2
− ∂2Ψ

∂x2∂x1
= 0 (3.45)

Inserting Eq. 3.44 into the streamwise momentum equation gives

∂Ψ

∂x2

∂2Ψ

∂x1∂x2
− ∂Ψ

∂x1

∂2Ψ

∂x22
= ν

∂3Ψ

∂x32
(3.46)

The boundary conditions for the stream function read

x2 = 0 : Ψ =
∂Ψ

∂x2
= 0 (at the wall)

x2 → ∞ :
∂Ψ

∂x2
→ V1,∞ (far from the wall)

(3.47)

As in Section 3.1 we want to transform the partial differential equation, Eq. 3.46,

into an ordinary differential equation. In Section 3.1 we replaced x1 and t with the new

non-dimensional variable η. Now we want to replace x1 and x2 with a new dimension-

less variable, say ξ. At the same time we define a new dimensionless stream function,

g(ξ), as

ξ =

(
V1,∞
νx1

)1/2

x2, Ψ = (νV1,∞x1)
1/2

g (3.48)
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First we need the derivatives ∂ξ/∂x1 and ∂ξ/∂x2

∂ξ

∂x1
= −1

2

(
V1,∞
νx1

)1/2
x2
x1

= − ξ

2x1

∂ξ

∂x2
=

(
V1,∞
νx1

)1/2

=
ξ

x2

(3.49)

Now we express the first derivatives of Ψ in Eq. 3.46 as derivatives of g, i.e. (g′

denotes dg/dξ)

∂Ψ

∂x1
=

∂

∂x1

(

(νV1,∞x1)
1/2
)

g + (νV1,∞x1)
1/2 g′

∂ξ

∂x1

=
1

2

(
νV1,∞
x1

)1/2

g − (νV1,∞x1)
1/2 g′

ξ

2x1

=
1

2

(
νV1,∞
x1

)1/2

(g − ξg′)

∂Ψ

∂x2
=

∂

∂x2

(

(νV1,∞x1)
1/2
)

g + (νV1,∞x1)
1/2 ∂ξ

∂x2
g′ = V1,∞g

′

(3.50)

The second and third derivatives of Ψ read

∂2Ψ

∂x22
= V1,∞g

′′ ∂ξ

∂x2
= V1,∞

(
V1,∞
νx1

)1/2

g′′ = V1,∞
ξ

x2
g′′

∂3Ψ

∂x32
= V1,∞

(
V1,∞
νx1

)1/2

g′′′
∂ξ

∂x2
= V1,∞

V1,∞
νx1

g′′′ = V1,∞

(
ξ

x2

)2

g′′′

∂2Ψ

∂x1∂x2
= V1,∞g

′′ ∂ξ

∂x1
= − ξ

2x1
V1,∞g

′′

(3.51)

Inserting Eqs. 3.50 and 3.51 into Eq. 3.46 gives

−V1,∞g′
ξ

2x1
V1,∞g

′′ −
(

1

2

(
νV1,∞
x1

)1/2

(g − ξg′)

)

V1,∞

(
V1,∞
νx1

)1/2

g′′

= ν
V 2
1,∞

νx1
g′′′

(3.52)

Divide by V 2
1,∞ and multiply by x1 gives

−g′ ξ
2
g′′ − 1

2
(g − ξg′) g′′ = g′′′ (3.53)

so that
1

2
gg′′ + g′′′ = 0 (3.54)

This equation was derived (and solved numerically!) by Blasius in his PhD thesis

1907 [7, 8]. The numerical solution is given in Table 3.1. The flow is analyzed in

Appendix 33.

Exercise 19 For the fully developed flow, compute the vorticity, ωi, using the exact

solution (Eq. 3.28).
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ξ g g′ g′′

0 0.000000000E+00 0.000000000E+00 3.320573362E-01

0.2 6.640999715E-03 6.640779210E-02 3.319838371E-01

0.4 2.655988402E-02 1.327641608E-01 3.314698442E-01

0.6 5.973463750E-02 1.989372524E-01 3.300791276E-01

0.8 1.061082208E-01 2.647091387E-01 3.273892701E-01

1.0 1.655717258E-01 3.297800312E-01 3.230071167E-01

1.2 2.379487173E-01 3.937761044E-01 3.165891911E-01

1.4 3.229815738E-01 4.562617647E-01 3.078653918E-01

1.6 4.203207655E-01 5.167567844E-01 2.966634615E-01

1.8 5.295180377E-01 5.747581439E-01 2.829310173E-01

2.0 6.500243699E-01 6.297657365E-01 2.667515457E-01

2.2 7.811933370E-01 6.813103772E-01 2.483509132E-01

2.4 9.222901256E-01 7.289819351E-01 2.280917607E-01

2.6 1.072505977E+00 7.724550211E-01 2.064546268E-01

2.8 1.230977302E+00 8.115096232E-01 1.840065939E-01

3.0 1.396808231E+00 8.460444437E-01 1.613603195E-01

3.2 1.569094960E+00 8.760814552E-01 1.391280556E-01

3.4 1.746950094E+00 9.017612214E-01 1.178762461E-01

3.6 1.929525170E+00 9.233296659E-01 9.808627878E-02

3.8 2.116029817E+00 9.411179967E-01 8.012591814E-02

4.0 2.305746418E+00 9.555182298E-01 6.423412109E-02

4.2 2.498039663E+00 9.669570738E-01 5.051974749E-02

4.4 2.692360938E+00 9.758708321E-01 3.897261085E-02

4.6 2.888247990E+00 9.826835008E-01 2.948377201E-02

4.8 3.085320655E+00 9.877895262E-01 2.187118635E-02

5.0 3.283273665E+00 9.915419002E-01 1.590679869E-02

5.2 3.481867612E+00 9.942455354E-01 1.134178897E-02

5.4 3.680919063E+00 9.961553040E-0 1 7.927659815E-03

5.6 3.880290678E+00 9.974777682E-0 1 5.431957680E-03

5.8 4.079881939E+00 9.983754937E-0 1 3.648413667E-03

6.0 4.279620923E+00 9.989728724E-01 2.402039844E-03

6.2 4.479457297E+00 9.993625417E-01 1.550170691E-03

6.4 4.679356615E+00 9.996117017E-01 9.806151170E-04

6.6 4.879295811E+00 9.997678702E-01 6.080442648E-04

6.8 5.079259772E+00 9.998638190E-01 3.695625701E-04

7.0 5.279238811E+00 9.999216041E-01 2.201689553E-04

7.2 5.479226847E+00 9.999557173E-01 1.285698072E-04

7.4 5.679220147E+00 9.999754577E-01 7.359298339E-05

7.6 5.879216466E+00 9.999866551E-01 4.129031111E-05

7.8 6.079214481E+00 9.999928812E-01 2.270775140E-05

8.0 6.279213431E+00 9.999962745E-01 1.224092624E-05

8.2 6.479212887E+00 9.999980875E-01 6.467978611E-06

8.4 6.679212609E+00 9.999990369E-01 3.349939753E-06

8.6 6.879212471E+00 9.999995242E-01 1.700667989E-06

8.8 7.079212403E+00 9.999997695E-01 8.462841214E-07

Table 3.1: Blasius numerical solution of laminar flow along a flat plate.
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x1

x2

τw

V H

v2(x1)

L

wall

Figure 3.10: Force balance of boundary layer flow along a flat plate.

Exercise 20 Show that the first and second terms in Eq. 3.39 are zero on the upper and

the lower surfaces in Fig. 3.9.

Exercise 21 Show that the second term in Eq. 3.39 is zero also on the left and right

surfaces in Fig. 3.9 (assume fully developed flow).

Exercise 22 Using the exact solution, compute the dissipation, Φ, for the fully devel-

oped flow.

Exercise 23 From the dissipation, compute the pressure drop. Is it the same as that

obtained from the force balance (if not, find the error; it should be!).

3.3.1 Momentum balance, boundary layer

Let’s make a momentum balance for the boundary layer in the same way as we did

for fully-developed channel flow in Section 3.2.3. The left boundary (see Fig. 3.10) is

located upstream of the plate, i.e. at x < 0, see Fig. 33.1, Note that here – contrary to

the channel flow – we do not have any pressure gradient. At the upper boundary we

also have an outflow because the right boundary includes a boundary layer meaning

that the outflow here is smaller than the inflow at the left boundary. Hence, the right

side of the momentum equation reads (cf. Eq. 3.34)

0 =

∫

Slower

σj1njdS = −
∫

Slower

σ21 = −
∫

Slower

τwdS (3.55)

using Eq. 1.9 and nj = (0,−1, 0). Only the contribution from the lower boundary

appears. The reason is that is no pressure forces on the left and right (or, rather, they

cancel each other) and there is no shear stress on the top boundary since ∂v1/∂x2 = 0.

The other difference compared to the channel flow in Section 3.2.3 is that the left side

of Eq. 3.31 is not zero. It reads

ρ
dv1
dt

≡ ∂vjv1
∂xj

. (3.56)

Gauss divergence theorem gives
∫

V

∂vjv1
∂xj

dV =

∫

Sleft

vjv1njdS +

∫

Sright

vjv1njdS +

∫

Stop

vjv1njdS (3.57)
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where the contribution at the lower boundary is zero since the velocity is zero at

the walls. The unit normal vector at the left, right and top boundaries are (1, 0, 0),
(−1, 0, 0) and (0, 1, 0), respectively, which gives

∫

V

∂vjv1
∂xj

dV =

∫

Sright

v21dS −
∫

Sleft

v21dS +

∫

Stop

v1v2dS (3.58)

At the left boundary v1 = V∞ which gives

∫

V

∂vjv1
∂xj

dV =

∫

S

(
v21 − V 2

1,∞

)
dS +

∫

Stop

v1v2dS (3.59)

Combining Eqs. 3.55 and 3.59 we can write (assuming that the extent of the integration

domain in the third direction is one)

τw =
1

L

[
∫

S

(
V 2
1,∞ − v21

)
dx2 +

∫

Stop

v1v2dx1

]

(3.60)

We find one important difference between fully-developed channel flow and bound-

ary layer flow: the flow in channel flow is driven by a pressure gradient (the pressure

decreases) whereas in the boundary layer the “force” to overcome the opposing wall

shear stress is achieved by decreasing momentum in the convective term. Making a bal-

ance of the mass flow and combining it with Eq. 3.60 the expression for the momentum

thickness, 33.2, is derived.
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v1(x2)

x1

x2

g

(x1, x2)

τ12(x1 − 0.5∆x1)n1

τ12(x1 + 0.5∆x1)n1

τ21(x2 − 0.5∆x2)n2

τ21(x2 + 0.5∆x2)n2

P (x1 − 0.5∆x1) P (x1 + 0.5∆x1)

Figure 4.1: Surface forces acting on a fluid particle. The fluid particle is located in the lower

half of fully developed channel flow. The v1 velocity is given by Eq. 3.28 and v2 = 0. Hence

τ11 = τ22 = ∂τ12/∂x1 = 0 and −∂τ21/∂x2 > 0. The v1 velocity field is indicated by dashed

vectors.

4 Vorticity equation and potential flow

4.1 Vorticity and rotation

V
ORTICITY, ωi, was introduced in Eq. 1.12 at p. 22. As shown in Fig. 1.4 at p. 25,

vorticity is connected to rotation of a fluid particle. Figure 4.1 shows the surface

forces acting on a fluid particle in a shear flow. Looking at Fig. 4.1 it is obvious that

only the shear stresses are able to rotate the fluid particle; the pressure and the normal

viscous stresses act through the center of the fluid particle and are thus not able to

affect rotation of the fluid particle. Note that the v2 momentum equation (see Eqs. 2.4

and 3.32) requires that the vertical viscous stresses in Fig. 4.1 are in balance. The v1
momentum equation requires that the horizontal viscous stresses balance the pressure

difference. Furthermore, you may notice that τ12 6= τ21 in Fig. 4.1. The reason is that

τ21 is drawn at a larger x2 where the velocity derivative ∂v1/∂x2 is larger that at the

position where τ12 is drawn.

Let us have a look at the momentum equations in order to show that the viscous

terms indeed can be formulated with the vorticity vector, ωi. In incompressible flow

the viscous terms read (see Eqs. 2.4, 2.5 and 2.7)

∂τji
∂xj

= µ
∂2vi
∂xj∂xj

(4.1)
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The right side can be re-written using the tensor identity

∂2vi
∂xj∂xj

=
∂2vj
∂xj∂xi

−
(

∂2vj
∂xj∂xi

− ∂2vi
∂xj∂xj

)

=
∂

∂xi

(
∂vj
∂xj

)

=0

−εinmεmjk
∂2vk
∂xj∂xn

= −εinmεmjk
∂2vk
∂xj∂xn

(4.2)

where the first on the second line is zero because of continuity. Let’s verify that

(
∂2vj
∂xj∂xi

− ∂2vi
∂xj∂xj

)

= εinmεmjk
∂2vk
∂xj∂xn

(4.3)

Use the ε− δ-identity (see Table B.1 at p. 287)

εinmεmjk
∂2vk
∂xj∂xn

= (δijδnk − δikδnj)
∂2vk
∂xj∂xn

=
∂2vk
∂xi∂xk

− ∂2vi
∂xj∂xj

(4.4)

which shows that Eq. 4.3 is correct. At the right side of Eq. 4.3 we recognize the

vorticity, ωm = εmjk∂vk/∂xj , so that

∂2vi
∂xj∂xj

= −εinm
∂ωm

∂xn
(4.5)

In vector notation the identity Eq. 4.5 reads

∇2v = ∇(∇ · v) −∇×∇× v = −∇× ω (4.6)

Using Eq. 4.5, Eq. 4.1 reads

∂τji
∂xj

= −µεinm
∂ωm

∂xn
(4.7)

Let’s look at Eq. 4.7 for the v1 equation in two dimensions. Setting i = 1 gives

∂τj1
∂xj

= −µε1nm
∂ωm

∂xn
= −µε123

∂ω3

∂x2
−µε132

∂ω2

∂x3
= −∂ω3

∂x2
+
∂ω2

∂x3
= −∂ω3

∂x2
(4.8)

since ω2 = 0. Inserting Eq. 1.12 gives

∂τj1
∂xj

= − ∂

∂x2

(

ǫ3jk
∂vk
∂xj

)

= − ∂

∂x2

(

ǫ321
∂v1
∂x2

+ ǫ312
∂v2
∂x1

)

= − ∂

∂x2

(

− ∂v1
∂x2

+
∂v2
∂x1

)

Changing the order of derivatation for the second term gives

∂τj1
∂xj

=
∂

∂x2

(
∂v1
∂x2

)

− ∂

∂x1

(
∂v2
∂x2

)

Using the continuity equation for the last term gives

∂τj1
∂xj

=
∂

∂x2

(
∂v1
∂x2

)

+
∂

∂x1

(
∂v1
∂x1

)

and now we have shown – again – that Eqs. 4.7 and 4.8 are indeed correct.
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Thus, there is a one-to-one relation between the viscous term and vorticity: no

viscous terms means no vorticity and vice versa. An imbalance in shear stresses (left

side of Eq. 4.7) causes a change in vorticity, i.e. generates vorticity (right side of

Eq. 4.7). Hence, inviscid flow (i.e. friction-less flow) has no rotation. (The exception

is when vorticity is transported into an inviscid region, but also in that case no vorticity

is generated or destroyed: it stays constant, unaffected.) Inviscid flow is often called

irrotational flow (i.e. no rotation) or potential flow. The vorticity is always created at potential

boundaries, see Section 4.3.1.

The main points that we have learnt in this section are:

1. The viscous terms are responsible for creating vorticity; this means that the vor-

ticity can not be created or destroyed in inviscid (friction-less) flow

2. The viscous terms in the momentum equations can be expressed in ωi; consider-

ing Item 1 this was to be expected.

Exercise 24 Prove the first equality of Eq. 4.5 using the ε-δ-identity.

Exercise 25 Write out Eq. 4.7 for i = 1 and verify that it is satisfied.

4.2 The vorticity transport equation in three dimensions

Up to now we have talked quite a lot about vorticity. We have learnt that physically

it means rotation of a fluid particle and that it is only the viscous terms that can cause

rotation of a fluid particle. The terms inviscid (no friction), irrotational and potential

flow all denote frictionless flow which is equivalent to zero (change in) vorticity. There friction-

lessis a small difference between the three terms because there may be vorticity in inviscid

flow that is convected into the flow at the inlet(s); but also in this case the vorticity is not

affected once it has entered the inviscid flow region. However, usually no distinction is

made between the three terms.

In this section we will derive the transport equation for vorticity in incompressible

flow. As usual we start with the Navier-Stokes equation, Eq. 2.9 at p. 32. First, we

re-write the convective term of the incompressible momentum equation (Eq. 2.9) as

vj
∂vi
∂xj

= vj(Sij +Ωij) = vj

(

Sij −
1

2
εijkωk

)

(4.9)

where Eq. 1.19 on p. 23 was used. Inserting Sij = (∂vi/∂xj + ∂vj/∂xi)/2 and

multiplying by two gives

2vj
∂vi
∂xj

= vj

(
∂vi
∂xj

+
∂vj
∂xi

)

− εijkvjωk (4.10)

The second term on the right side can be written as (Trick 2, see Eq. 8.4)

vj
∂vj
∂xi

=
1

2

∂(vjvj)

∂xi
=

∂k

∂xi
(4.11)

where k = vjvj/2. Equation 4.10 can now be written as

vj
∂vi
∂xj

=
∂k

∂xi
no rotation

− εijkvjωk

rotation

(4.12)
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The last term on the right side is the vector product of v and ω, i.e. v × ω.

The trick we have achieved is to split the convective term into one term without

rotation (first term on the right side of Eq. 4.12) and one term including rotation (second

term on the right side). Inserting Eq. 4.12 into the incompressible momentum equation

(Eq. 2.9) yields

∂vi
∂t

+
∂k

∂xi
no rotation

− εijkvjωk

rotation

= −1

ρ

∂P

∂xi
+ ν

∂2vi
∂xj∂xj

+ fi (4.13)

The volume source is in most engineering flows represented by the gravity, i.e. fi = gi.
From Eq. 4.13 we get Crocco’s theorem for steady inviscid flow

εijkvjωk =
∂

∂xi

(
P

ρ
+ k

)

− fi =
∂

∂xi

(
P

ρ
+ k + φ

)

P0/ρ

(4.14)

where ∂φ/∂xi = −fi is the potential of the body force. In vector notation, Eq. 4.14

reads

v × ω =
1

ρ
∇(P0) (4.15)

These equations states that the gradient of stagnation pressure, P0, is orthogonal to

both the velocity and vorticity vector.

Since the vorticity vector in Eq. 1.12 is defined by the cross product εpqi∂vi/∂xq
(∇×v in vector notation, see Exercise 8), we start by applying the operator εpqi∂/∂xq
to the Navier-Stokes equation (Eq. 4.13) so that

εpqi
∂2vi
∂t∂xq

+ εpqi
∂2k

∂xi∂xq
− εpqiεijk

∂vjωk

∂xq

= −εpqi
1

ρ

∂2P

∂xi∂xq
+ νεpqi

∂3vi
∂xj∂xj∂xq

+ εpqi
∂gi
∂xq

(4.16)

where the body force fi was replaced by gi. We know that εijk is anti-symmetric in

all indices, and hence the second term on line 1 and the first term on line 2 are zero

(product of a symmetric and an anti-symmetric tensor). The last term on line 2 is

zero because the gravitation vector, gi, is constant (it is zero even if it is non-constant,

because it can be expressed as a potential, see Eq. 4.32). The last term on line 1 is

re-written using the ε-δ identity (see Table B.1 at p. 287)

εpqiεijk
∂vjωk

∂xq
= (δpjδqk − δpkδqj)

∂vjωk

∂xq
=
∂vpωk

∂xk
− ∂vqωp

∂xq

= vp
∂ωk

∂xk
+ ωk

∂vp
∂xk

− vq
∂ωp

∂xq
− ωp

∂vq
∂xq

(4.17)

Using the definition of ωi we find that its divergence

∂ωi

∂xi
=

∂

∂xi

(

εijk
∂vk
∂xj

)

= εijk
∂2vk
∂xj∂xi

= 0 (4.18)

is zero (product of a symmetric and an anti-symmetric tensor). Using the continuity

equation (∂vq/∂xq = 0) and Eq. 4.18, Eq. 4.17 can be written

εpqiεijk
∂vjωk

∂xq
= ωk

∂vp
∂xk

− vk
∂ωp

∂xk
(4.19)
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v1 v1ω1

x1

x2

Figure 4.2: Vortex stretching. Dashed lines denote fluid element before stretching.
∂v1
∂x1

> 0.

The second term on line 2 in Eq. 4.16 can be written as

νεpqi
∂3vi

∂xj∂xj∂xq
= ν

∂2

∂xj∂xj

(

εpqi
∂vi
∂xq

)

= ν
∂2ωp

∂xj∂xj
(4.20)

Inserting Eqs. 4.19 and 4.20 into Eq. 4.16 gives finally

dωp

dt
≡ ∂ωp

∂t
+ vk

∂ωp

∂xk
= ωk

∂vp
∂xk

+ ν
∂2ωp

∂xj∂xj
(4.21)

We recognize the usual unsteady term, the convective term and the diffusive term.

Furthermore, we have got rid of the pressure gradient term. That makes sense, because

as mentioned in connection to Fig. 4.1, the pressure cannot affect the rotation (i.e. the

vorticity) of a fluid particle since the pressure acts through its center. Equation 4.21

has a new term on the right-hand side which represents amplification and bending or

tilting of the vorticity lines. If we write it term-by-term it reads

ωk
∂vp
∂xk

=







ω1
∂v1
∂x1

+ ω2
∂v1
∂x2

+ ω3
∂v1
∂x3

, p = 1

ω1
∂v2
∂x1

+ ω2
∂v2
∂x2

+ ω3
∂v2
∂x3

, p = 2

ω1
∂v3
∂x1

+ ω2
∂v3
∂x2

+ ω3
∂v3
∂x3

, p = 3

(4.22)

The diagonal terms in this matrix represent vortex stretching. Imagine a slender, Vortex

stretchingcylindrical fluid particle with vorticity ωi and introduce a cylindrical coordinate system

with the x1-axis as the cylinder axis and r2 as the radial coordinate (see Fig. 4.2) so

that ωi = (ω1, 0, 0). We assume that a positive ∂v1/∂x1 is acting on the fluid cylinder;

it will act as a source in Eq. 4.21 increasing ω1 and it will stretch the cylinder. The vol-

ume of the fluid element must stay constant during the stretching (the incompressible

continuity equation), which means that the radius, r, of the cylinder will decrease. For

high Reynolds numbers, the viscous term is neglible. Hence, the viscous forces on the Re number=

ratio of con-

vective to vis-

cous term

surface is small. This means than the angular momentum, r2ω1, is constant during the

elongation (stretching) of the cylinder which gives an increased ω1. We see that vortex

stretching will either make a fluid element longer and thinner with larger ω1 (as in the

example above) or shorter and thicker (when ∂v1/∂x1 < 0). The illustratation given

here is mainly relevant when a fluid particle actually rotates (as it does in turbulent

flow, see Section 5).

The off-diagonal terms in Eq. 4.22 represent vortex tilting. Again, take a slender Vortex

tilting
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Figure 4.3: Vortex tilting. Dashed lines denote fluid element before bending or tilting.

fluid particle, but this time with its axis aligned with the x2 axis, see Fig. 4.3. Assume

is has a vorticity, ω2, and that the velocity surrounding velocity field is v1 = v1(x2).
The velocity gradient ∂v1/∂x2 will tilt the fluid particle so that it rotates in clock-wise

direction. The second term ω2∂v1/∂x2 in line one in Eq. 4.22 gives a contribution to

ω1. This means that vorticity in the x2 direction, through the source term ω2∂v1/∂x2,

creates vorticity in the x1 direction..

Vortex stretching and tilting are physical phenomena which act in three dimensions:

fluid which initially is two dimensional becomes quickly three dimensional through

these phenomena. Vorticity is useful when explaining why turbulence must be three-

dimensional, see Section 5.4.

4.3 The vorticity transport equation in two dimensions

It is obvious that the vortex stretching/tilting has no influence in two dimensions; in

this case the vortex stretching/tilting term vanishes because the vorticity vector is or-

thogonal to the velocity vector (for a 2D flow the velocity vector reads vi = (v1, v2, 0)
and the vorticity vector reads ωi = (0, 0, ω3) so that the scalar product is zero, i.e.

ωk∂vp/∂xk = 0). Thus in two dimensions the vorticity equation reads

dω3

dt
= ν

∂2ω3

∂xα∂xα
(4.23)

(Greek indices are used to indicate that they take values 1 or 2). If the Prandtl number

is one (Pr = 1), this equation is exactly the same as the transport equation for temper-

ature in incompressible flow, see Eq. 2.18. This means that vorticity is convected and

diffused in the same way as temperature. In fully developed channel flow, for example,
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the vorticity and the temperature equations reduce to (cf. Eq. 3.24)

0 = ν
∂2ω3

∂x22
(4.24a)

0 = k
∂2T

∂x22
(4.24b)

For the temperature equation the heat flux is given by q2 = −k∂T/∂x2; with a hot

lower wall and a cold upper wall (constant wall temperatures) the heat flux is constant

for all x2 and goes from the lower wall to the upper wall. We have the same situation for

the vorticity. Its gradient, i.e. the vorticity flux, γ2 = −ν∂ω3/∂x2, is constant across

the channel, see Eq. 3.27 (you have plotted this quantity in TME226 Assignment 1).

Equation 4.24 is turned into relations for q2 and γ2 by integration

γwall = γ2 (4.25a)

qwall = q2 (4.25b)

If the wall-normal temperature derivative ∂T/∂x2 = 0 at both walls (adiabatic

walls), the heat flux at the walls, qwall, will be zero and the temperature will be equal to

an arbitrary constant in the entire domain. It is only when the wall-normal temperature

derivative at the walls are non-zero that a temperature field is created in the domain.

The same is true for ω3: if ν∂ω3/∂x2 = −γ2 = 0 at the walls, the flow will not include

any vorticity. Hence, vorticity is – in the same way as temperature – generated at the

walls.

4.3.1 Boundary layer thickness from the Rayleigh problem

In Section 3.1 we studied the Rayleigh problem (unsteady diffusion). As shown above,

the two-dimensional unsteady temperature equation is identical to the two-dimensional

unsteady equation for vorticity. The diffusion time, t, or the diffusion length, δ, in

Eq. 3.14 can now be used to estimate the thickness of a developing boundary layer

(recall that the limit between the boundary layer and the outer free-stream region can

be defined by vorticity: inside the vorticity is non-zero and outside it is zero).

In a boundary layer, the streamwise pressure gradient is zero, see Eq. 3.42. This

means that

µ
∂2v1
∂x22

∣
∣
∣
∣
wall

= 0

because, at the wall, the only non-zero terms in the Navier-Stokes equation are the

streamwise pressure gradient and the wall-normal diffusion term (see, for example,

Eqs. 2.9 and 3.23). Hence, the flux of vorticity

γ2 = −ν ∂ω3

∂x2

∣
∣
∣
∣
wall

= ν
∂2v1
∂x22

∣
∣
∣
∣
wall

= 0 (4.26)

(recall that (∂v2/∂x1)wall = 0) along the wall which means that no vorticity is created

along the boundary. The vorticity in a developing boundary layer is created at the

leading edge of the plate (note that in channel flow, vorticity is indeed created along the

walls because in this case the streamwise pressure gradient is not zero). The vorticity

generated at the leading edge is transported along the wall by convection and at the

same time it is transported by diffusion away from the wall.
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Figure 4.4: Boundary layer. The boundary layer thickness, δ, increases for increasing stream-

wise distance from leading edge (x1 = 0).

Below we will estimate the boundary layer thickness using the expression derived

for the Rayleigh problem. In a boundary layer there is vorticity and outside the bound-

ary layer it is zero (in the Rayleigh flow problem, the vorticity is created at time t = 0+

when the plate instantaneously accelerates from rest to velocity V0). Hence, if we can

estimate how far from the wall the vorticity diffuses, this gives us an estimation of the

boundary layer thickness.

Consider the boundary layer in Fig. 4.4. The boundary layer thickness at the end of

the plate is δ(L). The time it takes for a fluid particle to travel from the leading edge of

the plate to x = L is L/V0 (in the Rayleigh problem this corresponds to the flow field

after time t = L/V0). During this time vorticity will be transported by diffusion in the

x2 direction the length δ according to Eq. 3.14. If we assume that the fluid is air with

the speed V0 = 3m/s and that the length of the plate L = 2m we get from Eq. 3.14

that δ(L) = 1.2cm.

Exercise 26 Note that the estimate above is not quite accurate because in the Rayleigh

problem we assumed that the convective terms are zero, but in a developing boundary

layer, as in Fig. 4.4, they are not (v2 6= 0 and ∂v1/∂x1 6= 0). The proper way to

solve the problem is to use Blasius solution, see Section 3.3. Blasius solution gives (see

Eq. 33.1)
δ

L
=

5

Re
1/2
L

, ReL =
V0L

ν
(4.27)

Compute what δ(L) you get from Eq. 4.27.

Exercise 27 Assume that we have a developing flow in a pipe (radius R) or between

two flat plates (separation distance h). We want to find out how long distance it takes

for the the boundary layers to merge. Equation 3.14 can be used with δ = R or h.

Make a comparison with this and Eq. 3.16.
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4.4 Potential flow

I
N potential flow, the velocity vector can be expressed as the gradient of its poten-

tial Φ, see Eq. 1.22. The vorticity is then zero by definition since the curl of the

divergence is zero. This is easily seen by inserting Eq. 1.22 (vi = ∂Φ/∂xi) into the

definition of the vorticity, Eq. 1.12, i.e.

ωi = ǫijk
∂vk
∂xj

= ǫijk
∂2Φ

∂xj∂xk
= 0 (4.28)

since ǫijk is anti-symmetric in indices j and k and ∂2Φ/∂xj∂xk is symmetric in j and

k. Inserting Eq. 1.22 into the continuity equation, Eq. 2.3, gives

0 =
∂vi
∂xi

=
∂

∂xi

(
∂Φ

∂xi

)

=
∂2Φ

∂xi∂xi
(4.29)

i.e. the potential satisfies the Laplace equation. This is of great important since many

analytical methods exist for the Laplace equation.

4.4.1 The Bernoulli equation

The velocity field in potential flow is thus given by the continuity equation, Eq. 4.29

(together with Eq. 1.22). Do we have any use of the Navier-Stokes equation? The

answer is yes: this equation provides the pressure field. We use the Navier-Stokes

equation (Eq. 4.13) with the viscous term expressed as in Eq. 4.5

∂vi
∂t

+
∂k

∂xi
− εijkvjωk = −1

ρ

∂P

∂xi
− νεinm

∂ωm

∂xn
+ fi (4.30)

Since ωi = 0 in potential (irrotational) flow, we get (with fi = gi) and using k =
vivi/2 = v2/2

∂

∂t

(
∂Φ

∂xi

)

+
1

2

∂v2

∂xi
= −1

ρ

∂P

∂xi
+ gi (4.31)

where vi in the unsteady term was replaced by its potential (Eq. 1.22). The gravity

force can be expressed as a force potential, gi = −∂X/∂xi (see Eq. 4.14), because it is

conservative. The gravity force is conservative because when integrating this force, the conservative

forcework (i.e. the integral) depends only on the starting and ending points of the integral:

in mathematics this is called an exact differential.

Inserting gi = −∂X/∂xi in Eq. 4.31 gives

∂

∂xi

(
∂Φ

∂t
+
v2

2
+
P

ρ
+ X

)

= 0 (4.32)

Integration gives the famous Bernoulli equation

∂Φ

∂t
+
v2

2
+
P

ρ
+ X = C(t) (4.33)

where X = −gixi. In steady flow, we get

v2

2
+
P

ρ
− g3x3 = C (4.34)

where gi = (0, 0, g3). Using the height, gh = −g3x3, we get the more familiar form

v2

2
+
P

ρ
+ gh = C (4.35)
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4.4.2 Complex variables for potential solutions of plane flows

Complex analysis is a suitable tool for studying potential flow. We start this section by

repeating some basics of complex analysis. For real functions, the value of a partial

derivative, ∂f/∂x, at x = x0 is defined by making x approach x0 and then evaluating

(f(x+x0)−f(x))/x0. The total derivative, df/dt, is defined by approaching the point

x10, x20, x30, t as a linear combination of all independent variables (cf. Eq. 1.1).

A complex derivative of a complex variable is defined as (f(z + z0) − f(z))/z0
where z = x+iy and f = u+iv. We can approach the point z0 both in the real coordi-

nate direction, x, and in the imaginary coordinate direction, y. The complex derivative

is defined only if the value of the derivative is independent of how we approach the

point z0. Hence

df

dz
= lim

∆z→0

f(z0 +∆z)− f(z0)

∆z

= lim
∆x→0

f(x0 +∆x, iy0)− f(x0, iy0)

∆x
= lim

∆y→0

f(x0, iy0 + i∆y)− f(x0, iy0)

i∆y
.

(4.36)

The second line can be written as

∂f

∂x
=

1

i

∂f

∂y
=

i

i2
∂f

∂y
= −i∂f

∂y
(4.37)

since i2 = −1. Inserting f = u+ iv and taking the partial derivative of f we get

∂f

∂x
=
∂u

∂x
+ i

∂v

∂x

−i∂f
∂y

= −i∂u
∂y

− i2
∂v

∂y
= −i∂u

∂y
+
∂v

∂y

(4.38)

Using Eq. 4.37 gives
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(4.39)

Equations 4.39 are called the Cauchy-Riemann equations. Another way to derive

Eq. 4.39 is found here.

So far the complex plane has been expressed as z = x+iy. It can also be expressed

in polar coordinates (see Fig. 4.5)

z = reiθ = r(cos θ + i sin θ) (4.40)

Now we return to fluid mechanics and potential flow. Let us introduce a complex

potential, f , based on the stream function, Ψ (Eq. 3.44), and the velocity potential, Φ
(Eq. 1.22)

f = Φ+ iΨ (4.41)

Recall that for potential (i.e. inviscid, ν = 0) two-dimensional, incompressible flow,

the velocity potential satisfies the Laplace equation, see for example Eq. 4.29. The

stream function also satisfies the Laplace equation in potential flow where the vorticity,

ωi, is zero. This is easily seen by taking the divergence of the stream function, Eq. 3.44

∂2Ψ

∂x21
+
∂2Ψ

∂x22
= − ∂v2

∂x1
+
∂v1
∂x2

= −ω3 = 0 (4.42)

https://mathworld.wolfram.com/Cauchy-RiemannEquations.html
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Figure 4.5: The complex plane in polar coordinates. Real and imaginary axes correspond to the

horizontal and vertical axes, respectively.

see Eq. 1.13. Hence the complex potential, f , also satisfies the Laplace equation.

Furthermore, f also satisfies the Cauchy-Riemann equations, Eq. 4.39, since

∂Φ

∂x
=
∂Ψ

∂y
= v1 and

∂Φ

∂y
= −∂Ψ

∂x
= v2 (4.43)

see Eqs. 3.44 and 1.22. Thus we can conclude that f defined as in Eq. 4.41 is differen-

tiable, i.e. df/dz exists. We have now defined a complex function, f = Φ + iΨ which

satisfies Laplace equation and which has a physical meaning in fluid dynamics.

4.4.3 f ∝ zn

Now we will give some examples of f(z) which correspond to useful engineering

flows. The procedure is as follows:

• assume that f ∝ zn is complex potential

• verify that this is true (see, e.g, Eqs. 4.44 and 4.46)

• choose an n and find out what physical flow the complex potential describes

We can choose any exponent n in f ∝ zn and multiply with any constant in order

to get a physical, meaningful flow. The solution

f = C1z
n (4.44)

is one example. Let’s first verify that this is a solution of the Laplace equation (i.e. the

continuity equation, 4.29 and thet the flow is inviscid, ω3 = 0, Eq. 4.42). Taking the

first and the second derivatives of Eq. 4.44 gives

∂f

∂x
= C1n(x+ iy)n−1

∂2f

∂x2
= C1n(n− 1)(x+ iy)n−2

∂f

∂y
= C1ni(x+ iy)n−1

∂2f

∂2y
= C1n(n− 1)i2(x+ iy)n−2 = −C1n(n− 1)(x+ iy)n−2

(4.45)
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Figure 4.6: Parallel flow.

We find that the Laplace equation is indeed zero, i.e.

∂2f

∂x2
+
∂2f

∂y2
= 0 (4.46)

4.4.3.1 Parallel flow

When we set n = 1 in Eq. 4.44 we get (C1 = V∞)

f = V∞z = V∞(x+ iy) (4.47)

The stream function, Ψ, is equal to the imaginary part, see Eq. 4.41. Equation 4.43

gives the velocity components

v1 =
∂Ψ

∂y
= V∞ and v2 = −∂Ψ

∂x
= 0 (4.48)

The flow is shown in Fig. 4.6.

4.4.3.2 Stagnation flow

When we set n = 2 in Eqs. 4.44 we get (inviscid) stagnation flow onto a wall. The

stream function, Ψ, corresponds to the imaginary part of f , see Eq. 4.41 so that (C1 =
1)

Ψ = z2 (4.49)

The solution in form of a vector plot and contour plot of the stream function is given

in Fig. 4.7. The flow impinges at the wall at x2 = 0. The stream function is zero along

the symmetry line, x1 = 0, and it is negative to the left and positive to the right. The

velocity components are obtained as

v1 =
∂Ψ

∂y
= 2x = 2x1

v2 = −∂Ψ
∂x

= −2y = −2x2

(4.50)
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Figure 4.7: Potential flow. Stagnation flow.
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Figure 4.8: c

aptionPotential flow. The lower boundary for x1 < 0 can either be a wall (concave

corner) or symmetry line (wedge).

Recall that since the flow is inviscid (no friction), the boundary condition on the wall is

slip, i.e. a frictionless wall (same as a symmetric boundary). Note that this flow is the

same as we looked at in Section 1.2 except that the velocities are here twice as large

because we chose C1 = 1 (see Eq. 1.4).

4.4.3.3 Flow over a wedge and flow in a concave corner.

Next we set n = 6/5. When n is not an integer, it is convenient to express f in polar

coordinates

f = C1

(
reiθ

)n
= C1r

neinθ = C1r
n(cos(nθ) + i sin(nθ)) (4.51)

With n = 6/5 we get (inviscid) flow over a wedge and flow over a concave corner (n
should be in the interval 1 < n < 2). The stream function, the imaginary part of f , is

given by (Eqs. 4.41 and 4.51)

Ψ = r6/5 sin(6θ/5) (4.52)
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Figure 4.9: Line source. ṁ > 0

(C1 = 1) and the velocity components read

vr =
1

r

∂Ψ

∂θ
=

6

5
r1/6 cos(6θ/5)

vθ = −∂Ψ
∂r

= −6

5
r1/6 sin(6θ/5)

(4.53)

The velocity vector field and the stream function are presented in Fig. 4.8. The stream

function is zero along the lower boundary. Note that θ = 0 at the wedge, i.e. 0 ≤ θ ≤
5/6π. The angle, α, in Fig. 4.8a is given by

α =
(n− 1)π

n
=
π

6
(4.54)

4.4.4 Analytical solutions for a line source

The complex potential for a line source reads

f =
ṁ

2π
ln z (4.55)

where ṁ is the strength of the source; the physical meaning of ṁ is volume flow

assuming that the extent of the domain in the third coordinate direction, x3, is one.

First, we need to make sure that this solution satisfies the Laplace equation. The first
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and second derivatives read

∂f

∂x
=

ṁ

2πz
∂2f

∂x2
= − ṁ

2πz2

∂f

∂y
=

iṁ

2πz

∂2f

∂x2
= −i2 ṁ

2πz2
=

ṁ

2πz2

(4.56)

which shows that the Laplace equation is satisfied.

Writing Eq. 4.55 on polar form gives

f =
ṁ

2π
ln
(
reiθ

)
=
ṁ

2π

(
ln r + ln

(
eiθ
))

=
ṁ

2π
(ln r + iθ) (4.57)

The stream function corresponds to the imaginary part of f and we get

vr =
1

r

∂Ψ

∂θ
=

ṁ

2πr

vθ = −∂Ψ
∂r

= 0

(4.58)

We find that the physical flow is in the radial direction, see Fig. 4.9. If ṁ > 0, the flow

is outwards directed and for ṁ < 0 it is going inwards toward origo. When origo is

approached, the velocity, vr, tends to infinity. Hence, Eq. 4.58 gives nonphysical flow

near origo. The reason is that the inviscid assumption (zero viscosity) is not valid in

this region.

It was mentioned above that the physical meaning of ṁ is volume flow. This is

easily seen by integrating vr (Eq. 4.58) over a cylindrical surface as

∫ 1

0

dx3

∫ 2π

0

vrrdθ =

∫ 1

0

dx3

∫ 2π

0

ṁ

2πr
rdθ =

ṁ

2π

∫ 1

0

∫ 2π

0

dx3dθ = ṁ. (4.59)

4.4.5 Analytical solutions for a vortex line

A line vortex is another example of a complex potential; it is very similar to Eq. 4.55

and reads

f = −i Γ
2π

ln z (4.60)

which on polar form reads (cf. Eq. 4.57)

f = − Γ

2π
(i ln r − θ) (4.61)

From the stream function (the imaginary part of f ) we get (cf. Eq. 4.58)

vr =
1

r

∂Ψ

∂θ
= 0

vθ = −∂Ψ
∂r

=
Γ

2πr

(4.62)

This flow was introduced in Section 1.7.1 (where we called it an ideal vortex line) as an

example of a flow with no vorticity. The flow is in the positive θ direction along lines
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Figure 4.10: Vortex line.
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Figure 4.11: Flow around a cylinder of radius r0.

of constant radius, see Fig. 4.10. The circulation, Γ, appears in the expression of vθ . It

was introduced in Section 1.7. It is defined as a closed line integral along line C, see

Eq. 1.23 and can be expressed as an integral of the vorticity over surface S bounded by

line C, see Eq. 1.25 and Fig. 1.7.

4.4.6 Analytical solutions for flow around a cylinder

The complex potential for the flow around a cylinder can be found by combining a

doublet and a parallel flow. A doublet consists of a line source (strength ṁ) and sink

(strength −ṁ) separated by a distance ε in the x1 direction (line sources were intro-

duced in Section 4.4.4). Imagine that we move the source and the sink closer to each

other and at the same time we increase their strength |ṁ| so that the product µ = ṁε
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Figure 4.12: Flow around a cylinder of radius r0. Integration of surface pressure.
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Figure 4.13: Pressure coefficients.

stays constant. The resulting complex potential is

f =
µ

πz
(4.63)

When adding the complex potential of parallel flow, see Eq. 4.47, we get

f =
µ

πz
+ V∞z (4.64)

Now we define the radius of a cylinder, r0, as

r20 = µ/(πV∞) (4.65)

so that

f =
V∞r

2
0

z
+ V∞z (4.66)

On polar form it reads

f =
V∞r

2
0

reiθ
+ V∞re

iθ = V∞

(
r20
r
e−iθ + reiθ

)

= V∞

(
r20
r
(cos θ − i sin θ) + r(cos θ + i sin θ)

) (4.67)

The stream function reads (imaginary part)

Ψ = V∞

(

r − r20
r

)

sin θ (4.68)
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Now we can compute the velocity components

vr =
1

r

∂Ψ

∂θ
= V∞

(

1− r20
r2

)

cos θ

vθ = −∂Ψ
∂r

= −V∞
(

1 +
r20
r2

)

sin θ

(4.69)

We find that vr = 0 for r = r0 as intended (thanks to the definition in Eq. 4.65). We

are not interested in the solution inside the cylinder (r < r0). Furthermore, we see

that the tangential velocity is zero at θ = 0 and π; hence these points correspond to

the stagnation points, see Fig. 4.11. The velocity field at the cylinder surface, r = r0,

reads

vr,s = 0

vθ,s = −2V∞ sin θ
(4.70)

where index s denotes surface. Note that the local velocity gets twice as large as the

freestream velocity at the top (θ = π/2) and the bottom (θ = −π/2) of the cylinder.

The surface pressure is obtained from Bernoulli equation (see Eq. 4.35)

V 2
∞

2
+
P∞

ρ
=
v2θ,s
2

+
ps
ρ

⇒ ps = P∞ + ρ
V 2
∞ − v2θ,s

2
(4.71)

where we neglected the gravitation term. The surface pressure is usually expressed as

a pressure coefficient

Cp ≡ ps − P∞

ρV 2
∞/2

= 1−
v2θ,s
V 2
∞

= 1− 4 sin2 θ (4.72)

using Eq. 4.70.

It should be stressed that although Eqs. 4.70 and 4.72 are exact they are not realistic

because of the strict requirement that the flow should be inviscid. This requirement is

valid neither in the boundary layers nor in the wake; the boundary layers may be thin

but the wake is a large part of the domain. Figure 4.13 presents the pressure coefficient

for potential flow and accurate unsteady CFD of two-dimensional viscous flow [9] (the

Reynolds number is sufficiently low for the flow to be laminar); Eqs. 2.3 and 2.9 are

solved numerically [9]. The potential solution agrees rather well with viscous flow up

to θ ≃ 20o.

How do we find the lift and drag force? The only force (per unit area) that acts

on the cylinder surface is the pressure (in viscous flow there would also be a viscous

stress, but it is usually much smaller). To find the lift force, FL, we simply integrate

the pressure over the surface. Usually the lift force is expressed as a lift coefficient,

CL, which is scaled with the dynamic pressure ρV 2
∞/2. The lift coefficient is obtained

as

CL =
FL

ρV 2
∞/2

= −
∫ 1

0

dx3

∫ 2π

0

ps
ρV 2

∞/2
sin θr0dθ

= −r0
∫ 1

0

dx3

∫ 2π

0

(1− 4 sin2 θ) sin θdθ

= −r0
[

− cos θ − 4

(
1

12
cos(3θ)− 3

4
cos θ

)]2π

0

= 0

(4.73)
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Figure 4.14: Flow around a cylinder of radius r0 with additional circulation which give a (neg-

ative) lift force, see Eq. 4.84.

The sin θ on the first line appears because we project the pressure force in the vertical

direction (see Fig. 4.12) and minus sign is because pressure acts inwards, see Eq. 1.9

and Fig. 4.1. We assume in Eq. 4.73 that the length of the cylinder in the x3 direction

is one. The drag coefficient is computed as

CD =
FD

ρV 2
∞/2

= −
∫ 1

0

dx3

∫ 2π

0

(1 − 4 sin2 θ) cos θr0dθ

= −r0
∫ 1

0

dx3

∫ 2π

0

[

sin θ − 4

3
sin3 θ

]2π

0

= 0

(4.74)

The cos θ on the first line appears because we project the pressure force in the hori-

zontal direction (see Fig. 4.12). Equations 4.73 and 4.74 give CL = CD = 0; hence

we find that inviscid flow around a cylinder creates neither lift nor drag. The reason is

that the pressure is symmetric both with respect to x1 = 0 and x2 = 0. The lift force

on the lower surface side cancels the force on the upper side. Same argument for the

drag force: the pressure force on the upstream surface cancels that on the downstream

surface.

4.4.7 Analytical solutions for flow around a cylinder with circulation

We will now introduce a second example of potential flow around cylinders, which is

by far the most important one from engineering point of view. Here we will introduce

the use of additional circulation which alters the locations of the stagnation points and

creates lift. This approach is used in potential methods for predicting flow around

airfoils in aeronautics (mainly helicopters) and windpower engineering.

We add the complex potential of a vortex line (see Eq. 4.60) to Eq. 4.66 so that

f =
V∞r

2
0

z
+ V∞z − i

Γ

2π
ln z (4.75)

On polar form it reads (see Eqs. 4.61 and 4.67)

f = V∞

(
r20
r
(cos θ − i sin θ) + r(cos θ + i sin θ)

)

− Γ

2π
(i ln r − θ) (4.76)
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Figure 4.15: Flow around a cylinder of radius r0 with maximal additional circulation.

The imaginary part gives the stream function

Ψ = V∞

(

r − r20
r

)

sin θ − Γ

2π
ln r (4.77)

We get the velocity components as (see Eqs. 4.62 and 4.69)

vr =
1

r

∂Ψ

∂θ
= V∞

(

1− r20
r2

)

cos θ

vθ = −∂Ψ
∂r

= −V∞
(

1 +
r20
r2

)

sin θ +
Γ

2πr

(4.78)

The effect of the added vortex line is, as expected, to increase vθ while leaving vr
unaffected. The larger the circulation, the larger vθ .

The velocity at the surface, r = r0, reads

vr,s = 0

vθ,s = −2V∞ sin θ +
Γ

2πr0

(4.79)

Now let’s find the location of the stagnation points, i.e. where vθ,s = 0. Equation 4.79

gives

2V∞ sin θstag =
Γ

2πr0
⇒ θstag = arcsin

(
Γ

4πr0V∞

)

(4.80)

The two angles that satisfy this equation are located in the first and second quadrants.

The two positions are indicated with a and b in Fig. 4.14. For a limiting value of the

circulation, Γmax, the two locations s and b will merge at θ = π/2, denoted with c in

Fig. 4.15,

Γmax = 4πV∞r0. (4.81)

This corresponds to the maximum value of the circulation for which there is a stag-

nation point on the cylinder surface. For circulation larger than Γmax, the stagnation

point will be located above the cylinder.
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Figure 4.16: Table tennis. The loop uses the Magnus effect. Side view.

The pressure is obtained from Bernoulli equation as (see Eq. 4.72)

Cp = 1−
v2θ,s
V 2
∞

= 1−
(

−2 sin θ +
Γ

2πr0V∞

)2

= 1− 4 sin2 θ +
4Γ sin θ

2πr0V∞
−
(

Γ

2πr0V∞

)2
(4.82)

We found in Section 4.4.6 that a cylinder without circulation gives neither drag nor

lift, see Eqs. 4.73 and 4.74. What about the present case? Let’s compute the lift. We

found in Eq. 4.73 that the two first terms in Eq. 4.82 give no contribution to the lift.

The last term cannot give any contribution to the lift because it is constant on the entire

surface. Hence we only need to include the third term in Eq. 4.82 so that

CL =
FL

ρV 2
∞/2

= −
∫ 1

0

dx3

∫ 2π

0

ps
ρV 2

∞/2
sin θr0dθ

= −r0
∫ 1

0

dx3

∫ 2π

0

2Γ sin θ

πr0V∞
sin θdθ

= −
[

Γθ

πV∞
− Γ

2πV∞
sin(2θ)

]2π

0

= − 2Γ

V∞

(4.83)

We find that the lift force on a unit length of the cylinder can be computed from the

circulation as

FL = −ρV∞Γ (4.84)

This relation is valid for any body and it is called the Kutta-Joukowski law who –

independent of each other – formulated it. The reason to the sign of the lift force can

easily be seen from Fig. 4.14. The stagnation points, where the pressure is largest, are

located at the top of the cylinder and hence the pressure is higher on the top than on the

bottom. The ”lift” force is acting downwards, i.e. in the negative x2 direction.

The drag is, however, still zero. In Eq. 4.74 we found that the first and the second

terms in Eq. 4.82 gives no contribution to drag. Hence, we only need to consider the

third terms. In the drag integral (see Eq. 4.74), this term in Eq. 4.82 gives rise to a term

proportional to sin θ cos θ whose contribution is zero. Hence, the additional circulation

does not give rise to any drag.

4.4.7.1 The Magnus effect

Circulation around a cylinder is very similar to a rotating cylinder. Instead of adding a

circulation, we let the cylinder rotate with speed ω. A rotating cylinder produces lift.

This has interesting application in sports, for example football, table tennis and golf.
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Figure 4.17: Football. A free-kick uses the Magnus effect. Top view
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Figure 4.18: Flettner rotor (in blue) on a ship. The relative velocity between the ship and the

wind is Vwind + Vship. The ship moves with speed Vship. Top view.

In table tennis, the ball must hit the table on the side of the opponent. One way to

improve the chance that this will happen is to make a loop. This means that you hit the

ball slightly on the top. The ball experiences a force, F , when you hit it (see Fig. 4.16)

and this force makes it rotate with rotation speed ω (clockwise direction). The rotation

causes a lift, FL, which acts downwards so that the ball drops down quickly and (hope-

fully) hits the table on the other side of the net. The lift force is downwards because

the stagnation points are located on the upper surface. Recall that the relative velocity

of the air is in the negative x1 direction.

Another example where the Magnus effect is important is golf. Here the object is

often vice versa. You want the ball to go as far as possible. Hence you hit it with a

slice so that it spins with a positive ω (counter-clockwise). The result is a lift force in

the positive x2 direction which makes the ball go further.

A final sports example is football. Here the lift is used sideways. Imagine there is a

free-kick rather close to the opponents’ goal, see Fig. 4.17. The opponents erects a wall

of players between the goal and the location of the free-kick. The player who makes

the free-kick wants to make the ball go on the left side of the wall; after the wall of

players, the ball should turn right towards the goal. The Magnus effect helps to achieve

this. The player hits the ball with her/his left foot on the left side of the ball which

creates a force F on the ball. This makes the ball rotate clockwise, see Fig. 4.17, and

creates a lift force so that the ball after it has passed the wall turns to the right towards

the goal. The reason that the ball turns to the right first after the wall (and not before)

is that the forward momentum created by F (the player) is much larger than FL.
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Figure 4.19: Airfoil. The boundary layers, δ(x1), and the wake illustrated in red. x1 = 0 and

x1 = c at leading and trailing edge, respectively.

When looking at Figs. 4.16 and 4.17 I know it may be confusing to understand the

direction of the force. The trick is to imagine that the ball is still/non-moving and the

wind is coming towards it with speed −Vball. Then we see that the rotation and on-

coming speed −Vball. ”co-operates” at the lower side and thereby increasing the total

speed on the lower side compared to the upper side. Bernoulli (Eq.4.35) then gives a

lower pressure on the lower side of the ball compared to the upper side which gives a

downward force.

If you are interested in football you may be pleased to learn that by use of fluid

dynamics it is now scientifically proven that it was much harder to make a good freekick

in 2010 worldcup than in 2014 [10]. Figure 7b in that paper is particularly interesting.

As an experiment, two identical freekicks are made with the football used at

the 2013 FIFA Confederations. The freekicks are made 25m from the goal. The

initial velocity of the football is 30 m/s. The result of the two freekicks is that the

two footballs reach the goal three meters from each other in the vertical direction.

Why? Because the ball was rotated 45 degrees before the second freekick (see

Figs. 2c,d) in [10].

Finally we give an engineering example of the use of the Magnus effect. The first

Flettner rotors on ships were produced in 1924. It has recently gained new interest as

the cost of fuel is rising. A Flettner rotor is a rotating cylinder (or many) on a ship,

see Fig. 4.18. The diameter of this rotor can be a couple of meter and have a length

(i.e. height) of 10 − 20 meter. The ship is moving to the right with speed Vship. The

wind comes towards the ship from the left-front (relative wind at an angle of π/4).

The Flettner rotor rotates in the clockwise direction. The Magnus effect creates a force

in the orthogonal direction to the relative windspeed, i.e. at an angle of −π/4. Note

that if the wind comes from the right instead of from the left, the rotor should rotate

in the counter-clockwise direction. The additional propulsion force is FL cos(α). The

Division of Fluid Dynamics recently took part in an EU project where we studied the

flow around rotating cylinders in relation to Flettner rotors [11].

4.4.8 The flow around an airfoil

Flow around airfoils is a good example where potential methods are useful. These

methods are still in use in wind engineering and for helicopters. At the Division of
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V∞

Figure 4.20: Airfoil. Streamlines from potential flow. Rear stagnation point at the upper surface

(suction side).

Γ

V∞

Figure 4.21: Airfoil. Streamlines from potential flow with added circulation. Rear stagnation

point at the trailing edge.



4.4. Potential flow 76

Fluid Dynamics we had a PhD project where we used potential methods for computing

the aerodynamic loads for wind turbine rotor blades [5, 12].

The flow around airfoils is a good example where the flow can be treated as inviscid

in large part of the flow. For low angles of attack (which is the case for, for example, an

aircraft in cruise conditions) the boundary layers and the wake are thin. Outside these

regions the flow is essentially inviscid.

Figure 4.19 (see also Fig. 16.1) shows a two-dimensional airfoil. The boundary

layers and the wake are illustrated in red. The boundary layer is thinner on the pres-

sure (lower) side than on the suction (upper) side. It grows slightly thicker towards the

trailing edge (denoted by δ(x1) in Fig. 4.19). When this flow is computed using po-

tential methods, the location of the front stagnation point is reasonably well captured,

see Fig. 4.20. However, the stagnation point near the trailing edge is located on the

suction side which is clearly nonphysical. The flow on the pressure (lower) side cannot

be expected to make a 180o turn at the trailing edge and then go in the negative x1
direction towards the stagnation point located on the suction side.

The solution is to move the stagnation points in the same way as we did for the

cylinder flow in Section 4.4.7. We want to move the rear stagnation point towards

the trailing edge. This is achieved by adding a circulation in the clockwise direction,

see Fig. 4.21. The magnitude of the circulation is determined by the requirement that

the stagnation point should be located at the trailing edge. This is called the Kutta

condition. The added circulation is negative (clockwise). In aeronautics, the sign of

circulation is usually changed so that Γaeronautic = −Γ. The lift of a two-dimensional

airfoil (or a two-dimensional section of a three-dimensional airfoil) is then computed

as (see Eq. 4.84)

FL = ρV∞Γaeronautic (4.85)
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Figure 5.1: Laminar and turbulent boundary layer.

5 Turbulence

5.1 Introduction

A
LMOST all fluid flow which we encounter in daily life is turbulent. Typical exam-

ples are flow around (as well as in) cars, aeroplanes and buildings. The boundary

layers and the wakes around and after bluff bodies such as cars, aeroplanes and build-

ings are turbulent. Also the flow and combustion in engines, both in piston engines

and gas turbines and combustors, are highly turbulent. Air movements in rooms are

turbulent, at least along the walls where wall-jets are formed. Hence, when we com-

pute fluid flow it will most likely be turbulent. In turbulent flow we usually divide the

velocities in one time-averaged part v̄i, which is independent of time (when the mean

flow is steady), and one fluctuating part v′i so that vi = v̄i + v′i.
There is no definition on turbulent flow, but it has a number of characteristic fea-

tures (see Pope [13] and Tennekes & Lumley [14]) such as:

I. Irregularity. Turbulent flow is irregular and chaotic (they may seem random,

but they are governed by Navier-Stokes equation, Eq. 2.9). The flow consists of a

spectrum of different scales (eddy sizes). We do not have any exact definition of an

turbulent eddy, but we suppose that it exists in a certain region in space for a certain turbulent

eddytime and that it is subsequently destroyed (by the cascade process or by dissipation,

see below). It has a characteristic velocity and length (called a velocity and length

scale). The region covered by a large eddy may well enclose also smaller eddies. The

largest eddies are of the order of the flow geometry (i.e. boundary layer thickness, jet

width, etc). At the other end of the spectrum we have the smallest eddies which are

dissipated by viscous forces (stresses) into thermal energy resulting in a temperature

increase. Even though turbulence is chaotic it is deterministic and is described by the

Navier-Stokes equations.

II. Diffusivity. In turbulent flow the diffusivity increases compared to laminar flow,

see Fig. 5.1. The turbulence increases the exchange of momentum in e.g. boundary lay-

ers, and reduces or delays thereby separation at bluff bodies such as cylinders, airfoils

and cars. The increased diffusivity also increases the resistance (wall friction) and heat

transfer in internal flows such as in channels and pipes.

III. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds number.

For example, the transition to turbulent flow in pipes occurs that ReD ≃ 2300, and in
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Figure 5.2: Cascade process with a spectrum of eddies. The energy-containing eddies are

denoted by v0; ℓ1 and ℓ2 denotes the size of the eddies in the inertial subrange such that

ℓ2 < ℓ1 < ℓ0; ℓη is the size of the dissipative eddies.

boundary layers at Rex ≃ 500 000.

IV. Three-Dimensional. Turbulent flow is always three-dimensional and unsteady.

However, when the equations are time averaged, we can treat the flow as two-dimensional

(if the geometry is two-dimensional).

V. Dissipation. Turbulent flow is dissipative, which means that kinetic energy in

the small (dissipative) eddies are transformed into thermal energy. The small eddies

receive the kinetic energy from slightly larger eddies. The slightly larger eddies receive

their energy from even larger eddies and so on. The largest eddies extract their energy

from the mean flow. This process of transferring energy from the largest turbulent

scales (eddies) to the smallest is called the cascade process, see Fig. 45.5. cascade

processVI. Continuum. Even though we have small turbulent scales in the flow they are

much larger than the molecular scale and we can treat the flow as a continuum.

5.2 Turbulent scales

The largest scales are of the order of the flow geometry (the boundary layer thickness,

for example), with length scale ℓ0 and velocity scale v0. These scales extract kinetic

energy from the mean flow which has a time scale comparable to the large scales, i.e.

∂v̄1
∂x2

∼ t−1
0 ∼ v0/ℓ0 (5.1)

Part of the kinetic energy of the large scales is lost to slightly smaller scales with which

the large scales interact. Through the cascade process, kinetic energy is in this way

transferred from the largest scale to the smallest scales. At the smallest scales the

frictional forces (viscous stresses) become large and the kinetic energy is transformed
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(dissipated) into thermal energy. The kinetic energy transferred per unit time from

eddy-to-eddy (from an eddy to a slightly smaller eddy) is the same for each eddy size.

Although the kinetic energy is mostly transferred from large to small scales, it may

instantaneously go the other way, i.e. from small scales to large scales. It may even

happen that kinetic energy goes from fluctuations to the mean flow; this happens when

the production term, P k, is negative, see Item II on p. 105.

The dissipation is denoted by ε which is energy per unit time and unit mass (ε =
[m2/s3]). The dissipation is proportional to the kinematic viscosity, ν, times the fluc-

tuating velocity gradient up to the power of two (see Section 8.2). The friction forces

exist of course at all scales, but they are largest at the smallest eddies. In reality a small

fraction is dissipated at all scales. However it is assumed that most of the energy that

goes into the large scales per unit time (say 90%) is finally dissipated at the smallest

(dissipative) scales.

The smallest scales where dissipation occurs are called the Kolmogorov scales

whose velocity scale is denoted by vη, length scale by ℓη and time scale by τη. We

assume that these scales are determined by viscosity, ν, and dissipation, ε. The argu-

ment is as follows.

viscosity: Since the kinetic energy is destroyed by viscous forces it is natural to assume

that viscosity plays a part in determining these scales; the larger viscosity, the

larger scales.

dissipation: The amount of energy per unit time that is to be dissipated is ε. The more

energy that is to be transformed from kinetic energy to thermal energy, the larger

the velocity gradients must be.

Having assumed that the dissipative scales are determined by viscosity and dissipation,

we can express vη , ℓη and τη in ν and ε using dimensional analysis. We write

vη = νa εb

[m/s] = [m2/s] [m2/s3]
(5.2)

where below each variable its dimensions are given. The dimensions of the left and the

right side must be the same. We get two equations, one for meters [m]

1 = 2a+ 2b, (5.3)

and one for seconds [s]

−1 = −a− 3b, (5.4)

which give a = b = 1/4. In the same way we obtain the expressions for ℓη and τη so

that

vη = (νε)
1/4

, ℓη =

(
ν3

ε

)1/4

, τη =
(ν

ε

)1/2

(5.5)

5.3 Energy spectrum

As mentioned above, the turbulence fluctuations are composed of a wide range of

scales. We can think of them as eddies, see Fig. 5.2. It turns out that it is often conve-

nient to use Fourier series to analyze turbulence. In general, any periodic function, g,
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with a period of 2L (i.e. g(x) = g(x+ 2L)), can be expressed as a Fourier series, i.e.

g(x) =
1

2
a0 +

∞∑

n=1

(an cos(κnx) + bn sin(κnx)) (5.6)

where x is a spatial coordinate and

κn =
nπ

L
or κ =

2π

L
. (5.7)

κn is called the wavenumber. The Fourier coefficients are given by

an =
1

L

∫ L

−L

g(x) cos(κnx)dx

bn =
1

L

∫ L

−L

g(x) sin(κnx)dx

Parseval’s formula states that

∫ L

−L

g2(x)dx =
L

2
a20 + L

∞∑

n=1

(a2n + b2n) (5.8)

For readers not familiar to Fourier series, a brief introduction is given in Appendix AI.

An example of a Fourier series and spectra are given in Appendix 36. Let g be a fluc-

tuating velocity component, say v′1. The left side of Eq. 5.8 expresses v′21 in physical

space (vs. x) and the right side v′21 in wavenumber space (vs. κn). The reader who is

not familiar to the term “wavenumber”, is probably more familiar to “frequency”. In

that case, express g in Eq. 5.6 as a series in time rather than in space. Then the left

side of Eq. 5.8 expresses v′21 as a function of time and the right side expresses v′21 as a

function of frequency.

The turbulent scales are distributed over a range of scales which extends from the

largest scales which interact with the mean flow to the smallest scales where dissipation

occurs, see Fig. 5.2. Let us think about how the kinetic energy of the eddies varies with

eddy size. Intuitively we assume that large eddies have large fluctuating velocities

which implies large kinetic energy, v′iv
′
i/2. It is convenient to study the kinetic energy

of each eddy size in wavenumber space. In wavenumber space the energy of eddies

can be expressed as

E(κ)dκ (5.9)

where Eq. 5.9 expresses the contribution from the scales with wavenumber between κ
and κ+ dκ to the turbulent kinetic energy k. The energy spectrum, E(κ), corresponds

to g2(κ) in Eq. 5.8. The dimension of wavenumber is one over length; thus we can think

of wavenumber as proportional to the inverse of an eddy’s diameter, i.e κ ∝ 1/d. The

total turbulent kinetic energy is obtained by integrating over the whole wavenumber

space, i.e.

k =

∫ ∞

0

E(κ)dκ = L
∑

g2(κn) (5.10)

Think of this equation as a way to compute the kinetic energy by first sorting all eddies

by size (i.e. wavenumber), then computing the kinetic energy of each eddy size (i.e.

E(κ)dκ), and finally summing the kinetic energy of all eddy sizes (i.e. carrying out the
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ε

Figure 5.3: Spectrum for turbulent kinetic energy, k. I: Range for the large, energy containing

eddies. II: the inertial subrange. III: Range for small, isotropic scales. The wavenumber, κ,

is proportional to the inverse of the length scale of a turbulent eddy, ℓκ, i.e. κ ∝ ℓ−1
κ . For a

discussion of εκ vs. ε, see Section 8.2.2.

integration). Note that the physical meaning of E is kinetic energy per unit wavenum-

ber of eddies of size ℓκ ∝ κ−1. Hence the dimension of E is v2/κ, see Eq. 5.10; for a

discussion on the dimension of E, see Appendix 36.

The kinetic energy is the sum of the kinetic energy of the three fluctuating velocity

components, i.e.

k =
1

2

(

v′21 + v′22 + v′23

)

=
1

2
v′iv

′
i (5.11)

The spectrum ofE is shown in Fig. 5.3. We find region I, II and III which are discussed

below.

I. In this region we have the large eddies which carry most of the energy. These

eddies interact with the mean flow and extract energy from the mean flow. This

energy transfer takes places via the production term, P k, in the transport equation

for turbulent kinetic energy, see Eq. 8.14. Part of the energy extracted per unit

time by the largest eddies is transferred (per unit time) to slightly smaller scales.

The eddies’ velocity and length scales are v0 and ℓ0, respectively.

III. Dissipation range. The eddies are small and isotropic and it is here that the

dissipation occurs. The energy transfer from turbulent kinetic energy to thermal

energy (increased temperature) is governed by ε in the transport equation for

turbulent kinetic energy, see Eq. 8.14. The scales of the eddies are described by

the Kolmogorov scales (see Eq. 5.5)

II. Inertial subrange. The existence of this region requires that the Reynolds number

is high (fully turbulent flow). The eddies in this region represent the mid-region.
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The turbulence is also in this region isotropic. This region is a “transport re-

gion” (i.e. in wavenumber space) in the cascade process. The “transport” in

wavenumber space is called spectral transfer. Energy per time unit, P k = ε, is spectral

transfercoming from the large eddies at the lower part of this range and is transferred

per unit time to the dissipation range at the higher part. Note that the relation

P k = {dissipation at small scales}, see Fig. 5.3, is given by the assumption of

the cascade process, i.e. that the energy transfer per unit time from eddy-size–

to–eddy-size is the same for all eddy sizes.

The kinetic energy, kκ = v′κ,iv
′
κ,i/2, of an eddy of size (lengthscale), 1/κ, repre-

sents the kinetic energy of all eddies of this size. The kinetic energy of all eddies

(of all size) is computed by Eq. 5.11. The eddies in this region are indepen-

dent of both the large, energy-containing eddies and the eddies in the dissipation

range. One can argue that the eddies in this region should be characterized by

the spectral transfer of energy per unit time (ε) and the size of the eddies, 1/κ.

Dimensional analysis gives

E = κa εb

[m3/s2] = [1/m] [m2/s3]
(5.12)

We get two equations, one for meters [m]

3 = −a+ 2b,

and one for seconds [s]
−2 = −3b,

so that b = 2/3 and a = −5/3. Inserted in Eq. 5.12 we get

E(κ) = CKε
2

3 κ−
5

3 (5.13)

where the Kolmogorov constant CK ≃ 1.5. This is a very important law (Kol-

mogorov spectrum law or the −5/3 law) which states that, if the flow is fully

turbulent (high Reynolds number), the energy spectra should exhibit a −5/3-

decay in the inertial region (region II, Fig. 5.3).

Above we state that the eddies in Region II and III are isotropic. This means that –

in average – the eddies have no preferred direction, i.e. the fluctuations in all directions

are the same so that v′21 = v′22 = v′23 . Note that is not true instantaneously, i.e. in

general v′1 6= v′2 6= v′3. Furthermore, isotropic turbulence implies that if a coordinate isotropic

turbulencedirection is switched (i.e. rotated 180o), nothing should change. For example if the

x1 coordinate direction is rotated 180o the v′1v
′
2 should remain the same, i.e. v′1v

′
2 =

−v′1v′2. This is possible only if v′1v
′
2 = 0. Hence, all shear stresses are zero in isotropic

turbulence. Using our knowledge in tensor notation, we know that an isotropic tensor

can be written as const. · δij . Hence, the Reynolds stress tensor for small scales can be

written as v′iv
′
j = const.δij which, again, shows us that the shear stresses are zero in

isotropic turbulence.

As discussed on p. 79, the concept of the cascade process assumes that the energy

extracted per unit time by the large turbulent eddies is transferred (per unit time) by

non-linear interactions through the inertial range to the dissipative range where the

kinetic energy is transformed (per unit time) to thermal energy (increased temperature).

The spectral transfer rate of kinetic energy from eddies of size 1/κ to slightly smaller

eddies can be estimated as follows. An eddy loses (part of) its kinetic energy during
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one revolution. The kinetic energy of the eddy is proportional to v2κ and the time for

one revolution is proportional to ℓκ/vκ. Hence, the energy spectral transfer rate, εκ,

for an eddy of length scale 1/κ can be estimated as (see Fig. 5.3)

εκ ∼ v2κ
tκ

∼ v2κ
ℓκ
/
vκ

∼ v3κ
ℓκ

(5.14)

Kinetic energy is transferred per unit time to smaller and smaller eddies until the trans-

fer takes place by dissipation (i.e. increased temperature) at the Kolmogorov scales. In

the inertial subrange, the cascade process assumes that εκ = ε. Applying Eq. 5.14 for

the large energy-containing eddies gives

ε0 ∼ v20
ℓ0
/
v0

∼ v30
ℓ0

∼ εκ = ε (5.15)

The dissipation at small scales (large wavenumbers) is determined by how much energy

per unit time enters the cascade process at the large scales (small wavenumbers). We

can now estimate the ratio between the large eddies (with v0 and ℓ0) to the Kolmogorov

eddies (vη and ℓη). Equations 5.5 and 5.15 give

v0
vη

= (νε)−1/4v0 =
(
νv30/ℓ0

)−1/4
v0 = (v0ℓ0/ν)

1/4 = Re1/4

ℓ0
ℓη

=

(
ν3

ε

)−1/4

ℓ0 =

(
ν3ℓ0
v30

)−1/4

ℓ0 =

(
ν3

v30ℓ
3
0

)−1/4

= Re3/4

τo
τη

=

(
νℓ0
v30

)−1/2

τ0 =

(
v30
νℓ0

)1/2
ℓ0
v0

=

(
v0ℓ0
ν

)1/2

= Re1/2

(5.16)

whereRe = v0ℓ0/ν. We find that the ratio of the velocity, length and time scales of the

energy-containing eddies to the Kolmogorov eddies increases with increasing Reynolds

number. This means that the eddy range (wavenumber range) of the intermediate region

(region II, the inertial region) increases with increasing Reynolds number. Hence, the

larger the Reynolds number, the larger the wavenumber range of the intermediate range

where the eddies are independent of both the large scales and the viscosity. or in other

words: the larger the Reynolds number, the larger the difference between the largest

and the smallest scales. This is the very reason why it is so expensive (in terms of

computer power) to solve the Navier-Stokes equations. With a computational grid we

must resolve all eddies. Hence, as the Reynolds number increases, the number of grid

cells increases rapidly, see Eq. 28.1.

5.4 The cascade process created by vorticity

The interaction between vorticity and velocity gradients is an essential ingredient to

create and maintain turbulence. Disturbances are amplified by interaction between the

vorticity vector and the velocity gradients; the disturbances are turned into chaotic,

three-dimensional fluctuations, i.e. into turbulence. Two idealized phenomena in this

interaction process can be identified: vortex stretching and vortex tilting.

The equation for the instantaneous vorticity (ωi = ω̄i + ω′
i) reads (see Eq. 4.21)

∂ωi

∂t
+ vj

∂ωi

∂xj
= ωj

∂vi
∂xj

+ ν
∂2ωi

∂xj∂xj

ωi = ǫijk
∂vk
∂xj

(5.17)
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Figure 5.4: Family tree of turbulent eddies (see also Table 5.1). Five generations (indidcated in

bold). Orientation of eddy is indicated in red. The large original eddy, with axis aligned in the

x1 direction, is 1st generation. Adapted from [15].

generation x1 x2 x3

1st 1 0 0

2nd 0 1 1

3rd 2 1 1

4th 2 3 3

5th 6 5 5

6th 10 11 11

7th 22 21 21

Table 5.1: Number of eddies at each generation with their axis aligned in the x1, x2 or x3

direction, see Fig. 5.4.
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As we learnt in Section 4.2 this equation is not an ordinary convection-diffusion equa-

tion: it has an additional term on the right side which represents amplification and

rotation/tilting of the vorticity lines (the first term on the right side). The i = j com-

ponents of this term represent (see Eq. 4.22) vortex stretching. A positive ∂v′1/∂x1 Vortex

stretchingwill stretch the cylinder, see Fig. 4.2 and from the requirement that the volume must

not change (incompressible continuity equation) we find that the radius of the cylinder

will decrease. We may neglect the viscosity since viscous diffusion at high Reynolds

number is much smaller than the turbulent one and since viscous dissipation occurs at

small scales (see p. 78). Thus we can assume that there are no viscous stresses acting

on the cylindrical fluid element surface which means that the angular momentum

r2ω′
1 = const. (5.18)

remains constant as the radius of the fluid element decreases. Note that also the cir-

culation, Γ – which is the integral of the tangential velocity round the perimeter, see

Eq. 1.23 – is constant. Equation 5.18 shows that the vorticity increases if the radius

decreases (and vice versa). As was mentioned above, the continuity equation shows

that stretching results in a decrease of the radius of a slender fluid element and an in-

crease of the vorticity component (i.e. the tangential velocity component) aligned with

the element. For example, an extension of a fluid element in one direction (x1 direc-

tion) decreases the length scales in the x2 direction and increases ω′
1, see Fig. 5.5. At

the same time, vortex tilting creates small-scale vorticity in the x2 and x3 direction,

ω′
2 and ω′

3. The increased ω′
1 means that the velocity fluctuation in the x2 direction

is increased, see Fig. 5.6. The increased v′2 velocity component will stretch smaller

fluid elements aligned in the x2 direction, see Fig. 5.6. This will increase their vortic-

ity ω′
2 and decrease their radius. In the same way will the increased ω′

1 also stretch a

fluid element aligned in the x3 direction and increase ω′
3 and decrease its radius. At

each stage, the length scale of the eddies – whose velocity scale are increased – de-

creases. Figure 5.4 illustrates how a large eddy whose axis is oriented in the x1 axis

in a few generations creates – through vortex stretching – smaller and smaller eddies

with larger and larger velocity gradients. Here a generation is related to a wavenumber

in the energy spectrum (Fig. 5.3); young generations correspond to high wavenumbers.

The smaller the eddies, the less the original orientation of the large eddy is recalled.

In other words, the small eddies “don’t remember” the characteristics of their original

ancestor. The small eddies have no preferred direction. They are isotropic. The cre-

ation of multiple eddies by vortex stretching from one original eddies is illustrated in

Fig. 5.4 and Table 5.1. The large original eddy (1st generation) is aligned in the x1
direction. It creates eddies in the x2 and x3 direction (2nd generation); the eddies in

the x2 direction create new eddies in the x1 and x3 (3rd generation) and so on. For

each generation the eddies become more and more isotropic as they get smaller.

The i 6= j components in the first term on the right side in Eq. 4.22 represent vortex Vortex

tiltingtilting. Again, take a slender fluid element, now with its axis aligned with the x2 axis,

Fig. 4.3. The velocity gradient ∂v1/∂x2 (or ∂v′1/∂x2, which is equivalent) will tilt the

fluid element so that it rotates in the clock-wise direction. As a result, the second term

ω2∂v1/∂x2 in line one in Eq. 4.22 gives a contribution to ω1 (and ω′
1). This shows

how vorticity in one direction is transferred to the other two directions through vortex

tilting.

Vortex stretching and vortex tilting qualitatively explain how interaction between

vorticity and velocity gradient create vorticity in all three coordinate directions from

a disturbance which initially was well defined in one coordinate direction. Once this
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Figure 5.5: A fluid element is stretched by
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Figure 5.6: The rotation rate of the fluid element (black circles) in Fig. 5.5 increases and its

radius decreases. This creates a positive
∂v′3
∂x3

> 0 which stretches the small red fluid element

aligned in the x3 direction and increases ω′

3. The radius of the red fluid element decreases.

process has started it continues, because vorticity generated by vortex stretching and

vortex tilting interacts with the velocity field and creates further vorticity and so on.

The vorticity and velocity field becomes chaotic and three-dimensional: turbulence has

been created. The turbulence is also maintained by these processes.

From the discussion above we can now understand why turbulence always must be

three-dimensional (Item IV on p. 78). If the instantaneous flow is two-dimensional

(x1 − x2 plane) we find that the vortex-stretching/tilting term on the right side of

Eq. 5.17 vanishes because the vorticity vector and the velocity vector are orthogonal.

The only non-zero component of vorticity vector is ω3 because

ω1 =
∂v3
∂x2

− ∂v2
∂x3

≡ 0

ω2 =
∂v1
∂x3

− ∂v3
∂x1

≡ 0.

Since v3 = 0, we get ωj∂vi/∂xj = 0.
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We have seen that the diffusion tern in Navier-Stokes include only the strain-rate

tensor, Sij , not the vorticity tensor, Ωij . Here we will show that it is only the strain-rate

tensor that creates vorticity, the vorticity tensor does not. The vortex stretching term

(Eq. 5.17) read

ωj
∂vi
∂xj

Replace the velocity gradient by

sij +Ωij

and then replace

Ωij

using Eq. 1.19 which gives

because the product of a symmetric tensor, ωkωi, and an anti-symmetric tensor, εijk ,

is zero. Hence, vorticity is also created only by sij .
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6 Turbulent mean flow

6.1 Time averaged Navier-Stokes

W
HEN the flow is turbulent it is preferable to decompose the instantaneous vari-

ables (for example the velocity components and the pressure) into a mean value

and a fluctuating value, i.e.

vi = v̄i + v′i

p = p̄+ p′
(6.1)

where the bar, ·̄, denotes the time averaged value defined as

v̄ =
1

2T

∫ T

−T

vdt. (6.2)

where T is sufficiently large. When we time average Eq. 6.1 we get

v̄i = v̄i + v′i = v̄i + v′i (6.3)

where we used the fact that v̄i = v̄i, see Section 8.1.4. Hence, Eq. 6.3 gives

v′i = 0, p′ = 0 (6.4)

One reason why we decompose the variables is that when we measure flow quan-

tities we are usually interested in their mean values rather than their time histories.

Another reason is that when we want to solve the Navier-Stokes equation numerically

it would require a very fine grid to resolve all turbulent scales and it would also require

a fine resolution in time (turbulence is always unsteady).

The continuity equation and the Navier-Stokes equation for incompressible flow

with constant viscosity read

∂vi
∂xi

= 0 (6.5)

ρ
∂vi
∂t

+ ρ
∂vivj
∂xj

= − ∂p

∂xi
+ µ

∂2vi
∂xj∂xj

(6.6)

The gravitation term, −ρgi, has been omitted which means that the p is the hydro-

dynamic pressure (i.e. when vi ≡ 0, then p ≡ 0, see p. 43). Inserting Eq. 6.1 into the

continuity equation (6.5)

∂v̄i + v′i
∂xi

=
∂v̄i
∂xi

+
∂v′i
∂xi

=
∂v̄i
∂xi

=
∂v̄i
∂xi

(6.7)

where we used the fact that v′i = 0 (see Eq. 6.4 and v̄i = v̄i, see section 8.1.4).

Next, we use the decomposition in Navier-Stokes equation (Eq. 6.6)

ρ
∂(v̄i + v′i)

∂t
I

+ ρ
∂(v̄i + v′i)(v̄j + v′j)

∂xj
II

= − ∂(p̄+ p′)

∂xi
III

+µ
∂2(v̄i + v′i)

∂xj∂xj
IV

(6.8)

Let us consider the equation term-by-term.
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Term I:
∂(v̄i + v′i)

∂t
=
∂v̄i
∂t

+
∂v′i
∂t

=
∂v̄i
∂t

=
∂v̄i
∂t

We assume that the mean flow, v̄i, is steady, and hence the term is zero.

Term II:

∂(v̄i + v′i)(v̄j + v′j)

∂xj
=
∂v̄iv̄j + v̄iv′j + v′iv̄j + v′iv

′
j

∂xj

=
∂v̄iv̄j
∂xj

+
∂v̄iv′j
∂xj

+
∂v′iv̄j
∂xj

+
∂v′iv

′
j

∂xj

• Section 8.1.4 shows that v̄iv̄j = v̄iv̄j .

• Section 8.1.3 shows that v̄iv′j = v̄iv′j = 0 and v̄jv′i = v̄jv′i = 0

Hence, Term II reads

∂v̄iv̄j
∂xj

+
∂v′iv

′
j

∂xj

Term III:
∂(p̄+ p′)

∂xi
=

∂p̄

∂xi
+
∂p′

∂xi
=

∂p̄

∂xi

Term IV:
∂2(v̄i + v′i)

∂xj∂xj
=

∂2v̄i
∂xj∂xj

+
∂2v′i

∂xj∂xj
=

∂2v̄i
∂xj∂xj

Now we van finally write the time averaged continuity equation and Navier-Stokes

equation

∂v̄i
∂xi

= 0 (6.9)

ρ
∂v̄iv̄j
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

(

µ
∂v̄i
∂xj

− ρv′iv
′
j

)

(6.10)

It is assumed that the mean flow is steady. This equation is the time-averaged

Navier-Stokes equation and it is often called the Reynolds Averaged Navies-Stokes

(RANS) equation. A new term ρv′iv
′
j appears on the right side of Eq. 6.10 which is RANS

called the Reynolds stress tensor. The tensor is symmetric (for example v′1v
′
2 = v′2v

′
1).

It represents correlations between fluctuating velocities. It is an additional stress term

due to turbulence (fluctuating velocities) and it is unknown. We need a model for v′iv
′
j

to close the equation system in Eq. 6.10. This is called the closure problem: the num-

ber of unknowns (ten: three velocity components, pressure, six stresses) is larger than closure

problemthe number of equations (four: the continuity equation and three components of the

Navier-Stokes equations).

The continuity equation applies both for the instantaneous velocity, vi (Eq. 6.5),

and for the time-averaged velocity, v̄i (Eq. 6.9); hence it applies also for the fluctuating

velocity, v′i, i.e.
∂v′i
∂xi

= 0 (6.11)
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Figure 6.1: Flow between two infinite parallel plates. The width (i.e. length in the x3 direction)

of the plates, Zmax, is much larger that the separation between the plates, i.e. Zmax ≫ δ.

6.1.1 Boundary-layer approximation

For boundary-layer type of flow (i.e. boundary layers along a flat plate, channel flow,

pipe flow, jet and wake flow, etc.) the following relations apply

v̄2 ≪ v̄1,
∂v̄1
∂x1

≪ ∂v̄1
∂x2

, (6.12)

Assume steady (∂/∂t = 0), two-dimensional (v̄3 = ∂/∂x3 = 0) boundary-layer flow.

First we re-write the left side of Eq. 6.10 using the continuity equation

ρ
∂v̄iv̄j
∂xj

= ρv̄j
∂v̄i
∂xj

+ ρv̄i
∂v̄j
∂xj

=0

= ρv̄j
∂v̄i
∂xj

(6.13)

Using Eq. 6.13, Eq. 6.10 can be written

ρv̄1
∂v̄1
∂x1

+ ρv̄2
∂v̄1
∂x2

= − ∂p̄

∂x1
+

∂

∂x2

[

µ
∂v̄1
∂x2

− ρv′1v
′
2

]

τ12,tot

(6.14)

x1 and x2 denote the streamwise and wall-normal coordinate, respectively, see Fig. 6.1.

Note that the two terms on the left side are of the same order, because they both include

the product of one large (v̄1 or ∂/∂x2) and one small (v̄2 or ∂/∂x1) part.

In addition to the viscous shear stress, µ∂v̄1/∂x2, an additional turbulent one – a shear

stressReynolds shear stress – appears on the right side of Eq. 6.14. The total shear stress is

thus

τ12,tot = µ
∂v̄1
∂x2

− ρv′1v
′
2 (6.15)

6.2 Wall region in fully developed channel flow

The region near the wall is very important. Here the velocity gradient is largest as

the velocity drops down to zero at the wall over a very short distance. One important

quantity is the wall shear stress which is defined as

τw = µ
∂v̄1
∂x2

∣
∣
∣
∣
w

(6.16)
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Figure 6.2: The wall region (adapted from Ch.7 in [13]) for Reτ = 10 000. δ denotes half

width of the channel, see Fig. 6.1 and x+
2 = x2uτ/ν denotes the normalized wall distance.

From the wall shear stress, we can define a wall friction velocity, uτ , as wall

friction

velocity
τw = ρu2τ ⇒ uτ =

(
τw
ρ

)1/2

(6.17)

In order to take a closer look at the near-wall region, let us, again, consider fully

developed channel flow between two infinite plates, see Fig. 6.1. In fully developed

channel flow, the streamwise derivative of the streamwise velocity component is zero

(this is the definition of fully developed flow), i.e. ∂v̄1/∂x1 = 0. The continuity

equation gives now v̄2 = 0, see Eq. 3.18 at p. 43. The first term on the left side of

Eq. 6.14 is zero because we have fully developed flow (∂v̄1/∂x1 = 0) and the last term

is zero because v̄2 ≡ 0. The streamwise momentum equation, Eq. 6.14, can now be

written

0 = − ∂p̄

∂x1
+

∂

∂x2

(

µ
∂v̄1
∂x2

− ρv′1v
′
2

)

(6.18)

We know that the first term is a function only of x1 and the two terms in parenthesis

are functions of x2 only; hence they must be constant (see Eq. 3.24 and the text related

to this equation), i.e.

− ∂p̄

∂x1
= constant

∂

∂x2

(

µ
∂v̄1
∂x2

− ρv′1v
′
2

)

=
∂τ12,tot
∂x2

= constant

(6.19)

where the total stress, τ12,tot, is given by Eq. 6.15. Integrating Eq. 6.18 from x2 = 0
to x2 gives

τ12,tot(x2)− τw =
∂p̄

∂x1
x2 ⇒ τ12,tot = τw +

∂p̄

∂x1
x2 = τw

(

1− x2
δ

)

(6.20)

At the last step we used the fact that the pressure gradient balances the wall shear stress,

i.e. −∂p̄/∂x1 = τw/δ, see Eq. 3.30 (note that h = 2δ) and Eq. 6.39.
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The wall region can be divided into one outer and one inner region, see Fig. 6.2.

The inner region includes the viscous region, x+2 . 5 (dominated by the viscous diffu-

sion), and the logarithmic region, x+2 & 30 (dominated by turbulent diffusion); the log-

arithmic region is sometimes called the inertial region, because the turbulent stresses

stem from the inertial (i.e. the non-linear convection) term. The buffer region acts as a

transition region between these two regions where viscous diffusion of streamwise mo-

mentum is gradually replaced by turbulent diffusion. In the inner region, the total shear

stress is approximately constant and equal to the wall shear stress τw, see Fig. 6.3.

Note that the total shear stress is constant only close to the wall (Fig. 6.3b); further

away from the wall it decreases (in fully developed channel flow it decreases linearly

with the distance from the wall, see Eq. 6.20 and Fig. 6.3a). The Reynolds shear stress

vanishes at the wall because v′1 = v′2 = 0, and the viscous shear stress attains its

wall-stress value τw = ρu2τ . As we go away from the wall the viscous stress decreases

and the turbulent one increases and at x+2 ≃ 11 they are approximately equal. In the

logarithmic layer the viscous stress is negligible compared to the Reynolds stress.

At the wall, the velocity gradient is directly related to the wall shear stress, i.e. (see

Eq. 6.16 and 6.17)
∂v̄1
∂x2

∣
∣
∣
∣
w

=
τw
µ

=
ρ

µ
u2τ =

1

ν
u2τ (6.21)

Integration gives (recall that both ν and u2τ are constant)

v̄1 =
1

ν
u2τx2 + C1

Since the velocity, v̄1, is zero at the wall, the integration constant C1 = 0 so that

v̄1
uτ

=
uτx2
ν

(6.22)

Equation 6.22 is expressed in inner scaling (or wall scaling) which means that v̄1 and

x2 are normalized with quantities related to the wall, i.e. the friction velocity stemming

from the wall shear stress and the viscosity (here we regard viscosity as a quantity

related to the wall, since the flow is dominated by viscosity). The plus-sign (‘ + ‘) is

used to denote inner scaling, i.e.

v̄+1 ≡ v̄1
uτ

x+2 ≡ uτx2
ν

(6.23)

Now equation Eq. 6.22 can then be written as

v̄+1 = x+2 (6.24)

From the friction velocity and the viscosity we can define the viscous length scale, ℓν ,

for the near-wall region as

x+2 = x2/ℓν ⇒ ℓν =
ν

uτ
(6.25)

Further away from the wall at 30 . x+2 . 3000 (or 0.003 . x2/δ . 0.3), we

encounter the log-law region, see Fig. 6.2. In this region the flow is assumed to be
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Figure 6.3: Reynolds shear stress. Reτ = 2000. a) lower half of the channel; b) zoom

near the wall. DNS (Direct Numerical Simulation) data [16, 17]. : −ρv′1v
′

2/τw; :

µ(∂v̄1/∂x2)/τw.
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Figure 6.4: Velocity profiles in fully developed channel flow. Reτ = 2000. : DNS (Direct

Numerical Simulation) data [16, 17]; : v̄1/uτ = (ln x+
2 )/0.41 + 5.2; : v̄1/uτ = x+

2 .

independent of viscosity. The Reynolds shear stress, ρv′1v
′
2, is in the region x+2 . 200

(i.e. x2/δ . 0.1) fairly constant and approximately equal to the wall shear stress, i.e.

τw = ρ|v′1v′2| (6.26)

see Fig. 6.3b. Hence the friction velocity, uτ , is a suitable velocity scale in the inner

logarithmic region; it is used in the entire region.

What about the length scale? Near the wall, an eddy cannot be larger than the

distance to the wall and it is the distance to the wall that sets an upper limit on the

eddy-size. Hence it seems reasonable to take the wall distance as the characteristic

length scale; a constant, κ, is added so that

ℓ = κx2. (6.27)

where κ is the von Kármán constant, κ = 0.41. The velocity gradient can now be

estimated as
∂v̄1
∂x2

=
uτ
κx2

(6.28)

based on the velocity scale, uτ , and the length scale κx2. Another way of deriving the

expression in Eq. 6.28 is to use the Boussinesq assumption (see Eq. 11.33) in which a

turbulent Reynolds stress is assumed to be equal to the product between the turbulent
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Figure 6.5: Symmetry plane of channel flow.

viscosity and the velocity gradient as

−v′1v′2 = νt
∂v̄1
∂x2

(6.29)

The turbulent viscosity, νt, represents the turbulence and has the same dimension as ν,

i.e. [m2/s]. Hence νt can be expressed as a product of a turbulent velocity scale and a

turbulent length scale, and in the log-law region that gives

νt = uτκx2 (6.30)

so that Eq. 6.29 gives (inserting −v′1v′2 = u2τ )

u2τ = κuτx2
∂v̄1
∂x2

⇒ ∂v̄1
∂x2

=
uτ
κx2

(6.31)

In non-dimensional form Eqs. 6.28 and 6.31 read

∂v̄+1
∂x+2

=
1

κx+2
(6.32)

Integration gives now

v̄+1 =
1

κ
ln
(
x+2
)
+B or

v̄1
uτ

=
1

κ
ln
(x2uτ

ν

)

+B
(6.33)

where B is an integration constant. Equation 6.33 is the logarithmic law due to von log-law

Kármán [18]. The constant, κ, is called the von Kármán constant. The constants in the

log-law are usually set to κ = 0.41 and B = 5.2.

As can be seen in Fig. 6.2 the log-law applies for x+2 . 3000 (x2/δ . 0.3).

Figure 6.4 – where the Reynolds number is lower than in Fig. 6.2 – shows that the log-

law fit the DNS (Direct Numerical Simulation) up to x+2 . 500 (x2/δ . 0.25). Hence,

the upper limit for the validity of the log-law is dependent on Reynolds number; the

larger the Reynolds number, the larger the upper limit.

In the outer region of the boundary layer, the relevant length scale is the boundary

layer thickness. The resulting velocity law is the defect law

v̄1,c − v̄1
uτ

= FD

(x2
δ

)

(6.34)
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where c denotes centerline. The velocity in the log-region and the outer region (often

called the wake region) can be written as

v̄1
uτ

=
1

κ
ln(y+) +B +

2Π

κ
sin2

(πx2
2δ

)

(6.35)

where κ = 0.38, B = 4.1 and Π = 0.5 are taken from boundary layer flow [19–21].

6.3 Reynolds stresses in fully developed channel flow

The flow is two-dimensional (v̄3 = 0 and ∂/∂x3 = 0). Consider the x2 − x3 plane,

see Fig. 6.5. Since nothing changes in the x3 direction, the viscous shear stress

τ32 = µ

(
∂v̄3
∂x2

+
∂v̄2
∂x3

)

= 0 (6.36)

because v̄3 = ∂v̄2/∂x3 = 0. The turbulent part shear stress, ρv′2v
′
3, can be expressed

using the Boussinesq assumption (see Eq. 11.33)

−ρv′2v′3 = µt

(
∂v̄3
∂x2

+
∂v̄2
∂x3

)

= 0 (6.37)

and it is also zero since v̄3 = ∂v̄2/∂x3 = 0. With the same argument, v′1v
′
3 = 0.

However note that v′23 = v23 6= 0. The reason is that although the time-averaged flow

is two-dimensional (i.e. v̄3 = 0), the instantaneous turbulent flow is always three-

dimensional and unsteady. Hence v3 6= 0 and v′3 6= 0 so that v′23 6= 0. Consider, for

example, the time series v3 = v′3 = (−0.25, 0.125, 0.125,−0.2, 0.2). This gives

v̄3 = (−0.25 + 0.125 + 0.125− 0.2 + 0.2)/5 = 0

but

v′23 = v23 =
[
(−0.25)2 + 0.1252 + 0.1252 + (−0.2)2 + 0.22

]
/5 = 0.03475 6= 0.

Figure 6.3 presents the Reynolds and the viscous shear stresses for fully developed

flow. As can be seen, the viscous shear stress is negligible except very near the wall. It

is equal to one near the wall and decreases rapidly for increasing wall distance. On the

other hand, the Reynolds shear stress is zero at the wall (because the fluctuating veloc-

ities are zero at the wall) and increases for increasing wall distance. The intersection

of the two shear stresses takes place at x+2 ≃ 11.

Looking at Eq. 6.18 we find that it is not really the shear stress that is interesting,

but its gradient. The gradient of the shear stress, −∂(ρv′1v′2)/∂x2 and µ∂2v̄1/∂x
2
2

represent, together with the pressure gradient, −∂p̄/∂x1, the forces acting on the fluid.

Figure 6.6 presents the forces. Start by looking at Fig. 6.6b which shows the forces

in the region away from the wall, see the red fluid particle in Fig. 6.7. The pressure

gradient is constant and equal to one: this is the force driving the flow. This agrees

– fortunately – with our intuition. We can imagine that the fluid (air, for example) is

driven by a fan. Another way to describe the behaviour of the pressure is to say that

there is a pressure drop. The pressure must decrease in the streamwise direction so that

the pressure gradient term, −∂p̄/∂x1, in Eq. 6.18 takes a positive value which pushes

the flow in the x1 direction. The force that balances the pressure gradient is the gradient

of the Reynolds shear stress. This is the force opposing the movement of the fluid. This
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Figure 6.6: Fully developed channel flow. Reτ = 2000. Forces in the v̄1 equation, see Eq. 6.18.

a) near the lower wall of the channel; b) lower half of the channel excluding the near-wall re-

gion. DNS (Direct Numerical Simulation) data [16, 17]. : −ρ(∂v′1v
′

2/∂x2)/τw; :

µ(∂2v̄1/∂x
2
2)/τw; : −(∂p̄/∂x1)/τw.
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Figure 6.7: Forces in a boundary layer. The red (dashed line) and the blue (solid line) fluid

particle are located at x+
2 ≃ 400 and x+

2 ≃ 20, respectively (see Fig. 6.6).

opposing force has its origin at the walls due to the viscous wall force (viscous shear

stress multiplied by area).

Now let us have a look at the forces in the near-wall region, see Fig. 6.6a. Here the

forces are two orders of magnitude larger than in Fig. 6.6b but they act over a very thin

region (x+2 ≤ 40 or x2/δ < 0.02). In this region the Reynolds shear stress gradient

term is driving the flow and the opposing force is the viscous force, see the blue fluid

particle in Fig. 6.7. We can of course make a force balance for a section of the channel,

as we did for laminar flow, see Eq. 3.36 at p. 45 and Fig. 3.9 at p. 46 which reads

0 = p̄1Zmax2δ − p̄2Zmax2δ − 2τwLZmax (6.38)
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Figure 6.8: Normal Reynolds stresses and turbulent kinetic energy. Reτ = 2000. DNS (Direct

Numerical Simulation) data [16,17]. : ρv′21 /τw; : ρv′22 /τw; : ρv′23 /τw; ◦: k/u2
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Figure 6.9: Velocity profiles in a boundary layer along a flat plate. : DNS (Direct Numer-

ical Simulation) data [22]; : v̄2/uτ = (lnx+
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where L is the length of the section. We get

∆p̄

L
= − ∂p̄

∂x1
=
τw
δ

(6.39)

As can be seen the pressure drop is directly related to the wall shear stress. In turbulent

flow the velocity profile in the center region is much flatter than in laminar flow (cf.

Fig. 6.4 and Fig. 3.8 at p. 45). This makes the velocity gradient near the wall (and

the wall shear stress, τw) much larger in turbulent flow than in laminar flow: Eq. 6.39

shows why the pressure drop is larger in the former case compared to the latter; or —

in other words – why a larger fan is required to push the flow in turbulent flow than in

laminar flow.

Figure 6.8 presents the normal Reynolds stresses, ρv′21 , ρv′22 and ρv′23 . As can

be seen, the streamwise stress is largest and the wall-normal stress is smallest. The

former is largest because the mean flow is in this direction; the latter is smallest because

the turbulent fluctuations are dampened by the wall. The turbulent kinetic energy,

k = v′iv
′
i/2, is also included. Note that this is smaller than v′21 .

6.4 Boundary layer

Up to now we have mainly discussed fully developed channel flow. What is the dif-

ference between that flow and a boundary layer flow? First, in a boundary layer flow
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the convective terms are not zero (or negligible), i.e. the left side of Eq. 6.14 is not

zero. The flow in a boundary layer is continuously developing, i.e. its thickness, δ,

increases continuously for increasing x1. The flow in a boundary layer is described by

Eq. 6.14. Second, in a boundary layer flow the wall shear stress is not determined by

the pressure drop (indeed it is zero); the total shear stress is balanced by the convective

terms. Third, the outer part of the boundary layer is highly intermittent, consisting of

turbulent/non-turbulent motion.

However, the inner region of a boundary layer (x2/δ < 0.1) is principally the same

as for the fully developed channel flow, see Fig. 6.9: the linear and the log-law regions

are very similar for the two flows. However, in boundary layer flow the log-law is

valid only up to approximately x2/δ ≃ 0.1 (compared to approximately x2/δ ≃ 0.3 in

channel flow)
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Figure 7.1: Time history of v′. Horizontal red lines show ±vrms.

7 Probability density functions

S
OME statistical information is obtained by forming the mean and second moments,

for example v̄ and v′22 , as was done in Section 6. The root-mean-square (RMS) can root-mean-

square

RMS

be defined from the second moment as

vrms =
(

v′2
)1/2

(7.1)

The RMS is the same as the standard deviation which is equal to the square-root of the standard

deviationvariance. In order to extract more information, probability density function is a useful

variancestatistical tool to analyze turbulence. From the velocity signals we can compute the

probability densities (sometimes called histograms). With a probability density, fv, of

the v velocity, the mean velocity is computed as

v̄ =

∫ ∞

−∞
vfv(v)dv (7.2)

Normalize the probability functions, so that

∫ ∞

−∞
fv(v)dv = 1 (7.3)

Here we integrate over v. The mean velocity can of course also be computed by

integrating over time, as we do when we define a time average, (see Eq. 6.1 at p. 88),

i.e.

v̄ =
1

2T

∫ T

−T

vdt (7.4)

where T is “sufficiently” large.

Consider the probability density functions of the fluctuations. The second moment

corresponds to the variance of the fluctuations (or the square of the RMS, see Eq. 7.1),

i.e.

v′2 =

∫ ∞

−∞
v′2fv′(v′)dv′ (7.5)

As in Eq. 7.4, v′2 is usually computed by integrating in time, i.e.

v′2 =
1

2T

∫ T

−T

v′2(t)dt
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Figure 7.2: Probability density functions of time histories in Fig. 7.1. Vertical red lines show

±vrms. The skewness, S, and the flatness, F , are given for the three time histories.

A probability density function is symmetric if positive values are as frequent and

large as the negative values. Figure 7.1 presents the time history of the v′ history at

three different points in a flow (note that v′ = 0). The red horizontal lines indicate the

RMS value of v′. The resulting probability densities functions are shown in Fig. 7.2.

The red vertical lines show plus and minus RMS of v′. Let us analyze the data at the

three points.

Point 1. The time history of the velocity fluctuation (Fig. 7.1a) shows that there ex-

ists large positive values but no large negative values. The positive values are

often larger than +vrms (the peak is actually close to 8vrms) but the negative

values are seldom smaller than −vrms. This indicates that the distribution of v′

is skewed towards the positive side. This is confirmed in the PDF distribution,

see Fig. 7.2a.

Point 2. The fluctuations at this point are much smaller and the positive values are as

large the negative values; this means that the PDF should be symmetric which is

confirmed in Fig. 7.2b. The extreme values of v′ are approximately ±1.5vrms,

see Figs. 7.1b and 7.2b.

Point 3. At this point the time history (Fig. 7.1c) shows that the fluctuations are clus-

tered around zero and much values are within ±vrms. The time history shows

that the positive and the negative values have the same magnitude. The PDF

function in Fig. 7.2c confirms that there are many value around zero, that the ex-

treme value are small and that positive and negative values are equally frequent

(i.e. the PDF is symmetric).

In Fig. 7.2 we can judge whether the PDF is symmetric, but instead of “looking” at

the probability density functions, we should use a definition of the degree of symmetry,

which is the skewness. It is defined as skewness

v′3 =

∫ ∞

−∞
v′3fv′(v′)dv′

and is commonly normalized by v3rms, so that the skewness, Sv′ , of v′ is defined as

Sv′ =
1

v3rms

∫ ∞

−∞
v′3fv′(v′)dv′ =

1

2v3rmsT

∫ T

−T

v′3(t)dt
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Note that f must be normalized (see Eq. 7.3).

There is yet another statistical quantity which sometimes is used for describing

turbulent fluctuations, namely the flatness. The variance (the square of RMS) tells us flatness

how large the fluctuations are in average, but it does not tell us if the time history

includes few very large fluctuations or if all are rather close to vrms. The flatness gives

this information, and it is defined computed from v′4 and normalized by v4rms, i.e.

F =
1

v4rms

∫ ∞

−∞
v′4fv′(v)dv

The fluctuations at Point 1 (see Fig. 7.1a) includes some samples which are very large

and hence its flatness is large (see caption in Fig. 7.2a), whereas the fluctuation for

Point 3 all mostly clustered within ±2vrms giving a small flatness, see Fig. 7.1c and

the caption in Fig. 7.2c. For a Gaussian distribution

f(v′) =
1

vrms
exp

(

− (v′ − vrms)
2

2v2rms

)

for which F = 3.
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8 Transport equations for turbulent kinetic energy

I
N this section and Section 9 we will derive various transport equations. There are two

tricks which often will be used. Both tricks simply use the product rule for derivative

backwards.

Trick 1: Using the product rule we get

∂AiBj

∂xk
= Ai

∂Bj

∂xk
+Bj

∂Ai

∂xk
(8.1)

This expression can be re-written as

Ai
∂Bj

∂xk
=
∂AiBj

∂xk
−Bj

∂Ai

∂xk
(8.2)

and then we call it the “product rule backwards”.

Trick 2: Using the product rule we get

1

2

∂AiAi

∂xj
=

1

2

(

Ai
∂Ai

∂xj
+Ai

∂Ai

∂xj

)

= Ai
∂Ai

∂xj
(8.3)

This trick is usually used backwards, i.e.

Ai
∂Ai

∂xj
=

1

2

∂AiAi

∂xj
(8.4)

8.1 Rules for time averaging

8.1.1 What is the difference between v′1v
′
2 and v′1 v

′
2?

Using Eq. 6.2 we get

v′1v
′
2 =

1

2T

∫ T

−T

v′1v
′
2dt.

whereas

v′1 v
′
2 =

(

1

2T

∫ T

−T

v′1dt

)(

1

2T

∫ T

−T

v′1dt

)

We take a numerical example. Assume that we have a time-series of four time instants

with the values of v′1 and v′2 as

v′1 = [0.2,−0.3, 0.18,−0.08]

v′2 = [0.15,−0.25, 0.04, 0.06]

v′1 =
1

N

N∑

n=1

v′1,n = (0.2− 0.3 + 0.18− 0.08)/4 = 0

v′2 =
1

N

N∑

n=1

v′2,n = (0.15− 0.25 + 0.04 + 0.06)/4 = 0

so that

v′1 v
′
2 =

(

1

N

N∑

n=1

v′1,n

)(

1

N

N∑

n=1

v′2,n

)

= 0 · 0 = 0
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However, the time average of their product is not zero, i.e.

v′1v
′
2 =

1

N

N∑

n=1

v′1,nv
′
2,n = (0.2·0.15+0.3·0.25+0.18·0.04−0.08·0.06)/4 = 0.02685

8.1.2 What is the difference between v′21 and v′1
2
?

Using Eq. 6.2 we get

v′21 =
1

2T

∫ T

−T

v′21 dt.

whereas

v′1
2
=

(

1

2T

∫ T

−T

v′1dt

)2

.

The numerical example gives

v′21 =
1

N

N∑

n=1

v′21,n = (0.22 + 0.32 + 0.182 + 0.082)/4 = 0.0422

v′22 =
1

N

N∑

n=1

v′22,n = (0.152 + 0.252 + 0.042 + 0.062)/4 = 0.02255

but

v′1
2
=

(

1

N

N∑

n=1

v′1,n

)2

= [(0.2− 0.3 + 0.18− 0.08)/4]2 = 0

v′2
2
=

(

1

N

N∑

n=1

v′2,n

)2

= [(0.15− 0.25 + 0.04 + 0.06)/4]
2
= 0

8.1.3 Show that v̄1v′21 = v̄1v′21

Using Eq. 6.2 we get

v̄1v′21 =
1

2T

∫ T

−T

v̄1v
′2
1 dt

and since v̄ does not depend on t we can take it out of the integral as

v̄1
1

2T

∫ T

−T

v′21 dt = v̄1v′21

Now let us do it with numerical values. Assume that v̄1 = 10.

v̄1v′21 =
1

N

N∑

n=1

(

1

N

N∑

m=1

v1,m

)

v′21,n =

= (10 · 0.22 + 10 · 0.32 + 10 · 0.182 + 10 · 0.082)/4 = 0.422

v̄1v′21 =

(

1

N

N∑

n=1

v1,n

)(

1

N

N∑

n=1

v′21,n

)

=

=
[
10 · (0.22 + 0.32 + 0.182 + 0.082)/4

]
= 0.422
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8.1.4 Show that v̄1 = v̄1

Using Eq. 6.2 we get

v̄1 =
1

2T

∫ T

−T

v̄1dt

and since v̄ does not depend on t we can take it out of the integral as

v̄1
1

2T

∫ T

−T

dt = v̄1
1

2T
2T = v̄1

With numerical values we get

v̄1 =
1

N

N∑

n=1

= (10 + 10 + 10 + 10)/4 = 10 = v̄1

8.2 The Exact k Equation

The equation for turbulent kinetic energy, k = 1
2v

′
iv

′
i, is derived from the Navier-Stokes

equation. Again, we assume incompressible flow (constant density) and constant vis-

cosity (cf. Eq. 6.6). We subtract Eq. 6.10 from Eq. 6.6 and divide by density, multiply

by v′i and time average which gives

v′i
∂

∂xj
[vivj − v̄iv̄j ] =

−1

ρ
v′i

∂

∂xi
[p− p̄] + νv′i

∂2

∂xj∂xj
[vi − v̄i] +

∂v′iv
′
j

∂xj
v′i

(8.5)

Using vj = v̄j + v′j , the left side can be rewritten as

v′i
∂

∂xj

[
(v̄i + v′i)(v̄j + v′j)− v̄iv̄j

]
= v′i

∂

∂xj

[
v̄iv′j + v′iv̄j + v′iv

′
j

]
. (8.6)

Using the continuity equation ∂v′j/∂xj = 0 (see Eq. 6.11), the first term is rewritten as

v′i
∂

∂xj

(
v̄iv′j

)
= v′iv

′
j

∂v̄i
∂xj

. (8.7)

For the second term in Eq. 8.6 we start using ∂v̄j/∂xj = 0

v′i
∂

∂xj
(v′iv̄j) = v̄jv′i

∂v′i
∂xj

(8.8)

Next, we use Trick 2

v̄j

(

v′i
∂v′i
∂xj

)

= v̄j
∂

∂xj

(
1

2
v′iv

′
i

)

= v̄j
∂

∂xj
(k) =

∂

∂xj
(v̄jk) (8.9)

The third term in Eq. 8.6 can be written as (replace v̄j by v′j and use the same technique

as in Eq. 8.9)

1

2

∂

∂xj

(
v′jv

′
iv

′
i

)
. (8.10)
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The first term on the right side of Eq. 8.5 is re-written using Trick 1

−1

ρ
v′i
∂p′

∂xi
= −1

ρ

∂p′v′i
∂xi

+
1

ρ
p′
∂v′i
∂xi

= −1

ρ

∂p′v′i
∂xi

(8.11)

where the continuity equation was used at the last step. The second term on the right

side of Eq. 8.5 can be written

νv′i
∂2v′i
∂xj∂xj

= νv′i
∂

∂xj

(
∂v′i
∂xj

)

= ν
∂

∂xj

(

v′i
∂v′i
∂xj

)

− ν
∂v′i
∂xj

∂v′i
∂xj

(8.12)

applying Trick 1 (A = v′i and B = ∂v′i/∂xj). For the first term in Eq. 8.12 we use the

same trick as in Eq. 8.9 so that

ν
∂

∂xj

(

v′i
∂v′i
∂xj

)

= ν
∂

∂xj

(
1

2

(

v′i
∂v′i
∂xj

+ v′i
∂v′i
∂xj

))

=

ν
∂

∂xj

(
1

2

(
∂v′iv

′
i

∂xj

))

= ν
1

2

∂2v′iv
′
i

∂xj∂xj
= ν

∂2k

∂xj∂xj

(8.13)

The last term on the right side of Eq. 8.5 is zero because it is time averaging of a

fluctuation, i.e. āb′ = āb̄′ = 0. Now we can assemble the transport equation for the

turbulent kinetic energy. Equations 8.7, 8.9, 8.11, 8.12 and 8.13 give

∂v̄jk

∂xj
I

= −v′iv′j
∂v̄i
∂xj

II

− ∂

∂xj

[
1

ρ
v′jp

′ +
1

2
v′jv

′
iv

′
i − ν

∂k

∂xj

]

III

− ν
∂v′i
∂xj

∂v′i
∂xj

IV

(8.14)

The terms in Eq. 8.14 have the following meaning.

I Convection.

II Production, P k. The large turbulent scales extract energy from the mean flow.

This term (including the minus sign) is almost always positive. It may happen that

the production is negative which means that turbulent kinetic energy is transferred

from the fluctuations to the mean flow. In turbulent flow which includes recircula-

tion, this often occurs locally in small regions.

The production is largest for the energy-containing eddies, i.e. for small wavenum-

bers, see Fig. 5.3. This term originates from the convection term (the first term on

the right side of Eq. 8.6). It can be noted that the production term is an accelera-

tion term, v′j∂v̄i/∂xj , multiplied by a fluctuating velocity, v′i, i.e. the product of an

inertial force per unit mass (acceleration) and a fluctuating velocity. A force mul-

tiplied with a velocity corresponds to work per unit time. When the acceleration

term and the fluctuating velocity are in opposite directions (i.e. when P k > 0), the

mean flow performs work on the fluctuating velocity field. When the production

term is negative, it means that the fluctuations are doing work on the mean flow

field. In this case, v′j and the acceleration term, v′j∂v̄i/∂xj , have the same sign.

Using Eq. 1.11, the production terms reads

P k = −v′iv′j
∂v̄i
∂xj

= −v′iv′j(S̄ij + Ω̄ij) = −v′iv′j S̄ij (8.15)
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B

δB
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Figure 8.1: The size of the largest eddies (dashed lines) for different velocity profiles.

(the product of the symmetric tensor, v′iv
′
j , and the anti-symmetric tensor, Ω̄ij , is

zero). Thus it is only the symmetric part of the velocity gradient (S̄ij , the part

that deforms a fluid element) that creates turbulence. The production does not

depend on Ω̄ij , the part of the velocity gradient that rotates a fluid element. This

is consistent with the fact that the stress tensor, σij , depends only on Sij , not on

Ωij , see discussion below Eq. 2.5.

III The two first terms represent turbulent diffusion by pressure-velocity fluctua-

tions, and velocity fluctuations, respectively. The last term is viscous diffusion.

The velocity-fluctuation term originates from the convection term (the last term

on the right side of Eq. 8.6).

IV Dissipation, ε. This term is responsible for transformation of kinetic energy at

small scales to thermal energy. The term (excluding the minus sign) is always

positive (it consists of velocity gradients squared). It is largest for large wavenum-

bers, see Fig. 5.3. The dissipation term stems from the viscous term (see Eq. 8.12)

in the Navier-Stokes equation. It can be written as v′i∂τ
′
ij/∂xj , see Eq. 4.1. The

divergence of τ ′ij is a force vector (per unit mass), i.e. T ′
i = ∂τ ′ij/∂xj . The

dissipation term can now be written v′iT
′
i , which is a scalar product between two

vectors. When the viscous stress vector is in the opposite direction to the fluctuat-

ing velocity, the term is negative (i.e. it is dissipative); this means that the viscose

stress vector performs work and transforms kinetic energy into internal energy.

The transport equation for k can also be written in a simplified easy-to-read sym-

bolic form as

Ck = P k +Dk − ε (8.16)

where Ck, P k, Dk and ε correspond to terms I-IV in Eq. 8.14.

Above, it is stated that the production takes place at the large energy-containing

eddies, i.e. we assume that the large eddies contribute much more to the production

term more than the small eddies. There are two arguments for this:
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ε(κ)

dκ
κ+ dκ

κ

κ

E(κ)

εκ

εκ+dκ

Figure 8.2: Zoom of the energy spectrum for a wavenumber located in Region II or III, see

Fig. 5.3.

1. The Reynolds stresses (which appear in P k) are larger for large eddies than for

small eddies.

2. The mean flow generates large eddies which will have same time scale as the

mean velocity gradient, ∂v̄i/∂xj . In the fully turbulent region of a boundary

layer, for example, both time scales are proportional to κx2/uτ . The time scale

of the velocity gradient is given by κx2/uτ , see Eq. 6.28, and the time scale of

a large eddy is also given by ℓ0/v0 = κx2/uτ . Figure 8.1 shows how different

velocity profiles create different largest eddies. The largest eddies created by the

velocity profile A are much smaller than those created by the velocity profile

B, because the gradient of profile A acts over a much shorter length than the

gradient of profile B.

In the cascade process (see Section 5.3) we assume that the viscous dissipation, ε,
takes places at the smallest scales. How do we know that the majority of the dissipation

takes place at the smallest scales? First, let us investigate how the time scale varies with

eddy size. Consider the inertial subrange. let us denote the energy that is transferred

in spectral space (i.e. from eddy-to-eddy) per unit time by εκ. How large is ε – that

is generating heat – at wavenumber κ, which we here denote ε(κ) (see Section 8.2.2

and Fig. 8.2)? Recall that the viscous dissipation, ε, is expressed as viscosity times

the square of the velocity gradient, see Eq. 8.14. The velocity gradient for an eddy

characterized by velocity vκ and lengthscale ℓκ can be estimated as

(
∂v

∂x

)

κ

∝ vκ
ℓκ

∝
(
v2κ
)1/2

κ (8.17)

since ℓκ ∝ κ−1. We know that the energy spectrum (see Eqs. 5.10 and 5.13),

E(κ) ∝ kκ/κ ∝ v2κ/κ ∝ κ−5/3 ⇒ v2κ ∝ κ−2/3 (8.18)

in the inertial region. Inserting Eq. 8.18 into Eq. 8.17 gives

(
∂v

∂x

)

κ

∝
(

κ−2/3
)1/2

κ ∝ κ−1/3κ ∝ κ2/3 (8.19)
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Thus the viscous dissipation at wavenumber κ can be estimated as (see the last term in

Eq. 8.14)

ε = ν
∂v′i
∂xj

∂v′i
∂xj

⇒ ε(κ) ∝
(
∂v

∂x

)2

κ

∝ κ4/3, (8.20)

i.e. ε(κ) does indeed increase for increasing wavenumber.

The energy transferred from eddy-to-eddy per unit time in spectral space can also be

used for estimating the velocity gradient of an eddy. The cascade process assumes that

this energy transfer per unit time is the same for each eddy size, i.e. εκ = ε = v3κ/ℓκ =
ℓ2κ/τ

3
κ = ℓ20/τ

3
0 , see Eq. 5.14. We find from ℓ2κ/τ

3
κ = ℓ20/τ

3
0 that for decreasing eddy

size (decreasing ℓκ), the time scale, τκ, also decreases, i.e.

τκ =

(
ℓκ
ℓ0

)2/3

τ0 (8.21)

where τ0 and ℓ0 are constants (they are given by the flow we’re looking at, for example

a boundary layer which has the large scales, τ0 and ℓ0). Hence

(
∂v

∂x

)

κ

∝ vκ
ℓκ

∝ τ−1
κ ∝ ℓ−2/3

κ ∝ κ2/3, (8.22)

which is the same as Eq. 8.19.

8.2.1 Expressing dissipation with sij; non-isotropic dissipation

The Navier-Stokes for incompressible flow (Eq. 2.6) expressed in sij reads

dvi
dt

= −1

ρ

∂p

∂xi
+ 2ν

∂sij
∂xj

(8.23)

The corresponding RANS equation (Eq. 6.10) reads

dv̄i
dt

= −1

ρ

∂p̄

∂xi
+ 2ν

∂s̄ij
∂xj

−
∂v′iv

′
j

∂xj
(8.24)

The v′i equation is obtained by subtracting Eq. 8.24 from Eq. 8.23

dv′i
dt

= −1

ρ

∂p′

∂xi
+ 2ν

∂s′ij
∂xj

+
∂v′iv

′
j

∂xj

Multiplying by v′i and time-averaging gives

v′i
dv′i
dt

= −1

ρ
v′i
∂p′

∂xi
+ 2νv′i

∂s′ij
∂xj

+ v′i
∂v′iv

′
j

∂xj

Re-write the viscous term as

2νv′i
∂s′ij
∂xj

= 2ν
∂v′is

′
ij

∂xj
− 2ν

∂v′i
∂xj

s′ij = 2ν
∂v′is

′
ij

∂xj
− 2ν

(
s′ij +Ω′

ij

)
s′ij

= 2ν
∂v′is

′
ij

∂xj
− 2νs′ijs

′
ij
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The last term (we use fact that the product of a symmetric and anti-symmetric tensor is

zero, i.e. s′ijΩ
′
ij = 0, and Eq. 1.11) can be written

2νs′ijs
′
ij = 2νs′ij(s

′
ij +Ω′

ij) = ν

(
∂v′i
∂xj

+
∂v′j
∂xi

)
∂v′i
∂xj

This dissipation is sometimes called the non-isotropic dissipation [2]; the usual dissi-

pation, ε (term IV in Eq. 8.14), is then the isotropic dissipation.

8.2.2 Spectral transfer dissipation εκ vs. “true” viscous dissipation, ε

As a final note to the discussion in the previous section, it may be useful to look at the

difference between the spectral transfer dissipation εκ, and the “true” viscous dissipa-

tion, ε; the former is the energy transferred from eddy-to-eddy per unit time, and the

latter is the energy transformed per unit time to internal energy (i.e. increased temper-

ature) for the entire spectrum (occurring mainly at the small, dissipative scales), see

Fig. 5.3. Now consider Fig. 8.2 which shows a zoom of the energy spectrum. We as-

sume that no mean flow energy production occurs between κ and κ+dκ, i.e. the region

may be in the −5/3 region or in the dissipation region. Turbulent kinetic per unit time

energy enters at wavenumber κ at a rate of εκ and leaves at wavenumber κ+ dκ a rate

of εκ+dκ. If κ and κ + dκ are located in the inertial region (i.e. the −5/3 region),

then the usual assumption is that εκ ≃ εκ+dκ and that there is no viscous dissipation to

internal energy, i.e. ε(κ) ≃ 0. If there is viscous dissipation at wavenumber κ (which

indeed is the case if the zoomed region is located in the dissipative region), then ε(κ)
is simply obtained through an energy balance per unit time, i.e.

ε(κ) = εκ+dκ − εκ (8.25)

8.3 The Exact k Equation: 2D Boundary Layers

In 2D boundary-layer flow, for which ∂/∂x2 ≫ ∂/∂x1 and v̄2 ≪ v̄1, the exact k
equation reads

∂v̄1k

∂x1
+
∂v̄2k

∂x2
= −v′1v′2

∂v̄1
∂x2

− ∂

∂x2

[
1

ρ
p′v′2 +

1

2
v′2v

′
iv

′
i − ν

∂k

∂x2

]

− ν
∂v′i
∂xj

∂v′i
∂xj

(8.26)

Note that the dissipation includes all derivatives. This is because the dissipation term

is at its largest for small, isotropic scales for which all derivatives are of the same order

and hence the usual boundary-layer approximation ∂/∂x1 ≪ ∂/∂x2 does not apply

for these scales.

Figure 8.3 presents the terms in Eq. 8.26 for fully developed channel flow. The left

side is – since the flow is fully developed – zero. In the outer region (Fig. 8.3b) all terms

are negligible except the production term and the dissipation term which balance each

other. This is called local equilibrium, see p. 111. Closer to the wall (Fig. 8.3a) the local equilib-

riumother terms do also play a role. Note that the production and the dissipation terms close

to the wall are two orders of magnitude larger than in the logarithmic region (Fig. 8.3b).

At the wall the turbulent fluctuations are zero which means that the production term is

zero. Since the region near the wall is dominated by viscosity the turbulent diffusion

terms due to pressure and velocity are also small. The dissipation term and the viscous
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Figure 8.3: Channel flow at Reτ = 2000. Terms in the k equation scaled by u4

τ/ν. Reτ =
2000. a) Zoom near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [16,17].
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Figure 8.4: Channel flow at Reτ = 2000. DNS (Direct Numerical Simulation) data [16, 17].

diffusion term attain their largest value at the wall and they much be equal to each other

since all other terms are zero or negligible.

The turbulence kinetic energy is produced by its main source term, the production

term, P k = −v′1v′2∂v̄1/∂x2. The velocity gradient is largest at the wall (see Fig. 8.4a)

where the shear stress is zero (see Fig. 8.4b)); the former decreases and the magnitude

of the latter increases with wall distance and their product takes its maximum at x+2 ≃
11. Since P k is largest here so is also k, see Fig. 6.8. k is transported in the x2 direction

by viscous and turbulent diffusion and it is destroyed (i.e. dissipated) by ε.

8.4 Spatial vs. spectral energy transfer

In Section 5.3 we discussed spectral transfer of turbulent kinetic energy from large to

small eddies (which also applies to the transport of the Reynolds stresses). In Sec-

tion 8.2 we derived the equation for spatial transport of turbulent kinetic energy. How

are the spectral transfer and the spatial transport related? The reason that we in Sec-

tion 5.3 only talked about spectral transfer was that we assumed homogeneous tur-

bulence in which the spatial derivatives of the time-averaged turbulent quantities are homogeneous

turbulencezero, for example ∂v′21 /∂xi = 0, ∂k/∂xi = 0 etc. (Note that the derivatives of the

instantaneous turbulent fluctuations are non-zero even in homogeneous turbulence, i.e.
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∂v′1/∂xi 6= 0; the instantaneous flow field in turbulent flow is – as we mentioned at the

beginning of this section, p. 78 – always three-dimensional and unsteady). In homoge-

neous turbulence the spatial transport terms (i.e. the convective term, term I, and the

diffusion terms, term III in Eq. 8.14) are zero. Hence, in homogeneous turbulence there

is no time-averaged spatial transport. However, there is spectral transfer of turbulent

kinetic energy which takes place in wavenumber space, from large to small eddies. The

production term (term II in Eq. 8.14) corresponds to the process in which large energy-

containing eddies extract energy from the mean flow. The dissipation term (term IV in

Eq. 8.14) corresponds to transformation of the turbulent kinetic energy at the small ed-

dies to thermal energy. However, real flows are hardly ever homogeneous. Some flows

may have one or two homogeneous directions. Consider, for example, fully developed

channel turbulent flow. If the channel walls are very long and wide compared to the

distance between the walls, 2δ, then the turbulence (and the flow) is homogeneous in

the streamwise direction and the spanwise direction, i.e. ∂v̄1/∂x1 = 0, ∂v′2i /∂x1 = 0,

∂v′2i /∂x3 = 0 etc.

In non-homogeneous turbulence, the cascade process is not valid. Consider a large,

turbulent eddy at a position xA2 (see Fig. 6.1) in fully developed channel flow. The

instantaneous turbulent kinetic energy, kκ = v′κ,iv
′
κ,i/2, of this eddy may either be

transferred in wavenumber space or transported in physical (spatial) space, or both. It

may first be transported in physical space towards the center, and there lose its kinetic

energy to smaller eddies. This should be kept in mind when thinking in terms of the

cascade process. Large eddies which extract their energy from the mean flow may not

give their energy to the slightly smaller eddies as assumed in Figs. 5.3 and 5.2, but kκ
may first be transported in physical space and then transferred in spectral space (i.e. to

a smaller eddy).

In the inertial range (Region II), however, the cascade process is still a good ap-

proximation even in non-homogeneous turbulence. The reason is that the transfer of

turbulent kinetic energy, kκ, from eddy-to-eddy, occurs at a much faster rate than the

spatial transport by convection and diffusion. In other words, the time scale of the cas-

cade process is much smaller than that of convection and diffusion which have no time

to transport kκ in space before it is passed on to a smaller eddy by the cascade process.

We say that the turbulence at these scales is in local equilibrium. The turbulence in local

equilibriumthe buffer layer and the logarithmic layer of a boundary layer (see Fig. 6.2) is in local

equilibrium. In Townsend [23], this is (approximately) stated as:

the local rates of turbulent kinetic energy (i.e. production and dissipation)

are so large that aspects of the turbulent motion concerned with these pro-

cesses are independent of conditions elsewhere in the flow.

This statement simply means that production is equal to dissipation, i.e. P k = ε, see

Fig. 8.3.

In summary, care should be taken in non-homogeneous turbulence, regarding the

validity of the cascade process for the large scales (Region I).

8.5 The overall effect of the transport terms

The overall effect (i.e. the net effect) of the production term is to increase k, i.e. if we

integrate the production term over the entire domain, V , we get

∫

V

P kdV > 0 (8.27)
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Similarly, the net effect of the dissipation term is a negative contribution, i.e.

∫

V

−εdV < 0 (8.28)

What about the overall effect of the transport terms, i.e. convection and diffusion?

Integration of the convection term over the entire volume, V , gives, using Gauss diver-

gence law,
∫

V

∂v̄jk

∂xj
dV =

∫

S

v̄jknjdS (8.29)

where S is the bounding surface of V . This shows that the net effect of the convection

term occurs only at the boundaries. Inside the domain, the convection merely transports

k with out adding or subtracting anything to the integral of k,
∫

V kdV ; the convection

acts as a source term in part of the domain, but in the remaining part of the domain it

acts as an equally large sink term. Similarly for the diffusion term, we get

−
∫

V

∂

∂xj

(
1

2
v′jv

′
kv

′
k +

1

ρ
p′v′j − ν

∂k

∂xj

)

V

= −
∫

S

(
1

2
v′jv

′
kv

′
k +

1

ρ
p′v′j − ν

∂k

∂xj

)

njdS

(8.30)

The only net contribution occurs at the boundaries. Hence, Eqs. 8.29 and 8.30 show

that the transport terms only – as the word implies – transports k without giving any

net effect except at the boundaries. Mathematically these terms are called divergence

terms, i.e. they can both be written as the divergence of a vector Aj , divergence

terms
∂Aj

∂xj
(8.31)

where Aj for the convection and the diffusion term reads

Aj =







v̄jk convection term

−
(
1

2
v′jv

′
kv

′
k +

1

ρ
p′v′j − ν

∂k

∂xj

)

diffusion term
(8.32)

8.6 The transport equation for v̄iv̄i/2

The equation for K = v̄iv̄i/2 is derived in the same way as that for v′iv
′
i/2. Multiply

the time-averaged Navier-Stokes equations, Eq. 6.10, by v̄i so that

v̄i
∂v̄iv̄j
∂xj

= −1

ρ
v̄i
∂p̄

∂xi
+ νv̄i

∂2v̄i
∂xj∂xj

− v̄i
∂v′iv

′
j

∂xj
. (8.33)

Using the continuity equation and Trick 2 the term on the left side can be rewritten as

v̄i
∂v̄iv̄j
∂xj

= v̄j v̄i
∂v̄i
∂xj

= v̄j

1
2∂v̄iv̄i

∂xj
=
∂v̄jK

∂xj
(8.34)

The viscous term in Eq. 8.33 is rewritten in the same way as the viscous term in Sec-

tion 8.2, see Eqs. 8.12 and 8.13, i.e.

νv̄i
∂2v̄i
∂xj∂xj

= ν
∂2K

∂xj∂xj
− ν

∂v̄i
∂xj

∂v̄i
∂xj

. (8.35)
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terms, see Eqs. 8.39 and 8.40. Both terms are normalized by u4
τ/ν. DNS (Direct Numerical

Simulation) data [16, 17]. : ν(∂v̄1/∂x2)
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Equations 8.34 and 8.35 inserted in Eq. 8.33 gives

∂v̄jK

∂xj
= ν

∂2K

∂xj∂xj
− v̄i
ρ

∂p̄

∂xi
− ν

∂v̄i
∂xj

∂v̄i
∂xj

− v̄i
∂v′iv

′
j

∂xj
. (8.36)

The last term is rewritten using Trick 1 as

−v̄i
∂v′iv

′
j

∂xj
= −

∂v̄iv′iv
′
j

∂xj
+ v′iv

′
j

∂v̄i
∂xj

. (8.37)

Note that the first term on the right side differs to the corresponding term in Eq. 8.14

by a factor of two since Trick 2 cannot be used because v̄i 6= v′i. Inserted in Eq. 8.36

gives (cf. Eq. 8.14)

∂v̄jK

∂xj
= v′iv

′
j

∂v̄i
∂xj

−Pk, sink

− v̄i
ρ

∂p̄

∂xi
source

− ∂

∂xj

(

v̄iv′iv
′
j − ν

∂K

∂xj

)

−ν ∂v̄i
∂xj

∂v̄i
∂xj

εmean, sink

(8.38)

On the left side we have the usual convective term. On the right side we find:

• loss of energy to k due to the production term

• work performed by the pressure gradient; in channel flow, for example, this term

gives a positive contribution to K (as expected) since −v̄1∂p̄/∂x1 > 0

• diffusion by velocity-stress interaction

• viscous diffusion.

• viscous dissipation, εmean. This corresponds to the dissipation term in Eq. 2.23;

if you replace vi with v̄i and use the continuity equation to get rid of the sec-

ond velocity gradient in S̄ij you find that the dissipation term in Eq. 2.23 (see

Eq. 2.26), is identical to εmean.

Note that the first term in Eq. 8.38 is the same as the first term in Eq. 8.14 but with

opposite sign: here we clearly can see that the main source term in the k equation (the

production term) appears as a sink term in the K equation.
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and internal energy (denoted as an increase in temperature, ∆T ). K = 1
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v̄iv̄i and k = 1

2
v′iv

′

i.

In the K equation the dissipation term and the negative production term (represent-

ing loss of kinetic energy to the k field) read

−ν ∂v̄i
∂xj

∂v̄i
∂xj

+ v′iv
′
j

∂v̄i
∂xj

, (8.39)

and in the k equation the production and the dissipation terms read

−v′iv′j
∂v̄i
∂xj

− ν
∂v′i
∂xj

∂v′i
∂xj

(8.40)

The gradient of the time-averaged velocity field, v̄i, is much smoother than the gradient

of the fluctuating velocity field, v′i. Hence, the dissipation by the turbulent fluctuations,

ε, in the turbulent region (logarithmic region and further out from walls), is much larger

than the dissipation by the mean flow (left side of Eq. 8.39). This is seen in Fig. 8.5

(x+2 & 15). The energy flow from the mean flow to internal energy is illustrated in

Fig. 8.6. The major part of the energy flow goes from K to k and then to dissipation.

In the viscous-dominated wall region (x+2 . 5), the mean dissipation, ν(∂v̄1/∂x2)
2,

is much larger than ε, see Fig. 8.5. At the wall, the mean dissipation takes the value

ν = 1/2000 (normalized by u4τ/ν).
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11 Reynolds stress models and two-equation models

11.1 Mean flow equations

11.1.1 Flow equations

For incompressible turbulent flow, all variables are divided into a mean part (time av-

eraged) and fluctuating part. For the velocity vector this means that vi is divided into

a mean part v̄i and a fluctuating part v′i so that vi = v̄i + v′i. Time average and we get

(see Eq. 6.9 at. p. 89):

∂v̄i
∂xi

= 0 (11.1)

∂ρ0v̄i
∂t

+
∂

∂xj
(ρ0v̄iv̄j) = − ∂p̄

∂xi
+ µ

∂2v̄i
∂xj∂xj

− ∂τij
∂xj

− βρ0(θ̄ − θ0)gi (11.2)

(note that θ denotes temperature) where ρ0 is a constant reference density, the volume

force fi = −β(θ̄ − θ0)gi and the turbulent stress tensor (also called Reynolds stress Reynolds

stress

tensor

tensor) is written as:

τij = ρ0v′iv
′
j (11.3)

The pressure, p̄, denotes the hydrodynamic pressure, see Eq. 3.22, which means that

when the flow is still (i.e. v̄i ≡ 0), then the pressure is zero (i.e. p̄ ≡ 0). We have

assumed that the temperature variations are small (typically smaller than 10 oC) so

that the density variations can be neglected (using ρ0) in all terms except the gravity

term. This is called the Boussinesq approximation. Boussinesq

approximationThe body force fi – which was omitted for convenience in Eq. 6.9 – has here been

re-introduced. The body force in Eq. 11.2 is due to buoyancy, i.e. density differences.

The basic form of the buoyancy force is fi = gi where gi denotes gravitational acceler-

ation. Since the pressure, p̄, is defined as the hydrodynamic pressure we have re-written

the buoyancy source as

ρ0fi → (ρ− ρ0)gi (11.4)

so that p̄ ≡ 0 when v̄i ≡ 0 (note that the true pressure decreases upwards as ρg∆h
where ∆h denotes change in height). To understand than v̄i = 0 is solution when

p̄ = 0, set ∂p̄/∂xi = 0 in Eq. 11.2. We see that v̄i = 0 is a solution. ∂p̄/∂xi = 0
means that the p̄ = const in the entire domain. Then we set p̄ = 0 in one point which

so that p̄ = 0 in the entire domain. Now we let density in Eq. 11.4 depend on pressure

and temperature, and differentiation gives

dρ =

(
∂ρ

∂θ

)

p

dθ +

(
∂ρ

∂p

)

θ

dp (11.5)

Our flow is incompressible, which means that the density does not depend on pressure,

i.e. ∂ρ/∂p = 0; it may, however, depend on temperature and mixture composition.

Hence the last term in Eq. 11.5 is zero and we introduce the volumetric thermal expan-

sion, β, so that

β = − 1

ρ0

(
∂ρ

∂θ

)

p

⇒

dρ = −ρ0βdθ ⇒ ρ− ρ0 = −βρ0(θ − θ0)

(11.6)
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where β is a physical property which is tabulated in physical handbooks. For a perfect

gas it is simply β = θ−1 (with θ in degrees Kelvin). Now we can re-write the buoyancy

term as

(ρ− ρ0)gi = −ρ0β(θ̄ − θ0)gi (11.7)

which is the last term in Eq. 11.2. Consider the case where x3 is vertically upwards.

Then gi = (0, 0,−g) and a large temperature in Eq. 11.7 results in a force vertically

upwards, which agrees well with our intuition.

11.1.2 Temperature equation

The instantaneous temperature, θ, is also decomposed into a mean and a fluctuating

component as θ = θ̄ + θ′. The transport equation for θ reads (see Eq. 2.18 where

temperature was denoted by T )

∂θ

∂t
+
∂viθ

∂xi
= α

∂2θ

∂xi∂xi
(11.8)

where α = k/(ρcp), see Eq. 2.18 on p. 33. Introducing θ = θ̄ + θ′ we get

∂θ̄

∂t
+
∂v̄iθ̄

∂xi
= α

∂2θ̄

∂xi∂xi
− ∂v′iθ

′

∂xi
(11.9)

The last term on the right side is an additional term whose physical meaning is turbulent

heat flux vector. This is similar to the Reynolds stress tensor on the right side of the

time-averaged momentum equation, Eq. 11.2. The total heat flux vector – viscous plus

turbulent – in Eq. 11.9 reads (cf. Eq. 2.14)

−qi,tot
ρcp

= − qi
ρcp

− qi,turb
ρcp

= α
∂θ̄

∂xi
− v′iθ

′ (11.10)

11.2 The exact v′iv
′

j equation

Now we want to solve the time-averaged continuity equation (Eq. 11.1) and the three

momentum equations (Eq. 11.2). Unfortunately there are ten unknowns; the four usual

ones (v̄i, p̄) plus six turbulent stresses, v′iv
′
j . We must close this equation system; it is

called the closure problem. We must find some new equations for the turbulent stresses. closure

problemWe need a turbulence model.

The most comprehensive turbulence model is to derive exact transport equations

for the turbulent stresses. An exact equation for the Reynolds stresses can be derived

from the Navies-Stokes equation. It is emphasized that this equation is exact; or, rather,

as exact as the Navier-Stokes equations. The derivation follows the steps below.

• Set up the momentum equation for the instantaneous velocity vi = v̄i + v′i →
Eq. (A)

• Time average → equation for v̄i, Eq. (B)

• Subtract Eq. (B) from Eq. (A) → equation for v′i, Eq. (C)

• Do the same procedure for vj → equation for v′j , Eq. (D)

• Multiply Eq. (C) with v′j and Eq. (D) with v′i, time average and add them together

→ equation for v′iv
′
j
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In Section 9 at p. 115 these steps are given in some detail. More details can also be

found in [24] (set the SGS tensor to zero, i.e. τaij = 0).

The final v′iv
′
j-equation (Reynolds Stress equation) reads (see Eq. 9.12)

∂v′iv
′
j

∂t
+ v̄k

∂v′iv
′
j

∂xk
Cij

= −v′iv′k
∂v̄j
∂xk

− v′jv
′
k

∂v̄i
∂xk

Pij

+
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)

Πij

− ∂

∂xk

[

v′iv
′
jv

′
k +

p′v′j
ρ
δik +

p′v′i
ρ
δjk

]

Dij,t

+ ν
∂2v′iv

′
j

∂xk∂xk
Dij,ν

−giβv′jθ′ − gjβv′iθ
′

Gij

− 2ν
∂v′i
∂xk

∂v′j
∂xk

εij

(11.11)

where Dij,t and Dij,ν denote turbulent and viscous diffusion, respectively. The total

diffusion reads Dij = Dij,t + Dij,ν . This is analogous to the momentum equation

where we have gradients of viscous and turbulent stresses which correspond to viscous

and turbulent diffusion. Equation 11.11 can symbolically be written

Cij = Pij +Πij +Dij +Gij − εij

where

Cij Convection

Pij Production

Πij Pressure-strain

Dij Diffusion

Gij Buoyancy production

εij Dissipation

Which terms in Eq. 11.11 are known and which are unknown? First, let’s think

about which physical quantities we solve for.

v̄i is obtained from the momentum equation, Eq. 11.2

v′iv
′
j is obtained from the modeled v′iv

′
j equation, Eq. 11.101

Hence the following terms in Eq. 11.11 are known (i.e. they do not need to be modeled)

• The left side

• The production term, Pij

• The viscous part of the diffusion term, Dij , i.e. Dν
ij

• The buoyancy term, Gij (provided that a transport equation is solved for v′iθ
′,

Eq. 11.22; if not, v′iθ
′ is obtained from the Boussinesq assumption, Eq. 11.35)
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11.3 The exact v′iθ
′ equation

If temperature variations occur we must solve for the mean temperature field, see

Eq. 11.9. Then we need the unknown turbulent heat fluxes, v′iθ
′. To derive its transport

equation, start with the equation for the fluctuating temperature. Subtract Eq. 11.9 from

Eq. 11.8

∂θ′

∂t
+

∂

∂xk
(v′k θ̄ + v̄kθ

′ + v′kθ
′) = α

∂2θ′

∂xk∂xk
− ∂v′kθ

′

∂xk
(11.12)

To get the equation for the fluctuating velocity, v′i, subtract the equation for the mean

velocity v̄i (Eq. 11.2) from the equation for the instantaneous velocity, vi (Eq. 6.6) so

that

∂v′i
∂t

+
∂

∂xk
(v′kv̄i + v̄kv

′
i + v′kv

′
i) = −1

ρ

∂p′

∂xi
+ ν

∂2v′i
∂xk∂xk

+
∂v′iv

′
k

∂xk
− giβθ

′ (11.13)

Multiply Eq. 11.12 with v′i and multiply Eq. 11.13 with θ′, add them together and

time average

∂v′iθ
′

∂t
+ v′i

∂

∂xk
(v′k θ̄ + v̄kθ′ + v′kθ

′) + θ′
∂

∂xk
(v̄iv′k + v̄kv′i + v′iv

′
k)

= −θ
′

ρ

∂p′

∂xi
+ αv′i

∂2θ′

∂xk∂xk
+ νθ′

∂2v′i
∂xk∂xk

− giβθ′θ′

(11.14)

The Reynolds stress term in Eq. 11.13 multiplied by θ′ and time averaged is zero, i.e.

∂v′iv
′
j

∂xk
θ′ =

∂v′iv
′
j

∂xk
θ′ = 0

If you have forgotten the rules for time-averaging, see Section 8.1.

The first term in the two parentheses on line 1 in Eq. 11.14 are combined into two

production terms (using the continuity equation, ∂v′k/∂xk = 0)

v′iv
′
k

∂θ̄

∂xk
+ v′kθ

′ ∂v̄

∂xk
(11.15)

The second term in the two parenthesis on the first line of Eq. 11.14 are re-written using

the continuity equation

v′i
∂v̄kθ′

∂xk
+ θ′

∂v̄kv′i
∂xk

= v̄k

(

v′i
∂θ′

∂xk
+ θ′

∂v′i
∂xk

)

(11.16)

Now the two terms can be merged (product rule backwards, Trick 1)

v̄k

(

v′i
∂θ′

∂xk
+ θ′

∂v′i
∂xk

)

= v̄k
∂v′iθ

′

∂xk
=
∂v̄kv′iθ

′

∂xk
(11.17)

where we used the continuity equation to obtain the right side. The last two terms

on the first line in Eq. 11.14 are re-cast into turbulent diffusion terms using the same

procedure as in Eqs. 11.16 and 11.17

v′i
∂

∂xk
(v′kθ

′) + θ′
∂

∂xk
(v′iv

′
k) =

∂v′iv
′
kθ

′

∂xk
(11.18)
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The viscous diffusion terms on the right side are re-written using the product rule back-

wards (Trick 1, see p. 102)

αv′i
∂2θ′

∂xk∂xk
= αv′i

∂

∂xk

(
∂θ′

∂xk

)

= α
∂

∂xk

(

v′i
∂θ′

∂xk

)

− α
∂θ′

∂xk

∂v′k
∂xk

νθ′
∂2v′i

∂xk∂xk
= νθ′

∂

∂xk

(
∂v′i
∂xk

)

= ν
∂

∂xk

(

θ′
∂v′i
∂xk

)

− ν
∂θ′

∂xk

∂v′k
∂xk

(11.19)

Inserting Eqs. 11.15, 11.17, 11.18 and 11.19 into Eq. 11.14 gives the transport

equation for the heat flux vector v′iθ
′

∂v′iθ
′

∂t
+

∂

∂xk
v̄kv′iθ

′ = −v′iv′k
∂θ̄

∂xk
− v′kθ

′ ∂v̄i
∂xk

Piθ

−θ
′

ρ

∂p′

∂xi
Πiθ

− ∂

∂xk
v′kv

′
iθ

′

Diθ,t

+α
∂

∂xk

(

v′i
∂θ′

∂xk

)

+ ν
∂

∂xk

(

θ′
∂v′i
∂xk

)

Diθ,ν

− (ν + α)
∂v′i
∂xk

∂θ′

∂xk
εiθ

−giβθ′2
Giθ

(11.20)

where Piθ , Πiθ andDiθ,t denote the production, scramble and turbulent diffusion term,

respectively. The production term includes one term with the mean velocity gradient

and one with the mean temperature gradient. On the last line,Diθ,ν , εiθ andGiθ denote

viscous diffusion, dissipation and buoyancy term, respectively. The unknown terms –

Πiθ , Diθ , εiθ , Giθ – have to be modeled as usual; this is out of the scope of the present

course but the interested reader is referred to [25].

It can be noted that there is no usual viscous diffusion term in Eq. 11.20. The

reason is that the viscous diffusion coefficients are different in the vi equation and

the θ equation (ν in the former case and α in the latter). However, if ν ≃ α (which

corresponds to a Prandtl number of unity, i.e. Pr = ν/α ≃ 1, see Eq. 2.19), the

diffusion term in Eq. 11.20 assumes the familiar form

α
∂

∂xk

(

v′i
∂θ′

∂xk

)

+ ν
∂

∂xk

(

θ′
∂v′i
∂xk

)

= α
∂2v′iθ

′

∂xk∂xk
− α

∂

∂xk

(

θ′
∂v′i
∂xk

)

+ ν
∂2v′iθ

′

∂xk∂xk
− ν

∂

∂xk

(

v′i
∂θ′

∂xk

)

≃
(

ν +
ν

Pr

) ∂2v′iθ
′

∂xk∂xk
− ν

∂

∂xk

(

θ′
∂v′i
∂xk

)

− ν
∂

∂xk

(

v′i
∂θ′

∂xk

)

=
(

ν +
ν

Pr

) ∂2v′iθ
′

∂xk∂xk
−Diθ,ν

(11.21)

where Diθ,ν cancels the corresponding term in Eq. 11.20 if α = ν. Often the viscous

diffusion is simplified in this way. Hence, if α ≃ ν the transport equation for v′iθ
′ can

be simplified as

∂v′iθ
′

∂t
+

∂

∂xk
v̄kv′iθ

′ = −v′iv′k
∂θ̄

∂xk
− v′kθ

′ ∂v̄i
∂xk

Piθ

−θ
′

ρ

∂p′

∂xi
Πiθ

− ∂

∂xk
v′kv

′
iθ

′

Diθ,t

+
(

ν +
ν

Pr

) ∂2v′iθ
′

∂xk∂xk
Diθ,ν

− (ν + α)
∂v′i
∂xk

∂θ′

∂xk
εiθ

−giβθ′2
Giθ

(11.22)
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The same question arises as for the v′iv
′
j equation: which terms need to be modeled

in Eq. 11.22? The following quantities are known:

v̄i is obtained from the momentum equation, Eq. 11.2

θ̄ is obtained from the temperature equation, Eq. 11.9

v′iv
′
j is obtained from the modeled v′iv

′
j equation, Eq. 11.101

v′iθ
′ is obtained from the modeled v′iθ

′ equation

Hence the following terms in Eq. 11.22 are known (i.e. they do not need to be modeled)

• The left side

• The production term, Piθ

• The viscous diffusion term, Diθ,ν

• The buoyancy term, Giθ (provided that a transport equation is solved for θ′2; if

not, θ′2 is usually modeled via a relation to k)

11.4 The k equation

The turbulent kinetic energy is the sum of all normal Reynolds stresses, i.e.

k =
1

2

(

v′21 + v′22 + v′23

)

≡ 1

2
v′iv

′
i

By taking the trace (setting indices i = j) of the equation for v′iv
′
j and dividing by two

we get the equation for the turbulent kinetic energy:

∂k

∂t
+ v̄j

∂k

∂xj

Ck

= − v′iv
′
j

∂v̄i
∂xj

P k

− ν
∂v′i
∂xj

∂v′i
∂xj
ε

− ∂

∂xj

{

v′j

(
p′

ρ
+

1

2
v′iv

′
i

)}

Dk
t

+ ν
∂2k

∂xj∂xj

Dk
ν

−giβv′iθ′
Gk

(11.23)

where – as in the v′iv
′
j equation – Dk

t and Dk
ν denotes turbulent and viscous diffusion,

respectively. The total diffusion reads Dk = Dk
t +Dk

ν . Equation 11.23 can symboli-

cally be written:

Ck = P k +Dk +Gk − ε (11.24)

The known quantities in Eq. 11.23 are:

v̄i is obtained from the momentum equation, Eq. 11.2

k is obtained from the modeled k equation, Eq. 11.97

Hence the following terms in Eq. 11.23 are known (i.e. they do not need to be modeled)

• The left side

• The viscous diffusion term, Dk
i,ν

• The buoyancy term, Gij (provided that a transport equation is solved for v′iθ
′,

Eq. 11.22; if not, v′iθ
′ is obtained from the Boussinesq assumption, Eq. 11.35)
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11.5 The ε equation

Two quantities are usually used in eddy-viscosity model to express the turbulent vis-

cosity. In the k − ε model, k and ε are used. The turbulent viscosity is estimated –

using dimensional analysis – as the product of a turbulent velocity, U , and length scale,

L,

νt ∝ UL (11.25)

The velocity scale is taken as k1/2 and the length scale as k3/2/ε which gives

νt = Cµ
k2

ε

where Cµ = 0.09. An exact equation for the transport equation for the dissipation

ε = ν
∂v′i
∂xj

∂v′i
∂xj

can be derived (see, e.g., [26]), but it is very complicated and in the end many terms

are found negligible. It is much easier to look at the k equation, Eq. 11.24, and to setup

a similar equation for ε. The transport equation should include a convective term, Cε,

a diffusion term, Dε, a production term, P ε, a production term due to buoyancy, Gε,

and a destruction term, Ψε, i.e.

Cε = P ε +Dε +Gε −Ψε (11.26)

The production and destruction terms, P k and ε, in the k equation are used to for-

mulate the corresponding terms in the ε equation. The terms in the k equation have

the dimension [m2/s3] (look at the unsteady term, ∂k/∂t) whereas the terms in the ε
equation have the dimension [m2/s4] (cf. ∂ε/∂t). Hence, we must multiply P k and ε
by a quantity which has the dimension [1/s]. One quantity with this dimension is the

mean velocity gradient which might be relevant for the production term, but not for the

destruction. A better choice should be ε/k = [1/s]. Hence, we get

P ε +Gε −Ψε =
ε

k

(
cε1P

k + cε1G
k − cε2ε

)
(11.27)

where we have added new unknown coefficients in front of each term. The turbulent

diffusion term is expressed in the same way as that in the k equation (see Eq. 11.40)

but with its own turbulent Prandtl number, σε (see Eq. 11.37), i.e.

Dε =
∂

∂xj

[(

ν +
νt
σε

)
∂ε

∂xj

]

(11.28)

The final form of the ε transport equation reads

∂ε

∂t
+ v̄j

∂ε

∂xj
=
ε

k
(cε1P

k + cε1G
k − cε2ε) +

∂

∂xj

[(

ν +
νt
σε

)
∂ε

∂xj

]

(11.29)

Note that this is a modeled equation since we have modeled the production, destruction

and turbulent diffusion terms.

For details on how to derive the constants, see [27].
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11.6 The Boussinesq assumption

In the Boussinesq assumption an eddy (i.e. a turbulent) viscosity is introduced to model

the unknown Reynolds stresses in Eq. 11.2. Consider the diffusion terms in the incom-

pressible momentum equation in the case of non-constant viscosity (see Eq. 2.6)

∂

∂xj

{

ν

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

− v′iv
′
j

}

(11.30)

Now we want to replace the Reynolds stress tensor, v′iv
′
j , by a turbulent viscosity, νt,

so that the diffusion terms can be written

∂

∂xj

{

(ν + νt)

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)}

(11.31)

Note that νt is not constant. Identification of Eqs. 11.30 and 11.31 gives

−v′iv′j = νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

(11.32)

This is identical to the assumption for the Newtonian, viscous stress for incompressible

flow, see Eq. 2.4. Equation 11.32 is not valid upon contraction 3 (the right side will be

zero due to continuity, but not the left side). Hence we add the trace of the left side to

the right side so that

v′iv
′
j = −νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

+
1

3
δijv′kv

′
k = −2νts̄ij +

2

3
δijk (11.33)

Now the equation is valid also when it is contracted (i.e taking the trace); after contrac-

tion both left and right side are equal (as they must be) to v′iv
′
i = 2k. When Eq. 11.33

is included in Eq. 11.2 we replace six turbulent stresses with one new unknown (the

turbulent viscosity, νt). This is of course a drastic simplification. With the Boussinesq

assumption the momentum equation reads (see Eq. 11.2 and 11.33)

∂ρ0v̄i
∂t

+
∂

∂xj
(ρ0v̄iv̄j)

= −∂p̄B
∂xi

+
∂

∂xj

[

(µ+ µt)

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)]

− βρ0(θ̄ − θ0)gi

(11.34)

where the turbulent kinetic energy (last term in Eq. 11.33) has been incorporated in the

pressure, i.e. p̄B = p̄+2k/3. There is a fundamental difference between µ and µt: µ is

different for each fluid (water, air, methane, . . . ) and depends mainly on temperature;

µt depends on the flow, i.e. it is function of the location (µt = µt(xi)).
If the mean temperature equation, Eq. 11.9, is solved for, we need an equation for

the heat flux vector, v′iθ
′. One option is to solve its transport equation, Eq. 11.22.

However, it is more common to used an eddy-viscosity model for the heat flux vector.

The Boussinesq assumption reads

v′iθ
′ = −αt

∂θ̄

∂xi
(11.35)

3contraction means that i is set to j
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where αt denotes the turbulent thermal diffusivity. Note that this is the same assump-

tion as Fourier’s law for a Newtonian flux, see Eq. 2.14. The turbulent thermal diffu-

sivity, αt, is usually obtained from the turbulent viscosity as

αt =
νt
σθ

(11.36)

where σθ is the turbulent Prandtl number; it is an empirical constant which is usually

set to 0.7 ≤ σθ ≤ 0.9. The physical meaning of the turbulent Prandtl number, σθ ,

is analogous to the physical meaning of the usual Prandtl number, see Eq. 2.19; it

defines how efficient the turbulence transports (by diffusion) momentum compared to

how efficient it transports thermal energy, i.e.

σθ =
νt
αt

(11.37)

It is important to recognize that the viscosity (ν), the Prandtl number (Pr), the

thermal diffusivity (α) are physical parameters which depend on the fluid (e.g. water

or air) and its conditions (e.g. temperature). However, the turbulent viscosity (νt), the

turbulent thermal diffusivity (αt) and the turbulent Prandtl number (σθ) depend on the

flow (e.g. mean flow gradients and turbulence).

11.7 Modeling assumptions

Now we will compare the modeling assumptions for the unknown terms in the v′iv
′
j ,

v′iθ
′, k and ε equations and formulate modeling assumptions for the remaining terms in

the Reynolds stress equation. This will give us the Reynolds Stress Model [RSM] (also

called the Reynolds Stress Transport Model [RSTM]) where a (modeled) transport

equation is solved for each stress. Later on, we will introduce a simplified algebraic

model, which is called the Algebraic Stress Model [ASM] (this model is also called

Algebraic Reynolds Stress Model, ARSM)

Summary of physical meaning:

Pij , Piθ and P k are production terms of v′iv
′
j , v′iθ

′ and k

Gij , Giθ and Gk are production terms of v′iv
′
j , v′iθ

′ and k due to buoyancy

Dij,t, Diθ,t, D
k
t are the turbulent diffusion terms of v′iv

′
j , v′iθ

′ and k

Πiθ is the pressure-scramble terms of v′iθ
′

Πij is the pressure-strain correlation term, which promotes isotropy of the tur-

bulence

εij , εiθ and ε are dissipation of v′iv
′
j , v′iθ

′ and k, respectively. The dissipation

takes place at the small-scale turbulence.

11.7.1 Production terms

In RSM and ASM the production terms are computed exactly

Pij = −v′iv′k
∂v̄j
∂xk

− v′jv
′
k

∂v̄i
∂xk

, P k =
1

2
Pii = −v′iv′j

∂v̄i
∂xj

Piθ = −v′iv′k
∂θ̄

∂xk
− v′kθ

′ ∂v̄i
∂xk

(11.38)
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k is usually not solved for in RSM but a length-scale equation (i.e. ε or ω) is always

part of an RSM and that equation includes P k.

In the k − ε model, the Reynolds stresses in the production term are computed

using the Boussinesq assumption, which gives

−v′iv′j = νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

− 2

3
δijk

P k =

{

νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

− 2

3
δijk

}
∂v̄i
∂xj

= νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

= νt2s̄ij(s̄ij +Ωij) = 2νts̄ij s̄ij

s̄ij =
1

2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

, Ωij =
1

2

(
∂v̄i
∂xj

− ∂v̄j
∂xi

)

,
∂v̄i
∂xj

= s̄ij +Ωij

(11.39)

where on the third line we used the fact that s̄ijΩij = 0 because the product between a

symmetric tensor (s̄ij) and an asymmetric tensor (Ωij) is zero. The incompressibility

condition, ∂v̄i/∂xi = 0, was used to obtain the third line.

11.7.2 Diffusion terms

The diffusion terms in the k and ε-equations in the k − ε model are modeled using the

standard gradient hypothesis which reads

Dk =
∂

∂xj

[(

ν +
νt
σk

)
∂k

∂xj

]

Dε =
∂

∂xj

[(

ν +
νt
σε

)
∂ε

∂xj

] (11.40)

The gradient hypothesis simply assumes that turbulent diffusion acts as to even out

all inhomogeneities. In other words, it assumes that the turbulent diffusion term, Dk
t ,

transports k from regions where k is large to regions where k is small. The turbulent

diffusion flux of k is expressed as

dkj,t =
1

2
v′jv

′
iv

′
i = − νt

σk

∂k

∂xj
(11.41)

Note that this is the same assumption as Fourier’s law for a Newtonian flux, see

Eq. 2.14. Only the triple correlations are included since the pressure diffusion usu-

ally is negligible (see Fig. 8.3 at p. 110). Taking the divergence of Eq. 11.41 (including

the minus sign in Eq. 11.23) gives the turbulent diffusion term in Eq. 11.40.

Solving the equations for the Reynolds stresses, v′iv
′
j , opens possibilities for a more

advanced model of the turbulent diffusion terms. Equation 11.41 assumes that if the

gradient is zero in xj direction, then there is no diffusion flux in that direction. A more

general gradient hypothesis can be formulated without this limitation, e.g.

dkj,t,G ∝ v′jv
′
k

∂k

∂xk
(11.42)

which is called the general gradient diffusion hypothesis (GGDH). It was derived in

[28] from the transport equation of the triple correlation v′jv
′
iv

′
i. In GGDH the turbulent
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flux dk1,t,G, for example, is computed as

dk1,t,G ∝ v′1v
′
1

∂k

∂x1
+ v′1v

′
2

∂k

∂x2
+ v′1v

′
3

∂k

∂x3
(11.43)

Hence, even if ∂k/∂x1 = 0 the diffusion flux dk1,t,G may be non-zero. A quantity of

dimension [s] must be added to get the correct dimension, and as in Eq. 11.27 we take

k/ε so that

dkj,t,G = ck
k

ε
v′jv

′
k

∂k

∂xk
(11.44)

The diffusion term, Dk
t , in the k equation is obtained by taking the divergence of this

equation

Dk
t =

∂dkj,t,G
∂xj

=
∂

∂xj

(

ck
k

ε
v′jv

′
k

∂k

∂xk

)

(11.45)

This diffusion model may be used when the k equation is solved in an RSM or an ASM.

The corresponding diffusion terms for the ε and v′iv
′
j equations read

Dε
t =

∂

∂xj

(

cε v′jv
′
k

k

ε

∂ε

∂xk

)

Dij,t =
∂

∂xk

(

ck v′kv
′
m

k

ε

∂v′iv
′
j

∂xm

) (11.46)

Equation 11.46 often causes numerical problems. A more stable alternative is to model

the diffusion terms as in 11.40 which for v′iv
′
j reads

Dij,t =
∂

∂xm

(

νt
σk

∂v′iv
′
j

∂xm

)

(11.47)

11.7.3 Dissipation term, εij

The dissipation term εij (see Eq. 11.11) is active for the small-scale turbulence. Be-

cause of the cascade process and vortex stretching (see Figs. 5.3 and 5.4) the small-

scale turbulence is isotropic. This means that the velocity fluctuations of the small-

scale turbulence have no preferred direction, see p. 82. This gives:

1. v′21 = v′22 = v′23 .

2. All shear stresses are zero, i.e.

v′iv
′
j = 0 if i 6= j

because the fluctuations in two different coordinate directions are not correlated.

What applies for the small-scale fluctuations (Items 1 and 2, above) must also apply

for the gradients of the fluctuations, i.e.

∂v′1
∂xk

∂v′1
∂xk

=
∂v′2
∂xk

∂v′2
∂xk

=
∂v′3
∂xk

∂v′3
∂xk

∂v′i
∂xk

∂v′j
∂xk

= 0 if i 6= j

(11.48)
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v′1
v′1

x1

x2

Figure 11.1: Physical illustration of the pressure-strain term.

The relations in Eq. 11.48 are conveniently expressed in tensor notation as

εij =
2

3
εδij (11.49)

where the factor 2/3 is included so that ε = 1
2εii is satisfied, see Eqs. 11.11 and 11.23.

11.7.4 Slow pressure-strain term

The pressure-strain term, Πij , makes a large contribution to the v′iv
′
j equation. In

Section 9 it was shown that for channel flow it is negative for the streamwise equation,

v′21 , and positive for the wall-normal, v′22 , and spanwise, v′23 , equations. Furthermore,

it acts as a sink term for the shear stress equation. In summary, it was shown that the

term acts as to make the turbulence more isotropic, i.e. decreasing the large normal

stresses and the magnitude of the shear stress and increasing the small normal stresses.

The pressure-strain term is often called the Robin Hood terms, because it “takes from

the rich and gives to the poor”.

The role of the pressure strain can be described in physical terms as follows. As-

sume that two fluid particles with fluctuating velocities v′1 bounce into each other at O
so that ∂v′1/∂x1 < 0, see Fig. 11.1. As a result the fluctuating pressure p′ increases at

O so that

p′
∂v′1
∂x1

< 0

The fluid in the x1 direction is performing work, moving fluid particles against the

pressure gradient. The kinetic energy lost in the x1 direction is transferred to the x2
and x3 directions and we assume that the collision makes fluid particles move in the

other two directions, i.e.
∂v′2
∂x2

> 0,
∂v′3
∂x3

> 0 (11.50)

Indeed, if ∂v′1/∂x1 < 0, the continuity equation gives ∂v′2/∂x2 + ∂v′3/∂x3 > 0.

However, in Eq. 11.50 we assume that not only their sum is positive but also that they

both are positive. If this is to happen the kinetic energy in the x1 direction must be

larger than that in the x2 and x3 direction, i.e. v′21 > v′22 and v′21 > v′23 . If v′23 ≃ v′21 ,

the pressure strain re-distributes kinetic energy from both v′21 and v′23 to v′22 .

Now let’s assume that v′21 > v′22 and v′21 > v′23 . The amount of kinetic energy

transferred from the x1 direction to the x2 and x3 directions, should be proportional to
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the difference of their energies, i.e.

p′
∂v′1
∂x1

∝ − ρ

2t

[(

v′21 − v′22

)

+
(

v′21 − v′23

)]

= −ρ
t

[

v′21 − 1

2

(

v′22 + v′23

)]

= −ρ
t

[
3

2
v′21 − 1

2

(

v′21 + v′22 + v′23

)]

= −ρ
t

(
3

2
v′21 − k

)

(11.51)

where t denotes a turbulent timescale. The expression in Eq. 11.51 applies only to

the normal stresses, i.e. the principal axis of v′iv
′
j . Let us show that by transform-

ing the fluctuations to a coordinate system which is rotated an angle α = π/4 then

p′(∂v′1/∂x2 + ∂v′2/∂x1) ∝ −v′1v′2 (α = π/4 corresponds to the special case when the

normal stresses are equal). We express Eq. 11.51 in principal coordinates, (x1∗, x2∗),
and then transform the equation to (x1, x2) by rotating it angle α = π/4, see Appendix

53.1. Replacing u12 in Eq. 53.6b by v′1v
′
2 we get

v′1v
′
2 = 0.5

(

v′21∗ − v′22∗

)

(11.52)

since v′1∗v
′
2∗ = v′2∗v

′
1∗. Now we have transformed the right side of Eq. 11.51 (the right

side on the first line). Next step is to transform the left side, i.e. the velocity gradi-

ents. We use Eqs. 53.6b and 53.6c: replacing u12 and u21 by ∂v′1/∂x2 and ∂v′2/∂x1,

respectively, and adding them gives

∂v′2
∂x1

+
∂v′1
∂x2

=
∂v′1∗
∂x1∗

− ∂v′2∗
∂x2∗

(11.53)

the pressure-strain term in Eqs. 11.11 and 11.51 can be written

p′
(
∂v′2
∂x1

+
∂v′1
∂x2

)

= p′
(
∂v′1∗
∂x1∗

− ∂v′2∗
∂x2∗

)

(11.54)

Now we apply Eq. 11.51 in the x1∗ and −x2∗ directions (looking at the right side of

Eq. 11.54) so that

p′
(
∂v′1∗
∂x1∗

− ∂v′2∗
∂x2∗

)

∝ −3ρ

2t

(

v′21∗ − v′22∗

)

(11.55)

Inserting Eqs. 11.52 and 11.54 into Eq. 11.55 gives finally

p′
(
∂v′2
∂x1

+
∂v′1
∂x2

)

∝ −3

t
ρv′1v

′
2 (11.56)

This shows that the pressure-strain term acts as a sink term in the shear stress equation.

Thus, Eqs. 11.51 and 11.56 lead as to write

Φij,1 ≡ p′
(
∂v′i
∂xj

+
∂v′j
∂xi

)

= −c1ρ
ε

k

(

v′iv
′
j −

2

3
δijk

)

(11.57)

where Φ denotes the modeled pressure-strain term and subscript 1 means the slow part;

the concept “slow” and “rapid” is discussed at p. 142. We have introduced the turbulent

time scale t = k/ε and a constant c1. This pressure-strain model for the slow part was

proposed by Rotta in 1951 [29].
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a)

v̄1

x1

x2

b) x3

x2

Figure 11.2: Decaying grid turbulence. The circles (a) and the thin rectangles (b) illustrates part

of the grid which consists of a mesh of circular cylinders.

Let us investigate how Eq. 11.57 behaves for decaying grid turbulence, see Fig. 11.2.

Flow from left with velocity v̄1 passes through a grid. The grid creates velocity gra-

dients behind the grid which generates turbulence. Further downstream the velocity

gradients are smoothed out and the mean flow becomes constant. From this point and

further downstream the flow represents anisotropic turbulence (homogeneous in the x2
and x3 directions) which is slowly approaching isotropic turbulence; furthermore the

turbulence is slowly dying (i.e. decaying) due to dissipation. The exact v′iv
′
j equation

for this flow reads (no production or diffusion because of homogeneity)

v̄1
dv′iv

′
j

dx1
=
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)

− εij (11.58)

Rotta’s pressure-strain model is supposed to reduce anisotropy. Thus it should be in-

teresting to re-write Eq. 11.58 expressed in the normalized anisotropy Reynolds stress

tensor which is defined as

aij =
v′iv

′
j

k
− 2

3
δij (11.59)

Note that when the turbulence is isotropic, then aij = 0. We introduce aij (Eq. 11.59),

Rotta’s model (Eq. 11.57) and the model for the dissipation tensor (11.49) into Eq. 11.58

so that

v̄1

(
d(kaij)

dx1
+ δij

2

3

dk

dx1

)

= −c1εaij −
2

3
δijε (11.60)

Analogously to Eq, 11.58, the k equation in decaying grid turbulence reads

v̄1
dk

dx1
= −ε (11.61)
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Inserting Eq. 11.61 in Eq. 11.60, the left side reads

v̄1aij
dk

dx1
+ v̄1k

daij
dx1

+
2

3
δij v̄1

dk

dx1
=

(

aij +
2

3
δij

)

v̄1
dk

dx1
+ kv̄1

daij
dx1

= −
(

aij +
2

3
δij

)

ε+ kv̄1
daij
dx1

Dividing by k and inserting into Eq.Eq. 11.60 we get

v̄1
daij
dx1

= −c1
ε

k
aij −

2

3
δij

ε

k
+
ε

k
aij +

2

3
δij

ε

k
=
ε

k
aij(1− c1) (11.62)

Provided that c1 > 1 Rotta’s model does indeed reduce non-isotropy as it should.

The model of the slow pressure-strain term in Eq. 11.57 can be extended by in-

cluding terms which are non-linear in v′iv
′
j . To make it general it is enough to include

terms which are quadratic in v′iv
′
j , since according to the Cayley-Hamilton theorem, a

second-order tensor satisfies its own characteristic equation (see Section 1.20 in [30]);

this means that terms that are cubic in v′iv
′
j (i.e. v′iv

′
j

3
= v′iv

′
k v′kv

′
m v′mv

′
j) can be

expressed in terms that are linear and quadratic in v′iv
′
j . The most general form of Φij,1

can be formulated as [31]

Φij,1 = −c1ρ
[

εaij + c′1

(

aikakj −
1

3
δijakℓaℓk

)]

aij =
v′iv

′
j

k
− 2

3
δij

(11.63)

aij is an anisotropy tensor whose trace is zero. In isotropic flow all its components are

zero. Note that the right side is trace-less (i.e. the trace is zero). This should be so

since the exact form of Φij is trace-less, i.e. Φii = 2p′∂v′i/∂xi = 0.

11.7.5 Rapid pressure-strain term

Above a model for the slow part of the pressure-strain term was developed using phys-

ical arguments. Here we will carry out a mathematical derivation of a model for the

rapid part of the pressure-strain term.

The notation “rapid” comes from a classical problem in turbulence called the rapid

distortion problem, where a very strong velocity gradient ∂v̄i/∂xj is imposed so that

initially the second term (the slow term) can be neglected, see Eq. 11.65. It is assumed

that the effect of the mean gradients is much larger than the effect of the turbulence,

i.e. ∣
∣
∣
∣

∂v̄i
∂xj

∣
∣
∣
∣

/

(ε/k) → ∞ (11.64)

Thus in this case it is the first term in Eq. 11.65 which gives the most “rapid”

response in p′. The second “slow” term becomes important first at a later stage when

turbulence has been generated.

Now we want to derive an exact equation for the pressure-strain term, Πij . Since

it includes the fluctuating pressure, p′, we start by deriving an exact equation for p′

starting from Navier-Stokes equations.

1. Take the divergence of the incompressible Navier-Stokes equation assuming con-

stant viscosity (see Eq. 6.6) i.e.
∂

∂xi

(

vj
∂vi
∂xj

)

= . . .⇒ Equation A.
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x1, y1

x2, y2

V

x

y

Figure 11.3: The exact solution to Eq. 11.66. The integral is carried out for all points, y, in

volume V .

2. Take the divergence of the incompressible time-averaged Navier-Stokes equation

assuming constant viscosity (see Eq. 6.10) i.e.
∂

∂xi

(

v̄j
∂v̄i
∂xj

)

= . . .⇒ Equation

B.

Subtraction of Equation B from Equation A gives a Poisson equation for the fluc-

tuating pressure p′

1

ρ

∂2p′

∂xj∂xj
= − 2

∂v̄i
∂xj

∂v′j
∂xi

rapid term

− ∂2

∂xi∂xj

(

v′iv
′
j − v′iv

′
j

)

slow term

(11.65)

The factor two in the rapid term appears because when taking the divergence of the

convective term there are two identical terms, see right-side of Eq. 8.6. For a Poisson

equation
∂2ϕ

∂xj∂xj
= f (11.66)

there exists an exact analytical solution given by Green’s formula, see Appendix 54 (it

is derived from Gauss divergence law)

ϕ(x) = − 1

4π

∫

V

f(y)dy1dy2dy3
|y − x| (11.67)

where the integrals at the boundaries vanish because it is assumed that f → 0 at the

boundaries, see Fig. 11.3. Applying Eq. 11.67 on Eq. 11.65 gives

p′(x) =
ρ

4π

∫

V






2
∂v̄i(y)

∂yj

∂v′j(y)

∂yi
rapid term

+
∂2

∂yi∂yj

(

v′i(y)v
′
j(y) − v′i(y)v

′
j(y)

)

slow term







dy3

|y − x|
(11.68)

where dy3 = dy1dy2dy3. Now make two assumptions in Eq. 11.68:
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i) the turbulence is homogeneous (i.e. the spatial derivative of all time-averaged

fluctuating quantities is zero). This means that the last term in square brackets

is zero. This requirement is not as drastic as it may sound (although very few

turbulent flows are homogeneous). This term is indeed very small compared to

the second derivative of the instantaneous fluctuations, v′i(y)v
′
j(y).

ii) the variation of ∂v̄i/∂xj in space is small. The same argument can be used as

above: the mean gradient ∂v̄i/∂xj varies indeed much more slowly than the

instantaneous velocity gradient, ∂v′j(y)/∂yi

Assumption i) means that the last term in the integral in Eq. 11.68 is zero, i.e.

∂2v′iv
′
j

∂yi∂yj
= 0

Assumption ii) means that the mean velocity gradient can be taken outside the integral.

Now multiply Eq. 11.68 with ∂v′i/∂xj + ∂v′j/∂xi. Since this term is not a function of

y it can be moved in under the integral. We obtain after time averaging

1

ρ
p′(x)

(
∂v′i(x)

∂xj
+
∂v′j(x)

∂xi

)

=
∂v̄k(x)

∂xℓ

1

2π

∫

V

(
∂v′i(x)

∂xj
+
∂v′j(x)

∂xi

)
∂v′ℓ(y)

∂yk

dy3

|y − x|
Mijkℓ

+
1

4π

∫

V

(
∂v′i(x)

∂xj
+
∂v′j(x)

∂xi

)
∂2

∂yk∂yℓ
(v′k(y)v

′
ℓ(y))

dy3

|y − x|
Aij

(11.69)

Note that the mean velocity gradient, ∂v̄/∂xℓ, is taken at point x because it has been

moved out of the integral. In order to understand this better, consider the integral

f(x) =

∫ L

0

g(ξ)dξ

|x− ξ| (11.70)

Note that x and ξ are coordinates along the same axis (think of them as two different

points along the x axis). If the two points, x and ξ, are far from each other, then the

denominator is large and the contribution to the integral is small. Hence, we only need

to consider ξ points which are close to x. If we assume that g(ξ) varies slowly with ξ,

g(ξ) can be moved out of the integral and since x is close to ξ, Eq. 11.70 can be written

as

f(x) = g(x)

∫ L

0

dξ

|x− ξ| (11.71)

Going from Eq. 11.70 to Eq. 11.71 corresponds to moving the mean velocity gradient

out of the integral. Equation 11.69 can be written on shorter form as

p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)

= Aij +Mijkℓ
∂v̄k
∂xℓ

= Φij,1 +Φij,2 (11.72)

where the first term represents the slow term, Φij,1 (see Eq. 11.57), and second term is

the rapid term, Φij,2 (index 2 denotes the rapid part).
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Now we will take a closer look at the rapid part (i.e. the second term) of Mijkℓ.

The second term of Mijkℓ in the integral in Eq. 11.69 can be rewritten as

∂v′j(x)

∂xi

∂v′ℓ(y)

∂yk
=

∂

∂yk

(

v′ℓ(y)
∂v′j(x)

∂xi

)

− v′ℓ(y)
∂2v′j(x)

∂yk∂xi

=
∂2

∂yk∂xi

(

v′ℓ(y)v
′
j(x)

)

− ∂

∂yk

(

v′j(x)
∂v′ℓ(y)

∂xi

)

=
∂2

∂yk∂xi

(

v′ℓ(y)v
′
j(x)

)

(11.73)

∂2v′j(x)/∂yk∂xi on line 1 is zero because v′j(x) is not a function of y. For the same

reason the last term on line 2 is zero.

Note that the terms above as well as in Eq. 11.69 are two-point correlations, the

two points being x and y. Introduce the distance vector between the two points

ri = yi − xi (11.74)

Differentiating Eq. 11.74 gives

∂

∂ri
=

∂

∂yi
− ∂

∂xi
(11.75)

Equation 11.74 is a coordinate transformation where we replace xi and yi with

I. xi and ri, or

II. yi and ri.

Assumption i) at p. 143 gives that ∂/∂xi = 0 (Item I) or ∂/∂yi = 0 (Item II). In other

words, the two-point correlations are independent of where in space the two points are

located; they are only dependent on the distance between the two points (i.e. ri). Hence

we can replace the spatial derivative by the distance derivative, i.e.

∂

∂xi
= − ∂

∂ri
∂

∂yi
=

∂

∂ri

(11.76)

We can now write Mijkℓ in Eq. 11.69, using Eqs. 11.73 and 11.76, as

Mijkℓ = − 1

2π

∫

V

[
∂2

∂rk∂ri

(

v′ℓv
′
j

)

+
∂2

∂rk∂rj

(

v′ℓv
′
i

)] dr3

|r|
= aijkℓ + ajikℓ

(11.77)

It can be shown that aijkℓ is symmetric with respect to index j and ℓ (recall that v′ℓ and

v′j are not at the same point but separated by ri), i.e.

aijkℓ = aiℓkj (11.78)

see Appendix 39 on p. 361. Furthermore, Eq. 11.77 is independent of in which order

the two derivatives are taken, so that aijkℓ is symmetric with respect to i and k, i.e.

aijkℓ = akjiℓ (11.79)
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Now let us formulate a general expression of aijkℓ which is linear in v′iv
′
j and

symmetric in (j, ℓ) and (i, k). We get

aijkℓ = c1δikv′jv
′
ℓ

+ c2δjℓv′iv
′
k

+ c3(δijv′kv
′
ℓ + δkjv′iv

′
ℓ + δiℓv′kv

′
j + δkℓv′iv

′
j)

+ c4δjℓδikk

+ c5(δijδkℓ + δjkδiℓ)k

(11.80)

Each line is symmetric in (j, ℓ) and (i, k). For example, on line 3, term 1 & term 3 and

term 2 & term 4 are symmetric with respect to j and ℓ and term 1 & term 2 and term 3

& term 4 are symmetric with respect to i and k.

Consider Eq. 11.69. Here it is seen that if i = j then Mijkℓ = 0 due to the

continuity equation; looking at Eq. 11.77 we get

aiikℓ = 0 (11.81)

Applying this condition to Eq. 11.80 gives

0 = c1δikv′iv
′
ℓ + c2δiℓv′iv

′
k + c3(3v′kv

′
ℓ + δkiv′iv

′
ℓ + δiℓv′kv

′
i + δkℓv′iv

′
i)

+ c4δiℓδikk + c5(3δkℓ + δikδiℓ)k

= c1v′kv
′
ℓ + c2v′ℓv

′
k + c3(3v′kv

′
ℓ + v′kv

′
ℓ + v′kv

′
ℓ + 2δkℓk)

+ c4δkℓk + c5(3δkℓ + δkℓ)k

= v′kv
′
ℓ(c1 + c2 + 5c3) + kδkℓ(c4 + 2c3 + 4c5)

(11.82)

Green’s third formula reads (see Appendix 39 on p. 361)

aijiℓ = 2v′jv
′
ℓ (11.83)

Using Eq. 11.83 in Eq. 11.80 gives

2v′jv
′
ℓ = 3c1v′jv

′
ℓ + c2δjℓv′iv

′
i + c3(δijv′iv

′
ℓ + δijv′iv

′
ℓ + δiℓv′iv

′
j + δiℓv′iv

′
j)

+ (3c4δjℓ + c5(δijδiℓ + δjiδiℓ))k

= 3c1v′jv
′
ℓ + 2c2δjℓk + 4c3v′jv

′
ℓ + (3c4 + 2c5)δjℓ)k

= v′jv
′
ℓ(3c1 + 4c3) + δjℓk(2c2 + 3c4 + 2c5)

(11.84)

Equations 11.82 and 11.84 give four equations

c1 + c2 + 5c3 = 0, c4 + 2c3 + 4c5 = 0

3c1 + 4c3 − 2 = 0, 2c2 + 3c4 + 2c5 = 0
(11.85)

for the five unknown constants. Let us express all constants in c2 which gives

c1 =
4c2 + 10

11
, c3 = −3c2 + 2

11
, c4 = −50c2 + 4

55
, c5 =

20c2 + 6

55
(11.86)
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Inserting Eq. 11.86 into Eq. 11.80 and 11.72 gives

φij,2 =Mijkℓ
∂v̄k
∂xℓ

= (aijkℓ + ajikℓ)
∂v̄k
∂xℓ

= c1

(

v′jv
′
ℓ

∂v̄i
∂xℓ

+ v′iv
′
ℓ

∂v̄j
∂xℓ

)

+ c2

(

v′iv
′
k

∂v̄k
∂xj

+ v′jv
′
k

∂v̄k
∂xi

)

+c3

(

2δijv′kv
′
ℓ

∂v̄k
∂xℓ

+ v′iv
′
ℓ

∂v̄j
∂xℓ

+ v′jv
′
ℓ

∂v̄i
∂xℓ

+ v′kv
′
j

∂v̄k
∂xi

+ v′kv
′
i

∂v̄k
∂xj

)

+c4k

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

+ c5k

(
∂v̄j
∂xi

+
∂v̄i
∂xj

)

(11.87)

We find that the c1 term and the second and third part of the c3 term can be merged.

Furthermore, the c2 term and the third and fourth part of the c3 term can be merged as

well as the c4 and c5 terms; using Eq. 11.85 we get

φij,2 = −c2 + 8

11
Pij −

8c2 − 2

11
Dij +

6c2 + 4

11
P k +

4− 60c2
55

ks̄ij

Dij = −v′iv′k
∂v̄k
∂xj

− v′jv
′
k

∂v̄k
∂xi

(11.88)

Finally we re-write this equation so that it is expressed in trace-less tensors

Φij,2 = −ρc2 + 8

11

(

Pij −
2

3
δijP

k

)

− ρ
8c2 − 2

11

(

Dij −
2

3
δijP

k

)

− 60c2 − 4

55
ρks̄ij

(11.89)

where c2 = 0.4. Note that Φii = 0 as we required in Eq. 11.81. This pressure-strain

model is called the LRR model and it was proposed in [32].

All three terms in Eq. 11.89 satisfy continuity and symmetry conditions. It might

be possible to use a simpler pressure-strain model using one or any two terms. Since

the first term is the most important one, a simpler model has been proposed [32, 33]

Φij,2 = −c2ρ
(

Pij −
2

3
δijP

k

)

(11.90)

It can be noted that there is a close similarity between the Rotta model and Eq. 11.90:

both models represent “return-to-isotropy”, the first expressed in v′iv
′
j and the second

in Pij . The model in Eq. 11.90 is commonly called the IP model (IP=Isotropization

by Production) . Since two terms are omitted we should expect that the best value of

γ should be different than (c2 + 8)/11; a value of γ = 0.6 (c2 = −1.4) was found to

give good agreement with experimental data. Since Eq. 11.90 is a truncated form of

Eq. 11.89 it does not satisfy all requirements that Eq. 11.89 do. Equation 11.90 does

satisfy symmetry condition and continuity but it does not satisfy the integral condition

in Eq. 11.83. Although Eq. 11.90 is a simpler, truncated version of Eq. 11.89, it is

often found to give more accurate results [34]. Since the IP model is both simpler and

seems to be more accurate than Eq. 11.89, it is one of the most popular models of the

rapid pressure-strain term. The coefficients for the slow and rapid terms in the LRR

and LRR-IP models are summarized in Table 11.1
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LRR model LRR-IP model

c1 (Eq. 11.57 1.5 1.5
c2 (Eq. 11.89) 0.4 −
c2 (Eq. 11.90) − 0.6

Table 11.1: Constants in the LRR and LRR-IP pressure-strain models.

x1

x2

Figure 11.4: Modeling of wall correction in pressure-strain terms.

11.7.6 Wall model of the pressure-strain term

When we derived the rapid pressure-strain model using Green’s function in Eq. 11.68

we neglected the influence of any boundaries. In wall-bounded domains it turns out

that the effect of the walls must be taken into account. Both the rapid term in the LRR

model and the IP model must be modified to include wall modeling.

The effect of the wall is to dampen turbulence. There are two main effects whose

underlying physics are entirely different.

1. Viscosity. Close to the wall the viscous processes (viscous diffusion and dissi-

pation) dominate over the turbulent ones (production and turbulent diffusion).

2. Pressure. When a fluid particle approaches a wall, the presence of the wall is felt

by the fluid particle over a long distance. This is true for a fluid particle carried

by the wind approaching a building as well as for a fluid particle carried by a

fluctuating velocity approaching the wall in a turbulent boundary layer. In both

cases it is the pressure that informs the fluid particle of the presence of the wall.

Since the pressure-strain term includes the fluctuating pressure, it is obviously the

second of these two processes that we want to include in the wall model. Up to now

we have introduced two terms for modeling the pressure-strain term, the slow and the

fast term. It is suitable to include a slow and a fast wall model term, i.e.

Φij = Φij,1 +Φij,2 +Φij,1w +Φij,2w (11.91)

where subscript w denotes wall modeling.

Consider a wall, see Fig. 11.4. The pressure fluctuations dampens the wall-normal

fluctuations. Furthermore, the damping effect of the wall should decrease for increasing

wall distance. We need to scale the wall-normal distance with a relevant quantity and

the turbulent length scale, k3/2/ε, seems to be a good candidate. For the wall-normal
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fluctuations, the IP wall model reads [35]

Φ22,1w = −2c1w
ε

k
v′22 f

f = min

{

k
3

2

2.55|ni,w(xi − xi,w)|ε
, 1.0

}
(11.92)

where ni,w(xi−xi,w) denotes the distance to the wall. f may exceed one near the wall

and that’s why we put an upper limit on it. As explained above, this damping is inviscid

(due to pressure) and affects the turbulent fluctuations well into the log-region. It has

nothing to do with viscous damping. Away from the wall, in the fully turbulent region,

the damping function goes to zero since the distance to the wall, |ni,w(xi − xi,w)|,
increases faster than the turbulence length scale, k3/2/ε. Moreover, function f should

not exceed one.

The IP wall model for the wall-parallel fluctuations reads

Φ11,1w = Φ33,1w = c1w
ε

k
v′22 f (11.93)

The requirement that the sum of the pressure strain term should be zero. i.e. Φii,1w =
0, is now satisfied since Φ11,1w +Φ22,1w +Φ33,1w = 0.

The wall model for the shear stress is set as

Φ12,1w = −3

2
c1w

ε

k
v′1v

′
2f (11.94)

The factor 3/2 is needed to ensure that Φii,1w = 0 is satisfied when the coordinate sys-

tem is rotated. You can prove this by rotating the matrix [Φ11,1w,Φ12,1w; Φ21,1w,Φ22,1w]
and taking the trace of Φ in the principal coordinates system (i.e. taking the sum of the

eigenvalues).

The general formula for a wall that is not aligned with a Cartesian coordinate axis

reads [35]

Φij,1w = c1w
ε

k

(

v′kv
′
mnk,wnm,wδij −

3

2
v′kv

′
ink,wnj,w − 3

2
v′kv

′
jni,wnk,w

)

f

(11.95)

An analogous wall model is used for the rapid part which reads

Φij,2w = c2w

(

Φkm,2nk,wnm,wδij −
3

2
Φki,2nk,wnj,w − 3

2
Φkj,2ni,wnk,w

)

f

(11.96)

In Section 61, you find some detail on how to compute one of the terms, v′kv
′
mnk,wnm,w.

11.8 The k − ε model

The exact k equation is given by Eq. 11.23. By inserting the model assumptions for

the turbulent diffusion (Eq. 11.40), the production (Eq. 11.39) and the buoyancy term

(Eqs. 11.35 and 11.36) we get the modeled equation for k

∂k

∂t
+ v̄j

∂k

∂xj
= νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

+ giβ
νt
σθ

∂θ̄

∂xi

−ε+ ∂

∂xj

[(

ν +
νt
σk

)
∂k

∂xj

] (11.97)
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In the same way, the modeled ε equation is obtained from Eq. 11.29

∂ε

∂t
+ v̄j

∂ε

∂xj
=
ε

k
cε1νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

+ cε1gi
ε

k

νt
σθ

∂θ̄

∂xi
− cε2

ε2

k
+

∂

∂xj

[(

ν +
νt
σε

)
∂ε

∂xj

] (11.98)

The turbulent viscosity is computed as

νt = cµ
k2

ε
(11.99)

The standard values for the coefficients read

(cµ, cε1, cε2, σk, σε) = (0.09, 1.44, 1.92, 1, 1.3) (11.100)

For details on how to obtain these constants are obtained, see Section 11.14.2 and

Section 3 in Introduction to turbulence models. In that report, details on wall-functions

and low-Reynolds number models can be found in Sections 3 and 4, respectively.

https://www.tfd.chalmers.se/~lada/postscript_files/kompendium_turb.pdf
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11.9 The modeled v′iv
′

j equation with IP model

With the models for diffusion, pressure-strain and dissipation we get the Reynolds

Stress Model [RSM]

∂v′iv
′
j

∂t
+ (unsteady term)

v̄k
∂v′iv

′
j

∂xk
= (convection)

−v′iv′k
∂v̄j
∂xk

− v′jv
′
k

∂v̄i
∂xk

(production)

−c1
ε

k

(

v′iv
′
j −

2

3
δijk

)

(pressure strain, slow part)

−c2
(

Pij −
2

3
δijP

k

)

(pressure strain, rapid part, IPmodel))

+c1wρ
ε

k

[

v′kv
′
mnknmδij −

3

2
v′iv

′
knknj

−3

2
v′jv

′
knkni

]

f (pressure strain, wall, slowpart)

+c2w

[

Φkm,2nknmδij −
3

2
Φik,2nknj

−3

2
Φjk,2nkni

]

f (pressure strain, wall, rapid part, IPmodel))

+ν
∂2v′iv

′
j

∂xk∂xk
(viscous diffusion)

+
∂

∂xm

[

νt
σk

∂v′iv
′
j

∂xm

]

(turbulent diffusion)

−giβv′jθ′ − gjβv′iθ
′ (buoyancy production)

−2

3
εδij (dissipation)

(11.101)

11.10 Algebraic Reynolds Stress Model (ASM)

The Algebraic Reynolds Stress Model is a simplified Reynolds Stress Model. The

RSM and k − ε models are written in symbolic form (see p. 130 & 133) as:

RSM : Cij −Dij = Pij +Φij − εij

k − ε : Ck −Dk = P k − ε
(11.102)

In ASM we assume that the transport (convective and diffusive) of v′iv
′
j is related to

that of k, i.e.

Cij −Dij =
v′iv

′
j

k

(
Ck −Dk

)
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Inserting Eq. 11.102 into the equation above gives

Pij +Φij − εij =
v′iv

′
j

k

(
P k − ε

)
(11.103)

Thus the transport equation (PDE) for v′iv
′
j has been transformed into an algebraic

equation based on the assumption in Eq. 11.102.

Now we want to re-write this equation as an equation for v′iv
′
j . Insert the IP models

for Φij,1 (Eq. 11.57) and Φij,2 (Eq. 11.90) and the isotropic model for εij (Eq. 11.49)

in Eq. 11.103 and multiply by k/ε so that

k

ε
Pij − c1

(

v′iv
′
j −

2

3
δijk

)

− c2
k

ε

(

Pij −
2

3
δijP

k

)

− 2

3
δijk

+
k

ε
(Φij,1w +Φij,2w) =

v′iv
′
j

ε

(
P k − ε

)

Collect all v′iv
′
j terms so that

v′iv
′
j

(
P k

ε
− 1 + c1

)

=

k

ε

[

Pij − c2

(

Pij −
2

3
δijP

k

)

+Φij,1w +Φij,2w

]

+
2

3
δijk(−1 + c1)

=
k

ε

[

Pij −δij
2

3
P k − c2

(

Pij −
2

3
δijP

k

)

+Φij,1w +Φij,2w

]

+
2

3
δijk(P

k/ε − 1 + c1)

where (2/3)δijP
kk/ε was added and subtracted at the last line (shown in boxes). Di-

viding both sides by P k/ε− 1 + c1 gives finally

v′iv
′
j =

2

3
δijk +

k

ε

(1− c2)
(
Pij − 2

3δijP
k
)
+Φij,1w +Φij,2w

c1 + P k/ε− 1
(11.104)

In boundary layer flow Eq. 11.104 reads (without any wall terms, i.e. Φij,1w =
Φij,2w = 0)

−v′1v′2 =
2

3
(1− c2)

c1 − 1 + c2P
k/ε

(c1 − 1 + P k/ε)
cµ

k2

ε

∂v̄1
∂y

As can be seen, this model can be seen as an extension of an eddy-viscosity model

where the cµ constant is made a function of the ratio P k/ε.

11.11 Explicit ASM (EASM or EARSM)

Equation 11.104 is an implicit equation for v′iv
′
j , i.e. the Reynolds stresses appear both

on the left and the right side of the equation. It would of course be advantageous to

be able to get an explicit expression for the Reynolds stresses. Pope [36] managed

to derive an explicit expression for ASM in two dimensions. He assumed that the

Reynolds stress tensor can be expressed in the strain-rate tensor, s̄ij , and the vorticity

tensor, Ωij . Furthermore, he showed that the coefficients, G(n), in that expression can

be a function of not more than the following five invariants

(k2/ε2)s̄ij s̄ji, (k2/ε2)Ω̄ijΩ̄ji, (k3/ε3)s̄ij s̄jks̄ki

(k3/ε3)Ω̄ijΩ̄jk s̄ki, (k4/ε4)Ω̄ijΩ̄jks̄kms̄mi

(11.105)
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There are five invariants because when s̄ij and Ωij are transformed to principal coordi-

nates, there are three eigenvalue for each of them. Furthermore, s̄ii = 0 which means

there are only five independent invariants.

In two dimension the expression reads

v′iv
′
j =

2

3
kδij +G(1) k

2

ε
s̄ij +G(2) k

3

ε2
(s̄ikΩ̄kj − Ω̄iks̄kj) (11.106)

In general three-dimensional flow, the Reynolds stress tensor depends on 10 ten-

sors, T n
ij [36], i.e.

v′iv
′
j −

2

3
kδij =

10∑

n=1

G(n)T n
ij

T 1
ij = s̄ij , T 2

ij = s̄ikΩ̄kj − s̄jkΩ̄ki, T 3
ij = s̄iks̄kj −

1

3
δij s̄mks̄km

T 4
ij = Ω̄ikΩ̄kj −

1

3
δijΩ̄ikΩ̄ki, T 5

ij = Ω̄iks̄kms̄mj − s̄ims̄mkΩ̄kj

T 6
ij = Ω̄imΩ̄mks̄kj + s̄ikΩ̄kmΩ̄mj −

2

3
δijΩ̄pmΩ̄mks̄kp

T 7
ij = Ω̄ims̄mkΩ̄knΩ̄nj − Ω̄imΩ̄mks̄knΩ̄nj , T 8

ij = s̄imΩ̄mks̄kns̄nj − s̄ims̄mkΩ̄kns̄nj

T 9
ij = Ω̄imΩ̄mks̄kns̄nj − s̄ims̄mkΩ̄knΩ̄nj −

2

3
δijΩ̄pmΩ̄mks̄kns̄np

T 10
ij = Ω̄ims̄mks̄knΩ̄npΩ̄pj − Ω̄imΩ̄mks̄kns̄npΩ̄pj

(11.107)

where G(n) may depend on the five invariants in Eq. 11.105. Equation 11.107 is a

general form of a non-linear eddy-viscosity model. Any ASM may be written on the

form of Eq. 11.107.

It may be noted that Eq. 11.107 includes only linear and quadratic terms of s̄ij
and Ω̄ij . That is because of Cayley-Hamilton theorem which states that a second-

order tensor satisfies its own characteristic equation (see Section 60.1 and Section 1.20

in [30]); hence cubic terms or higher can recursively be expressed in linear (s̄ij) and

quadratic tensors (s̄iks̄kj ). Furthermore, note that all terms in Eq. 11.107 are symmetric

and traceless as required by the left side, v′iv
′
j − 2δijk/3.

11.12 Derivation of the Explicit Algebraic Reynolds Stress Model

(EARSM)

The algebraic stress model (ASM) is given by Eq. 11.104. This equation is implicit,

since the Reynolds stresses appear on the right side (in the production and the rapid

pressure-strain terms). In this section we will derive an explicit algebraic Reynolds

stress model (EARSM). The derivation presented here is based on [37]. Whereas the

ASM employs the IP model (Eq. 11.90) for the rapid pressure-strain term, the EARSM

is based on the LRR model (Eq. 11.89). Thus we start with Eq. 11.103 using the Rotta

model for the slow part (Eq. 11.57) and the LRR model (Eq. 11.89) for the rapid part.
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(aij +
2

3
δij)(P

k − ε) = Pij − c1εaij −
c2 + 8

11

(

Pij −
2

3
δijP

k

)

− 8c2 − 2

11

(

Dij −
2

3
δijP

k

)

− 60c2 − 4

55
ks̄ij −

2

3
δijε

(11.108)

where the anisotropy tensor, aij , in Eq. 11.59 is used on the left side. The wall correc-

tion terms are neglected (as they usually are in the LRR model). Equation 11.108 is

re-arranged as

aij(P
k + c1ε− ε) = Pij −

2

3
δijP

k − c2 + 8

11

(

Pij −
2

3
δijP

k

)

− 8c2 − 2

11

(

Dij −
2

3
δijP

k

)

− 60c2 − 4

55
ks̄ij

(11.109)

Now we introduce the anisotropy tensor, aij , also on the right side. Start by ex-

pressing the production term, Pij (see Eq. 11.11) in aij , s̄ij and Ω̄ij (see Eq. 9.12)

Pij = −k(aik +
2

3
δik)(s̄jk + Ω̄jk)− k(ajk +

2

3
δjk)(s̄ik + Ω̄ik)

= −4

3
ks̄ij − kaik(s̄jk + Ω̄jk)− kajk(s̄ik + Ω̄ik)

= −4

3
ks̄ij − k(s̄jkaik + ajks̄ki) + k(aikΩ̄kj − Ω̄ikakj)

(11.110)

The production term, P k, is equal to 0.5Pii, and Eq. 11.110 gives

P k = −ks̄ikaik (11.111)

so that we can express the P k terms on the right side in Eq. 11.109 as

2

3
δijP

k

(

−1 +
c2 + 8

11
+

8c2 − 2

11

)

= −2

3
δijks̄ikaik

9c2 − 5

11
(11.112)

Dij is the same thing as Pij except that the indices on the velocity gradients (i.e.

the tensors a and Ω̄ in Eq. 11.110 are switched), see Eq. 11.88. Hence we get (cf.

Eq. 11.110)

Dij = −4

3
ks̄ij − k(s̄jkaki + ajk s̄ki)− k(aikΩ̄kj − Ω̄ikakj) (11.113)

Collect all terms including Pij , s̄ij and Dij in Eq. 11.109

Pij

(

1− c2 + 8

11

)

− 8c2 − 2

11
Dij −

60c2 − 4

55
ks̄ij −

2

3
δijks̄mnanm

9c2 − 5

11

Inserting Eqs. 11.110 and 11.113 gives

k

(

1− c2 + 8

11

)(

−4

3
s̄ij − (s̄jkaik + ajk s̄ki) + (aikΩ̄kj − Ω̄ikakj)

)

−k 8c2 − 2

11

(

−4

3
s̄ij − (s̄jkaki + ajk s̄ki)− (aikΩ̄kj − Ω̄ikakj)

)

−2

3
δijks̄mnanm

9c2 − 5

11
− 60c2 − 4

55
ks̄ij

(11.114)
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Gathering all terms including s̄ij gives

−4

3
ks̄ij

(

1− c2 + 8

11
+

8c2 − 2

11
− 3

4

60c2 − 4

55

)

= − 8

15
ks̄ij (11.115)

The terms including the product of the tensors a and s in Eq. 11.114 read

−k
(

1− c2 + 8

11

)

(s̄jkaik + ajks̄ki) +
8c2 − 2

11
k(s̄jkaki + ajk s̄ki) =

k

11
(s̄jkaki + ajks̄ki)(9c2 − 5)

(11.116)

and the product of the tensors a and Ω̄ in Eq. 11.114 read

k

(

1− c2 + 8

11

)
(
aikΩ̄kj − Ω̄ikakj

)
+ k

8c2 − 2

11
(aikΩ̄kj − Ω̄ikakj) =

k

11
(aikΩ̄kj − Ω̄ikakj)(1 + 7c2)

(11.117)

Using Eqs. 11.115, 11.116, 11.117 and the underlined term in Eq. 11.114, Eq. 11.114

can now be written

−k 8

15
s̄ij + k

1 + 7c2
11

(aikΩ̄kj − Ω̄ikakj)

+k
9c2 − 5

11

(

s̄jkaki + ajk s̄ki −
2

3
δijks̄mnanm

) (11.118)

Equation 11.118 is the right side of Eq. 11.109. Insert Eq. 11.118 into Eq. 11.109 and

divide by ε

aij

(
P k

ε
+ c1 − 1

)

= −k
ε

8

15
s̄ij +

k

ε

1 + 7c2
11

(aikΩ̄kj − Ω̄ikakj)

+
k

ε

9c2 − 5

11

(

s̄jkaki + ajks̄ki −
2

3
δijks̄mnanm

) (11.119)

The coefficient, c2, in the LRR model is usually set to c2 = 0.4, see Table 11.1.

In [38–40], they noted that the relation in Eq. 11.119 is substantially simplified if c2 =
5/9. This assumption is made in EARSM [37], which gives

aij

(
P k

ε
+ c1 − 1

)

= − 8

15
s̄∗ij +

4

9
(aikΩ̄

∗
kj − Ω̄∗

ikakj) (11.120)

where the strain-rate and vorticity tensors are made non-dimensional

s̄∗ij =
k

ε
s̄ij , Ω̄∗

ij =
k

ε
Ωij (11.121)

Equation 11.120 can now be written as

Naij = −6

5
s̄∗ij + (aikΩ̄

∗
kj − Ω̄∗

ikakj) (11.122)

N =
9P k

4ε
+ c′1, c′1 =

9

4
(c1 − 1) (11.123)
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The most general form of aij is given by Eq. 11.107. In two-dimensional flow, it is

sufficient to include only the two first terms (see Eq. 60.2), i.e.

aij = β1s̄
∗
ij + β4(s̄

∗
imΩ̄∗

mj − Ω̄∗
ims̄

∗
mj) (11.124)

where we now denote the coefficients by β1 and β4 as in [37]. In order to solve

Eq. 11.122, insert Eq. 11.124 which gives

N(β1s̄
∗
ij + β4(s̄

∗
ikΩ̄

∗
kj − Ω̄∗

iks̄
∗
kj)) = −6

5
s̄∗ij + (β1s̄

∗
ik + β4(s̄

∗
imΩ̄∗

mk − Ω̄∗
ims̄

∗
mk))Ω̄

∗
kj

−Ω̄∗
ik

(
β1s̄

∗
kj + β4(s̄

∗
kmΩ̄∗

mj − Ω̄∗
kms̄

∗
mj)
)

= −6

5
s̄∗ij + β1(s̄

∗
ikΩ̄

∗
kj − Ω̄∗

ik s̄
∗
kj) + β4(s̄

∗
imΩ̄∗

mkΩ̄
∗
kj − 2Ω̄∗

ims̄
∗
mkΩ̄

∗
kj + Ω̄∗

ikΩ̄
∗
kms̄

∗
mj)

(11.125)

The last term including β4 can be considerably simplified. Recall that Ω̄∗
11 = Ω̄∗

22 = 0
and Ω̄∗

12 = −Ω̄∗
21, see Eq. 1.11. We get for the 11 component of Eq. 11.125

s̄∗1mΩ̄∗
mkΩ̄

∗
k1 − 2Ω̄∗

1ms̄
∗
mkΩ̄

∗
k1 + Ω̄∗

1kΩ̄
∗
kms̄

∗
m1

= s̄∗11Ω̄
∗
12Ω̄

∗
21 − 2Ω̄∗

12s̄
∗
22Ω̄

∗
21 + Ω̄∗

12Ω̄
∗
21s̄

∗
11 = 4s̄∗11Ω̄

∗
12Ω̄

∗
21

(11.126)

since s̄∗11 = −s̄∗22 ( s̄∗ii = 0 due to continuity). In the same way we get 4s̄∗22Ω̄
∗
12Ω̄

∗
21 for

the 22 component. The 12 component (and the 21 component) read

s̄∗1mΩ̄∗
mkΩ̄

∗
k2 − 2Ω̄∗

1ms̄
∗
mkΩ̄

∗
k2 + Ω̄∗

1kΩ̄
∗
kms̄

∗
m2

= s̄∗12Ω̄
∗
21Ω̄

∗
12 − 2Ω̄∗

12s̄
∗
21Ω̄

∗
12 + Ω̄∗

12Ω̄
∗
21s̄

∗
12

= s̄∗12Ω̄
∗
21Ω̄

∗
12 + 2Ω̄∗

12s̄
∗
21Ω̄

∗
21 + Ω̄∗

12Ω̄
∗
21s̄

∗
12 = 4Ω̄∗

12Ω̄
∗
21s̄

∗
12

(11.127)

We find that the last term including β4 in Eq. 11.125 can be written as 2IIΩs̄
∗
ij where

IIΩ = Ω̄∗
kmΩ̄∗

mk = Ω̄∗
12Ω̄

∗
21 + Ω̄∗

21Ω̄
∗
12 = 2Ω̄∗

12Ω̄
∗
21. Equation 11.125 can now be

re-written as

N(β1s̄
∗
ij + β4(s̄

∗
ikΩ̄

∗
kj − Ω̄∗

iks̄
∗
kj)) = −6

5
s̄∗ij + β1(s̄

∗
ikΩ̄

∗
kj − Ω̄∗

iks̄
∗
kj) + 2β4IIΩs̄

∗
ij

(11.128)

Separating s̄∗ij and (s̄∗ikΩ̄
∗
kj − Ω̄∗

ik s̄
∗
kj) we get two equations for β1 and β4

Nβ1 = −6

5
+ 2β4IIΩ

Nβ4 = β1

(11.129)

so that

β4 = −6

5

1

N2 − 2IIΩ

β1 = −6

5

N

N2 − 2IIΩ

(11.130)

In order to get the final equation for N , multiply Eq. 11.124 by s̄∗jk and then take the

trace (which is equal to the production P k/ε = aij s̄
∗
ji, see Eq. 11.111), i.e.

P k

ε
≡ −aij s̄∗ji = −β1IIS + β4(s̄

∗
imΩ̄∗

mj − Ω̄∗
ims̄

∗
mj)s̄

∗
ji (11.131)
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where IIS = s̄∗ij s̄
∗
ji. The β4 term reads

(s̄∗12Ω̄
∗
21 − Ω̄∗

12s̄
∗
21)s̄

∗
11

+(s̄∗11Ω̄
∗
12 − Ω̄∗

12s̄
∗
22)s̄

∗
21

+(s̄∗22Ω̄
∗
21 − Ω̄∗

21s̄
∗
11)s̄

∗
12

+(s̄∗21Ω̄
∗
12 − Ω̄∗

21s̄
∗
12)s̄

∗
22 = 0

(11.132)

since line 2 and 3 are zero and line 1 and 4 cancel each other (Ω̄∗
12 = −Ω̄∗

21, s̄∗12 = s̄∗21
and s̄∗11 = −s̄∗22). β1 is now obtained from Eq. 11.131 as

β1 = − P k

IISε
(11.133)

Inserting β1 in Eq. 11.130 gives

P k

ε
=

6

5

N

N2 − 2IIΩ
IIS (11.134)

Equations 11.123 and 11.134 gives finally an equation for N

N =
9

4

6

5

N

N2 − 2IIΩ
IIS + c′1 (11.135)

which is re-written as

N(N2 − 2IIΩ)−
27

10
IISN − c′1(N

2 − 2IIΩ) = 0

so that

N3 − c′1N
2 −

(
27

10
IIS + 2IIΩ

)

N + 2c′1IIΩ = 0.

The analytical solution for the positive root reads [37]

N =
c′1
3

+
(

P1 +
√

P2

)1/3

+ sign
(

P1 −
√

P2

) ∣
∣
∣P1 −

√

P2

∣
∣
∣

1/3

, P2 ≥ 0

N =
c′1
3

+ 2
(
P 2
1 − P2

)1/6
cos

[

1

3
arccos

(

P1
√

P 2
1 − P2

)]

, P2 < 0

(11.136)

where 0 ≤ ξ ≤ π in arccos(ξ) and

P1 =

(
1

27
c′21 +

9

20
IIS − 2

3
IIΩ

)

c′1

P2 = P 2
1 −

(
1

9
c′21 +

9

10
IIS +

2

3
IIΩ

)3 (11.137)

Equation 11.137 is valid for two-dimensional flow. For three-dimensional flow,

Eq. 11.124 includes more (six) of the terms in 11.107. This derivation is given in [37].

It results in a 6th -order equation for N which must be solved numerically.

In the original LRR model, c1 = 1.5 and c2 = 0.4 (see Table 11.1). In the EARSM,

c1 = 1.8 and c2 = 5/9; recall that this choice of c2 simplifies the rapid pressure-strain

model (cf. Eqs. 11.119 and 11.120).
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Figure 11.5: Boundary layer flow.

11.13 Boundary layer flow

In order to better understand the Reynolds stress equation, Eq. 11.101, it is useful to

look at its source terms which to a large degree govern the magnitude of v′iv
′
j . A

large source term in the equation for the v′21 equation, for example, will increase v′21
and vice versa, see Section 9.1. Let us study boundary layer flow (Fig. 11.5) where

v̄2 ≃ 0, ∂v̄1/∂x2 ≫ ∂v̄1/∂x1. The production Pij has the form:

Pij = −v′iv′k
∂v̄j
∂xk

− v′jv
′
k

∂v̄i
∂xk

In this special case we get:

P11 = −2v′1v
′
2

∂v̄1
∂x2

P12 = −v′22
∂v̄1
∂x2

P22 = 0

Is v′22 zero because its production term P22 is zero? No! The sympathetic term Φij ,

which takes from the rich (i.e. v′21 ) and gives to the poor (i.e. v′22 ), saves the unfair

situation! The IP model for Φij,1 and Φij,2 (Eq. 11.57) and Φij,2 (Eq. 11.90) gives

Φ22,1 = c1
ε

k

(
2

3
k − v′22

)

> 0

Φ22,2 = c2
1

3
P11 = −c2

2

3
v′1v

′
2

∂v̄1
∂x2

> 0

Note also that the dissipation term for the v′1v
′
2 is zero, but it takes the value 2

3ε for

the v′21 and v′22 equations (see p. 139). Since the modeled v′1v
′
2 does not have any

dissipation term, the question arises: what is the main sink term in the v′1v
′
2 equation?

The answer is, again, the pressure strain term Φ12,1 and Φ12,2.

11.14 Wall boundary conditions

There are two options for treating the wall boundary conditions.

• Use a coarse mesh near the walls and assume that the logarithmic law applies.

This is called wall functions
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Figure 11.6: Boundary along a flat plate. Energy balance in k equation [41]. Reδ ≃ 4400,
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Figure 11.7: Wall-adjacent cell. Cell-centered finite volume grid.

• Use a fine mesh near the walls and modify the turbulence models to account for

the viscous effects. This is called Low-Reynolds number models

11.14.1 Wall Functions

The natural way to treat wall boundaries is to make the grid sufficiently fine so that

the sharp gradients prevailing there are resolved. Often, when computing complex

three-dimensional flow, that requires too much computer resources. An alternative is to

assume that the flow near the wall behaves like a turbulent boundary layer (see Fig. 6.2)

and prescribe boundary conditions employing wall functions. The assumption that the

flow near the wall has the characteristics of a that in a boundary layer if often not true

at all. However, given a maximum number of nodes that we can afford to use in a

computation, it is often preferable to use wall functions which allows us to use fine

grid in other regions where the gradients of the flow variables are large.

The log-law we use can be written as

v̄1
uτ

=
1

κ
ln

(
Euτx2
ν

)

E = 9.0

(11.138)

Comparing this with the standard form of the log-law (see Eq. 6.33)

v̄1
uτ

=
1

κ
ln
(uτx2

ν

)

+B. (11.139)

We find that

B =
1

κ
lnE.
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Figure 11.8: Turbulent kinetic energy in a boundary layer predicted by Large Eddy Simulations

at Reθ = 8200 [42].

We compute the friction velocity from Equation 11.138 as

uτ =
κv̄1,P

ln(Euτ δx2/ν)
(11.140)

where v̄1,P is the velocity in the wall-adjacent cell and δx2 is the distance from the cell

center, P , to the wall, see Fig. 11.7. Equation 11.140 is solved by iterating (the newest

value of uτ is inserted at the right-hand side at every iteration). The equation converges

very quickly. The wall shear stress, τw = ρu2τ (see Eq. 6.16) is then used as a force

wall boundary condition for the v̄1 equation.

For the wall-normal velocity, v̄2, it is much easier. The convective velocity is zero

at the wall and hence v̄2 = 0. It is the diffusion term in the v̄1 equation which causes

the problems: then we must estimate the gradient, ∂v̄1/∂x2 at the wall, and that’s why

we need to use the log law.

In a turbulent boundary layer the production term and the dissipation term in the

log-law region (30 < x+2 < 400) are much larger than the other terms, see Figs. 8.3

and 11.6. Hence, we can approximate the modelled k equation (see Eq. 11.97) as

0 = P k − ρε = µt

(
∂v̄1
∂x2

)2

− ρε. (11.141)

where we have assumed that the buoyancy term is zero. In the log-law region the shear

stress −ρv′1v′2 is equal to the wall shear stress τw, see Eq. 6.26 and Fig. 6.3. The

Boussinesq assumption for the shear stress reads (see Eqs. 6.29 and 11.33)

τw = −ρv′1v′2 = µt
∂v̄1
∂x2

(11.142)

Inserting Eq. 11.142 into Eq. 11.141 gives

0 =
v′1v

′
2

2

νt
− ε =

u4τ
νt

− ε (11.143)

which with Eq. 11.99 gives

Cµ =

(
u2τ
k

)2

(11.144)
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From experiments and DNS we have that in the log-law region of a boundary layer

u2τ/k ≃ 0.3 so that Cµ = 0.09, see Figs. 6.8 and 11.8 (it may be noted that the Cµ constant

DNS/LES data give a slightly larger values of k/u2τ than 1/0.3).

When we are using wall functions k and ε are not solved at the nodes adjacent to

the walls. Instead they are fixed according to the theory presented above. The turbulent b.c. for k

kinetic energy is set from Eq. 11.144, i.e.

kP = C−1/2
µ u2τ (11.145)

where the friction velocity uτ is obtained, iteratively, from the log-law (Eq. 11.138).

Index P denotes the first interior node (adjacent to the wall).

The dissipation ε is obtained from Eq. 11.141. The dissipation can thus be written

as b.c. for ε

εP = P k =
u3τ
κδx2

(11.146)

where the velocity gradient in the production termP k = −v′1v′2∂v̄1/∂x2 ≃ u2τ∂v̄1/∂x2
is computed from the log-law (see Eqs. 6.28 and 11.138), i.e.

∂v̄1
∂x2

=
uτ
κδx2

. (11.147)

For the velocity component parallel to the wall the wall shear stress is used as a b.c. for veloc-

ityforce boundary condition (cf. prescribing heat flux in the temperature equation). When

the wall is not parallel to any velocity component, it is more convenient to prescribe

the turbulent viscosity [27].

The log-law is valid for 30 < x+2 < 400. If x+2 for some wall-adjacent cells is

small, the friction velocity, uτ , is obtained from the linear law (see Eq. 6.22), i.e.

uτ =

(

ν
v̄1,P
δx2

)1/2

(11.148)

The point at which we switch from the log-law to the linear law is taken at x+2 = 11
which is the intersection point of the two laws. For x+2 < 11, v̄1 is set to zero at the

wall and k and ε are set from Eqs. 11.145 and 11.146 taking uτ from Eq. 11.148. For

11 < x+2 < 30, a combination of the linear law and the log-law is sometimes used. In

many commercial codes they interpolate between the linear law and the log-law for the

velocity, k and ε. In STAR-CCM+ this is called All y+ Wall Treatment.

11.14.2 Low-Re Number Turbulence Models

In the previous section we discussed wall functions which are used in order to reduce

the number of cells. However, we must be aware that this is an approximation which, if

the flow near the boundary is important, can be rather crude. In many internal flows –

where all boundaries are either walls, symmetry planes, inlet or outlets – the boundary

layer may not be that important, as the flow field is often pressure-determined. For

external flows (for example flow around cars, ships, aeroplanes etc.), however, the flow

conditions in the boundaries are almost invariably important. When we are predicting

heat transfer it is in general no good idea to use wall functions, because the heat transfer

at the walls are very important for the temperature field in the whole domain.

When we chose not to use wall functions we thus insert sufficiently many grid lines

near solid boundaries so that the boundary layer can be adequately resolved. How-

ever, when the wall is approached the viscous effects become more important and for
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Figure 11.9: Direct numerical simulations [43]. Re = v̄1,Cδ/ν = 7890 (subscript C denotes

the center of the channel). uτ/v̄1,C = 0.050. Energy balance in k equation. Production P k,

dissipation ε, turbulent diffusion (by velocity triple correlations and pressure) DT + Dp, and

viscous diffusion Dν . All terms have been scaled with u4
τ/ν.

x+2 < 5 the flow is viscous dominating, i.e. the viscous diffusion is much larger that

the turbulent one (see Fig. 11.9). Thus, the turbulence models presented so far may

not be correct since fully turbulent conditions have been assumed; this type of models

are often referred to as high-Re number models. In this section we will discuss mod-

ifications of high-Re number models so that they can be used all the way down to the

wall. These modified models are called low Reynolds number models. Note that “high

Reynolds number” and “low Reynolds number” do not refer to the global Reynolds

number (for example ReL, Rex, Rex etc.) but here we are talking about the local tur-

bulent Reynolds number Reℓ = Uℓ/ν formed by a turbulent fluctuation and turbulent

length scale, see Eq. 5.16. This Reynolds number varies throughout the computational

domain and is proportional to the ratio of the turbulent and physical viscosity νt/ν, i.e.

Reℓ ∝ νt/ν. This ratio is of the order of 100 or larger in fully turbulent flow and it

goes to zero when a wall is approached.

We start by studying how various quantities behave close to the wall when x2 → 0.

Taylor expansion of the fluctuating velocities v′i (also valid for the mean velocities v̄i)
gives

v′1 = a0 + a1x2 + a2x
2
2 + . . .

v′2 = b0 + b1x2 + b2x
2
2 + . . .

v′3 = c0 + c1x2 + c2x
2
2 + . . .

(11.149)

where a0 . . . c2 are functions of x1, x3 and t. At the wall we have no-slip conditions,

i.e. v′1 = v′2 = v′3 = 0 which gives a0 = b0 = c0. Furthermore, at the wall ∂v′1/∂x1 =
∂v′3/∂x3 = 0 so that the continuity equation gives ∂v′2/∂x2 = 0. This means that

b1 = 0. Equation 11.149 can now be written

v′1 = a1x2 + a2x
2
2 + . . .

v′2 = b2x
2
2 + . . .

v′3 = c1x2 + c2x
2
2 + . . .

(11.150)
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Figure 11.10: Flow between two parallel plates. Direct numerical simulations [43]. Re =

v̄1Cδ/ν = 7890. uτ/v̄1C = 0.050. Fluctuating velocity components v′i =
√

v′21 i.

From Eq. 11.150 we immediately get

v′21 = a21x
2
2 + . . . = O(x22)

v′22 = b22x
4
2 + . . . = O(x42)

v′23 = c21x
2
2 + . . . = O(x22)

v′1v
′
2 = a1b2x

3
2 + . . . = O(x32)

k = (a21 + c21)x
2
2 + . . . = O(x22)

∂v̄1/∂x2 = a1 + . . . = O(x02)
∂v′1/∂x2 = a1 + . . . = O(x02)
∂v′2/∂x2 = 2b2x2 + . . . = O(x12)
∂v′3/∂x2 = a1 + . . . = O(x02)

(11.151)

In Fig. 11.10 DNS data of velocity fluctuations for the fully developed flow in a

channel are presented.

11.14.3 Low-Re k − ε Models

There exist a number of Low-Re number k − ε models [44–48]. When deriving low-

Re models it is common to study the behavior of the terms when x2 → 0 in the exact

equations and require that the corresponding terms in the modelled equations behave

in the same way. Let us study the exact k equation near the wall (see Eq. 8.26).

ρv̄1
∂k

∂x1
+ ρv̄2

∂k

∂x2
= −ρv′1v′2

∂v̄1
∂x2

︸ ︷︷ ︸

O(x32)

−∂p
′v′2

∂x2
− ∂

∂x2

(
1

2
ρv′2v

′
iv

′
i

)

︸ ︷︷ ︸

O(x32)

+ µ
∂2k

∂x22
− µ

∂v′i
∂xj

∂v′i
∂xj

︸ ︷︷ ︸

O(x02)

(11.152)

The dissipation term includes all velocity gradients but most of them go to zero close

to the wall, see Eq. 11.151. The only velocity gradients that do not go to zero are

∂v′1/∂x2 and ∂v′3/∂x2 and hence ε ∝ O(x02). The pressure diffusion ∂p′v′2/∂x2 term
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Figure 11.11: Flow between two parallel plates. Direct numerical simulations [43]. Re =
v̄1,Cδ/ν = 7890. uτ/v̄1,C = 0.050. Energy balance in k equation. Turbulent diffusion by

velocity triple correlations DT , Turbulent diffusion by pressure Dp, and viscous diffusion Dν .

All terms have been scaled with u4
τ/ν.

is usually neglected, partly because it is not measurable, and partly because close to

the wall it is not important, see Fig. 11.11 (see also [49]). The modelled equation reads

(see Eq. 11.97)

ρv̄1
∂k

∂x1
+ ρv̄2

∂k

∂x2
= µt

(
∂v̄1
∂x2

)2

︸ ︷︷ ︸

O(x42)

+
∂

∂x2

(
µt

σk

∂k

∂x2

)

︸ ︷︷ ︸

O(x42)

+ µ
∂2k

∂x22
− ρε
︸︷︷︸

O(x02)

(11.153)

When arriving at that the production term is O(x42) we have used

νt = Cµ
k2

ε
=

O(x42)

O(x02)
= O(x42) (11.154)

Comparing Eqs. 11.152 and 11.153 we find that the dissipation term in the modelled

equation behaves in the same way as in the exact equation when x2 → 0. However,

both the modelled production and the diffusion term are of O(x42) whereas the exact

terms are of O(x32). This inconsistency of the modelled terms can be removed by

replacing the Cµ constant by Cµfµ where fµ is a damping function fµ so that

fµ = O(x−1
2 ) (11.155)

when x2 → 0 and fµ → 1 when x+2 ≥ 50. Now we get νt = O(x32). Please note that

the term “damping term” in this case is not correct since fµ actually is increasing µt

when x2 → 0 rather than damping it. However, it is common to call all low-Re number

functions for “damping functions”.

Instead of introducing a damping function fµ, we can choose to solve for a modified

dissipation which is denoted ε̃, see Refs. [27, 50]

It is possible to compare the exact and the modeled ε equation when deriving damp-

ing functions for the ε equation [51]. An alternative way is to study the modelled
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ε equation near the wall and keep only the terms which do not tend to zero. From

Eq. 11.29 we get (note that ∂ε/∂x2 = O(x02), ∂ε/∂x1 = O(x02))

ρv̄1
∂ε

∂x1
︸ ︷︷ ︸

O(x12)

+ ρv̄2
∂ε

∂x2
︸ ︷︷ ︸

O(x22)

= Cε1
ε

k
P k

︸ ︷︷ ︸

O(x12)

+
∂

∂x2

(
µt

σε

∂ε

∂x2

)

︸ ︷︷ ︸

O(x22)

+ µ
∂2ε

∂x22
︸ ︷︷ ︸

O(x02)

−Cε2ρ
ε2

k
︸ ︷︷ ︸

O(x−2
2 )

(11.156)

The left-side has been written on non-conservative form (see Section 2.4) which makes

it easier to see that the term goes to zero at the wall. Furthermore, it has been assumed

that the turbulent viscosity has been suitable modified so that νt = O(x32). We find that

the only terms which do not vanish at the wall are the viscous diffusion term and the

dissipation term so that close to the wall the dissipation equation reads

0 = µ
∂2ε

∂x22
− Cε2ρ

ε2

k
. (11.157)

This equation needs to be modified since the diffusion term cannot balance the destruc-

tion term when x2 → 0. We multiply the destruction term by f2 ∝ O(x22) For more

details, see [27].

11.14.4 Wall boundary Condition for k

The wall boundary condition of k is simple. Since the first cell is in the viscous sublayer

(x+2 ≃ 1) and the turbulent fluctuations are zero at the wall we set

k = 0 (11.158)

11.14.5 Different ways of prescribing ε at or near the wall

When setting wall boundary condition for ε we look at the k equation. The largest term

in the k equation (see Eq. 11.152) close to the wall, are the dissipation term and the

viscous diffusion term which both are of O(x02) so that

0 = µ
∂2k

∂x22
− ρε. (11.159)

From this equation we get immediately a boundary condition for ε as

εwall = ν
∂2k

∂x22
. (11.160)

From Eq. 11.159 we can derive alternative boundary conditions. The exact form of

the dissipation term close to the wall reads (see Eq. 8.26)

ε = ν

{(
∂v′1
∂x2

)2

+

(
∂v′3
∂x2

)2
}

(11.161)
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where ∂/∂x2 ≫ ∂/∂x1 ≃ ∂/∂x3 and ∂v′1/∂x2 ≃ ∂v′3/∂x2 ≫ ∂v′2/∂x2 have been

assumed. Using Taylor expansion gives (see Eq. 11.150)

ε = ν
(

a21 + c21

)

+ . . . (11.162)

In the same way we get an expression for the turbulent kinetic energy (see Eq. 11.150)

k =
1

2

(

a21 + c21

)

x22 + . . . (11.163)

so that
(

∂
√
k

∂x2

)2

=
1

2

(

a21 + c21

)

+ . . . (11.164)

Comparing Eqs. 11.162 and 11.164 we find

εwall = 2ν

(

∂
√
k

∂x2

)2

. (11.165)

In many k − ε models the following form is used

εP = 2ν
k

x22
(11.166)

where subscriptP denotes wall-adjacent cells, see Fig. 11.7. This is not really a bound-

ary condition; instead we prescribe ε at the wall-adjacent cells. This is obtained by

assuming a1 = c1 in Eqs. 11.162 and 11.163 so that

ε = 2νa21

k = a21x
2
2

(11.167)

which gives Eq. 11.166.
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A Introduction to tensor notation

The convection-diffusion equation for temperature reads

∂

∂x1
(ρv1T ) +

∂

∂x2
(ρv2T ) +

∂

∂x3
(ρv3T ) =

∂

∂x1

(

Γ
∂T

∂x1

)

+
∂

∂x2

(

Γ
∂T

∂x2

)

+
∂

∂x3

(

Γ
∂T

∂x3

)

Using tensor notation it can be written as

∂

∂xj
(ρvjT ) =

∂

∂xj

(

Γ
∂T

∂xj

)

The Navier-Stokes equation reads (incompressible and µ = const.)

∂

∂x1
(v1v1) +

∂

∂x2
(v2v1) +

∂

∂x3
(v3v1) =

− 1

ρ

∂p

∂x1
+ ν

(
∂2v1
∂x21

+
∂2v1
∂x22

+
∂2v1
∂x23

)

∂

∂x1
(v1v2) +

∂

∂x2
(v2v2) +

∂

∂x3
(v3v2) =

− 1

ρ

∂p

∂x2
+ ν

(
∂2v2
∂x21

+
∂2v2
∂x22

+
∂2v2
∂x23

)

∂

∂x1
(v1v3) +

∂

∂x2
(v2v3) +

∂

∂x3
(v3v3) =

− 1

ρ

∂p

∂x3
+ ν

(
∂2v3
∂x21

+
∂2v3
∂x22

+
∂2v3
∂x23

)

Using tensor notation it can be written as

∂

∂xj
(vjvi) = −1

ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj
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a: A tensor of zeroth rank (scalar)

ai: A tensor of first rank (vector)
ai = (2, 1, 0)

aij : A tensor of second rank (tensor)

A common tensor in fluid mechanics (and solid mechanics) is the stress tensor σij

σij =





σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33





It is symmetric, i.e. σij = σji. For fully, developed flow in a 2D channel (flow between

infinite plates) σij has the form:

σ12 = σ21 = µ
dv1
dx2

and the other components are zero. As indicated above, the coordinate directions

(x1, x2, x3) correspond to (x, y, z), and the velocity vector (v1, v2, v3) corresponds to

(u, v, w).

A.1 What is a tensor?

A tensor is a physical quantity. Consequently it is independent of which coordinate

system. The tensor of rank one (vector) bi below

is physically the same expressed in the coordinate system (x1, x2)

x1

x2

where bi = (1/
√
2, 1/

√
2, 0)T and in the coordinate system (x1′ , x2′ )

x1′
x2′

where bi′ = (1, 0, 0)T . The tensor is the same even if its components are different.

The stress tensor σij is a physical quantity which expresses the stress experienced

by the fluid (or the solid); this stress is the same irrespective of coordinate system.
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A.2 Examples of equations using tensor notation

A.2.1 Newton’s second law

m
d2x

dt2
= F

which on component form reads

m
d2x1
dt2

= F1

m
d2x2
dt2

= F2

m
d2x3
dt2

= F3.

(A.1)

On tensor notation:

m
d2xi
dt2

= Fi

When an index appears once in each term (a free index) it indicates that the whole

equation should be applied in each coordinate direction, cf. Eq. A.1.

A.2.2 Divergence ∇ · v = 0

The equation above reads

∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

= 0 ⇔
3∑

i=1

∂vi
∂xi

= 0 (A.2)

In tensor notation the following rule is introduced: if an index appears twice (a dummy

index) within a term, we should apply summation over this index. Normally the sum-

mation is taken from 1 to 3 (the three coordinate directions). If our coordinate system

is 2D, the summation goes, of course, only from 1 to 2.

Equation A.2 is thus written as

∂vi
∂xi

= 0. (A.3)

Note that, since the dummy index implies a summation over each term, it can be inter-

changed against any index, i.e.
∂vk
∂xk

= 0.

is exactly the same equation as Eq. A.3. Equation A can, for example, be written as

∂

∂xℓ
(vℓvm) = −1

ρ

∂p

∂xm
+ ν

∂v2m
∂xk∂xk

where different dummy indices have been used (ℓ and k); this is perfectly correct,

because the summation is carried out for each term separately. What is not allowed,

however, it to choose the dummy index same as the free index, i.e. for the equation

above we are not allowed to use m as a dummy index.
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A.2.3 The left-hand side of Navier-Stokes vℓ∂vm/∂xℓ

For simplicity, let’s assume 2D. The left-hand side of the equation above includes both

a free index (m) and a dummy index (ℓ). Let’s first write out the summation on com-

ponent form so that

v1
∂vm
∂x1

+ v2
∂vm
∂x2

.

The free index indicates that the equation should be written in each coordinate direction

(x1 and x2 in this case, since we have assumed 2D flow), cf. Eq. A.1, i.e.

v1
∂v1
∂x1

+ v2
∂v1
∂x2

v1
∂v2
∂x1

+ v2
∂v2
∂x2

A.3 Contraction

If two free indices are set equal, they are turned into dummy indices, and the rank of

the tensor is decreased by two. This is called contraction.If the tensor equation

aij = bjcdi − fij

is contracted, the result is

aii = bicdi − fii.

For a tensor of rank two, aij , contraction is simply summation of the diagonal elements,

i.e. a11 + a22 + a33.

A.4 Two Tensor Rules

A.4.1 The summation rule

A summation over a dummy index corresponds to a scalar product or a divergence; it

should not appear more than twice. The following expressions are not valid:

akkk = 0, aiikbij = dkj , aibici = d

A.4.2 Free Index

In an expression the free index (indices) must be the same in all terms The following

expressions are not valid:

aikk = bj , ciaibj = dk, aijdjk = cim

A.5 Special Tensors

A.5.1 Kroenecker’s δ (identity tensor)

It is defined as

δij =

{
1 i = j
0 i 6= j
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Contraction of δij yields

δii = δ11 + δ22 + δ33 = 3

Another example of contraction can now be given. We have the expression for the

turbulent stress tensor based on the Boussinesq hypothesis (see Eq. 11.33)

ρv′iv
′
j = −µt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

+
2

3
δijρk. (A.4)

Contraction gives

ρuiui = −2µt
∂v̄i
∂xi

+
2

3
δiiρk = −2µt

∂v̄i
∂xi

+ 2ρk.

For incompressible flow the first term on the right-hand side is zero (due to continuity)

so that

uiui = 2k,

which actually is the definition of k. Thus Eq. A.4 is valid upon contraction; this should

always be the case. As can be seen, contraction of Eq. A.4 corresponds simply to the

sum of the diagonal components (elements 11, 22 & 33).

A.5.2 Levi-Civita’s εijk (permutation tensor)

It is defined as

εij =







1 if (i, j, k) are cyclic permutations of (1, 2, 3)
0 if at least two indices are equal
−1 otherwise

(A.5)

Examples:

ε123 = 1, ε132 = −1, ε113 = 0

ε312 = 1, ε321 = −1, ε233 = 0

A.6 Symmetric and antisymmetric tensors

A tensor aij is symmetric if aij = aji.
A tensor bij is antisymmetric if bij = −bji. It follows that for an antisymmetric

tensor all diagonal components must be zero (for example, b11 = −b11 ⇒ b11 = 0).

The (inner) product of a symmetric and antisymmetric tensor is always zero. This

can be shown as follows:

aijbij = ajibij = −ajibji = −aijbij ,

where we first used the fact that aij = aji (symmetric), then that bij = −bji (antisym-

metric), and finally we interchanged the indices i and j, since they are dummy indices.

Thus the product must be zero.

This can of course also be shown be writing out aijbij on component form, i.e.

aijbij = a11b11 + a12b12 + a13b13 + . . .+ a32b32 + a33b33 = 0
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By inserting

a12 = a21, a13 = a31, a23 = a32

b11 = b22 = b33 = 0

b12 = −b21, b13 = −b31, b23 = −b32

the relation above, i.e. aijbij = 0, is verified.

A.7 Vector Product

The vector cross product

c = a× b

is on tensor notation written

ci = εijkajbk. (A.6)

This is easily shown by writing it on component form. Using Sarrus’ rule we get

c =





x y z

a1 a2 a3
b1 b2 b3



 = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
T

We find that the first component of Eq. A.6 is

c1 = ε1jkajbk =

= ε111a1b1 + ε112a1b2 + ε113a1b3

+ ε121a2b1 + ε122a2b2 + ε123a2b3

+ ε131a3b1 + ε132a3b2 + ε133a3b3

= ε123a2b3 + ε132a3b2 = a2b3 − a3b2.

Recall that εijk is zero if any two indices are equal (see Eq. A.5, p. 283).

A.8 Derivative Operations

A.8.1 The derivative of a vector B:

Tensor notation Vector notation
∂Bi

∂xj
grad(B) or ∇B

The result is a tensor of rank two (rank of Bi plus one)

A.8.2 The gradient of a scalar a:

Tensor notation Vector notation
∂a

∂xj
grad(a) or ∇a

The result is a vector.
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A.8.3 The divergence of a vector B:

Tensor notation Vector notation
∂Bj

∂xj
div(B) or ∇ ·B

The result is a scalar.

A.8.4 The curl of a vector B:

Tensor notation Vector notation

εijk
∂Bk

∂xj
curl(B) or ∇×B

The result is a vector.

A.8.5 The Laplace operator on a scalar a:

Tensor notation Vector notation

∂2a

∂xj∂xj
∇ · (∇a) = ∇2a

The result is a scalar.

A.9 Integral Formulas

Stokes theorem ∮

C

B · dx =

∫

S

(∇×B) · dS,

where the surface S is bounded by the line C. On tensor notation:
∮

C

Bidxi or

∫

S

εijk
∂Bk

∂xj
dSi.

Gauss theorem ∫

S

B · dS =

∫

V

∇ ·BdV,

where the volume V is bounded by the surface S. On tensor notation:
∫

S

BidSi or

∫

V

∂Bi

∂xi
dV

A.10 Multiplication of tensors

Two tensors can be multiplied in two ways: either the number of free indices is reduced

by two (inner product), or it is unchanged (outer product). The product

aijkbkℓ = cijℓ

represents an inner product; the rank of the product is the sum of the rank of the two

tensors (3 + 2 = 5) on the left-hand side minus two (5 − 3 = 2). An outer product

between the two tensors reads

aijkbmℓ = dijkℓm.
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Now the rank of the resulting tensor dijkℓm (rank 5) is the sum of the rank of the two

tensors (3 + 2 = 5).



B. TME226: ǫ− δ identity 287

B TME226: ǫ− δ identity

T
HE ǫ− δ identity reads

ǫinmǫmjk = ǫminǫmjk = ǫnmiǫmjk = δijδnk − δikδnj

In Table B.1 the components of the ǫ− δ identity are given.

i n j k ǫinmǫmjk δijδnk − δikδnj
1 2 1 2 ǫ12mǫm12 = ǫ123ǫ312 = 1 · 1 = 1 1− 0 = 1
2 1 1 2 ǫ21mǫm12 = ǫ213ǫ312 = −1 · 1 = −1 0− 1 = −1
1 2 2 1 ǫ12mǫm21 = ǫ123ǫ321 = 1 · −1 = −1 0− 1 = −1

1 3 1 3 ǫ13mǫm13 = ǫ132ǫ213 = −1 · −1 = 1 1− 0 = 1
3 1 1 3 ǫ31mǫm13 = ǫ312ǫ213 = 1 · −1 = −1 0− 1 = −1
1 3 3 1 ǫ13mǫm31 = ǫ132ǫ231 = −1 · 1 = −1 0− 1 = −1

2 3 2 3 ǫ23mǫm23 = ǫ231ǫ123 = 1 · 1 = 1 1− 0 = 1
3 2 2 3 ǫ32mǫm23 = ǫ321ǫ123 = −1 · 1 = −1 0− 1 = −1
2 3 3 2 ǫ23mǫm32 = ǫ231ǫ132 = 1 · −1 = −1 0− 1 = −1

Table B.1: The components of the ǫ− δ identity which are non-zero.
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C TME226 Assignment 1 in 2024: laminar flow in a

channel

Y
OU will get results of a developing two-dimensional channel flow (i.e. flow be-

tween two parallel plates), see Fig. C.1. The flow is steady and incompressible.

The simulations have been done with Calc-BFC [199]. The inlet boundary condition

(left boundary) is v1 = Vin = 0.9. The height of the channel is h = 0.01m and

L = 0.6385m; the fluid is air of 20oC.

You’ll use data from a coarse DNS. Although some of the data are probably not

fully accurate, in this exercise we consider the data to be exact. You can use Matlab,

Octave or Python. Both Octave and Python are open-source software. Octave is a

Matlab clone. Many large Swedish industries prefer engineers to use Python instead of

Matlab due to Matlab’s high license fees

• First, find out and write down the governing equations (N.B:. you cannot assume

that the flow is fully developed).

From the course www pagehttps://www.tfd.chalmers.se/˜lada/MoF/,

download the data file channel flow data.dat and the m-file channel flow.m

which reads the data and plot some results. Open Python or Matlab/Octave and execute

channel flow.

Open channel flow.m in an editor and make sure that you understand it. There

are three field variables, v1, v2 and p; the corresponding Python/Matlab/Octave arrays

are v1 2d, v2 2d and p 2d. The grid is 199 × 28, i.e. ni = 199 grid points in

the x1 direction and nj = 28 grid points in the x2 direction. The field variables are

stored at these grid points. We denote the first index as i and the second index as j, i.e.

v1 2d(i,j). Hence in Python

v1 2d[:,0] are the v1 values at the lower wall;

v1 2d[:,nj-1] are the v1 values at the upper wall;

v1 2d[0,:] are the v1 values at the inlet;

v1 2d[ni-1,:] are the v1 values at the outlet;

and in Matlab/Octave

v1 2d(:,1) are the v1 values at the lower wall;

v1 2d(:,nj) are the v1 values at the upper wall;

v1 2d(1,:) are the v1 values at the inlet;

v1 2d(ni,:) are the v1 values at the outlet;

The work should be carried out in groups of two (you may also do it on your

own, but we don’t recommend it). At the end of this Assignment the group should

write and submit a report (in English). Divide the report into sections corresponding

to the sections C.1 – C.9. In some sections you need to make derivations; these should

clearly be described and presented. Present the results in each section with a figure

(or a numerical value). The results should also be discussed and – as far as you can –

explained.

https://www.mathworks.com
https://www.gnu.org/software/octave/
https://www.python.org
https://www.tfd.chalmers.se/~lada/MoF/
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V

x1

x2

L

h

Figure C.1: Flow between two plates (not to scale).

It is recommended (but the not required) that you use LATEX (an example of how to

write in LATEXis available on the course www page). You find LATEX here. You can also

use LATEX on-line.

C.1 Fully developed region

Fully developed conditions mean that the flow does not change in the streamwise di-

rection, i.e. ∂v1/∂x1 = 0. If we define “fully developed” as the location where the

velocity gradient in the center becomes smaller than 0.01, i.e. |∂v1/∂x1| < 0.01, how

long distance from the inlet does the flow become fully developed?

Another way to define fully developed conditions can be the x1 position where the

centerline velocity has reached, for example, 99% of its final value. What x1 value do

you get?

In Section 3.2.2, a distance taken from the literature is given. How well does this

agree with your values?

In the fully developed region, compare the velocity profile with the analytical pro-

file (see Section 3.2.2).

Look at the vertical velocity component, v2. What value should it take in the fully

developed region (see Section 3.2.2)? What value does it take (at x2 = h/4, for

example)?

C.2 Wall shear stress

On the lower wall, the wall shear stress, τw,L (index L denotes Lower), is computed as

τw,L ≡ τ21,w,L = µ
∂v1
∂x2

∣
∣
∣
∣
L

(C.1)

Recall that τ12 = µ(∂v1/∂x2+∂v2/∂x1) (see Eqs. 2.10) but at the wall ∂v2/∂x1 = 0;

Plot τw,L versus x1. Why does it behave as it does?

Now we will compute the wall shear stress at the upper wall, τw,U . If you use

Eq. C.1, you get the incorrect sign. Instead, use Cauchy’s formula (see Fig. 1.3 and [3],

Chapt. 4.2)

t
(n̂)
i = τjinj (C.2)

which is a general way to compute the stress vector on a surface whose (outward point-

ing) normal vector is n̂ = nj . The expression for τij can be found in Eqs. 1.9 and

2.4; recall that the flow in incompressible. On the top wall, the normal vector points

out from the surface (i.e. nj = (0,−1, 0)). Use Eq. C.2 to compute the wall shear

https://www.latex-project.org/get/
https://www.overleaf.com/
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stress at the upper wall. Plot the two wall shear stresses in the same figure. How do

they compare? In the fully developed region, compare with the analytical value (see

Eq. 3.30).

C.3 Inlet region

In the inlet region the flow is developing from its inlet profile (v1 = V = 0.9) to

the fully developed profile somewhere downstream. The v1 velocity is decelerated

in the near-wall regions, and hence the v1 velocity in the center must increase due

to continuity. Plot v1 in the center and near the wall as a function of x1. Plot also

∂v1/∂x1. If you, for a fixed x1, integrate v1, i.e.

ξ(x1) =

∫ h

0

v1(x1, x2)dx2

what do you get? How does ξ(x1) vary in the x1 direction? How should it vary?

C.4 Wall-normal velocity in the developing region

In Section C.3 we found that, in the developing region, v1 near the walls decreases for

increasing x1. What about v2? How do you explain the behaviour of v2?

C.5 Vorticity

Do you expect the flow to be irrotational anywhere? Let’s find out by computing the

vorticity vector ωi, see Section 1.4 (note that only one component of ωi is non-zero).

Plot it in the fully developed region as ω3 vs. x2. Where is it largest? Plot the vorticity

also in the inlet and developing regions; what happens with the vorticity in the inlet

region? Now, is the flow rotational anywhere? Why? Why not?

C.6 Deformation

In Section 1.6, we divided the velocity gradient into a strain-rate tensor, Sij , and a vor-

ticity tensor, Ωij . Since the flow is two-dimensional, we have only two off-diagonal

terms (which ones?). Plot and compare one of the off-diagonal term of Sij and Ωij .

Where are they largest? Why? What is the physical meaning of Sij and Ωij , re-

spectively? Compare Ωij with the vorticity, ωi, you plotted in Section C.5. Are they

similar? Any comment?

C.7 Dissipation

Compute and plot the dissipation, Φ = τji∂vi/∂xj , see Eq. 2.15. What is the physical

meaning of the dissipation? Where do you expect it to be largest? Where is it largest?

Any difference it its behaviour in the inlet region compared to in the fully developed

region?

The dissipation appears as a source term in the equation for internal energy, see

Eq. 2.15. This means that dissipation increases the internal energy, i.e. the temperature.

This is discussed in some detail at p. 34.

Use Eq. 2.17 to compute the temperature increase that is created by the flow (i.e. by

dissipation). Start by integrating the dissipation over the entire computational domain.

Next, re-write the left side on conservative form (see Section 2.4) and then apply the
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Gauss divergence theorem, See Section 3.2.3. Assume that the upper and the lower

wall are adiabatic; furthermore we can neglect the heat flux by conduction, q1, (see

Eq. 2.14) at the inlet and outlet.

Compute the increase in bulk temperature, Tb, from inlet to outlet. The bulk tem-

perature is defined as

Tb =

∫ h

0 v1Tdx2
∫ h

0
v1dx2

(C.3)

When you compute the convective flux in Eq. 2.12 at the outlet, for example, you get

∫ h

0

v1Tdx2

which indeed is very similar to the bulk temperature in Eq. C.3.

C.8 Eigenvalues

Compute and plot the eigenvalues of the viscous stress tensor, τij . Use the Python com-

mand np.linalg.eig or the Matlab/Octave command eig. If you have computed

the four elements of the τij matrix you can use the following commands in Python

tau=[tau_11 tau_12; tau_21 tau_22]

lambda,n=np.linalg.eig(tau)

and in Matlab/Octave

tau=[tau_11 tau_12; tau_21 tau_22];

[n,lambda]=eig(tau);

where n and lambda denote eigenvalues and eigenvectors, respectively. Note that

tau 11, tau 12, tau 21, tau 22 are scalars and hence the coding above must

be inserted in for loops.

What is the physical meaning of the eigenvalues (see Chapter 1.8)? Pick an x1 loca-

tion where the flow is fully developed. Plot one eigenvalue as a x−y graph (eigenvalue

versus x2). Plot also the four stress components, τij , versus x2. Is (Are) anyone(s) neg-

ligible? How does the largest component of τij compare with the largest eigenvalue?

Any thoughts? And again: what is the physical meaning of the eigenvalues?

C.9 Eigenvectors

Compute and plot the eigenvectors of τij . Recall that at each point you will get two

eigenvectors, perpendicular to each other. It is enough to plot one of them. An eigen-

vector is, of course, a vector. Use the Python command plt.quiver or the Mat-

lab/Octave command quiver to plot the field of the eigenvectors. Recall that the sign

of the eigenvector is not defined (for example, both v̂1 and −v̂1 in Fig. 1.11 at p. 30

are eigenvectors).

Recall that the stress vector, t
(n̂)
i , (see Eq. C.2 and Fig. 1.3) can be computed as

the product of the eigenvalues and eigenvectors. Do that as a vector plot 7. In regions

where the eigenvalues are close to zero, the eigenvectors have no meaning.

Try to analyze why the eigenvectors behave as they do. ‘

7If you plot it over the entire region, you’ll see nothing; make a zoom
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AH TME226, Assignment 2: Turbulent flow using STAR-

CCM+

I
N this task, a commercial CFD software (STAR-CCM+ 2402) will be used. The task

is to do simulation of a two-dimensional hill flow. Several turbulence models will be

used and the results will be compared with experimental data. Before doing the task,

it is recommended to first do one of the tutorials in the User Guide (Version 2402) of

STAR-CCM+. The tutorial which is similar to this task is the ”Steady Flow: Backward

Facing Step”.

You can do the assignment on your own or in a group of two. It is recommended

(but the not required) that you use LATEX (an example of how to write in LATEXis avail-

able on the course www page). You find LATEX here. You can also use LATEX on-line.

AH.1 Backward Facing Step Tutorial (Optional)

This tutorial is a good bridge before doing different cases. Here are some steps to

access the tutorial:

1. Open a terminal window. In the terminal window, type starccm+

2. To start a new simulation, click File → New

3. Tick the Power-On-Demand box and fill the license box with the POD Key.

4. Download the tutorial instruction and data from the course homepage

AH.2 2D Hill Flow

Figure AH.1: flow over two consecutive hills

In this case, a two-dimensional, steady and incompressible flow over two consecu-

tive hills mounted on the bottom of the channel will be studied. The height of the chan-

nel is H = 151.75mm. The maximum height and length of each hill are hmax = 50
mm and R = 192.8 mm, respectively. The space between each of the consecutive

hills is 9.0hmax. The fluid is water of 20◦ Celsius and the Reynolds number (Re =

37000) is based on the mean centerline velocity at inlet and the inlet channel height.

The inlet boundary condition (left boundary) is imposed as the velocity profile of the

https://www.latex-project.org/get/
https://www.overleaf.com/
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fully-developed channel flow in the absence of the hills. The case is built based on the

paper [201]. Please read this paper.

AH.3 Steady Flow: 2D Hill Flow Tutorial

1. Start the STAR-CCM+

• Open a terminal window → type starccm+

2. Create a new simulation

• Click the new simulation icon (left icon of the system toolbar) → tick the

Power-On-Demand (POD) box.

• In the Process Options section, choose Serial (default option) mode. DO

NOT change it to any other options.

• Fill the POD box with the POD Key and then press OK button.

3. Importing the Geometry and Mesh

• Select File → Import → Import Volume Mesh from the menu bar.

• In the Open window, navigate to the stored location and select the file

2dHill.ccm

• Click the Open button to import the mesh file.

• Save the new simulation as 2dHill.sim

4. Visualizing the Imported Mesh

• Right-click the node Scenes in the explorer pane (to the left) and then select

New Scene → Mesh. The mesh can be seen in a scene in the graphics

window.

• The edges of the square are boundaries. By clicking on each edge in the

graphics window, a label with its name appears on the graphics window.

The node corresponding to the selected edge (boundary) is also highlighted

in the explorer pane, Regions → Fluid → Boundaries.

5. Setting Up the Physics Models

• Expand the node Continua.

• Edit the default continuum (Physics 1) including appropriate physical mod-

els for the simulation. Right-click the node Physics 1 and then in the new

window, click Select models:

– In the left-bottom of the window Physics 1 Model Selection, untick

the Auto-select recommended models. Choose the required models as:

– Time box: Steady

– Material box: Liquid

– Flow box: Segregated flow

– Equation of State box: Constant Density

– Viscous Regime box: Turbulent

– Turbulence box: Reynolds-Averaged Navier-Stokes∗
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– Reynolds-Averaged Turbulence box: K-Epsilon Turbulence model

– K-Epsilon Turbulence Models box: Standard K-Epsilon Low-Re

– Choose desired sub-model(s) for the selected turbulence model in the

K-Epsilon Damped Low Re Wall Treatment box: Low y+ Wall Treat-

ment

– Close the window Physics 1 Model Selection

• Turning the color of the node Physics 1, from gray to blue, indicates that

sufficient models have been activated.

• Expand the node Physics 1, go to Initial Conditions → Turbulence Spec-

ification.

• In the properties window, set the Method to be the same as the selected

turbulence model (K-Epsilon).

• Save the simulation.

6. Setting Fluid Properties

• Go to the node Continua → Physics 1 → Models → Liquid → Water →
Material Properties → Density → Constant → Value = 998.29 kg/m3.

• Go to the node Continua → Physics 1 → Models → Liquid → Water

→ Material Properties → Dynamic Viscosity → Constant → Value =

0.001003 Pa− s.

7. Importing Inlet and Measurement Data

• Go to the node Tools → Tables.

• Right click on Tables and select New Table → File Table.

• In the Open window, navigate to the stored location and select all *.xy files.

• Click the Open button to import all data.

8. Setting Boundary Conditions and Values

• Expand the node Regions and go to Fluid → Boundaries.

• Inlet

– Click on the node Inlet. In the properties window, change the Type

from Wall to Velocity Inlet.

– Expand the node Inlet and go to Physics Conditions → Turbulence

Specification.

– In the properties window, set the Method to be the same as the selected

turbulence model, e.g. K+Epsilon.

– Under the node Inlet, go to Physics Conditions → Velocity Specifi-

cation.

– In the properties window, set the Method to be Components.

– In case of choosing K+Epsilon turbulence model, in the node Inlet,

go to Physics Values and select Turbulent Dissipation Rate.

– In the properties window, set the Method to be Table(x,y,z).

– Table(x,y,z) is created under Turbulent Dissipation Rate.
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– Click on Table(x,y,z). In the properties window, set the Table to be

inletProfile and Table:Data to be Epsilon.

– In the node Inlet, go to Physics Values and select Turbulent Kinetic

Energy.

– In the properties window, set the Method to be Table(x,y,z).

– Table(x,y,z) is created under Turbulent Kinetic Energy.

– Click on Table(x,y,z). In the properties window, set the Table to be

inletProfile.xy and Table:Data to be K.

– In the node Inlet, go to Physics Values and select Velocity.

– In the properties window, set the Method to be Table(x,y,z).

– Table(x,y,z) is created under Velocity.

– Click on Table(x,y,z). In the properties window, set the Table to be

inletProfile.xy. Similarly, set Table: X-Data, Table: Y-Data

and Table: Z-Data to be U, V and W, respectively.

• Outlet

– Click on the node Outlet. In the properties window, change the Type

from Wall to Pressure Outlet.

• Save the simulation.

9. Setting the Solver Parameters and Stopping Criteria

• Solvers

– Expand the node Solvers and keep the default settings.

– To Extract more variables from the simulation (e.g., Kolmogorov Length

Scale), expand the node related to the selected turbulence model (e.g.,

K-Epsilon Turbulence).

– In the properties window, tick Temporary Storage Retained.

– By enabling Temporary Storage Retained, additional scalar, vector and

tensor variables are appeared in the node Tools → Field Functions.

• Stopping Criteria

– Expand the node Stopping Criteria and select Maximum Steps.

– In the properties window, set Maximum Steps to 2000.

– Again, go to the node Solvers → Steady → Stopping Criteria, cre-

ate Maximum Steps by clicking right. Check that in the properties

window, the value of Maximum Steps must be greater than or equal

to the value of Maximum Steps in the node Stopping Criteria.

– Change Logical Rule to And in the Stopping Criteria Maximum Steps.

– A new stopping criterion should also be created as:

(a) Right click on the node Stopping Criteria and select New Moni-

tor Criterion.

(b) In the Select Monitor window, Choose your interested Monitor(s)

(e.g., X-Momentum) and press the OK button. A new sub-node,

X-Momentum Criterion is created.

(c) Go to X-Momentum Criterion. In the properties window, set

Criterion Option to Minimum and change Logical Rule to And.
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(d) Go to X-Momentum Criterion → Minimum Limit. In the prop-

erties window, set Minimum Value equal to 1.0E-4.

10. Initializing and Running the Simulation

• Go to the menu bar and click Solution → Initialize Solution. Generally,

you may specify initial conditions through the node Continua → Physics

1 → Initial Conditions. (Disregard eventual warnings on turbulent viscos-

ity.)

• Again, go to the menu bar and click Solution → Run to execute the simu-

lation.

• After running, the Residuals plot is shown automatically in the graphics

Window.

• You may stop the simulation process (before the stopping criteria are satis-

fied) by clicking Solution → Stop Iterating in the menu bar. By clicking

Solution → Run, the simulation will be run again.

• If all the previous steps were correct, the simulation should stop after about

4500 iterations.

11. Visualizing the Solution. This is optional. You can do all plotting in Python or

Matlab/Octave (see Item 14)

• Right click on the node Scenes, and select New Scene → Scalar.

• A new sub-node Scalar Scene 1 is created under the node Scenes.

• Expand Scalar Scene 1 and go to Displayers → Scalar 1.

• Expand the sub-node Scalar 1 and then click Scalar Field.

• In the properties window in front of Function, click<Select Function>
to open Scalar Field-Function window.

• Scroll down, expand the node Velocity and select Magnitude.

12. Creating Parts (Plane, Line or Probe) to Extract Simulation Data

• Right click on the node Derived Parts and select New Part → Probe →
Line.

• In Create Line Probe window, set the parameters as:

Property Value

Input Parts [Fluid]

Point 1 [0.10, 0.0, 0.0]

Point 2 [0.10, 0.16, 0.0]

Resolution 200

Display No Displayer

• Click on Create button and then Close.

• In the node Derived Parts, a new sub-node, Line Probe is created.

• Right-click on Line Probe and rename it to x/h=2.

• x/h=a means the streamwise station at x=hmax*a (hmax=50 mm). For

instance, x/h=2 indicates the streamwise station at x=2*50 mm=0.1 m (See

the Point 1 and Point 2 in the above table).
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• Do the same procedure for other streamwise stations (same as the measure-

ment locations), i.e. xh1.xy, xh2.xy, ... and xh8.xy.

13. Plotting Simulation Data.

• Right-click on the node Plot and select New Plot → XY Plot.

• In the node Plot, a new sub-node displayed as XY Plot 1 is created.

• Rename it to U@x/h=2

• Set the parameters as:

Node Property Value

U@x/h=2 Parts [x/h=2]

X Type X-Axis Bottom Axis

Data Type Scalar

Scalar Function Field Function Velocity[i]

Y Types ——– ——–

Y Type 1 Y-Axis Left Axis

Data Type Direction

Smooth Values X
Vector Quantity Value [0,1,0]

Line Style Style ——–

Symbol Style Shape ◦

• To add the measurement data to compare with the simulation results, go to

the node Plots → U@x/h=2 → Data Series.

• Right-click on Data Series and then click Add Data.

• In the Add Data Providers to Plot window, select the measurement file

corresponds to the location you have chosen for the simulation. As an

example, we choose xh2.

• A new sub-node, xh2 is created. Click on it.

• In the properties window, set X Column, X-Axis, Y Column and Y-Axis equal

to U, Bottom Axis, y and Left Axis, respectively.

• You may change line and symbol style for the measurement plot different

than the ones for simulation.

• To extract the plot data as a table (in *.csv format), right-click on the node

Plot → U@x/h=2 and then click Export.

• Choose an appropriate file name and storage location, then press Save but-

ton.

14. Extracting Simulation Field Data as Table for Python/Matlab/Octave

• Go to the node Tools → Tables.

• Right click on the node New Table, and select XYZ Internal Table.

• The sub-node XYZ Internal Table is created under the node Table.

• Set the parameters as the table below.
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Node Property Value

XYZ Internal Table Scalars Cell Index

Velocity[i]

Velocity[j]

Pressure

Turbulent Kinetic Energy

Turbulent Dissipation Rate

Turbulent Viscosity

Parts [Fluid]

Data on Vertices

Update Enabled X

Auto Extract X
Trigger None

• Right-click on XYZ Internal Table, then click on Extract and Export...,

respectively.

• Specify an appropriate file name and storage location, then press Save but-

ton.

15. Loading data in Python/Matlab/Octave

• Use Python/Matlab/Octave to read the extracted data from STAR-CCM+.

• Download the experimental data from the course homepage.

• At the course homepage, you can download a file (pl−vect) which reads

the simulation and experimental data and plot some results.

• Change the open(’output standard-keps-low-re.csv’) in the Python script

pl−vect.py or in the fileName=sprintf(’*.csv’) in the Matlab/Octave

script (pl−vect.m) according to the name of ”csv” file which you have

generated from the STAR-CCM+ simulation.

• Make sure you put all files (extracted table in ∗.csv format from STAR-

CCM+ and the measurement data in ∗.xy format), in the directory where

you execute pl−vect.

Open Python or Matlab/Octave in an editor and execute pl−vect. There are six

field variables, v̄1, v̄2, p, k, ǫ, and νt; the corresponding Python/Matlab/Octave arrays

are v1−2d, v2−2d, p−2d, k−2d, e−2d and mut−2d, respectively. The grid is 200
× 202, i.e. ni = 200 cells in the x1 direction and nj = 202 cells in the x2 direction.

The field variables are stored at the center of these cells. We denote the first index as i
and the second index as j, i.e. v1−2d(i,j).

Hence in Python

v1−2d[:,0] are the v̄1 values at the lower wall;

v1−2d[:,nj-1] or v1−2d[:,-1] are the v̄1 values at the upper wall;

v1−2d[0,:] are the v̄1 values at the inlet;

v1−2d[ni-1,:] or v1−2d[-1,:] are the v̄1 values at the outlet;

and in Matlab/Octave

v1−2d(:,1) are the v̄1 values at the lower wall;

v1−2d(:,nj) are the v̄1 values at the upper wall;

v1−2d(1,:) are the v̄1 values at the inlet;

v1−2d(ni,:) are the v̄1 values at the outlet;
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AH.3.1 Pressure

Execute the pl vect file with Python/Matlab/Octave. It plots the contours of v̄1, the

velocity vector field and the v̄1 profile along x2 at x1 = 1 comparing with experiments.

As you can see, there is a large recirculation region where the flow goes backwards.

◮ Plot a contour plot of the pressure. Where is it high and low and why? (think of

the Bernoulli equation, see Eq. 4.35)

The Bernoulli equation describes one-dimensional flow (inviscid, without friction).

Let’s compare the pressure from STAR-CCM+ and the Bernoulli equation. Since the

2D hill geometry is horizontal, then the gravity term does not contribute in the Bernoulli

equation. Then you must make the velocity from STAR-CCM+ one-dimensional.

◮ Compute the bulk velocity (at each x1 station)

Vb =
1

h(x1)

∫ x2,max

x2,min

v̄1dx2 (AH.1)

where h(x1) = x2,max−x2,min is the local height of the channel. Then compute

the pressure from Bernoulli equation (Eq. 4.35). Compare it with the bulk STAR-

CCM+ pressure computed similar to the bulk velocity in Eq. AH.1. Compare the

pressure drop from inlet to outlet for STAR-CCM+ and the Bernoulli equation.

Why do they differ? How large is the pressure drop from the Bernoulli equation?

How large should it be?

hint: the domain is symmetric in the x1 direction.

How large is the pressure drop in terms of dynamic pressure, i.e. ρV 2
b,inlet/2?

How large is it compared to pipe flow pressure drop? In pipe flow, you may

compute the friction factor (fD) either from Turbulent regime/Smooth-pipe

regime equation or from Figure 2. Then you can compute the pressure drop

(∆p) from the first equation (Darcy-Weisbach equation) in pipe flow.

The pressure drop is usually an important engineering quantity. A large pressure

drop means a large, expensive pump. You have used the AKN K-Epsilon turbulence

model. How dependent are your results on the choice of turbulence model?

◮ Try some other turbulence models. Does the flow change a lot? And, more

important, how much does the pressure drop change? This part is optional.

AH.3.2 Skinfriction

The skinfriction,Cf , is an important concept in fluid dynamics. It is a non-dimensional

wall shear stress which is defined as

Cf =
τw

0.5ρV 2
b

(AH.2)

where Vb is the bulk velocity (which is the same at all x1 planes due to continuity). The

bulk velocity at any x1 plane is defined in Eq. AH.1. The wall shear stress is defined

in Eq. 6.16.

• We must first extract data for the bottom wall

https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation#Turbulent_regime
https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation#Turbulent_regime
https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation#Turbulent_regime
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– Go to the node Tools → Tables.

– Right-click on the node New Table, and select XYZ Internal Table.

– The sub-node XYZ Internal Table is created under the node Table.

– Set the parameters as the table below.

Node Property Value

XYZ Internal Table Scalars Ustar

Wall Y+

Wall Shear Stress Magnitude

Parts [Fluid Bottom]

Data on Vertices

Update Enabled X
Auto Extract X

Trigger None

– Right-click on XYZ Internal Table, then click on Extract and Export...,

respectively.

– Specify an appropriate file name and storage location, then press Save but-

ton.

Now create another XYZ Internal Table table for the top wall.

◮ First, load the two exported files from STAR-CCM+ (bottom and top wall). Then

plot the skinfriction along the top and bottom walls.

AH.3.3 Vorticity

In the first assignment you computed the vorticity in laminar flow. Now you will do it

for turbulent flow. The velocity gradients are computed in pl vect using the function

dphidx dy.

◮ Compute ω̄3, see Eq. 1.12. Where is it largest? (cf. Fig 8.4). In the first assign-

ment we could identify a region of inviscid flow (no vorticity). What about this

case?

AH.3.4 Turbulent viscosity

You have computed a turbulent flow with a turbulence model. We have said that the

turbulent viscosity is much larger than the viscous one.

◮ Plot the ratio µt/µ as a contour plot. What is the maximum turbulent viscosity?

Where?

• When you use another turbulence model, does the maximum value change? This

part is optional.

• Plot µt/µ versus x2 also as x-y graphs at a couple of x1 stations. Plot µt/µ also

versus x+2 = uτx2/ν for the bottom wall (you have exported uτ (Ustar) at the

bottom wall in Section AH.3.2). Please note that in x+2 = uτx2/ν, x2 is the wall

distance. Zoom also in near the wall. Does the turbulent viscosity go to zero at

the wall as it should?
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AH.3.5 Diffusion

You have computed a turbulent flow with a turbulence model. You have learnt – hope-

fully – that the turbulent diffusion in channel flow is much larger than the usual physical

(viscous) diffusion (except very close to the wall), see Fig. 6.6. Channel flow is essen-

tially two attached boundary layer whereas the hill flow includes recirculation regions.

◮ Compute the viscous and turbulent diffusion terms in the v̄1 equation (see the

expression for both viscous and turbulent diffusions in Eq. 11.31). Plot them in

x-y graphs at a couple of x1 stations (choose one x1 station at the top of a hill).

Plot them also versus x+2 for the bottom wall. Compare with Fig. 6.6. Do you

see the same behaviour as in in channel flow?

Hint: Use the function dphidx dy when computing the derivative of ∂v̄1/∂x2
and µt∂v̄1/∂x2.

AH.3.6 Production

The production term, P k, in the k equation is usually a large term (see Figs. 8.3 and

11.6). When a source is large, it usually also means that the variable in question is large

(see Section 9.1), i.e. when P k is large so is k. If this is not the case, it means simply

that other terms are larger. Now let’s see how strong the relation between k and P k is.

◮ Plot k and P k as contour plots. (The k exists in the csv file extracted from your

STAR-CCM+ simulation. You only need to computeP k according to Eq. 11.39).

Is there any strong relation?

The turbulent viscosity is computed as µt = ρCµk
2/ε. There is a fair chance that

µt is large where P k is large.

◮ Plot µt as a contour plot. Is there any strong relation between µt and P k?

AH.3.7 Wall boundary conditions for ε

The wall boundary conditions for ε are discussed in Section 11.14.5. The boundary

condition for the turbulent kinetic energy is simply k = 0. The boundary condition for

ε is given by Eq. 11.166 which means that ε is set to that value at the wall-adjacent

cells. Please note that x2 in Eq. 11.166 is the wall distance and k is the value at the

wall-adjacent cells.

◮ Compare ε from STAR-CCM+ at the wall-adjacent cells with Eq. 11.166 (both

upper and lower wall). Do they agree?

AH.3.8 Near-wall behaviour of fµ

In Section 11.14.3 we show that the fµ damping function near the wall actually must

be an augmentation function, see Eq. 11.155. The fµ damping function in the AKN

model reads (see Eq. 1798 in Section Damping Functions in the STAR-CCM+ User

guide)

fµ =

[

1− exp
(

− x∗2
14

)]2
{

1 +
5

R
3/4
t

exp

[

−
( Rt

200

)2
]}

(AH.3)
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where Rt = k2/(νε) and x∗2 = (εν)1/4x2/ν. Show mathematically that fµ =
O(x−1

2 ).
Hint: Taylor expansion gives 1− exp(−x) = x− x2 . . .

AH.3.9 Compare with experiments

The measurement data at seven x1 locations can be download from the course home-

page. Each file consists of seven columns that are x2, v̄1, v̄2, v′21 , v′22 , v′1v
′
2 and x3,

respectively. Since it is a 2D case, the x3 values are zero. The predicted v̄1 velocity is

compared with experiments at x1 = hmax (xh1.xy) in pl vect.

◮ Compare v̄1 with experiment and the other six locations.

The agreement between predictions and experiments is not good. The main reason

is that you are simulating the flow over only one hill. The inlet boundary conditions

are taken from another CFD simulation of an infinite long channel (periodic boundary

conditions were used).

In the experiments they use ten hills. The object is to achieve a periodic flow where

the time-averaged flow is identical between two hills. In the CFD simulations one can

then use periodic boundary conditions.

◮ Change the boundary conditions at the inlet and outlet boundaries to periodic

boundary conditions. Compare the v̄1 velocities with experiments. This part is

optional.

• Change Inlet-Outlet boundary conditions to Periodic boundary conditions

– Expand Regions/Fluid/Boundaries

– Press Ctrl key and choose Inlet and Outlet. Right-click and select Create

Interface

– You have now created an interface and need to change type and topology

– Expand Interface

– Right-click on Interface 1 and select Edit

– Change Type to Fully-Developed Interface

– Change Topology to Periodic

– Expand Interface 1/Physics Condition and click on Fully Developed

Condition and select Mass Flow Rate

– Expand Interface 1/Physics Values and click on Mass Flow Rate and set

an appropriate value. To get the mass flow rate you can integrate the inlet

velocity profile in pl vect.
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T

V1

V2

(V2|T)

(V1|T)

Figure AI.1: Scalar product.

AI TME226: Fourier series

H
ERE a brief introduction to Fourier series extracted from [202] is given.

AI.1 Orthogonal functions

Consider three vectors, V1, V2, V3, in physical space which form an orthogonal base

in R3 (i.e. their scalar products are zero). Let us call them basis functions. Any vector,

T, in R3 can now be expressed in these three vectors, i.e.

T = c1V1 + c2V2 + c3V3 (AI.1)

see Fig. AI.1. Now define the scalar product of two vectors, a and b, as a · b = (a|b).
The coordinates, ci, can be determined by making a scalar product of Eq. AI.1 and Vi

which gives

(T|Vi) = (c1V1|Vi) + (c2V2|Vi) + (c3V3|Vi)

= (c1V1|V1) + (c2V2|V2) + (c3V3|V3)

= c1|V1|2 + c2|V2|2 + c3|V3|2 = ci|Vi|2
(AI.2)

where |Vi| denotes the length of Vi; the second line follows because of the orthogo-

nality of Vi. Hence the coordinates, ci, are determined by

ci = (T|Vi)/|Vi|2 (AI.3)
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Now let us define an infinite (∞-dimensional) functional space, B, with orthogonal

basis functions {g}∞1 . The “scalar product” of two functions, f and gn, is defined as

(f |gn) =
∫ b

a

f(x)gn(x)dx (AI.4)

Then, in a similar way to Eq. AI.1, any function can, over the interval [a, b], be ex-

pressed as

f =

∞∑

n=1

cngn (AI.5)

As above, we must now find the “coordinates”, cn (cf. the coordinates, ci, in Eq. AI.1).

Multiply, as in Eq. AI.2, f with the basis functions, gi, i.e.

(f |gi) =
∞∑

n=1

cn(gn|gi) (AI.6)

Since we know that all gn are orthogonal, Eq. AI.6 is non-zero only if i = n, i.e.

(f |gi) = (c1g1|gi) + (c2g2|gi) . . . ci(gi|gi) . . . ci+1(gi+1|gi) . . . =
= ci(gi|gi) = ci||gi||2

(AI.7)

Similar to Eq. AI.3, the “coordinates” can be found from (switch from index i to n)

cn = (f |gn)/||gn||2 (AI.8)

The “coordinates”, cn, are called the Fourier coefficients to f in system {g}∞1 and

||gn|| is the “length” of gn (cf. |Vi| which is the length of Vi in Eq. AI.3), i.e.

||gn|| = (gn|gn)1/2 =

(
∫ b

a

gn(x)gn(x)dx

)1/2

(AI.9)

Let us now summarize and compare the basis functions in physical space and the

basis functions in functional space.

1. Any vector in R3 can be expressed in

the orthogonal basis vectors Vi

1. Any function in [a, b] can be ex-

pressed in the orthogonal basis func-

tions gn
2. The length of the basis vector, Vi, is

|Vi|
2. The length of the basis function, gn,

is ||gn||
3. The coordinates of Vi are computed

as ci = (T|Vi)/|Vi|2
3. The coordinates of gn are computed

as cn = (f |gn)/||gn||2

AI.2 Trigonometric functions

Here we choose gn as trigonometric functions which are periodic in [−π, π]. The

question is now how to choose the orthogonal function system {g}∞1 on the interval

[−π, π]. In mathematics, we usually start by doing an intelligent “guess”, and then we

prove that it is correct. So let us “guess” that the trigonometric series

[1, sinx, cosx, sin(2x), . . . , sin(nx), cos(nx), . . .] (AI.10)
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is an orthogonal system. The function system in Eq. AI.10 can be defined as

gn(x) =

{
φk(x), for n = 2k = 2, 4, . . .
ψk(x), for n = 2k + 1 = 1, 3, . . .

(AI.11)

where φk(x) = sin(kx) (k = 1, 2, . . .) and ψk(x) = cos(kx) (k = 0, 1, . . .). Now we

need to show that they are orthogonal, i.e. that the integral of the product of any two

functions φk and ψk is zero on B[−π, π] and we need to compute their “length” (i.e.

their norm).

Orthogonality of ψn and ψk

(ψn|ψk) =

∫ π

−π

cos(nx) cos(kx)dx =
1

2

∫ π

−π

[cos((n+ k)x) + cos((n− k)x)] dx

=
1

2

[
1

n+ k
sin((n+ k)x) +

1

n− k
sin((n− k)x)

]π

−π

= 0 for k 6= n

(AI.12)

AI.2.1 “Length” of ψk

(ψk|ψk) = ||ψk||2 =

∫ π

−π

cos2(kx)dx =

[
x

2
+

1

4k
sin(2kx)

]π

−π

= π for k > 0

(ψ0|ψ0) = ||ψ0||2 =

∫ π

−π

1 · dx = 2π

(AI.13)

AI.2.2 Orthogonality of φn and ψk

(φn|ψk) =

∫ π

−π

sin(nx) cos(kx)dx =
1

2

∫ π

−π

[sin((n+ k)x) + sin((n− k)x)] dx

= −1

2

[
1

n+ k
cos((n+ k)x) +

1

n− k
cos((n− k)x)

]π

−π

= 0

(AI.14)

because cos((n+ k)π) = cos(−(n+ k)π) and cos((n− k)π) = cos(−(n− k)π).

AI.2.3 Orthogonality of φn and φk

(φn|φk) =
∫ π

−π

sin(nx) sin(kx)dx =
1

2

∫ π

−π

[cos((n− k)x)− cos((n+ k)x)] dx

=
1

2

[
1

n− k
sin((n− k)x)− 1

n+ k
sin((n+ k)x)

]π

−π

= 0 for k 6= n

(AI.15)

AI.2.4 “Length” of φk

(φk|φk) = ||φk||2 =

∫ π

−π

sin2(kx)dx =

[
x

2
− 1

4k
sin(2kx)

]π

−π

= π for k ≥ 1

(AI.16)
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AI.3 Fourier series of a function

Now that we have proved that {g}∞1 in Eq. AI.11 forms an orthogonal system of func-

tions, we know that we can express any periodic function, f (with a period of 2π) in

{g}∞1 as

f(x) = c+

∞∑

n=1

(an cos(nx) + bn sin(nx)) (AI.17)

where x is a spatial coordinate. The Fourier coeffients are given by

bn = (f |φn)/||φn||2 =
1

π

∫ π

−π

f(x) sin(nx)dx (AI.18a)

an = (f |ψn)/||ψn||2 =
1

π

∫ π

−π

f(x) cos(nx)dx (AI.18b)

c = (f |ψ0)/||ψ0||2 =
1

2π

∫ π

−π

f(x)dx (AI.18c)

where n > 0. If we set c = a0/2, then a0 is obtained from Eq. AI.18b, i.e.

f(x) =
a0
2

+

∞∑

n=1

(an cos(nx) + bn sin(nx)) (AI.19a)

bn = (f |φn)/||φn||2 =
1

π

∫ π

−π

f(x) sin(nx)dx (AI.19b)

an = (f |ψn)/||ψn||2 =
1

π

∫ π

−π

f(x) cos(nx)dx (AI.19c)

Note that a0/2 corresponds to the average of f . Taking the average of f (i.e.

integrating f from −π to π) and dividing with the integration length, 2π, gives (see

Eq. AI.19a)

f̄ =
1

2π

∫ π

−π

f(x)dx =
1

2π

a0
2

· 2π =
a0
2

(AI.20)

Hence, if f̄ = 0 then a0 = 0.

AI.4 Derivation of Parseval’s formula

Parseval’s formula reads

∫ π

−π

(f(x))2dx =
π

2
a20 + π

∞∑

n=1

(a2n + b2n) (AI.21)

We will try to prove this formula. Assume that we want to approximate the function

f as well as possible with an orthogonal series

∞∑

n=1

angn (AI.22)

Now we want to prove that the Fourier coefficients are the best choice to minimize the

difference

||f −
N∑

n=1

angn|| (AI.23)
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Later we will let N → ∞. Using the definition of the norm and the laws of scalar

product we can write

||f −
N∑

n=1

angn||2 =

(

f −
N∑

n=1

angn

∣
∣
∣
∣
∣
f −

N∑

k=1

akgk

)

= (f |f)−
N∑

n=1

an(f |gn)−
N∑

k=1

ak(f |gk) +
N∑

n=1

N∑

k=1

anak(gn|gk) =

= (f |f)− 2

N∑

n=1

an(f |gn) +
N∑

n=1

a2n(gn|gn)

(AI.24)

because of the orthogonality of the function system, {g}N1 . Expressing f in the second

term using the Fourier coefficients cn (see Eqs. AI.5 and AI.8) gives

(f |f)− 2

N∑

n=1

ancn(gn|gn) +
N∑

n=1

a2n(gn|gn)

= ||f ||2 +
N∑

n=1

||gn||2
(
a2n − 2ancn

)

= ||f ||2 +
N∑

n=1

||gn||2 (an − cn)
2 −

N∑

n=1

||gn||2c2n

(AI.25)

The left side of Eq. AI.24 is thus minimized if the coefficients an are chosen as the

Fourier coefficients, cn so that

||f −
N∑

n=1

angn||2 = ||f ||2 −
N∑

n=1

||gn||2c2n (AI.26)

The left side must always be positive and hence

N∑

n=1

||gn||2c2n ≤ ||f ||2 =

∫ π

−π

(f(x))2dx for all N (AI.27)

As N is made larger, the magnitude of the left side increases, and its magnitude gets

closer and closer to that of the right side, but it will always stay smaller than ||f ||2.

This means that the series on the left side is convergent. Using the Fourier coefficients

in Eq. AI.19 and letting N → ∞ it can be shown that we get equality of the left and

right side, which gives Parseval’s formula,

||f ||2 ≡
∫ π

−π

(f(x))2dx =

N∑

n=1

||gn||2c2n = ||ψ0||
(
a20
2

)

+

N∑

n=1

||ψn||a2n + ||φn||b2n

= 2π

(
a20
2

)

+ π

N∑

n=1

a2n + b2n =
π

2
a20 + π

∞∑

n=1

(a2n + b2n)

Note that 2π and π on the second line are the “length” of ||gn||, i.e. the length of ||ψ0||,
||ψn|| and ||φn|| (see Sections AI.2.1 and AI.2.4).

Appendix 46 describes in detail how to create energy spectra from two-point cor-

relations.
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AI.5 Complex Fourier series

Equation AI.19 gives the Fourier series of a real function. It is more convenient to

express a Fourier series in complex variables even if the function f itself is real. On

complex form it reads

f(x) =

∞∑

n=−∞

cn exp(ınx)) (AI.28a)

cn =
1

2π

∫ π

−π

f(x) exp(−ınx)dx (AI.28b)

where the Fourier coefficients, cn, are complex. Below we verify that if f is real, then

Eq. AI.28 is equivalent to Eq. AI.19. The Fourier coefficients, cn, read – assuming that

f is real – according to Eq. AI.28

cn =
1

2π

∫ π

−π

f(x)(cos(nx)− ı sin(nx))dx =
1

2
(an − ıbn), n > 0 (AI.29)

where an and bn are given by Eq. AI.19. For negative n in Eq. AI.28 we get

c−n = c∗n =
1

2π

∫ π

−π

f(x)(cos(nx)+ ı sin(nx))dx =
1

2
(an+ ıbn), n > 0 (AI.30)

where c∗n denotes the complex conjugate. For n = 0, Eq. AI.28 reads

c0 =
1

2π

∫ π

−π

f(x)dx =
1

2
a0 (AI.31)

see Eq. AI.19. Inserting Eqs. AI.29, AI.30 and AI.31 into Eq. AI.28 gives

f(x) =
1

2
a0 +

1

2

∞∑

n=1

(an − ıbn) exp(ınx) + (an + ıbn) exp(−ınx)

=
1

2
a0 +

1

2

∞∑

n=1

(an − ıbn)(cos(nx) + ı sin(nx)) + (an + ıbn)(cos(nx)− ı sin(nx))

=
1

2
a0 +

∞∑

n=1

an cos(nx) − ı2bn sin(nx) =
1

2
a0 +

∞∑

n=1

an cos(nx) + bn sin(nx)

(AI.32)

which verifies that the complex Fourier series for a real function f is indeed identical to

the usual formulation in Eq. AI.19 although the Fourier coefficients, cn, are complex.

One advantage of Eq. AI.28 over the formulation in Eq. AI.19 is that we don’t need any

special definition for the first Fourier coefficient, a0. The trick in the formulation in

Eq. AI.28 is that the imaginary coefficients for negative and positive n cancel whereas

the real coefficients add. This means that the real coefficients are multiplied by a factor

two except the first coefficient, a0, which makes up for the factor 1
2 in front of a0 in

Eq. AI.19.
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AL TME226 Discussion seminars

Discussion seminar 1

Course material. Recorded Lecture 1; eBook: Section 1.1, 1.2, Appendix B, Section

1.3-1.7

Lecture 1

1. Show which stress components, σij (see figure below), that act on a Cartesian

surface whose normal vector is ni = (0, 1, 0). Show also the stress vector, tn̂i .

Hint: t
(n̂)
i = τjinj

x1

x2

σ11

σ12

σ13

t
(ê1)
i

Stress components and stress vector on a surface.

2. ∂vi
∂xj

= 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)

+ 1
2

(
∂vi
∂xj

− ∂vj
∂xi

)

= Sij +Ωij .

Explain the physical meaning of diagonal and off-diagonal components of Sij .

3. Consider the stagnation flow in the figure below at time t = ln(2).

0 1 2
0

1

2

x1, r1

x2, r2
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Flow path x2 = 1/x1. The filled circle shows the point at time t = ln(2) (Lagrangian) and at

(x1, x2) = (2, 1/2) (Eulerian). r1 = x1 = exp(t), r2 = x2 = exp(−t).

(a) Compute the Lagrangian and Eulerian velocities at this location.

(b) Compute the Lagrangian and Eulerian time derivative,
dvL

2

dt

(c) Compute the local Eulerian time derivative,
∂vE

2

∂t

(d) Compute the vorticity and the strain-rate using the Eulerian velocities. Try

to explain why the vorticity is zero by looking at Fig. 1.4.

4. What is the definition of irrotational flow?

5. Consider 2D flow (x1 − x2 direction)

(a) The definition of the vorticity vector is ωi = ǫijk
∂vk
∂xj

. Give ω1, ω2 and ω3.

(b) The definition of the strain-rate tensor is Sij = 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)

. Give S11

and S12.

(c) The definition of the vorticity tensor is Ωij = 1
2

(
∂vi
∂xj

− ∂vj
∂xi

)

. Give Ω11

and Ω12.
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Discussion seminar 2

Course material. Recorded Lectures 1 and 2; eBook: Sections 1.8, 2.1-2.4, 3.1

1. Explain the physical meaning of the eigenvectors and the eigenvalues of the

stress tensor (see Section 1.8 and the Lecture notes of Ekh [4])

2. Explain – in words – how to show that the vorticity is zero in an ideal vortex (see

Item 13vi above)

Hint:

v1 = −vθ
x2

(x21 + x22)
1/2

v2 = vθ
x1

(x21 + x22)
1/2

3. Consider an ideal vortex. Discuss the difference between a vortex and vorticity.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

Ideal vortex.

4. Consider the two-dimensional shear flow below (e.g. a boundary-layer flow).

Compute the three vorticity components (ωi = ǫijk
∂vk
∂xj

).

a b c

v1

α

x1

x2

A shear flow. A fluid particle with vorticity. v1 = cx2
2.
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5. Watch the on-line lecture Vorticity, part 1 at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

After 4:20 minutes, the teacher shows the figure of a boundary layer. He says

that one of the “vorticity legs” is parallel to the wall and the other leg rotates in

the counter-clockwise direction (positive α); hence there is vorticity.

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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Lecture 2

1. The Navier-Stokes equations read

ρ
dvi
dt

= − ∂P

∂xi
+
∂τji
∂xj

+ ρfi = − ∂P

∂xi
+

∂

∂xj

(

2µSij −
2

3
µ
∂vk
∂xk

δij

)

+ ρfi

Describe – in words – how to simplify the Navier-Stokes equation for incom-

pressible flow and constant viscosity (Eq. 2.9)

(a) The transport equation for the internal energy, u, reads

ρ
du

dt
= −P ∂vi

∂xi
+ 2µSijSij −

2

3
µSkkSii

Φ

+
∂

∂xi

(

k
∂T

∂xi

)

What is the physical meaning of the different terms? Simplify the transport

equation for internal energy, u, to the case when the flow is incompressible

(Eq. 2.18).

(b) The basic form (without inserting the constitution law) of the transport

equation for the kinetic energy, k = vivi/2, reads

ρ
dk

dt
=
∂viσji
∂xj

− σji
∂vi
∂xj

+ ρvifi (AL.1)

Describe (in words) how to derive the transport equation above. What is

the physical meaning of the different terms?

(c) The basic form (without inserting the constitution laws) of the transport

equation for internal energy, u, reads

ρ
du

dt
= σji

∂vi
∂xj

− ∂qi
∂xi

(AL.2)

Explain the energy transfer between kinetic energy, k, and internal energy,

u (Eqs. AL.1 and AL.2).

2. The left side of the temperature equation and the Navier-Stokes, for example,

can be written in three different ways

ρ
dvi
dt

= ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

(a)

=
∂ρvi
∂t

+
∂ρvjvi
∂xj

(b)

ρ
dT

dt
= ρ

∂T

∂t
+ ρvj

∂T

∂xj
(a)

=
∂ρT

∂t
+
∂ρvjT

∂xj
(b)

Explain how the expressions (a) and (b) are obtained.

3. Consider the Rayleigh problem below

V0x1

x2

The plate moves to the right with speed V0 for t > 0.
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0 0.2 0.4 0.6 0.8 1

t1
t2

t3

v1/V0

x2

The v1 velocity at three different times. t3 > t2 > t1.

(a) How is the Navier-Stokes equation

∂vi
∂xi

= 0

ρ
dvi
dt

≡ ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= − ∂P

∂xi
+ µ

∂2vi
∂xj∂xj

+ ρfi

simplified for the Rayleigh problem?

(b) What are the boundary conditions?

(c) We introduce a similarity variable, η, related to x2 and t as

η =
x2

2
√
νt

(AL.3)

Explain how the Navier-Stokes is transformed from the independent vari-

ables xi and t to η.

(d) The transformed Navier-Stokes reads

d2f

dη2
+ 2η

df

dη
= 0, f =

v1
V0

(AL.4)

What are the boundary conditions expressed in η?

(e) The final solution to Eq. AL.4 is

f(η) = 1− erf(η)

Why is there only one curve in the figure below but three (or many more)

in the figure above?

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f

η
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The velocity, f = v1/V0, given by Eq. 3.11.

(f) Given ν and t, show how the boundary layer thickness can be estimated

from the Rayleigh problem using f and η and the figure above.



AL. TME226 Discussion seminars 344

Discussion seminar 3

Course material. Recorded Lectures 3 and 4; eBook: Sections 3.2-3.3, 4.1-4.2

Lecture 3

1. Explain the pressure levels at points 1, 2 and 3 at the entrance (smooth curved

walls) to a plane channel (see the figure below).

x1

x2V

V

P1

P1

P2
h

Flow in a horizontal channel. The inlet part of the channel is shown.

Explain the flow physics in a channel bend (Fig. 3.6). Watch also the on-line

lecture Pressure field and acceleration

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html.

(a) at 28 minutes into the movie the teacher discusses how the pressure varies

in a fixed-body rotation flow

(b) at 18 minutes into the movie the teacher discusses how the pressure varies

for the flow in a bend.

x1

x2

P1

P2

V

Flow in a channel bend.

Explain the flow physics in a channel bend (see figure above) and in a duct bend

(see figure below).

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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a b

C

C

x3

x2

Secondary flow in a duct bend.

2. Consider steady, fully developed flow between two parallel plates, i.e. fully

developed channel flow

(a) What is the main flow criterion of fully developed flow between two paral-

lel plates?

(b) The incompressible, Navier-Stokes equation reads

∂vi
∂xi

= 0

ρ
dvi
dt

≡ ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= − ∂P

∂xi
+ µ

∂2vi
∂xj∂xj

+ ρfi

i. Simplify the v1 equation for this flow (i.e. which terms are zero?)

ii. Do the same thing for the v2
iii. How large is ∂v1/∂x1?

iv. How large is ∂v2/∂x2? Why?

3. The Blasius equation.

(a) The stream function is defined as

v1 =
∂Ψ

∂x2
, v2 = − ∂Ψ

∂x1

Show that the continuity equation is automatically satisfied in 2D when the

velocity is expressed in the streamfunction, Ψ

(b) Explain in words how the v1 component of the Navier-Stokes (see above)

is transformed into an equation for ψ. For a flat-plate boundary layer we

get the following equation

∂Ψ

∂x2

∂2Ψ

∂x1∂x2
− ∂Ψ

∂x1

∂2Ψ

∂x22
= ν

∂3Ψ

∂x32
(AL.5)

(c) The final Blasius equation reads

1

2
g
d2g

dξ2
+
d3g

dξ3
≡ 1

2
gg′′ + g′′′ = 0

Explain why this equation is expressed in g and ξ whereas Eq. AL.5 is

expressed in v1, x1 and x2.

Hint: compare with Eq. AL.3
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Lecture 4

1. Explain (using words) why vorticity can be created only by an imbalance (i.e. a

gradient) of shear stresses, see the figure below. Explain why pressure and the

gravity force cannot create vorticity.

v1(x2)

x1

g

x2

(x1, x2)

τ12(x1 − 0.5∆x1)n1

τ12(x1 + 0.5∆x1)n1

τ21(x2 − 0.5∆x2)n2

τ21(x2 + 0.5∆x2)n2

P (x1 − 0.5∆x1) P (x1 + 0.5∆x1)

Surface forces acting on a fluid particle. The fluid particle is located in the lower half of fully

developed channel flow. The v1 velocity is given by Eq. 3.28 and v2 = 0. Hence τ11 = τ22 =
∂τ12/∂x1 = 0 and −∂τ21/∂x2 > 0. The v1 velocity field is indicated by dashed vectors.

1. The incompressible Navier-Stokes equation can be re-written on the form

∂vp
∂t

+
∂k

∂xp
︸︷︷︸

no rotation

− εpjkvjωk
︸ ︷︷ ︸

rotation

= −1

ρ

∂p

∂xp
+ ν

∂2vp
∂xj∂xj

+ fp

(a) Describe the first step in deriving the transport equation (3D) for the vor-

ticity vector, Eq. 4.21

Hint: ωi = εpqi∂vp/∂xq

(b) Which terms are zero?

Hint: the product of a symmetric tensor and a non-symmetric tensor is zero.

(c) Show that the divergence of the vorticity vector, ωi, is zero
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Discussion seminar 4

Course material. Recorded Lectures 4 and 5; eBook: Sections 4.2– 4.4

1. Explain vortex stretching, see figure below.

Hint: The vortex stretching/tilting terms reads

ωk
∂vp
∂xk

=







ω1
∂v1
∂x1

+ ω2
∂v1
∂x2

+ ω3
∂v1
∂x3

, p = 1

ω1
∂v2
∂x1

+ ω2
∂v2
∂x2

+ ω3
∂v2
∂x3

, p = 2

ω1
∂v3
∂x1

+ ω2
∂v3
∂x2

+ ω3
∂v3
∂x3

, p = 3

v1 v1ω1

x1

x2

Vortex stretching. Dashed lines denote fluid element before stretching.
∂v1
∂x1

> 0. Angular

momentum, r2ω1 , is constant.

2. Explain vortex tilting, see figure below.

ω2
v1(x2)

∂v1
∂x2

> 0

x1

x2

Vortex tilting. Dashed lines denote fluid element before bending or tilting.

3. Watch the on-line lecture Vorticity, part 2 (11 minutes into the movie) at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

It presents interesting discussions on vorticity.

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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4. Show that the vortex stretching/tilting term is zero in two-dimensional flow

Hint: The vortex-stretching term reads ωk∂vp/∂xk = 0.

The 3D transport equation for the vorticity vector reads

dωp

dt
≡ ∂ωp

∂t
+ vk

∂ωp

∂xk
= ωk

∂vp
∂xk

+ ν
∂2ωp

∂xj∂xj

Describe – in words – the form of the corresponding equation in 2D.

5. Show the similarities between the vorticity and temperature transport equations

in fully developed flow between two parallel plates.

Use the diffusion of vorticity to show that δ
ℓ ∝

√
ν
Uℓ =

√
1
Re , see figure below

and the expressions from the Rayleigh flow.

Hint: η = 1.8 = x2

2
√
νt

⇒ δ = 3.6
√
νt. Furthermore, recall that vorticity is

created along the wall only near the leading edge: why?

����������������������������������������
����������������������������������������
����������������������������������������

����������������������������������������
����������������������������������������
����������������������������������������
������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

������������������

δx1

x2
V0

L

Boundary layer. The boundary layer thickness, δ, increases for increasing streamwise distance

from leading edge (x1 = 0).
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Lecture 5

1. Consider the derivative of the complex function (f(z + z0) − f(z))/z0 where

z = x + iy and f = u + iv. The derivative of f must be independent in which

coordinate direction the derivative is taken (either along the real or the imaginary

axis), i.e.

df

dz
= lim

∆z→0

f(z0 +∆z)− f(z0)

∆z

= lim
∆x→0

f(x0 +∆x, iy0)− f(x0, iy0)

∆x
= lim

∆y→0

f(x0, iy0 + i∆y)− f(x0, iy0)

i∆y
.

The second line can be written as

∂f

∂x
=

1

i

∂f

∂y
=

i

i2
∂f

∂y
= −i∂f

∂y

Show that this leads to the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

2. Explain – in words – why in potential flow both the velocity potential

v1 = ∂Φ/∂x1, v2 = ∂Φ/∂x2

and the stream function

v1 = ∂Ψ/∂x2, v2 = −∂Ψ/∂x1

satisfy the Laplace equation.

3. Introduction: above, we formulated the complex function in a generic way, f =
u+ iv. Now we move to fluid mechanics.

(a) We formulate a “fluid mechanics” complex function f = Φ+iΨ which is a

potential function since both the real and imaginary part satisfy the Laplace

equation.

(b) We guess a complex function f = C1z
n, z = x+ iy

(c) It turns out that it is sometimes more convenient to express f is polar coor-

dinates, i.e. f = C1re
iθ = C1r

n(cos(nθ) + i sin(nθ))

(d) Describe – in words – how to prove that f = C1z
n satisfy the Laplace

equation.

How are the velocity components for n = 1 and n = 2 obtained. What

physical flow do these two cases correspond to?

4. Describe how to derive the polar velocity components for the complex potential

f = −iΓ ln z/(2π) (Γ denotes circulation).

Tip: express z in polar coordinates (Euler form), i.e. z = reiθ

How do you show that the complex potential satisfy the Laplace equation? What

does the physical flow look like?
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Discussion seminar 5

Course material. Recorded Lectures 5 and 6; eBook: Section 4.4, 5.1–5.3, 6.1

1. Consider the potential flow around a cylinder.

f =
V∞r

2
0

reiθ
+ V∞re

iθ = V∞

(
r20
r
e−iθ + reiθ

)

= V∞

(
r20
r
(cos θ − i sin θ) + r(cos θ + i sin θ)

)

It is a super-position of two “elementary” flow cases: which ones? Describe –

in words – how to show that the radial velocity is zero at the surface. How can

you get the surface pressure? Describe how you would then get the drag and lift.

How large do you expect drag and lift to be? Why?

2. Consider the potential flow around a rotating cylinder.

x1

x2

Γ

FL

V∞

f =
V∞r

2
0

z
+ V∞z − i

Γ

2π
ln z

= V∞

(
r20
r
(cos θ − i sin θ) + r(cos θ + i sin θ)

)

− Γ

2π
(i ln r − θ)

in polar coordinmates

The circulation is defined as

Γ =

∮

vitidℓ

x1

S

x2

tidℓ
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The surface, S, is enclosing by the line ℓ. The vector, ti, denotes the unit tangential vector of the

enclosing line, ℓ.

Where are the stagnation points located? How is the lift of the cylinder com-

puted? (which applies for any body).

3. What is the Magnus effect? Explain the three applications below: why is it

efficient to use loops in table tennis? Why does the Magnus effect help a football

player get the ball around the wall (of players) when making a free-kick? How

does the Magnus effect help propulsing a ship using Flettner rotors. To look at

old and new installations of Flettner rotors, see Wikipedia.

F
FL

nettable

ω

x1

x2

Table tennis. The loop uses the Magnus effect. Side view.

F wall of players

goal

FL

ω

Football. A free-kick uses the Magnus effect. Top view

α Vwindω

FL

α

Vship

x1

x2

Flettner rotor (in blue) on a ship. The relative velocity between the ship and the wind is Vwind +
Vship. The ship moves with speed Vship. Top view.

https://en.wikipedia.org/wiki/Rotor_ship
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Lecture 6

1. What characterizes turbulence? Explain the characteristics. What is the life time

of a turbulent eddy?

2. Explain the cascade process. How large are the largest scales? What is dissi-

pation? Which eddies extract energy from the mean flow? Why are these these

eddies “best” at extracting energy from the mean flow?

Hint: Look at the figure with two velocity profiles below.

3. The energy spectrum consists of three subregions: which? Describe their char-

acteristics. Show the flow of turbulent kinetic energy in the energy spectrum.

Given the energy spectrum, E(κ), how is the turbulent kinetic energy, k, com-

puted? Describe – in words – how to use dimensional analysis to derive the −5/3
Kolmogorov law.

κ

E
I

II

III

E
(κ) ∝

κ −
5/3

−〈v̄′iv̄′j〉
∂〈v̄i〉
∂xj

εκ

ε

Spectrum for turbulent kinetic energy, k. The wavenumber, κ, is proportional to the inverse

of the length scale of a turbulent eddy, ℓκ, i.e. κ ∝ ℓ−1
κ . For a discussion of εκ vs. ε, see

Section 8.2.2.
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B

δB

A

δA

x1

x2

The size of the largest eddies (dashed lines) for different velocity profiles.

4. What are the Kolmogorov dissipation scales? Describe – in words – how to use

dimensional analysis to derive the expression for, for example, the length scale,

ℓη.

5. What does isotropic turbulence mean? What about the shear stresses?

6. Describe how the ratio of the large eddies to the dissipative eddies depends on

the Reynolds number.

Hint:
ℓ0
ℓη

=

(
ν3

ε

)−1/4

ℓ0

Why is this expression useful for DNS (Direct Numerical Simulation)?

7. Draw a laminar and turbulent velocity profile for pipe flow. What is the main

difference? In which flow is the wall shear stress τw = µ
∂v̄1
∂x2

largest, laminar or

turbulent?
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Lecture 7

1. Describe – in words – how to use the decomposition vi = v̄i + v′i to derive the

time-averaged Navier-Stokes equation. We start from the Navier-Stokes equa-

tion:

ρ
∂vi
∂t

+ ρ
∂vivj
∂xj

= − ∂p

∂xi
+ µ

∂2vi
∂xj∂xj

A new terms appears: what is it called? What is the physical meaning of the

terms in the equation above?

2. How is the friction velocity, uτ , defined? Define x+2 and v̄+1 .

The wall region is divided into an inner and outer region. The inner region is

furthermore divided into a viscous sublayer, buffer layer and log-layer. Find

those three regions in the figure below.

W
all

C
en

terlin
e

x+2 = y+

1 5 10 30 100 1000 10000

10−4 10−3 10−2 10−1 1
x2/δ

overlap region

inner region

outer region

The wall region

3. What are the relevant velocity and length scales in the viscous-dominated region

(x+2 . 5)? What are the suitable velocity and length scales in the inertial region

(the fully turbulent region)? When deriving the log-law for this region, we start

by making an estimate of the velocity gradient: how is it estimated?

4. Consider fully developed turbulent channel flow. In which region (viscous sub-

layer, buffer layer or log-layer) does the viscous stress dominate? In which re-

gion is the turbulent shear stress large? The turbulent and the viscous shear

stresses are shown in the figures below. Which is which?

a) 0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
+ 2

x
2
/
δ

b) 0.2 0.4 0.6 0.8 1
0

100

200

0.2 0.4 0.6 0.8 1
0

0.05

0.1

x
+ 2

x
2
/
δ
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Reynolds shear stress. Reτ = 2000. a) lower half of the channel; b) zoom near the wall.

5. In fully developed turbulent channel flow, the time-averaged Navier-Stokes con-

sists only of three terms (which?). Identify them in the figures below and discuss

their physical meaning.

a)
−150 −100 −50 0 50 100 150

0

50

100

150

200

x+2

b)
−2 −1 0 1 2

200

400

600

800

1000

1200

1400

1600

1800

2000

x+2

Fully developed channel flow. Reτ = 2000. Forces in the v̄1 equation. a) near the lower wall of

the channel; b) lower half of the channel excluding the near-wall region.
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Lecture 8

1. In order to analyze the k equation it is useful to look at the source terms. A

positive source term in a transport equation, for exampleT , increases the value of

T . A simple example is the one-dimensional unsteady heat conduction equation

∂T

∂t
= α

∂2T

∂x21
+Q

where Q is a heat source, see figure below. Note that the source term(s) should

always appear on the opposite side of the unsteady term (or the same side as the

diffusion term).

wall wall

Q

x1

One-dimensional unsteady heat conduction. In the middle there is a heat source, Q.

The exact equation for turbulent kinetic energy, k = 0.5v′iv
′
i reads

∂v̄jk

∂xj
I

= −v′iv′j
∂v̄i
∂xj

II

− ∂

∂xj

[
1

ρ
v′jp

′ +
1

2
v′jv

′
iv

′
i − ν

∂k

∂xj

]

III

− ν
∂v′i
∂xj

∂v′i
∂xj

IV

Discuss the physical meaning of the different terms in the k equation. Which

terms are transport terms? Which is the main source term? Which is the main

sink (i.e. negative source) term?

2. Rules for time-averaging, see Section 8.1. Assume that we have a time-series of

four time instants with v′1 and v′2 as

v′1 = [0.2,−0.3, 0.18,−0.08]

v′2 = [0.15,−0.25, 0.04, 0.06]

v′1 =
1

N

N∑

n=1

v′1,n = (0.2− 0.3 + 0.18− 0.08)/4 = 0

v′2 =
1

N

N∑

n=1

v′2,n = (0.15− 0.25 + 0.04 + 0.06)/4 = 0

so that

v′1 v
′
2 =

(

1

N

N∑

n=1

v′1,n

)(

1

N

N∑

n=1

v′2,n

)

= 0 · 0 = 0

However, the time average of their product is not zero, i.e.

v′1v
′
2 =

1

N

N∑

n=1

v′1,nv
′
2,n = (0.2·0.15+0.3·0.25+0.18·0.04−0.08·0.06)/4 = 0.02685
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Discussion seminar 6

Course material. Recorded Lectures 8, 9 and 10; eBook: Section 6.2–6.3, 8.1, 11.6,

8.2, 8.3

1. The exact k equation for 2D Boundary Layers reads

∂v̄1k

∂x1
+
∂v̄2k

∂x2
convervative form

≡ v̄1
∂k

∂x1
+ v̄2

∂k

∂x2
non-convervative form

= −v′1v′2
∂v̄1
∂x2

− ∂

∂x2

[
1

ρ
p′v′2 +

1

2
v′2v

′
iv

′
i − ν

∂k

∂x2

]

− ν
∂v′i
∂xj

∂v′i
∂xj

All spatial derivatives are kept in the dissipation term: why? Which terms are

non-zero at the wall? Note that it easier to realize that the left-hand side is

zero when it is formulated on the non-conservative form. Can you express the

turbulent diffusive terms on non-conservative form?

2. Where is the production term, P k = −v′1v′2∂v̄1/∂x2, largest? In order to explain

this, look at the figures below.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

∂v̄+1 /∂x
+
2

x+2

0.2 0.4 0.6 0.8 1
0

20

40

0.2 0.4 0.6 0.8 1
0

0.01

0.02

x
+ 2

−v′1v′2/u2τ

x
2
/
δ

Velocity gradient Reynolds shear stress

Channel flow at Reτ = 2000.
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Lecture 9

1. The exact transport equation for mean kinetic energy,K = 0.5v̄iv̄i reads

∂v̄jK

∂xj
= v′iv

′
j

∂v̄i
∂xj

−Pk, sink

− v̄i
ρ

∂p̄

∂xi
source

− ∂

∂xj

(

v̄iv′iv
′
j − ν

∂K

∂xj

)

−ν ∂v̄i
∂xj

∂v̄i
∂xj

εmean, sink

Discuss the physical meaning of the different terms. One term appears in both

the k and the K equations: which one? Consider the dissipation terms in the

k and the K equations: which is largest near the wall and away from the wall,

respectively?

2. Which terms in the k equation need to be modeled?

v̄1
∂k

∂x1
+ v̄2

∂k

∂x2
= −v′1v′2

∂v̄1
∂x2

− ∂

∂x2

[
1

ρ
p′v′2 +

1

2
v′2v

′
iv

′
i − ν

∂k

∂x2

]

− ν
∂v′i
∂xj

∂v′i
∂xj

3. Which term is unknown in the time-averaged Navier-Stokes equations? (also

called the RANS equations [RANS=Reynolds-Averaged Navier-Stokes])

ρ
∂v̄iv̄j
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

(

µ
∂v̄i
∂xj

− ρv′iv
′
j

)

4. The Boussinesq approximation reads (almost)

−v′iv′j = νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

Which term is missing?

5. Show how the modeled production term, P k = −v′iv′j ∂v̄i
∂xj

, is modelled in the

k − ε model.

6. The modeled k equation can symbolically be written:

Ck = P k +Dk +Gk − ε

Using this equation, describe how to derive the modeled ε equation.
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Lecture 10

1. Two options are used for treating the wall boundary conditions: which ones?

Explain the main features.

2. Consider wall functions. Describe how the expression

uτ =
κv̄1,P

ln(Euτ δx2/ν)

is obtained. What is the wall boundary condition for the velocity equation?

Hint: The log-law reads
v̄1
uτ

=
1

κ
ln

(
Euτx2
ν

)

3. How is the k equation simplified in the log-law region? Show how the boundary

condition

kP = C−1/2
µ u2τ

for k is derived (wall functions).

Hint: Simplified k equation: 0 = P k − ρε = µt

(
∂v̄1
∂x2

)2

− ρε. The wall shear

stress reads τw = −ρv′1v′2 = µt
∂v̄1
∂x2

4. Show how the boundary condition for ε (used in wall functions)

εP = P k =
u3τ
κδx2

is derived (wall functions).

Hint: ε ≃ U3/L.

5. How fine should the grid be near the wall when using a low-Reynolds number

model? Why must the turbulence model be modified?

6. In the eBook we derive the following expressions using Taylor expansion:

v̄1 = a1x2 + . . . = O(x12)

v′21 = a21x
2
2 + . . . = O(x22)

v′22 = b22x
4
2 + . . . = O(x42)

v′23 = c21x
2
2 + . . . = O(x22)

v′1v
′
2 = a1b2x

3
2 + . . . = O(x32)

k = (a21 + c21)x
2
2 + . . . = O(x22)

∂v̄1/∂x2 = a1 + . . . = O(x02)
∂v′1/∂x2 = a1 + . . . = O(x02)
∂v′2/∂x2 = 2b2x2 + . . . = O(x12)
∂v′3/∂x2 = a1 + . . . = O(x02)

Describe how they are obtained.

7. The exact k equation reads

ρv̄1
∂k

∂x1
+ ρv̄2

∂ρk

∂x2
= −ρv′1v′2

∂v̄1
∂x2

− ∂p′v′2
∂x2

− ∂

∂x2

(
1

2
ρv′2v

′
iv

′
i

)

+ µ
∂2k

∂x22
− µ

∂v′i
∂xj

∂v′i
∂xj
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Using the Taylor expansions above, show how the production term, the viscous

and turbulent diffusion terms and the dissipation vary near the wall.

8. The modeled k eq. reads

ρv̄1
∂k

∂x1
+ ρv̄2

∂ρk

∂x2
= µt

(
∂v̄1
∂x2

)2

+
∂

∂x2

(
µt

σk

∂k

∂x2

)

+ µ
∂2k

∂x22
− ρε

Using the Taylor expansions above, show how the production term, the turbulent

diffusion term and the dissipation vary near the wall.

9. Looking at how the exact and the modelled terms in the k behave near walls,

which terms need to modified? How?

10. In low-Reynolds number models, what is the boundary condition for k?

11. A boundary condition for ε can be derived by looking at the two terms in the k
eq. (see above) that do not go to zero. Show this boundary condition.

12. In the eBook it is shown that Taylor expansion gives

ε = ν
(

a21 + c21

)

+ . . .

and

k =
1

2

(

a21 + c21

)

x22 + . . .

Show how the “third b.c.” for ε is obtained using these two expressions.
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[110] S. Krajnović and L. Davidson. Flow around a simplified car. part I: Large eddy

simulations. Journal of Fluids Engineering, 127(5):907–918, 2005. 18.25
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nology, Göteborg, Sweden, 2003. 18.25, 48.1

[115] J. Ask and L. Davidson. Flow and dipole source evaluation of a generic SUV.

Journal of Fluids Engineering, 132(051111), 2010. 18.25, 25.1.3
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