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1. Motion, flow 18

1 Motion, flow

1.1 Eulerian, Lagrangian, material derivative

SEE also [3], Chapt. 3.2.

Assume a fluid particle is moving along the line in Fig. 1.1. We can choose to study
its motion in two ways: Lagrangian or Eulerian. In the Lagrangian approach we keep
track of its original position (X;) and follow its path which is described by x;(X;, t).
For example, at time ¢; the temperature of the particle is 7'(X;, t1), and at time ¢5 its
temperature is 7'(X;, t2), see Fig. 1.1. This approach is not used for fluids because it
is very tricky to define and follow a fluid particle. It is however used when simulating
movement of particles in fluids (for example soot particles in gasoline-air mixtures in
combustion applications). The speed of the particle is then expressed as a function of
time and its position at time zero, i.e. v; = v;(X;, t).

In the Eulerian approach we pick a position, e.g. }, and watch the particle pass
by. This approach is used for fluids. The temperature of the fluid, 7", for example, is
expressed as a function of the position, i.e. T = T'(x;), see Fig. 1.1. It may be that the
temperature at position z;, for example, varies in time, ¢, and then T = T'(x;, t).

Now we want to express how the temperature of a fluid particle varies. In the
Lagrangian approach we first pick the particle (this gives its starting position, X;).
Once we have chosen a particle its starting position is fixed, and temperature varies
only with time, i.e. T'(t) and the temperature gradient can be written dT'/dt.

In the Eulerian approach it is a little bit more difficult. We are looking for the
temperature gradient, d7'/dt, but since we are looking at fixed points in space we
need to express the temperature as a function of both time and space. From classical
mechanics, we know that the velocity of a fluid particle is the time derivative of its
space location, i.e. v; = dx;/dt. The chain-rule now gives

dar _or  dz; 0T 0T oT

c_Z =S 0= 1.1
@ ot " dat on; ot Yox, 4.1

Note that we have to use partial derivative on 7" since it is a function of more than one
(independent) variable. The first term on the right side is the local rate of change; by
this we mean that it describes the variation of 7" in time at position x;. The second term
on the right side is called the convective rate of change, which means that it describes

T(X;,t1)

T (X, t2)

T(a:% t2>

Figure 1.1: The temperature of a fluid particle described in Lagrangian, T'(X;, ), or Eulerian,
T (z;,t), approach.

local rate
of change
Conv. rate
of change



1.2. What is the difference between @ and % ? 19
dt ot
T2,72

Y

1
1,71

0 .

0 1 2

Figure 1.2: Flow path 2 = 1/x1. The filled circle shows the point (z1,x2) = (1,1). ¥/ start
(t =In(0.5)); A: end (t = In(2)).

the variation of T" in space when it passes the point x;. The left side in Eq. 1.1 is called
the material derivative and is in this text denoted by d7/dt.

Exercise 1 Write out Eq. 1.1, term-by-term.

d
1.2 What is the difference between % and %?

. . dv v
Students sometimes get confused about the difference between ~2 and —2. Here we

give a simple example. Figure 1.2 shows a flow path of fluid particles which can be
expressed in time as

r1 = X1exp(t), 12 = Xaexp(—t) (1.2)

where r; is the location of the particle and X; is the initial location. For X; = X
we get ro = 1/r1. By varying X; (and/or X5) we get different flow paths. The flow
path in Fig. 1.2 is steady in time and it starts at (r1,7r2) = (X1, X2) = (0.5,2) and
ends at (r1,r2) = (21,22) = (2,0.5). The flow path is taken from stagnation flow, see
Fig. 4.7. Equation 1.2 gives the velocities

dr dr
i d_tl = Xiexp(t), vk = d_t2 = —Xzexp(—t) (1.3)
and Eqgs. 1.2 and 1.3 give
’UlE =7ry =2, ’U2E = —r9 = —X9 (1.4)

(cf. Eq. 4.50). The superscripts E and L denote Eulerian and Lagrangian, respectively.
Note that vF = v and v{ = oF; the only difference is that v” is expressed as
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function of (¢,1,72) and v¥ as function of (¢, X, X2). Now we can compute the
time derivatives of the vy velocity as

d L
T exp(—t)
dt (1.5)
dv¥ ol Lol povd ’
T2 T2 PTG BT2 gy 0y (—1) =
it "ot T ey T g, Ot e 0 (D=
d do¥  dvk
We find, of course, that % = Lj =% _ xo = exp(—t).
Consider, for example, the point (21, z2) = (1, 1) in Fig. 1.2. The difference bet-
d 0
ween % and % is now clearly seen by looking at Eq. 1.5. The velocity at the point

o ovf . .
(z1,22) = (1,1) does not change in time and hence —2 = 0. However, if we sit on

a particle which passes the location (z1,22) = (1, 1), the velocity, vZ, increases by

dvl d
time, % = % = 1 (the velocity, v, gets less negative) . Actually it increases all
d
the time from the starting point where % = 2 and vo = —2 until the end point where
d
% = 0.5and vy = —0.5.

1.3 Viscous stress, pressure
See also [3], Chapts. 6.3 and 8.1.

We have in Part I [4] derived the balance equation for linear momentum which
reads

pii — 00y — pfi =0 (1.6)
Switch notation for the material derivative and derivatives so that
dvi 8in
= i 1.7
Pat = ou, +pf 1.7

where the first and the second term on the right side represents, respectively, the net
force due to surface and volume forces (o;; denotes the stress tensor). Stress is force
per unit area. The first term on the right side includes the viscous stress tensor, 7;;. As
you have learnt earlier, the first index relates to the surface at which the stress acts and
the second index is related to the stress component. For example, on a surface whose
normal is n; = (1,0, 0) act the three stress components 011, 012 and 013, see Fig. 1.3a;
the volume force acts in the middle of the fluid element, see Fig. 1.3b.

In the present notation we denote the velocity vector by v .= v; = (v1,va,v3)
and the coordinate by x = z; = (x1,x2,x3). In the literature, you may find other
notations of the velocity vector such as u; = (u1, us, u3). If no tensor notation is used
the velocity vector is usually denoted as (u, v, w) and the coordinates as (z, y, z).

The diagonal components of o;; represent the normal stresses and the off-diagonal
components of ¢;; represent the shear stresses. In Part I [4] you learned that the pres-
sure is defined as minus the sum of the normal stress, i.e.

P=—0:/3 (1.8)
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012

011
013

Z2 fi

€2

X1 z

(a) Stress components and stress vector on a surface. (b) Volume force, f; = (0, —g, 0), acting in
the middle of the fluid element.

Figure 1.3: Stress tensor, volume (gravitation) force and stress vector, tgél), see Eq. C.2.

The pressure, P, acts as a normal stress. In general, pressure is a thermodynamic
property, p;, which can be obtained — for example — from the ideal gas law. In that
case the thermodynamics pressure, p;, and the mechanical pressure, P, may not be the
same but Eq. 1.8 is nevertheless used. The viscous stress tensor, 7;;, is obtained by
subtracting the trace, oy /3 = — P, from 045 the stress tensor can then be written as

0ij = —Pd;; + 75 (1.9)

7; 18 the deviator of ;. The expression for the viscous stress tensor is found in Eq. 2.4
atp. 31. The minus-sign in front of P appears because the pressure acts info the surface.
‘When there is no movement, the viscous stresses are zero and then of course the normal
stresses are the same as the pressure. In general, however, the normal stresses are the
sum of the pressure and the viscous stresses, i.e.

o011 =—P+m71, 02=—P+Tyn, o33=—P+733, (1.10)

Exercise 2 Consider Fig. 1.3. Show how o021, 022, 023 act on a surface with normal
vector n; = (0, 1,0). Show also how o371, 032, 033 act on a surface with normal vector

n; = (0,0,1).

Exercise 3 Write out Eq. 1.9 on matrix form.

1.4 Strain rate tensor, vorticity
See also [3], Chapt. 3.5.3, 3.6.

We need an expression for the viscous stresses, 7;;. They are needed in the mo-
mentum equations, Eq. 1.7 (see also Eq. 1.9). They will be expressed in the velocity

gradients, %. Hence we will now discuss the velocity gradients.
J
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The velocity gradient tensor can be split into two parts as

% l ov; ov;  Ov; %

c’)xj 2 axj c’)xj axi (’)xl
L I —_—
267” /ax] =0

1 8vi (91)]' 1 (91)1' (91)]'
=5 a - = Pij Qz
2 <6xj+6xi)+2<8xj c’)xl) S]+ J

(1.11)

where
Si; is a symmetric tensor called the strain-rate tensor
Q;; is a anti-symmetric tensor called the vorticity tensor

The vorticity tensor is related to the familiar vorticity vector which is the curl of
the velocity vector, i.e. w = V X v, or in tensor notation

ov
w; = eijk%’f (1.12)
J

where €;;;, is the permutation tensor, see lecture notes of Ekh [4] and Table B.1 in
Appendix B. If we set, for example, 1 = 3 we get

w3:6v2/(’)x1—6v1/(’)x2. (1]3)

The vorticity represents rotation of a fluid particle. Inserting Eq. 1.11 into Eq. 1.12
gives
w; = Eijk(skj + Qk]‘) = Eijkﬂkj (1.14)

since €5 5%; = 0 because the product of a symmetric tensor (Si;) and an anti-
symmetric tensor (€;5) is zero. Let us show this for + = 1 by writing out the full
equation. Recall that Sij = Sji (i.e. S12 = S91, S13 = S31, Soz3 = S39) and
€ijk = —€ikj = €jki etc (1.e. €123 = —€132 = €231 ..., €113 = €221 = ...€331 = 0)

€1jkSkj = €111511 + €112521 + €113531
+ €121512 + €122522 + £123532
+€131513 + €132.523 + £133.533
=0-511+0-531+0-S53; (1.15)
4+0-5124+0-8S2+1-853
+0-513—1-53+0-533
=853 —S23=0

Now let us invert Eq. 1.14. We start by multiplying it with 4, so that
EitmWi = Eiom€ijkSli; (1.16)
The e-6-identity gives (see Table B.1 at p. 287)

Citm€ijk i = (00j0mik — 00k0m; ) = QUme — Qm = 2Qme (1.17)

Strain-rate
tensor
vorticity ten-
sor
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This can easily be proved by writing out all the components, see Table B.1 at p. 287.
Now Eqgs. 1.16 and 1.17 give

1 1 1
Qe = SitmWi = 5EmiWi = — 5 Emeils (1.18)
or, switching indices
1
Qij = 7§€ijkwk (119)

It turns out that is is much easier to go from Eq. 1.14 to Eq. 1.19 by writing out the
components of Eq. 1.14 (here we do it for ¢ = 1)

w1 = €123832 + £1328023 = Q32 — Qlog = —200o3 (1.20)
and we get
Qg = —%wl (1.21)
which indeed is identical to Eq. 1.19.

Exercise 4 Write out the second and third component of the vorticity vector given in
Eq. 1.12 (i.e. wy and w3).

Exercise 5 Complete the proof of Eq. 1.15 fori =2 and v = 3.

Exercise 6 Write out Eq. 1.20 also for i = 2 and i = 3 and find an expression for (212
and 13 (cf. Eq. 1.21). Show that you get the same result as in Eq. 1.19.

Exercise 7 In Eq. 1.21 we proved the relation between Q);; and w; for the off-diagonal
components. What about the diagonal components of €;;? What do you get from
Eq. 1.117

Exercise 8 From your course in linear algebra, you should remember how to compute
a vector product using Sarrus’ rule. Use it to compute the vector product
€& & &
— - | 2 9 0o
w=Vxv= dz1 Oz  Ozs
V1 V2 V3

Verify that this agrees with the expression in tensor notation in Eq. 1.12.

1.5 Product of a symmetric and antisymmetric tensor

In this section we show the proof that the product of a symmetric and antisymmetric
tensor is zero. First, we have the definitions:

e A tensor a;; is symmetric if a;; = aj;;
e A tensor b;; is antisymmetric if b;; = —bj;.

It follows that for an antisymmetric tensor all diagonal components must be zero;
for example, b;; = —b11 can only be satisfied if b1; = 0.
The (inner) product of a symmetric and antisymmetric tensor is always zero. This
can be shown as follows
aijbij = ajibi; = —a;ibj,
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where we first used the fact that a;; = a;; (symmetric), and then that b;; = —by;
(antisymmetric). Since the indices ¢ and j are both dummy indices we can interchange
them in the last expression (—a;;b;; = —a;;b;;), which gives

aijbij = —aijbij

This expression says that A = — A which can be only true if A = 0 and hence a;;b;; =
0.
This can of course also be shown be writing out a;;b;; on component form, i.e.

ai;b;5 = a11b11 + a12biz + a13bis
T 1
+ a21ba1 +a22b22 + az3bas
— —— | I
7 177]
+ az1b31 + azabsa +aszzbzz = 0
L] | IS ]
173 177;

The underlined terms are zero (b1; = bgys = bz = 0); terms I cancel each other
(a12 = as1, bia = —ba1) as do terms II and II1.

1.6 Deformation, rotation
See also [3], Chapt. 3.3.

The velocity gradient can, as shown above, be divided into two parts: S;; and
Q;;. We have shown that the latter is connected to rotation of a fluid particle. During
rotation the fluid particle is not deformed. This movement can be illustrated by Fig. 1.4.
The vertical movement (v2) of the right end of the horizontal edge (z1 + Ax1) of the
particle in Fig. 1.4 is estimated as follows. The velocity at the left edge is v (z1). Now
we need the velocity at the right edge which is located at 1 + Ax;. It is computed
using the first term in the Taylor series as'

va(z1 + Azy) = vax1) + AJH%
8351

It is assumed that the fluid particle in Fig. 1.4 is rotated the angle A« during the
time At. The angle rotation per unit time can be estimated as Aa/At ~ da/dt =
—0v1 /029 = Qvg/Dxy; if the fluid element does not rotate as a solid body, the rotation
is computed as the average, i.e. da/dt = (Qva/dx1 — Ov1/dx2)/2. The vorticity
is computed as ws = Jve/Ox1 — Ov1/dx2 = —2Q12 = 2da/dt, see Eq. 1.13 and
Exercise 4. Hence, the vorticity ws can be interpreted as twice the average rotation per
unit time of the horizontal edge (9v2/0x1) and vertical edge (—dvy/dx2).

Next let us have a look at the deformation caused by .S;;. It can be divided into two
parts, namely shear and elongation (also called extension or dilatation). The deforma-
tion due to shear is caused by the off-diagonal terms of S;;. In Fig. 1.5, a pure shear de-
formation by S12 = (Ov1/0x2 + Ova/0x1)/2 is shown. The deformation due to elon-
gation is caused by the diagonal terms of S;;. Elongation caused by S11 = dv1/0x; is
illustrated in Fig. 1.6.

In general, a fluid particle experiences a combination of rotation, deformation and
elongation as indeed is given by Eq. 1.11.

Ithis corresponds to the equation for a straight line y = kx + £ where k is the slope which is equal to the
derivative of y, i.e. dy/dz, and £ = va(z1)

rotation
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D A )AL= AaAas
31‘2

A.’EQ
v
—QAxlAt = AaAxq
8x1
v
Figure 1.4: Rotation of a fluid particle during time At. Here Ovi/0z2 = —0v2/dz:1 so that

—Q42 = w3/2 = vz /Ax1 > 0. The distance the upper part of the left edge is negative because
it has moved with a negative v velocity.

DL A A = AaAay
(933‘2
A.IQ
NN N
' (9.%‘1
T2

Figure 1.5: Deformation of a fluid particle by shear during time At. Here Ov1 /Ox2 = Ova/dx1
so that S12 = Ov1 /8302 > 0.

Exercise 9 Consider Fig. 1.4. Show and formulate the rotation by w;.

Exercise 10 Consider Fig. 1.5. Show and formulate the deformation by Sas.

Exercise 11 Consider Fig. 1.6. Show and formulate the elongation by Sos.
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Figure 1.6: Deformation of a fluid particle by elongation during time At.

t;dl
)
L“

Figure 1.7: The surface, S, is enclosing by the line ¢. The vector, ¢;, denotes the unit tangential
vector of the enclosing line, £.

1.7 Irrotational and rotational flow

In the previous subsection we introduced different types of movement of a fluid parti-
cle. One type of movement was rotation, see Fig. 1.4. Flows are often classified based
on rotation: they are rotational (w; # 0) or irrotational (w; = 0); the latter type is also
called inviscid flow or potential flow. We will talk more about that later on, see Sec-
tion 4.4. In this subsection we will give examples of one irrotational and one rotational
flow. In potential flow, there exists a potential, ®, from which the velocity components

can be obtained as
0P

- 8:ck
Before we talk about the ideal vortex line in the next section, we need to introduce

the concept circulation. Consider a closed line on a surface in the 1 — x5 plane, see
Fig. 1.7. When the velocity is integrated along this line and projected onto the line we

(1.22)

Uk
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obtain the circulation

F:f%%ﬂ (1.23)

Using Stokes’s theorem we can relate the circulation to the vorticity as

r:fwmﬂz/%ﬂﬁwwz/wwﬁz/mw (1.24)
s Ox; s s

where n; = (0,0, 1) is the unit normal vector of the surface S. Equation 1.24 reads in
vector notation

F:%v~td€:/(v><V)~ndS:/w~ndS:/w3dS (1.25)
s s s

The circulation is useful in, for example, aeronautics and windpower engineering
where the lift of a 2D section of an airfoil or a rotorblade is expressed in the circulation
for that 2D section. The lift force is computed as (see Eqgs. 4.84 and 4.85)

L =pVI (1.26)

where V' is the velocity around the airfoil (for a rotorblade it is the relative velocity,
since the rotorblade is rotating). In an PhD project, an inviscid simulation method
(based on the circulation and vorticity sources) is used to compute the aerodynamic
loads for windturbine rotorblades [5].

Exercise 12 In potential flow w; = €;;,0v/0x; = 0. Multiply Eq. 1.22 by €;;, and
derivate with respect to xy, (i.e. take the curl of) and show that the right side becomes
zero as it should, i.e. ;;,0°® /(0xy0x;) = 0.

1.7.1 Ideal vortex line

The two-dimensional ideal vortex line is an irrotational (potential) flow where the fluid
moves along circular paths, see Fig. 1.8. The governing equations are derived in Sec-
tion 4.4.5. The velocity field in polar coordinates reads

T
vg=—, v.=0 (1.27)
2rr

where I is the circulation. Its potential reads

Io
d=_" (1.28)
21
The velocity, vy, is then obtained as
100 r
7 _ - 1.29
ve r 00 2mr ( )

To transform Eq. 1.27 into Cartesian velocity components, consider Fig. 1.9. The
Cartesian velocity vectors are expressed as

. (9) i) X9 FIL‘Q
V1 = —Vp S1n = —UVpg— = —Vg = —
1 " @l +a3)72 ~  2n(af + o)

(9) T X1 Fl’l
Vg = Vg COS =Vg— = = —
e v @R a2 2n(a? +aB)

(1.30)
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Figure 1.8: Ideal vortex. The fluid particle (i.e. its diagonal, see Fig. 1.4) does not rotate. The
locations of the fluid particle is indicated by black, filled squares. The diagonales are shown as
black dashed lines. The fluid particle is shown at = 0, w /4, 37 /4, 7, 57 /4, 37 /2 and —7 /6.

Inserting Eq. 1.30 into Eq. 1.27 we get

FZL'Q F$1
Vm e gy 1.31
! om(a? +22)  ° 2m(a? + 22) (13D
To verify that this flow is a potential flow, we need to show that the vorticity, w; =
€4j60Vk /O is zero. Since it is a two-dimensional flow (v3 = 0/0z3 = 0), w1 =
wo = 0, we only need to compute ws = Jvg/Ox1 — dv1 /Dx2. The velocity derivatives
are obtained as

ovy T af—aj ovy T 3 —af (1.32)
Ovz 2 (af+a3)’ Om 27 (af+a3)” |
and we get
r 1 2_ .2, 2 2
(x5 —xy+af—235)=0 (1.33)

3= 5= 53
2 2
2m (z1 + 23)
which shows that the flow is indeed a potential flow, i.e. irrotational (w; = 0). Note
that the deformation is not zero, i.e.

1 /0vy 0vg T x%
Sy — — - "2 1.34
279 (&Tz * 8x1) 2m (22 + x§)2 (1.34)

Hence a fluid particle in an ideal vortex does deform but it does not rotate (i.e. its
diagonal does not rotate, see Fig. 1.8).

It may be little confusing that the flow path forms a vortex but the flow itself has no
vorticity. Thus one must be very careful when using the words “vortex” and "vorticity”.
By vortex we usually mean a recirculation region of the mean flow. That the flow has
no vorticity (i.e. no rotation) means that a fluid particle moves as illustrated in Fig. 1.8.
As a fluid particle moves from position a to b — on its counter-clockwise-rotating path
— the particle itself is not rotating. This is true for the whole flow field, except at the
center where the fluid particle does rotate. This is a singular point as is seen from
Eq. 1.27 for which vy — oo.

Note that generally a vortex has vorticity, see Section 4.2. The ideal vortex is a very
special flow case.

vortex vs.
vorticity
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Figure 1.9: Transformation of vg into Cartesian components.

U1 ,

x2

r

Figure 1.10: A shear flow. A fluid particle with vorticity. v1 = cx3.

1.7.2 Shear flow

Another example — which is rotational — is the lower half of fully-developed channel
flow for which the velocity reads (see Eq. 3.28)

vy 4z (17ﬁ

212 h), vg =0 (1.35)

V1,max B h
where 2 < h/2, see Fig. 1.10. The vorticity vector for this flow reads

8’1}2 8’1}1 4 (1 2$2 )

- (1.36)

CU1—W2—O, w3_a—;p1_a—$2__ﬁ

When the fluid particle is moving from position a, via b to position c its has vor-
ticity. Its vertical too edge move faster than its bottom edge. The horizontal edges
stay horizontal because vo =. Its vertical edges are rotating in clockwise direction.
The diagonal is rotating which really is the definition of rotation. Note that the posi-
tive rotating direction is defined as the counter-clockwise direction, indicated by a in
Fig. 1.10. This is why the vorticity, ws, in the lower half of the channel (zo < h/2) is
negative. In the upper half of the channel the vorticity is positive because dv; /0zo < 0.
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Figure 1.11: A two-dimensional fluid element. Left: in original state; right: rotated to principal
coordinate directions. A\; and A2 denote eigenvalues; V1 and V2 denote unit eigenvectors.

It may be noted that for the flow in Fig. 1.10 the magnitude of the shear, S5, and the
vorticity, {212, are equal but of opposite sign, i.e. S12 = —12.

1.8 Eigenvalues and eigenvectors: physical interpretation
See also [3], Chapt. 2.5.5.

Consider a two-dimensional fluid (or solid) element, see Fig. 1.11. In the left figure
it is oriented along the x; — x5 coordinate system. On the surfaces act normal stresses
(011, 022) and shear stresses (012, 021). The stresses form a tensor, ;. Any tensor has
eigenvectors and eigenvalues (also called principal vectors and principal values). Since
0;; is symmetric, the eigenvalues are real (i.e. not imaginary). The eigenvalues are
obtained from the characteristic equation, see [3], Chapt. 2.5.5 or Eq. 13.5 at p. 173.
When the eigenvalues have been obtained, the eigenvectors can be computed. Given
the eigenvectors, the fluid element is rotated o degrees so that its edges are aligned
with the eigenvectors, V1 = &1, and Vo = T/, see right part of Fig. 1.11. Note that the
sign of the eigenvectors is not defined, which means that the eigenvectors can equally
well be chosen as —V; and/or —V. In the principal coordinates x1, — xo/ (right part
of Fig. 1.11), there are no shear stresses on the surfaces of the fluid element. There
are only normal stresses. This is the very definition of eigenvectors. Furthermore, the
eigenvalues are the normal stresses in the principal coordinates, i.e. A\; = oy/1/ and
)\2 = 09/9/.
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2 Governing flow equations

SEE also [3], Chapts. 5 and 8.1.

2.1 The Navier-Stokes equation
2.1.1 The continuity equation

The first equation is the continuity equation (the balance equation for mass) which

reads [4]
p+pvii =0 (2.1)

Change of notation gives

dp v;
— =0 2.2
For incompressible flow (p = const) we get
8vi
=0 2.3
oz, (2.3)

2.1.2 The momentum equation

The next equation is the momentum equation. We have formulated the constitutive law
for Newtonian viscous fluids [4]

2
0y = —Pdij +2uS;; — g,uskk(;ij
9 2.4)
Tij = 20535 — S Skkdij

Inserting Eq. 2.4 into the balance equations, Eq. 1.7, we get

dvi o (9P (97']'1' 8P 8

= — 4 = (9S8 —
Vo " om T ow, TP azﬁaxj(“s”

2 8vk
3'u(9$k

51’]‘) +pfi (2.5)

where p denotes the dynamic viscosity. This is the Navier-Stokes equations (sometimes
the continuity equation is also included in the name “Navier-Stokes”). It is also called
the transport equation for momentum. Note that the stress tensor, 0;;, depends only on
the symmetric part (i.e. S;;, see Eq. 1.11) of the velocity gradient. It is only the part
of the velocity gradient that deforms the fluid (see Figs. 1.5 and 1.6) that appears in
o0;j. The part of the velocity gradient that rotates the fluid (i.e. 2;;, see Eq. 1.11 and
Fig. 1.4) does not appear in o;;.

For incompressible flow, the last term in the diffusion term is zero because of the
continuity equation (see Eq. 2.3) so that

d’l}i o oP 0 c’)vi auj .
p dt Oz + Oz {,u (&Ej + 8%)] +ofi (2.6)

Furthermore, if the viscosity, y, is constant it can be moved outside the derivative.
We can then re-write the first term in the parenthesis in Eq. 2.6 as

i (’)vi + auj - i a’l}i + (’)uj - 821)1' (2 7)
81']' H 8xj 81‘1 _'ua$j axj 8% _M&rjaxj ’
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because of the continuity equation, i.e.

9 (Ov;\ 9 (0v;\ _
M@xj <8$1> - Maxi <6xj> =0 (28)

Equation 2.5 can now — for constant i and incompressible flow — be written

d’l}i _ oP + 82%
p dt B 81‘1 'uaxjal'j

+rfi (2.9

The viscous stress tensor then reads

dv;  Ov;
Tij = 2pSij = p (&J_ + a;_) (2.10)
J )

In inviscid (potential) flow, there are no viscous (friction) forces. In this case, the
Navier-Stokes equation reduces to the Euler equations

d’l)i 8 P

=— : 2.11
P axi+pf (2.11)

Exercise 13 Equation 1.7 states that mass times acceleration is equal to the sum of
forces forces (per unit volume). Write out the momentum equation (without using the
summation rule) for the x1 direction and show the surface forces and the volume force
on a small, square fluid element (see lecture notes of Toll & Ekh [4]). Now repeat it for
the x5 direction.

Exercise 14 Formulate the Navier-Stokes equation for incompressible flow but non-
constant viscosity.

2.2 The energy equation
See also [3], Chapts. 6.4 and 8.1.

We have in Part I [4] derived the energy equation which reads

pU — V5 j04; + Gii = Pz (2.12)

where u denotes internal energy (N.B.: in [4] it is denoted by e). ¢; denotes the
conductive heat flux and z the net radiative heat source. For simplicity, we neglect the
radiation from here on. Change of notation gives

du _  Ovi  Og;
Pt = 7oz, O

(2.13)

In Part I [4] we formulated the constitutive law for the heat flux vector (Fourier’s
law)

oT
.= —k 2.14
q 9z, (2.14)
Inserting the constitutive laws, Egs. 2.4 and 2.14, into Eq. 2.13 gives
du ov; 2 0 oT
— =P 42085;:S;; — =Sk Sii +— | k— 2.15
Pt ox; +. Hoig =i = g ok ,+a$i ( a’fi) @1

]

Euler
equations
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where we have used S;;0v;/0x; = S;;(S:; + Qi) = Si;S:; because the product of
a symmetric tensor, S;;, and an anti-symmetric tensor, €2;;, is zero. The dissipation
term, P, can be re-written as

1 1 ?
d=2u (Sijsij — §Skk5ii) = lQu (Sij - gSkkéij) ‘| >0

which shows that ® is positive. The dissipation represents irreversible viscous heating
(i.e. transformation of kinetic energy into thermal energy); it is important at high-
speed flow? (for example re-entry from outer space) and for highly viscous flows (lu-
bricants). The first term on the right side represents reversible heating and cooling due
to compression and expansion of the fluid. Equation 2.15 is the transport equation for
(internal) energy, u.

Now we assume that the flow is incompressible (i.e. the velocity should be smaller
than approximately 1/3 of the speed of sound) for which

du = cpdT (2.16)
where ¢, is the heat capacity (see Part I) [4] so that Eq. 2.15 gives (¢, is assumed to be
constant)

dr 0 oT
— =0 k 2.17
Pep dt + 81‘1 ( 81‘1) ( )

The dissipation term is simplified to & = 211.5;;.5;; because S;; = Ov;/0z; = 0. If we
furthermore assume that the heat conductivity coefficient is constant and that the fluid
is a gas or a common liquid (i.e. not an lubricant oil) so that the viscous dissipation is
negligible (i.e. & = 0), we get

dr o*r
= — 2.18
dt @ axi axi ( )
where o = k/(pcp) is the thermal diffusivity. The Prandtl number is defined as
pr=2 (2.19)
«

where v = 11/ p is the kinematic viscosity. The physical meaning of the Prandtl number
is the ratio of how well the fluid diffuses momentum to how well it diffuses internal
energy (i.e. temperature).

The dissipation term, ®, is neglected in Eq. 2.18 when one of two assumptions are
valid:

1. The fluid is a gas with low velocity (lower than 1/3 of the speed of sound); this
assumption was made when we assumed that the fluid is incompressible

2. The fluid is a common liquid (i.e. not an lubricant oil). In lubricant oils the
viscous heating (i.e. the dissipation, ®) is large. One example is the oil flow in a
gearbox in a car where the temperature usually is more than 100°C' higher when
the car is running compared to when it is idle.

Exercise 15 Write out and simplify the dissipation term, ®, in Eq. 2.15. The first term
is positive and the second term is negative; are you sure that ® > 0?

2High-speed flows relevant for aeronautics will be treated in detail in the course “TME085 Compressible
flow” in the MSc programme.

thermal
diffusivity
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2.3 Transformation of energy

Now we will derive the equation for the kinetic energy, k¥ = v;v;/2. Multiply Eq. 1.7
with v;
d’l)i 80']'1'
e dt vi Ox;
Using the product rule backwards (Trick 2, see Eq. 8.4), the first term on the left side
can be re-written

—vipfi =0 (2.20)

.d’Ui _1 d(vivi) o dk’

i = =p— 2.21
g =27 at Pt 22D
(v;iv;/2 = k) so that
dk 80'3‘1'
— =v,— ifi 222
ot = Vo, + pvif, (2.22)
Re-write the stress-velocity term so that (Trick 1, see Eq. 8.2)
dk 0 0 i 0 i
= T o T puifi (2.23)

Pa T oz, o,
This is the transport equation for kinetic energy, k. Adding Eq. 2.23 to Eq. 2.13 gives

d(u + k) adji’l}i (’)qi
= — fi 2.24

This is an equation for the sum of internal and kinetic energy, v + k. This is the
transport equation for total energy, u + k.

Let us take a closer look at Eqs. 2.13, 2.23 and 2.24. First we separate the term
0j;0v;/0z; in Egs. 2.13 and 2.23 into work related to the pressure and viscous stresses
respectively (see Eq. 1.9), i.e.

8’Ui avi 8’Ui

i = —P i 2.25
i (’)xj axi +T] axj ( )
a b=%o

The following things should be noted.

o The physical meaning of the a-term in Eq. 2.25 — which includes the pressure, P
—is heating/cooling by compression/expansion. This is a reversible process, i.e.
no loss of energy but only transformation of energy.

e The physical meaning of the b-term in Eq. 2.25 — which includes the viscous
stress tensor, 7;; — is a dissipation, which means that kinetic energy is trans-
formed to thermal energy. It is denoted ®, see Eq. 2.15, and is called viscous
dissipation. It is always positive and represents irreversible heating.

e The dissipation, ®, appears as a sink term in the equation for the kinetic energy, &
(Eq. 2.23) and it appears as a source term in the equation for the internal energy,
u (Eq. 2.13). The transformation of kinetic energy into internal energy takes
place through this source term. In incompressible flow for which the viscous
term in Navier-Stokes can be simplified (see Eq. 2.9), the viscous term reads

8vi avi a’l)i

i = 2.2
T axj M@xj (’)xj ( 6)
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which is the viscous dissipation. When arriving at this expression we use the
fact that the second term in 7;; in the Navier-Stokes (Eq. 2.9) is zero, i.e. we use
Tij = ug“ (see 2.10). The viscous dissipation is very important in turbulent
flow, cf. Eqs 8.14 and 8.38.

e & does not appear in the equation for the total energy v+ k (Eq. 2.24); this makes
sense since ® represents a energy transfer between w and k and does not affect
their sum, v + k.

Dissipation is very important in turbulence where transfer of energy takes place at
several levels. First energy is transferred from the mean flow to the turbulent fluctua-
tions. The physical process is called production of turbulent kinetic energy. Then we
have transformation of kinetic energy from turbulence kinetic energy to thermal en-
ergy; this is turbulence dissipation (or heating). At the same time we have the usual
viscous dissipation from the mean flow to thermal energy, but this is much smaller than
that from the turbulence kinetic energy. For more detail, see Section 5.

2.4 Left side of the transport equations

So far, the left sides in transport equations have been formulated using the material
derivative, d/dt. Let ¢ denote a transported quantity (i.e. ¥ = v;,u, T ...); the left
side of the equation for momentum, thermal energy, total energy, temperature etc reads

dw a¢

Py =P, O Uja non-conservative (2.27)

This is often called the non-conservative Using the continuity equation, Eq. 2.2, it can
be re-written as

d1/) 81/)+ _31/}+w<dp 8v]>

Par =~ "ot 81:3

=0 (2.28)
81/) 8_1/) _ 8p v
Por PGy, TV ( Vi 5w, P ox,

The two underlined terms will form a time derivative term, and the other three terms
can be collected into a convective term, i.e.

Lo v Opust

Pat — ot oz

conservative (2.29)

Thus, the left side of the temperature equation and the Navier-Stokes, for example, can
be written in three different ways (by use of the chain-rule and the continuity equation)

dv;  0Ov; n ‘81)1- _ Opv; | Opvjvu;
Pat =Pt TPz, T ot T oy 230
iar  or oT  0pT  dpu;T (2.30)

P = Par TP T Tor T s,
The continuity equation can also be written in three ways (by use of the chain-rule)

dp 81}1 B @ o dp dvi _ Op  Opy;
Por, ot " Vox, Por, ot oz

2.31)
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The forms on the right sides of Egs. 2.30 and 2.31 are called the conservative form.
When solving transport equations (such as the Navier-Stokes) numerically using finite
volume methods, the left sides in the transport equation are always written as the ex-
pressions on the right side of Eqgs. 2.30 and 2.31; in this way Gauss law can be used
to transform the equations from a volume integral to a surface integral and thus ensur-
ing that the transported quantities are conserved. The results may be inaccurate due
to too coarse a numerical grid, but no mass, momentum, energy etc is lost (provided a
transport equation for the quantity is solved): “what comes in goes out”.

2.5 Material particle vs. control volume (Reynolds Transport The-
orem)

See also lecture notes of Toll & Ekh [4] and [3], Chapt. 5.2.

In Part I [4] we initially derived all balance equations (mass, momentum and en-
ergy) for a collection of material particles. The conservation of mass, d/dt [ pdV = 0,
Newton’s second law, d/dt f pv; = F; etc were derived for a collection of particles in
the volume V),4,-¢, where V44 is a volume that includes the same fluid particles all the
time. This means that the volume, V,,4,+, must be moving and it may expand or contract
(if the density is non-constant), otherwise particles would move across its boundaries.
The equations we have looked at so far (the continuity equation 2.3, the Navier-Stokes
equation 2.9, the energy equations 2.15 and 2.23) are all given for a fixed control vol-
ume. How come? The answer is the Reynolds transport theorem, which converts the
equations from being valid for a moving, deformable volume with a collection of parti-
cles, Vjqrt, to being valid for a fixed volume, V. The Reynolds transport theorem reads

(first line)
4 ®dV = / 4 9vi\ gy

dt VpaTt 1% dt 81‘1

0P 0P ov; 0P  Ov;®
_ [ (92, 02  gOu\ ., _ [ (9%, Ou 232
/V(at”%'agci+ M)dv /V(at+ azi)dv (2:32)

= a—(I)dV—l—/vini(I)dS
v ot s

where V' denotes a fixed non-deformable volume in space. The divergence of the ve-
locity vector, Ov;/Ox;, on the first line represents the increase or decrease of Viart
during dt. The divergence theorem was used to obtain the last line and S' denotes the
bounding surface of volume V. The last term on the last line represents the net flow of
® across the fixed non-deformable volume, V. ® in the equation above can be, e.g., p
(mass), pv; (momentum) or pu (energy). This equation applies to any volume at every
instant and the restriction to a collection of a material particles is no longer necessary.
Hence, in fluid mechanics the transport equations (Eqgs. 2.2, 2.5, 2.13, ...) are valid
both for a material collection of particles as well as for a volume; the latter is usually
fixed (this is not necessary).

The left hand of the momentum equation, i.e. ¢ = pwv;, is given on the first line in
Eq. 2.30. However, if we want to write it as dv; /dt (as in [4]) we start from the right
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side of line 1 in Eq. 2.32, i.e.

i( U-)+ ’U‘%_’U'@—l— dvi_;’_ U'%

P plaxk_ var TP pzazk
~Op dp dv; Oy,
Ui T e TP TP g,
- d’l}i
P
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because the underlined terms on line 2 are the continuity equation multiplied with v;.
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Figure 3.1: The plate moves to the right with speed V; for ¢t > 0.
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Figure 3.2: The v velocity at three different times. t3 > t2 > t;.

3 Solutions to the Navier-Stokes equation: three exam-
ples

3.1 The Rayleigh problem

MAGINE the sudden incompressible motion of an infinitely long flat plate. For time

greater than zero the plate is moving with the speed V4, see Fig. 3.1. Because the
plate is infinitely long, there is no x; dependency. Hence the flow depends only on z2
and ¢, i.e. v; = v1(z2,t) and p = p(z2,t). Furthermore, Ov, /0x1 = Jvs/Oxs = 0 so
that the continuity equation gives Qvy/9xo = 0. At the lower boundary (22 = 0) and
at the upper boundary (xo2 — o0) the velocity component v = 0, which means that
vo = 0 in the entire domain. So, Eq. 2.9 gives (no body forces, i.e. f; = 0) for the vy
velocity component

8’01

ot

82’01

v
2
0x3

3.1

where we have divided the equation by density so that v = u/p. The boundary condi-
tions for Eq. 3.1 are
vi1(22,=0) =0, wvi(z2=0,¢)=V, vi(r2—00,t)=0 (3.2)
The solution to Eq. 3.1 is shown in Fig. 3.2. For increasing time (t3 > to > t;), the
moving plate affects the fluid further and further away from the plate.
It turns out that the solution to Eq. 3.1 is a similarity solution; this means that the
number of independent variables is reduced by one, in this case from two (z2 and ) to

one (). The similarity variable, n, is related to x5 and t as

=S (3.3)

similarity
solution
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If the solution of Eq. 3.1 depends only on 7, it means that the solution for a given fluid
will be the same (“similar”) for many (infinite) values of x> and ¢ as long as the ratio
x2/+/vt is constant. Now we need to transform the derivatives in Eq. 3.1 from 9/0t
and 0/0x4 to d/dn so that it becomes a function of 7 only. We get

avl_dvl 517_ .Z’Qﬁ_s/2d’l)1_ 1ndv
ot dn ot 4y dnp 2t dp
Ovi _dvi On 1 duv
dry  dn Oz 2wt dn

o _ o0 (ou)_ 0 (1 du\_ 1 9 (dw)_ 1w
z3 © Oxy \Oxo ) Oxo \ 2wt dn ) 2wt Oxs \ dn )  4ut dn?

(3.4)
We introduce a non-dimensional velocity
(%1
== 35
v (35)
Inserting Egs. 3.4 and 3.5 in Eq. 3.1 gives
d’f df
—= +2n— =20 3.6
n? +2n dn (3.6)

‘We have now successfully transformed Eq. 3.1 and reduced the number of independent
variables from two to one. Now let us find out if the boundary conditions, Eq. 3.2, also
can be transformed in a physically meaningful way; we get

v1(22,6=0)=0= f(n > 00)=0
vi(ze =0,t) =V = f(n=0)=1 3.7)
vi(x2 > 00,t) =0= f(n > 00)=0
Since we managed to transform both the equation (Eq. 3.1) and the boundary conditions

(Eq. 3.7) we conclude that the transformation is suitable.
Now let us solve Eq. 3.6. Integration once gives

d
d_{7 = Cy exp(—n?) (3.8)
Integration a second time gives
n
f= Cl/ exp(—n"?)dn’ + Cy 3.9
0

The integral above is the error function

9 [
erf(n) = ﬁ/o exp(—n?)dn’ (3.10)

At the limits, the error function takes the values 0 and 1, i.e. erf(0) = 0 and erf(n —
oo) = 1. Taking into account the boundary conditions, Eq. 3.7, the final solution to
Eq. 3.9is (with Cy = 1 and C; = —2//7)

f(n) =1 —erf(n) (3.11)
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Figure 3.3: The velocity, f = v1/Vp, given by Eq. 3.11.
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Figure 3.4: The shear stress for water (v = 10~ °%) obtained from Eq. 3.12 at time ¢ = 100 000.

The solution is presented in Fig. 3.3. Compare this figure with Fig. 3.2 at p. 38; all
graphs in that figure collapse into one graph in Fig. 3.3. To compute the velocity, v,
we pick a time ¢ and insert 22 and ¢ in Eq. 3.3. Then f is obtained from Eq. 3.11 and
the velocity, vy, is computed from Eq. 3.5. This is how the graphs in Fig. 3.2 were
obtained.
From the velocity profile we can get the shear stress as
oy pwVo df — pWo

2
Tol = p—— = - = exp (—
21 'u(9$2 2/t dn VTt P ( K )

where we used v = u/p. Figure 3.4 presents the shear stress, 721. The solid line is
obtained from Eq. 3.12 and circles are obtained by evaluating the derivative, df /dn,
numerically using central differences (fj41 — fj—1)/(nj+1 — nj—1). As can be seen
from Fig. 3.4, the magnitude of the shear stress increases for decreasing 7 and it is
largest at the wall, 7, = —pVy/\/7t

The vorticity, w3, across the boundary layer is computed from its definition (Eq. 1.36)

(3.12)

81)1 Vo df Vo
W = —— — — —_ =
5T Oas wWwtdny vt
From Fig. 3.2 at p. 38 it is seen that for large times, the moving plate is felt further
and further out in the flow, i.e. the thickness of the boundary layer, ¢, increases. Often

exp(—12) (3.13)
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Figure 3.5: Flow in a horizontal channel. The inlet part of the channel is shown.

the boundary layer thickness is defined by the position where the local velocity, vy (22),
reaches 99% of the freestream velocity. In our case, this corresponds to the point where
v1 = 0.01V;. Find the point f = v1/V = 0.01 in Fig. 3.3; at this point ) ~ 1.8 (we
can also use Eq. 3.11). Inserting z2 = § in Eq. 3.3 gives

0
N
It can be seen that the boundary layer thickness increases with t!/2. Equation 3.14 can

also be used to estimate the diffusion length. After, say, 10 minutes the diffusion length
for air and water, respectively, are

n=18 = §=3.6Vut (3.14)

Ouir = 10.8cm

Owater = 2.8cm

(3.15)

The diffusion length can also be used to estimate the thickness of a developing bound-
ary layer, see Section 4.3.1.

diffusion
length

Exercise 16 Consider the graphs in Fig. 3.3. Create this graph with Python/Matlab/Octave.

Exercise 17 Consider the graphs in Fig. 3.2. Note that no scale is used on the xo axis

and that no numbers are given for t1, to and ts. Create this graph with Python/Matlab/Octave

for both air and engine oil. Choose suitable values onti, t3 and ts.

Exercise 18 Repeat the exercise above for the shear stress, To1, see Fig. 3.4.

3.2 Flow between two plates

Consider steady, incompressible flow in a two-dimensional channel, see Fig. 3.5, with
constant physical properties (i.e. ;# = const).

3.2.1 Curved plates

Provided that the walls at the inlet are well curved, the velocity near the walls is larger
than in the center, see Fig. 3.5. The reason is that the flow (with velocity V') following
the curved wall must change its direction. The physical agent which accomplish this
is the pressure gradient which forces the flow to follow the wall as closely as possible
(if the wall is not sufficiently curved a separation will take place). Hence the pressure
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Figure 3.6: Flow in a channel bend.

C
< N Y

T2

A
C
Figure 3.7: Secondary flow in a duct bend.

in the center of the channel, P, is higher than the pressure near the wall, P;. It is thus
easier (i.e. less opposing pressure) for the fluid to enter the channel near the walls than
in the center. This explains the high velocity near the walls.

The same phenomenon occurs in a channel bend, see Fig. 3.6. The flow V ap-
proaches the bend and the flow feels that it is approaching a bend through an increased
pressure. The pressure near the outer wall, P», must be higher than that near the inner
wall, Py, in order to force the flow to turn. Hence, it is easier for the flow to sneak
along the inner wall where the opposing pressure is smaller than near the outer wall:
the result is a higher velocity near the inner wall than near the outer wall. In a three-
dimensional duct or in a pipe, the pressure difference P, — P; creates secondary flow
downstream the bend (i.e. a swirling motion in the x> — 23 plane). If you sit on a fluid
particle through the bend you’re exposed to two forces:

e a centrifugal forces which tries to push you towards the outer wall
e and an opposing pressure force P> — P per unit area

The pressure force is constant along the x3 direction but the centrifugal is small along
the walls a and b (because of the boundary laywers along these walls) and it is large in
the center C' — C'. Hence, the secondary flow is in the center (C' — C') movning towards
the outer wall..

3.2.2 Flat plates

The flow in the inlet section (Fig. 3.5) is two dimensional. Near the inlet the velocity is
largest near the wall and further downstream the velocity is retarded near the walls due
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to the large viscous shear stresses there. The flow is accelerated in the center because
the integrated mass flow (from x5 = 0 to h) at each x; must be constant because of
continuity. The acceleration and retardation of the flow in the inlet region is “paid for ”
by a pressure loss which is rather high in the inlet region; if a separation occurs because
of sharp corners at the inlet, the pressure loss will be even higher. For large z; the flow
will be fully developed; the region until this occurs is called the entrance region, and
the entrance length can, for moderately disturbed inflow, be estimated as [6]
T1e VDh

—— = 0.016R = 0.016
Dh €Dn v

(3.16)

where V' denotes the bulk (i.e. the mean) velocity, and D), = 4A/S, where Dy,
A and S}, denote the hydraulic diameter, the cross-sectional area and the perimeter,
respectively. For flow between two plates we get Dy, = 2h.

Let us find the governing equations for the fully developed flow region; in this
region the flow does not change with respect to the streamwise coordinate, x; (i.e.
Ovy/0xy = Ovg/Oxy; = 0). Since the flow is two-dimensional, it does not depend
on the third coordinate direction, 23 (i.e. 9/0x3), and the velocity in this direction is
zero, i.e. v3 = (. Taking these restrictions into account the continuity equation can be
simplified as (see Eq. 2.3)

802

9y

Integration gives vy = C1 and since v, = 0 at the walls, it means that

=0 (3.17)

vy =0 (3.18)

across the entire channel (recall that we are dealing with the part of the channel where
the flow is fully developed; in the inlet section vy # 0, see Fig. 3.5).

Now let us turn our attention to the momentum equation for vs. This is the vertical
direction (x2 is positive upwards, see Fig. 3.5). The gravity acts in the negative x
direction, i.e. f; = (0, —g, 0). The momentum equation can be written (see Eq. 2.9 at
p- 32)

2
p%pmg—erpvzg—;zg—iJru%—zgpg (3.19)
Since vy = 0 we get
g—i = —pg (3.20)
Integration gives
P = —pgxs + Cy (1) (3.21)

where the integration “constant” C'; may be a function of z; but not of 5. If we denote
the pressure at the lower wall (i.e. at z2 = 0) as p we get

P = —pgzs + p(z1) (3.22)

Hence the pressure, P, decreases with vertical height. This agrees with our experience
that the pressure decreases at high altitudes in the atmosphere and increases the deeper
we dive into the sea. Usually the hydrodynamic pressure, p, is used in incompressible
flow. This pressure is zero when the flow is szatic, i.e. when the velocity field is zero.
However, when you want the physical pressure, the pgzo as well as the surrounding
atmospheric pressure must be added.

hydrodynamic
pressure
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We can now formulate the momentum equation in the streamwise direction

dvy _ ovy on dp 8%v;

Pt =0 0, T dar M 0a2

(3.23)

where P was replaced by p using Eq. 3.22. Since vy = 0v1 /021 = 0 the left side is
Z€ro SO

0%, dp

’ 02  dry

Since the left side is a function of z2 and the right side is a function of x;, we conclude

that they both are equal to a constant (i.e. Eq. 3.24 is independent of x1 and z2) . The

velocity, vy, is zero at the walls, i.e

(3.24)

v1(0) = v1(h) =0 (3.25)

where h denotes the height of the channel, see Fig. 3.5. Integrating Eq. 3.24 twice and
using Eq. 3.25 gives

122 (3.26)

The minus sign on the right side appears because the pressure is decreasing for increas-
ing x1; the pressure is driving the flow. The negative pressure gradient is constant (see
Eq. 3.24) and can be written as —dp/dx; = Ap/L.

The velocity takes its maximum in the center, i.e. for 25 = h/2, and reads

h Aph 1 h? A
Vimae = — =22 (1-2) ==L (3.27)
’ 2u L 2 2 8u L
We often write Eq. 3.26 on the form
v 4z T2
=—(1-— 3.28
vl,maz h ( h ) ( )

The mean velocity (often called the bulk velocity) is obtained by integrating Eq. 3.28
across the channel, i.e.

h
V1, mazx 4.%'2 €T 2
mean = : — (1= _) dz2 = ZV1 maz 3.29
YL h /0 h ( n) T g (329)

The velocity profile is shown in Fig. 3.8
Since we know the velocity profile, we can compute the wall shear stress. Equa-

tion 3.26 gives
vy h dp h Ap
Tw =7 =———F— = -—
al’g 2 dl’l 2 L
Actually, this result could have been obtained by simply taking a force balance of a
slice of the flow far downstream.

This flow is analyzed in Appendix C.

(3.30)

3.2.3 Force balance, channel flow

We continue to consider fully developed flow between two parallel plates. To formulate
a force balance in the z; direction, we start with Eq. 1.7 which reads fori = 1

vy _ 9o
p dt B 8:rj

(3.31)
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Figure 3.8: The velocity profile in fully developed channel flow, Eq. 3.28.

The left hand side is zero since the flow is fully developed. Forces act on a volume and
its bounding surface. Hence we integrate Eq. 3.31 over the volume of a slice (length
L), see Fig. 3.9

0:/ ?dv (3.32)
v 0%;

Recall that this is the form on which we originally derived the momentum balance
(Newton’s second law) in Part I. [4] Now use Gauss divergence theorem

0:/ %‘g?dvz/ajlnjds (3.33)
1% J S

The bounding surface consists in our case of four surfaces (lower, upper, left and right)
so that

0: / UjlndeJr/
Steft S.

The normal vector on the lower, upper, left and right are 7; jower = (0,—1,0), N upper =
(0,1,0), 7 1efe = (—1,0,0), n4.rigne = (1,0,0). Inserting the normal vectors and us-
ing Eq. 1.9 give

UjlndeJr/ Ujlnde+/ lende (334)

right Slower SuppeT

OZ—/ (—p+T11)dS+/ (—p+T11)dS— 721d5+/ To1dS
Steft Sright Stower Supper

(3.35)
711 = 0 because Qvy /0x1 = 0 (fully developed flow). The shear stress at the upper and
lower surfaces, 71, have opposite sign because (1(0v1/022)10wer = —p(0V1/0%2)upper-

Using this and Eq. 3.22 give (p = p(z1) and 7, is constant and can thus be taken out
in front of the integration)

0=pWh — poWh — 27, LW (3.36)

where 7, = p(0v1/0%2)10wer and W is the width (in x5 direction) of the two plates
(for convenience we set W = 1). With Ap = p; — p2 we get Eq. 3.30.
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Figure 3.9: Force balance of the flow between two plates.

3.2.4 Balance equation for the kinetic energy

In this subsection we will use the equation for kinetic energy, Eq. 2.23. Let us integrate
this equation in the same way as we did for the force balance. The left side of Eq. 2.23
is zero because we assume that the flow is fully developed; using Eq. 1.9 gives

0v;04; Ov;
0= i05i ‘i—z -,
ox; ~ V'ax, +'pi_of'
_ 781)]'17 n 0v;Tj; eréij% B Tﬂ% (3.37)
dzj Oz, O, dz;
D

On the first line v; f; = v1 f1 + v2fo = 0 because v = f; = 0. The third term on
the second line pd;;0v;/Ox; = pdv;/Ox; = 0 because of continuity. The last term
corresponds to the viscous dissipation term, ¢ (i.e. loss due to friction), see Eq. 2.25
(term b). Now we integrate the equation over a volume

0 :/ ( Opv; | Omiivi @) dv (3.38)
v (’)xj (’)xj

Gauss divergence theorem on the two first terms gives

0= /(_pvj +Tji’UZ‘)7’LJ‘dS—/ ddV (339)
S \%

where S is the surface bounding the volume. The unit normal vector is denoted by n;
which points out from the volume. For example, on the right surface in Fig. 3.9 it is
n; = (1,0, 0) and on the lower surface it is n; = (0, —1,0). Now we apply Eq. 3.39
to the fluid enclosed by the flat plates in Fig. 3.9. The second term is zero on all
four surfaces and the first term is zero on the lower and upper surfaces (see Exercises
below). We replace the pressure P with p using Eq. 3.22 so that

/ (—pv1 + pgzavi)nidS = —(p2 — pl)/ vindS
Sleft&sright Sleft&sright (340)

= Apvl,meanWh
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because pgxronivi on the left and right surfaces cancels; p can be taken out of the
integral as it does not depend on z2. Finally we get

1
Ap = m /V @dV (34])
3.3 Two-dimensional boundary layer flow over flat plate

The equations for steady, two-dimensional, incompressible boundary layer flow reads
(z1 and x5 denote streamwise and wall-normal coordinates, respectively)
81}1 8’1}1 821)1
V11— Vo— =V
0z, Oza 03

Ip
S A 342
s (3.42)
8v1 81)2 o
(’)xl + 8$2 =0

where the pressure gradient is omitted in the v; momentum equation because dp/dx1 =
0 along a flat plate in infinite surroundings. The boundary conditions are
o =0:v; =vo =0 (at the wall)

(3.43)
Ty — 00 : U1 = Vi 0,2 =0 (far from the wall)

Let’s introduce the stream function ¥, which is useful when re-writing the two-
dimensional Navier-Stokes equations. It is defined as

ov . __ 9% (3.44)
8351

With the velocity field expressed in W, the continuity equations is automatically satis-
fied which is easily shown by inserting Eq. 3.44 into the continuity equation

2 2
Oor O 00 O _, (3.45)
(’)xl 8$2 8:51(’)1:2 8:528:1:1

Inserting Eq. 3.44 into the streamwise momentum equation gives

ov 9%V oV 9*w roaa\

== - = 3.46
09 Ox10z2  Om1 073 v o3 (3.46)
The boundary conditions for the stream function read
ov
zo=0:V = e 0 (at the wall)
2 (3.47)

To — 00 : 8_111 — V10 (far from the wall)
81'2 ’

As in Section 3.1 we want to transform the partial differential equation, Eq. 3.46,
into an ordinary differential equation. In Section 3.1 we replaced x; and ¢ with the new
non-dimensional variable 1. Now we want to replace x; and x» with a new dimension-
less variable, say £. At the same time we define a new dimensionless stream function,

g9(§), as
i 1/2 1/2
= (_00) 2o, U= (Viem)?g (3.48)

vxy

stream-
function
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First we need the derivatives 9¢ /01 and 9 /O

3 ;<ﬁgy”g &

0 2 2

X1 1/1:11 ; X1 X1 (349)
06 _ (Vi) _ &
0xo VT T2

Now we express the first derivatives of ¥ in Eq. 3.46 as derivatives of g, i.e. (g’
denotes dg/d€)

o _ 9 1/2 12 , 0§
0y N 0z ((Vvl’oozl) ) g+ (V‘/l.,ooxl) g e
1 VV - 1/2
T2 < . > 9- (Vvl.,ooif1)1/2 g’i
1 2.%'1
1 (Vi) 2 (3.50)
() o
ov 0 1/2 e 06, /
an - a552 ((VVLOO:El) ) g+ (V‘/l"ooxl) ax2g - Vl,oog

The second and third derivatives of ¥ read

82\11 ag ‘/1 1/2 g
—— =Vied' =—— =W 10 L VAN
0x3 Lood O ! <1/1:1 > g L xgg
83\11 ‘/1 1/2 66 ‘/1 € 2
— =Vie ,00 mos oy OO_,OO " _ . o= m (3.51)
8x§ L ( v ) g 0xo L v g L (zQ) g
v " 55 € %
al’la$2 o Vl,oog 8:r1 o 721‘1‘/1"009

Inserting Egs. 3.50 and 3.51 into Eq. 3.46 gives

1 1V - 1/2 Vi - 1/2
*%,mg/ivl,oog” - (5 (V L ) (g gg/)> ‘/1,00 ( L ) g”

2z T v
! ) ! ! (3.52)
—y 1,00 g///
vxy
Divide by V;? and multiply by z; gives
/6 " 1 ! " __ n 3 53
959" —50—-¢€9)9" =g (3.53)
so that i
agg” +4" =0 (3.54)

This equation was derived (and solved numerically!) by Blasius in his PhD thesis

1907 [7,8]. The numerical solution is given in Table 3.1. The flow is analyzed in
Appendix 33.

Exercise 19 For the fully developed flow, compute the vorticity, w;, using the exact
solution (Eq. 3.28).
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£ g g g’

0 | 0.000000000E+00 | 0.000000000E+00 | 3.320573362E-01
0.2 | 6.640999715E-03 | 6.640779210E-02 | 3.319838371E-01
0.4 | 2.655988402E-02 | 1.327641608E-01 | 3.314698442E-01
0.6 | 5.973463750E-02 | 1.989372524E-01 | 3.300791276E-01
0.8 | 1.061082208E-01 | 2.647091387E-01 | 3.273892701E-01
1.0 | 1.655717258E-01 | 3.297800312E-01 | 3.230071167E-01
1.2 | 2.379487173E-01 | 3.937761044E-01 | 3.165891911E-01
1.4 | 3.229815738E-01 | 4.562617647E-01 | 3.078653918E-01
1.6 | 4.203207655E-01 | 5.167567844E-01 | 2.966634615E-01
1.8 | 5.295180377E-01 | 5.747581439E-01 | 2.829310173E-01
2.0 | 6.500243699E-01 | 6.297657365E-01 | 2.667515457E-01
2.2 | 7.811933370E-01 | 6.813103772E-01 | 2.483509132E-01
2.4 | 9.222901256E-01 | 7.289819351E-01 | 2.280917607E-01
2.6 | 1.072505977E+00 | 7.724550211E-01 | 2.064546268E-01
2.8 | 1.230977302E+00 | 8.115096232E-01 | 1.840065939E-01
3.0 | 1.396808231E+00 | 8.460444437E-01 | 1.613603195E-01
3.2 | 1.569094960E+00 | 8.760814552E-01 | 1.391280556E-01
3.4 | 1.746950094E+00 | 9.017612214E-01 | 1.178762461E-01
3.6 | 1.929525170E+00 | 9.233296659E-01 | 9.808627878E-02
3.8 | 2.116029817E+00 | 9.411179967E-01 | 8.012591814E-02
4.0 | 2.305746418E+00 | 9.555182298E-01 | 6.423412109E-02
4.2 | 2.498039663E+00 | 9.669570738E-01 | 5.051974749E-02
4.4 | 2.692360938E+00 | 9.758708321E-01 | 3.897261085E-02
4.6 | 2.888247990E+00 | 9.826835008E-01 | 2.948377201E-02
4.8 | 3.085320655E+00 | 9.877895262E-01 | 2.187118635E-02
5.0 | 3.283273665E+00 | 9.915419002E-01 | 1.590679869E-02
5.2 | 3.481867612E+00 | 9.942455354E-01 | 1.134178897E-02
5.4 | 3.680919063E+00 | 9.961553040E-0 | 17.927659815E-03
5.6 | 3.880290678E+00 | 9.974777682E-0 | 15.431957680E-03
5.8 | 4.079881939E+00 | 9.983754937E-0 | 1 3.648413667E-03
6.0 | 4.279620923E+00 | 9.989728724E-01 | 2.402039844E-03
6.2 | 4.479457297E+00 | 9.993625417E-01 | 1.550170691E-03
6.4 | 4.679356615E+00 | 9.996117017E-01 | 9.806151170E-04
6.6 | 4.879295811E+00 | 9.997678702E-01 | 6.080442648E-04
6.8 | 5.079259772E+00 | 9.998638190E-01 | 3.695625701E-04
7.0 | 5.279238811E+00 | 9.999216041E-01 | 2.201689553E-04
7.2 | 5.479226847E+00 | 9.999557173E-01 | 1.285698072E-04
7.4 | 5.679220147E+00 | 9.999754577E-01 | 7.359298339E-05
7.6 | 5.879216466E+00 | 9.999866551E-01 | 4.129031111E-05
7.8 | 6.079214481E+00 | 9.999928812E-01 | 2.270775140E-05
8.0 | 6.279213431E+00 | 9.999962745E-01 | 1.224092624E-05
8.2 | 6.479212887E+00 | 9.999980875E-01 | 6.467978611E-06
8.4 | 6.679212609E+00 | 9.999990369E-01 | 3.349939753E-06
8.6 | 6.879212471E+00 | 9.999995242E-01 | 1.700667989E-06
8.8 | 7.079212403E+00 | 9.999997695E-01 | 8.462841214E-07

Table 3.1: Blasius numerical solution of laminar flow along a flat plate.
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Figure 3.10: Force balance of boundary layer flow along a flat plate.

Exercise 20 Show that the first and second terms in Eq. 3.39 are zero on the upper and
the lower surfaces in Fig. 3.9.

Exercise 21 Show that the second term in Eq. 3.39 is zero also on the left and right
surfaces in Fig. 3.9 (assume fully developed flow).

Exercise 22 Using the exact solution, compute the dissipation, ®, for the fully devel-
oped flow.

Exercise 23 From the dissipation, compute the pressure drop. Is it the same as that
obtained from the force balance (if not, find the error; it should be!).

3.3.1 Momentum balance, boundary layer

Let’s make a momentum balance for the boundary layer in the same way as we did
for fully-developed channel flow in Section 3.2.3. The left boundary (see Fig. 3.10) is
located upstream of the plate, i.e. at z < 0, see Fig. 33.1, Note that here — contrary to
the channel flow — we do not have any pressure gradient. At the upper boundary we
also have an outflow because the right boundary includes a boundary layer meaning
that the outflow here is smaller than the inflow at the left boundary. Hence, the right
side of the momentum equation reads (cf. Eq. 3.34)

0:/ lende:—/
S S

using Eq. 1.9 and n; = (0,—1,0). Only the contribution from the lower boundary
appears. The reason is that is no pressure forces on the left and right (or, rather, they
cancel each other) and there is no shear stress on the top boundary since dv; /Ox2 = 0.
The other difference compared to the channel flow in Section 3.2.3 is that the left side
of Eq. 3.31 is not zero. It reads

021 = 7/ TwdS (3.55)
S

lower lower lower

d’l)l _ (91)]"[)1

— = . 3.56
Gauss divergence theorem gives
v
Y1 dV = ’Uj’Ulnde +/ vjvlnde +/ ’Uj’Uﬂ’Lde (3.57)
v Oz; Sieft Srignt Stop
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where the contribution at the lower boundary is zero since the velocity is zero at
the walls. The unit normal vector at the left, right and top boundaries are (1,0, 0),
(—=1,0,0) and (0, 1, 0), respectively, which gives

/Mdvz/
v Oz; S

At the left boundary v; = V which gives

vidS — vidS + / vy vodS (3.58)
Sleft S

right top

(’)vjvl

dv = / (v = Vi) dS + / v109dS (3.59)
S S

top

v Oz,

Combining Eqgs. 3.55 and 3.59 we can write (assuming that the extent of the integration
domain in the third direction is one)

/ (ijoo — vf) dzs +/
S S

We find one important difference between fully-developed channel flow and bound-
ary layer flow: the flow in channel flow is driven by a pressure gradient (the pressure
decreases) whereas in the boundary layer the “force” to overcome the opposing wall
shear stress is achieved by decreasing momentum in the convective term. Making a bal-
ance of the mass flow and combining it with Eq. 3.60 the expression for the momentum
thickness, 33.2, is derived.

1
Tw = —

L

1)11)2(11'1] (360)

top
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Figure 4.1: Surface forces acting on a fluid particle. The fluid particle is located in the lower
half of fully developed channel flow. The v; velocity is given by Eq. 3.28 and v2 = 0. Hence
Ti1 = To2 = O7112/0x1 = 0 and —9721/0x2 > 0. The vy velocity field is indicated by dashed
vectors.

4 Vorticity equation and potential flow

4.1 Vorticity and rotation

ORTICITY, w;, was introduced in Eq. 1.12 at p. 22. As shown in Fig. 1.4 at p. 25,
Vvorticity is connected to rotation of a fluid particle. Figure 4.1 shows the surface
forces acting on a fluid particle in a shear flow. Looking at Fig. 4.1 it is obvious that
only the shear stresses are able to rotate the fluid particle; the pressure and the normal
viscous stresses act through the center of the fluid particle and are thus not able to
affect rotation of the fluid particle. Note that the v9 momentum equation (see Eqs. 2.4
and 3.32) requires that the vertical viscous stresses in Fig. 4.1 are in balance. The vy
momentum equation requires that the horizontal viscous stresses balance the pressure
difference. Furthermore, you may notice that 715 # 791 in Fig. 4.1. The reason is that
To1 is drawn at a larger x5 where the velocity derivative dvq /Ox4 is larger that at the
position where 112 is drawn.

Let us have a look at the momentum equations in order to show that the viscous
terms indeed can be formulated with the vorticity vector, w;. In incompressible flow
the viscous terms read (see Egs. 2.4, 2.5 and 2.7)

= p—— @1
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The right side can be re-written using the tensor identity

821)1' 82’Uj _( 621}3‘ 62% )

8zj8xj - (9%]81'1 8:75]8351 B 8:rj8:rj

B N S ¢ S
o 83:1 8xj inm=mjk 836]835” o inm=mjk axjal'n
=0

where the first on the second line is zero because of continuity. Let’s verify that

2,,. 2,,. 2
( 0%, 0%v; > 0%y, @.3)

- = EinmEmjk
O0x;0x; Ox;0x; O0x;0xy,

Use the € — d-identity (see Table B.1 at p. 287)

aQUk 82vk aQUk 821)1-
. Tk (s Y N — _ 4.4
SinmEmjk 0x;0x, (8i50ns = ik0ns) O0x;0x, Ox;0r, Ox;0x; @4

which shows that Eq. 4.3 is correct. At the right side of Eq. 4.3 we recognize the
vorticity, Wy, = €m;x0vi/0x;, so that

(921)1' 8wm
= —Einm —— 4.5
a$jal'j c axn ( )
In vector notation the identity Eq. 4.5 reads
VivV=V(V-v)-VxVxv=-Vxw (4.6)
Using Eq. 4.5, Eq. 4.1 reads
aTji Gwm
= —HME&inm 73— 4.7
8xj He axn ( )

Let’s look at Eq. 4.7 for the v; equation in two dimensions. Setting 7 = 1 gives

Ot _ ey Om o Ows Ows Ows Ows | Ows
ox; HE1nm Ox, HiE123 0zo HE132 drs  Oxg Ors  Ore
since wy = 0. Inserting Eq. 1.12 gives

O _ 0 ( Ow)__ 0 ( Owu_ Oy 0 ( ou Oun
c’)xj - 6172 33k c’)xj - 6172 321 8$2 312 8$1 o 8$2 8$2 61}1

Changing the order of derivatation for the second term gives

O _ 0 (9w _ 9 (v
axj o 6172 6172 61}1 6172

Using the continuity equation for the last term gives

O _ 0 (dn), 0 (0n
axj o 6172 6172 61}1 61}1

and now we have shown — again — that Eqgs. 4.7 and 4.8 are indeed correct.

)
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Thus, there is a one-to-one relation between the viscous term and vorticity: no
viscous terms means no vorticity and vice versa. An imbalance in shear stresses (left
side of Eq. 4.7) causes a change in vorticity, i.e. generates vorticity (right side of
Eq. 4.7). Hence, inviscid flow (i.e. friction-less flow) has no rotation. (The exception
is when vorticity is transported into an inviscid region, but also in that case no vorticity
is generated or destroyed: it stays constant, unaffected.) Inviscid flow is often called
irrotational flow (i.e. no rotation) or potential flow. The vorticity is always created at
boundaries, see Section 4.3.1.

The main points that we have learnt in this section are:

1. The viscous terms are responsible for creating vorticity; this means that the vor-
ticity can not be created or destroyed in inviscid (friction-less) flow

2. The viscous terms in the momentum equations can be expressed in w;; consider-
ing Item 1 this was to be expected.

Exercise 24 Prove the first equality of Eq. 4.5 using the -0-identity.

Exercise 25 Write out Eq. 4.7 for i = 1 and verify that it is satisfied.

4.2 The vorticity transport equation in three dimensions

Up to now we have talked quite a lot about vorticity. We have learnt that physically
it means rotation of a fluid particle and that it is only the viscous terms that can cause
rotation of a fluid particle. The terms inviscid (no friction), irrotational and potential
flow all denote frictionless flow which is equivalent to zero (change in) vorticity. There
is a small difference between the three terms because there may be vorticity in inviscid
flow that is convected into the flow at the inlet(s); but also in this case the vorticity is not
affected once it has entered the inviscid flow region. However, usually no distinction is
made between the three terms.

In this section we will derive the transport equation for vorticity in incompressible
flow. As usual we start with the Navier-Stokes equation, Eq. 2.9 at p. 32. First, we
re-write the convective term of the incompressible momentum equation (Eq. 2.9) as

81)1-

Vi ——
J
8:rj

1
= Uj(Sij + Qij) = vy (Sl — §5ijkwk) “4.9)
where Eq. 1.19 on p. 23 was used. Inserting S;; = (Jv;/0x; + Ov;/0x;)/2 and
multiplying by two gives

5 ov; <8vi n %

j =vj — €ijkVjWE 4.10
Y 8acj Y 8acj (’)xl) ¢ ROk ( )
The second term on the right side can be written as (Trick 2, see Eq. 8.4)

81)]' - lﬁ(vjvj) o 8k

20— = 4.11
Y (’)xl 2 (’)xl (’)xl ( )
where k = v;v; /2. Equation 4.10 can now be written as
8’Ui ok
Uj% = % — Eijk VWi (412)
J 2

n rotation
no rotation

potential

friction-
less
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The last term on the right side is the vector product of v and w, i.e. v X w.

The trick we have achieved is to split the convective term into one term without
rotation (first term on the right side of Eq. 4.12) and one term including rotation (second
term on the right side). Inserting Eq. 4.12 into the incompressible momentum equation
(Eq. 2.9) yields

Ov; ok 10P 0%v;
ot Ow IR

no rotation

- i 4.1
p O0x; * Vaxjﬁxj +f (413)

rotation

The volume source is in most engineering flows represented by the gravity,i.e. f; = g;.
From Eq. 4.13 we get Crocco’s theorem for steady inviscid flow

o (P o (P
wkVjwrk = — | —+ k) — fi = —+k 4.14
EijkVjWh axi<p+ > [ c’)xi<p+ +¢> (4.14)
Po/p
where d¢/0x; = — f; is the potential of the body force. In vector notation, Eq. 4.14
reads i
vxw=-V(F) (4.15)
p

These equations states that the gradient of stagnation pressure, F, is orthogonal to
both the velocity and vorticity vector.

Since the vorticity vector in Eq. 1.12 is defined by the cross product e;,4;0v; /0z,
(V x v in vector notation, see Exercise 8), we start by applying the operator &,,4,0/9x,
to the Navier-Stokes equation (Eq. 4.13) so that

82’01' (92]{3 a’l)jwk

Epai O0tox, Epai 0x;0x,  CpaiCigk O0xq 416

_ e P O o
' p 0x;0, P 9w ;0x;02, " Oz,

where the body force f; was replaced by g;. We know that €;;;, is anti-symmetric in
all indices, and hence the second term on line 1 and the first term on line 2 are zero
(product of a symmetric and an anti-symmetric tensor). The last term on line 2 is
zero because the gravitation vector, g;, is constant (it is zero even if it is non-constant,
because it can be expressed as a potential, see Eq. 4.32). The last term on line 1 is
re-written using the £-§ identity (see Table B.1 at p. 287)

Ovjwy Oviwy Ov,wy,  Ovgw
I ot U Y S SP S o R e
Epqi€ijk Dz, (0pj0qk — Opkda;) Dz, Dz Dz,
(4.17)
Owy, Ovp Owp v
=Up— Wk — Vg —Wpa
Oxy, Oxy, O0xq 0xq
Using the definition of w; we find that its divergence
Ow; 0 vy, 0%y,
= |gip— ) =ciip——m=0 4.18
Ox; Oz (E ik 3z-) c Jk@xjaxi (4.18)

is zero (product of a symmetric and an anti-symmetric tensor). Using the continuity
equation (Jv,/0z4 = 0) and Eq. 4.18, Eq. 4.17 can be written

Ovjwr, 0y Owp

iCii = o —2 4.19
Epaiijk 8xq Wk a:L'k Uk 8xk ( )
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Figure 4.2: Vortex stretching. Dashed lines denote fluid element before stretching. g—:;ll > 0.
The second term on line 2 in Eq. 4.16 can be written as
Inserting Egs. 4.19 and 4.20 into Eq. 4.16 gives finally

%z% vkg—‘xwkg—x+u% 421

We recognize the usual unsteady term, the convective term and the diffusive term.
Furthermore, we have got rid of the pressure gradient term. That makes sense, because
as mentioned in connection to Fig. 4.1, the pressure cannot affect the rotation (i.e. the
vorticity) of a fluid particle since the pressure acts through its center. Equation 4.21
has a new term on the right-hand side which represents amplification and bending or
tilting of the vorticity lines. If we write it term-by-term it reads

L L R
5 <3$1 %’Ez gifs
wkﬁ = wlﬂ wgﬂ QJ3£, p=2 4.22)
8xk (’)xl 8$2 8$3
w 8’1}3 w V3 w 8’1}3 —3
15— 25— 35 s =
Oxy Oxo Oxs

The diagonal terms in this matrix represent vortex stretching. Imagine a slender,
cylindrical fluid particle with vorticity w; and introduce a cylindrical coordinate system
with the z;-axis as the cylinder axis and 72 as the radial coordinate (see Fig. 4.2) so
that w; = (w1, 0,0). We assume that a positive vy /0z1 is acting on the fluid cylinder;
it will act as a source in Eq. 4.21 increasing w; and it will stretch the cylinder. The vol-
ume of the fluid element must stay constant during the stretching (the incompressible
continuity equation), which means that the radius, r, of the cylinder will decrease. For
high Reynolds numbers, the viscous term is neglible. Hence, the viscous forces on the
surface is small. This means than the angular momentum, 72wy, is constant during the
elongation (stretching) of the cylinder which gives an increased w;. We see that vortex
stretching will either make a fluid element longer and thinner with larger w; (as in the
example above) or shorter and thicker (when dvy /0x; < 0). The illustratation given
here is mainly relevant when a fluid particle actually rotates (as it does in turbulent
flow, see Section 5).

The off-diagonal terms in Eq. 4.22 represent vortex tilting. Again, take a slender

Vortex
stretching

Re number=
ratio of con-
vective to vis-
cous term

Vortex
tilting
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Figure 4.3: Vortex tilting. Dashed lines denote fluid element before bending or tilting.

fluid particle, but this time with its axis aligned with the x2 axis, see Fig. 4.3. Assume
is has a vorticity, wo, and that the velocity surrounding velocity field is v; = v1(x2).
The velocity gradient dvy /Dxo will tilt the fluid particle so that it rotates in clock-wise
direction. The second term wydv1 /x4 in line one in Eq. 4.22 gives a contribution to
w1. This means that vorticity in the x5 direction, through the source term wo0v /022,
creates vorticity in the z; direction..

Vortex stretching and tilting are physical phenomena which act in three dimensions:
fluid which initially is two dimensional becomes quickly three dimensional through
these phenomena. Vorticity is useful when explaining why turbulence must be three-
dimensional, see Section 5.4.

4.3 The vorticity transport equation in two dimensions

It is obvious that the vortex stretching/tilting has no influence in two dimensions; in
this case the vortex stretching/tilting term vanishes because the vorticity vector is or-
thogonal to the velocity vector (for a 2D flow the velocity vector reads v; = (v1, v2, 0)
and the vorticity vector reads w; = (0,0, ws3) so that the scalar product is zero, i.e.
wyOv,/ Oz, = 0). Thus in two dimensions the vorticity equation reads

dQJ3 8QW3

at V@xaﬁxa (4.23)

(Greek indices are used to indicate that they take values 1 or 2). If the Prandtl number
is one (Pr = 1), this equation is exactly the same as the transport equation for temper-
ature in incompressible flow, see Eq. 2.18. This means that vorticity is convected and
diffused in the same way as temperature. In fully developed channel flow, for example,
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the vorticity and the temperature equations reduce to (cf. Eq. 3.24)

82&)3
0*T
0=k 4.24b
5 (4.24b)
For the temperature equation the heat flux is given by g = —k9T /Jx2; with a hot

lower wall and a cold upper wall (constant wall temperatures) the heat flux is constant
for all x5 and goes from the lower wall to the upper wall. We have the same situation for
the vorticity. Its gradient, i.e. the vorticity flux, 2 = —vdws/Ox2, is constant across
the channel, see Eq. 3.27 (you have plotted this quantity in TME226 Assignment 1).
Equation 4.24 is turned into relations for g2 and 2 by integration

Ywall = V2 (4253)
Qwall = 42 (425b)

If the wall-normal temperature derivative 07/0x2 = 0 at both walls (adiabatic
walls), the heat flux at the walls, g,,411, Will be zero and the temperature will be equal to
an arbitrary constant in the entire domain. It is only when the wall-normal temperature
derivative at the walls are non-zero that a temperature field is created in the domain.
The same is true for ws: if vOws /Oxe = —72 = 0 at the walls, the flow will not include
any vorticity. Hence, vorticity is — in the same way as temperature — generated at the
walls.

4.3.1 Boundary layer thickness from the Rayleigh problem

In Section 3.1 we studied the Rayleigh problem (unsteady diffusion). As shown above,
the two-dimensional unsteady temperature equation is identical to the two-dimensional
unsteady equation for vorticity. The diffusion time, ¢, or the diffusion length, J, in
Eq. 3.14 can now be used to estimate the thickness of a developing boundary layer
(recall that the limit between the boundary layer and the outer free-stream region can
be defined by vorticity: inside the vorticity is non-zero and outside it is zero).
In a boundary layer, the streamwise pressure gradient is zero, see Eq. 3.42. This
means that
821)1
a 03
because, at the wall, the only non-zero terms in the Navier-Stokes equation are the
streamwise pressure gradient and the wall-normal diffusion term (see, for example,
Egs. 2.9 and 3.23). Hence, the flux of vorticity

|
o

wall

821)1

= Vv—s
2
0x3

=0 (4.26)

wall wall

(recall that (Ove /021 )waen = 0) along the wall which means that no vorticity is created
along the boundary. The vorticity in a developing boundary layer is created at the
leading edge of the plate (note that in channel flow, vorticity is indeed created along the
walls because in this case the streamwise pressure gradient is not zero). The vorticity
generated at the leading edge is transported along the wall by convection and at the
same time it is transported by diffusion away from the wall.
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Figure 4.4: Boundary layer. The boundary layer thickness, ¢, increases for increasing stream-
wise distance from leading edge (z1 = 0).

Below we will estimate the boundary layer thickness using the expression derived
for the Rayleigh problem. In a boundary layer there is vorticity and outside the bound-
ary layer it is zero (in the Rayleigh flow problem, the vorticity is created at time ¢ = 0%
when the plate instantaneously accelerates from rest to velocity Vj). Hence, if we can
estimate how far from the wall the vorticity diffuses, this gives us an estimation of the
boundary layer thickness.

Consider the boundary layer in Fig. 4.4. The boundary layer thickness at the end of
the plate is 6(L). The time it takes for a fluid particle to travel from the leading edge of
the plate to « = L is L/V} (in the Rayleigh problem this corresponds to the flow field
after time ¢t = L/V}). During this time vorticity will be transported by diffusion in the
xo direction the length § according to Eq. 3.14. If we assume that the fluid is air with
the speed Vy = 3m/s and that the length of the plate L = 2m we get from Eq. 3.14
that 6(L) = 1.2cm.

Exercise 26 Note that the estimate above is not quite accurate because in the Rayleigh
problem we assumed that the convective terms are zero, but in a developing boundary
layer, as in Fig. 4.4, they are not (vo # 0 and Ov1/dx1 # 0). The proper way to
solve the problem is to use Blasius solution, see Section 3.3. Blasius solution gives (see
Eq. 33.1)

1) 5 VoL
L= g =TS @27

Compute what 6(L) you get from Eq. 4.27.

Exercise 27 Assume that we have a developing flow in a pipe (radius R) or between
two flat plates (separation distance h). We want to find out how long distance it takes
for the the boundary layers to merge. Equation 3.14 can be used with § = R or h.
Make a comparison with this and Eq. 3.16.
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4.4 Potential flow

N potential flow, the velocity vector can be expressed as the gradient of its poten-
tial ®, see Eq. 1.22. The vorticity is then zero by definition since the curl of the
divergence is zero. This is easily seen by inserting Eq. 1.22 (v; = 9®/Jx;) into the
definition of the vorticity, Eq. 1.12, i.e.
(%k 82(1)

Wi = €ijk 5

=€jh e = 42
O0x; ”’“axjaxk 0 (4.28)

since €y, is anti-symmetric in indices j and k and 9*® /9 ;0z), is symmetric in j and
k. Inserting Eq. 1.22 into the continuity equation, Eq. 2.3, gives
_Ovy; 0 (0D  0*0
N axi N (’)xl (’)xl N (’)xlc’)xl
i.e. the potential satisfies the Laplace equation. This is of great important since many
analytical methods exist for the Laplace equation.

(4.29)

4.4.1 The Bernoulli equation

The velocity field in potential flow is thus given by the continuity equation, Eq. 4.29

(together with Eq. 1.22). Do we have any use of the Navier-Stokes equation? The

answer is yes: this equation provides the pressure field. We use the Navier-Stokes

equation (Eq. 4.13) with the viscous term expressed as in Eq. 4.5

ov; n ok 10P Owm

—— — EijkVjWE = ———=— — V€ipnm 5 ——

ot " ow, IR B)

Since w; = 0 in potential (irrotational) flow, we get (with f; = ¢;) and using k =
v /2 =v2/2

o + fi (4.30)

n

o (0% 1 0v? 10P

ot (8%) 20x;  poxy + i @31
where v; in the unsteady term was replaced by its potential (Eq. 1.22). The gravity
force can be expressed as a force potential, g; = —0X /Jz; (see Eq. 4.14), because it is
conservative. The gravity force is conservative because when integrating this force, the
work (i.e. the integral) depends only on the starting and ending points of the integral:
in mathematics this is called an exact differential.

Inserting g; = —0X'/0z; in Eq. 4.31 gives

o (0 v P
—+—+—+X] =0 4.32
axi<8t+2+p+) (4.32)
Integration gives the famous Bernoulli equation
o 2 P
L X =0C(t 4.33
5 T3t ; + (t) (4.33)
where X = —g;z;. In steady flow, we get
v? P
2 p

where g; = (0,0, g3). Using the height, gh = —gsx3, we get the more familiar form

1)2

P
—+—+gh=C (4.35)
2

conservative
force
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4.4.2 Complex variables for potential solutions of plane flows

Complex analysis is a suitable tool for studying potential flow. We start this section by
repeating some basics of complex analysis. For real functions, the value of a partial
derivative, Of /Ox, at & = x is defined by making x approach zy and then evaluating
(f(x+x0)— f())/xo. The total derivative, df /dt, is defined by approaching the point
Z10, 20, T30, t as a linear combination of all independent variables (cf. Eq. 1.1).

A complex derivative of a complex variable is defined as (f(z + 2z0) — f(2))/20
where z = x4y and f = u+iv. We can approach the point zg both in the real coordi-
nate direction, x, and in the imaginary coordinate direction, y. The complex derivative
is defined only if the value of the derivative is independent of how we approach the
point zo. Hence

dz =~ Az=0 Az
f(xo,iyo + iAy) — f(xo,iyo)

df lim f(z0 + Az) — f(20)

J(xo + Az, iyo) — f(wo,iyo)

- Alggo Ax - Alyl;go iAy '
(4.36)
The second line can be written as
1 .
of _1of _iof _0f 437)
Ox 10y 20y dy
since i> = —1. Inserting f = u + iv and taking the partial derivative of f we get
of _ou o
oz 0z ' Oz (4.38)
—ig——i@—z&@——i@—i—@ .
oy Oy dy Oy Oy
Using Eq. 4.37 gives
Ou Ov  Ou  Ov (4.39)

dx 9y’ dy oz
Equations 4.39 are called the Cauchy-Riemann equations. Another way to derive
Eq. 4.39 is found here.

So far the complex plane has been expressed as z = z+1y. It can also be expressed
in polar coordinates (see Fig. 4.5)

z =re? = r(cosf + isinh) (4.40)

Now we return to fluid mechanics and potential flow. Let us introduce a complex
potential, f, based on the stream function, ¥ (Eq. 3.44), and the velocity potential, ®
(Eq. 1.22)

f=2+iv (4.41)

Recall that for potential (i.e. inviscid, ¥ = 0) two-dimensional, incompressible flow,
the velocity potential satisfies the Laplace equation, see for example Eq. 4.29. The
stream function also satisfies the Laplace equation in potential flow where the vorticity,
wj, 18 zero. This is easily seen by taking the divergence of the stream function, Eq. 3.44

82\11 82\11 802 (91)1

oY oY _ 0w ou 442
dz? = Ox3 dzy * 0z2 ws =10 (542


https://mathworld.wolfram.com/Cauchy-RiemannEquations.html
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Figure 4.5: The complex plane in polar coordinates. Real and imaginary axes correspond to the
horizontal and vertical axes, respectively.

see Eq. 1.13. Hence the complex potential, f, also satisfies the Laplace equation.
Furthermore, f also satisfies the Cauchy-Riemann equations, Eq. 4.39, since
od oV 0P ov
%:a—y:vl and a—y:—%:
see Egs. 3.44 and 1.22. Thus we can conclude that f defined as in Eq. 4.41 is differen-

tiable, i.e. df /dz exists. We have now defined a complex function, f = ® + ¢¥ which
satisfies Laplace equation and which has a physical meaning in fluid dynamics.

V2 (4.43)

443 foxz"

Now we will give some examples of f(z) which correspond to useful engineering
flows. The procedure is as follows:

e assume that f oc z" is complex potential
o verify that this is true (see, e.g, Eqs. 4.44 and 4.46)
e choose an n and find out what physical flow the complex potential describes

We can choose any exponent n in f o 2™ and multiply with any constant in order
to get a physical, meaningful flow. The solution

f=0C2" (4.44)

is one example. Let’s first verify that this is a solution of the Laplace equation (i.e. the
continuity equation, 4.29 and thet the flow is inviscid, ws = 0, Eq. 4.42). Taking the
first and the second derivatives of Eq. 4.44 gives

% = Cin(z +iy)" !
0% f
022

of

dy

0% f
%y

= Cin(n —1)(z +iy)" 2
(4.45)
= Oni(x +iy)" "

= Cin(n — 1)i*(z +1iy)" 2 = =Cin(n — 1)(z + iy)" 2
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Figure 4.6: Parallel flow.

We find that the Laplace equation is indeed zero, i.e.

o*f  O*f

922 T2 0

4.4.3.1 Parallel flow
When we set n = 1 in Eq. 4.44 we get (C7 = V)

f=Veoz= Voo(z+ly)

63

(4.46)

(4.47)

The stream function, W, is equal to the imaginary part, see Eq. 4.41. Equation 4.43

gives the velocity components

ov ov
’U1=—=VOO and ’1}2:——:0

Jy Ox
The flow is shown in Fig. 4.6.

4.4.3.2 Stagnation flow

(4.48)

When we set n = 2 in Eqgs. 4.44 we get (inviscid) stagnation flow onto a wall. The
stream function, ¥, corresponds to the imaginary part of f, see Eq. 4.41 so that (C; =

iy

U =22

(4.49)

The solution in form of a vector plot and contour plot of the stream function is given
in Fig. 4.7. The flow impinges at the wall at x5 = 0. The stream function is zero along
the symmetry line, 1 = 0, and it is negative to the left and positive to the right. The

velocity components are obtained as

ov
U1 8:1/ X X1
ov
Vo = ——— = —2y = —2172

ox

(4.50)
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Figure 4.7: Potential flow. Stagnation flow.
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(a) Vector plot. (b) Streamlines. Colors represent W.
Figure 4.8: ¢

aptionPotential flow. The lower boundary for z; < 0 can either be a wall (concave
corner) or symmetry line (wedge).

Recall that since the flow is inviscid (no friction), the boundary condition on the wall is
slip, i.e. a frictionless wall (same as a symmetric boundary). Note that this flow is the
same as we looked at in Section 1.2 except that the velocities are here twice as large
because we chose C; = 1 (see Eq. 1.4).

4.4.3.3 Flow over a wedge and flow in a concave corner.

Next we set n = 6/5. When n is not an integer, it is convenient to express f in polar
coordinates

f=0C (rew)n = Cyr"e™? = 11" (cos(nb) + isin(nd)) (4.51)

With n = 6/5 we get (inviscid) flow over a wedge and flow over a concave corner (n
should be in the interval 1 < n < 2). The stream function, the imaginary part of f, is
given by (Eqgs. 4.41 and 4.51)

U = 7%/ 5in(66/5) (4.52)
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Figure 4.9: Line source. 7 > 0

(C1 = 1) and the velocity components read

vy = l%—\;j = §r1/6 cos(66/5)
4 5 6 (4.53)
_ g _2.1/6
Vg 5 = sin(66/5)

The velocity vector field and the stream function are presented in Fig. 4.8. The stream
function is zero along the lower boundary. Note that § = 0 at the wedge, i.e. 0 < 0 <
5/6m. The angle, «, in Fig. 4.8a is given by

-1
n 6
4.4.4 Analytical solutions for a line source
The complex potential for a line source reads
f=" s (4.55)
27

where m is the strength of the source; the physical meaning of 71 is volume flow
assuming that the extent of the domain in the third coordinate direction, z3, is one.
First, we need to make sure that this solution satisfies the Laplace equation. The first
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and second derivatives read

of _ 1
oxr 2wz
of _ _ 1
0z 222
of im (4.56)
oy 2mz
0% f 9 M m
—_— = fr
Ox? 2wz2  2mz?
which shows that the Laplace equation is satisfied.
Writing Eq. 4.55 on polar form gives
m i0 m i0 m .
f:%ln(re ):%(lnerln(e )):%(lnrJrzG) (4.57)
The stream function corresponds to the imaginary part of f and we get
10V m
Vp = —— = —
r 06  2mr
4.
v » (4.58)
Vg = —— =
o or

We find that the physical flow is in the radial direction, see Fig. 4.9. If m» > 0, the flow
is outwards directed and for m < 0 it is going inwards toward origo. When origo is
approached, the velocity, v,., tends to infinity. Hence, Eq. 4.58 gives nonphysical flow
near origo. The reason is that the inviscid assumption (zero viscosity) is not valid in
this region.

It was mentioned above that the physical meaning of 7 is volume flow. This is
easily seen by integrating v,- (Eq. 4.58) over a cylindrical surface as

2 2m m 2
/dIEg/ vrrde/ dz3/ —T df = — // dxsdf = m. (4.59)

4.4.5 Analytical solutions for a vortex line

A line vortex is another example of a complex potential; it is very similar to Eq. 4.55
and reads

r
f=—i—Inz (4.60)
27
which on polar form reads (cf. Eq. 4.57)
r
f=——_(Glnr—290) 4.61)
2m
From the stream function (the imaginary part of f) we get (cf. Eq. 4.58)
10V
U= %0
o r (4.62)
Vg = ——— —
o or 27r

This flow was introduced in Section 1.7.1 (where we called it an ideal vortex line) as an
example of a flow with no vorticity. The flow is in the positive 6 direction along lines
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Figure 4.10: Vortex line.

Figure 4.11: Flow around a cylinder of radius r¢.

of constant radius, see Fig. 4.10. The circulation, I', appears in the expression of vg. It
was introduced in Section 1.7. It is defined as a closed line integral along line C, see
Eq. 1.23 and can be expressed as an integral of the vorticity over surface .S bounded by
line C, see Eq. 1.25 and Fig. 1.7.

4.4.6 Analytical solutions for flow around a cylinder

The complex potential for the flow around a cylinder can be found by combining a
doublet and a parallel flow. A doublet consists of a line source (strength 7i7) and sink
(strength —r) separated by a distance ¢ in the z; direction (line sources were intro-
duced in Section 4.4.4). Imagine that we move the source and the sink closer to each
other and at the same time we increase their strength |7i2| so that the product . = rhe
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Figure 4.12: Flow around a cylinder of radius r¢. Integration of surface pressure.
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(a) CFD of unsteady laminar flow [9]. The mark- (b) Potential flow, Eq. 4.72
ers show the time-averaged location of separation.

Figure 4.13: Pressure coefficients.

stays constant. The resulting complex potential is
f=r (4.63)
Tz
When adding the complex potential of parallel flow, see Eq. 4.47, we get

=t v . (4.64)
Tz

Now we define the radius of a cylinder, 7, as

e = p/(7Va) (4.65)

so that
_ Voor%

f

+ Voz (4.66)
On polar form it reads

2
Voo

ret?

2
f= + Viore™ = Voo <T—Oe_19 + Te“g)
T

2 (4.67)
=Ve (T—O(COSG —isin®) + r(cos + i sin@))
r

The stream function reads (imaginary part)

7“2
U=V, (r - —0) sind (4.68)
'
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Now we can compute the velocity components

10¥ 8
Uy = ;% = Voo (1 — 7’_2) cos
(4.69)
U 2
T T

We find that v, = 0 for r = rg as intended (thanks to the definition in Eq. 4.65). We
are not interested in the solution inside the cylinder (r < rg). Furthermore, we see
that the tangential velocity is zero at § = 0 and m; hence these points correspond to
the stagnation points, see Fig. 4.11. The velocity field at the cylinder surface, r = ¢,
reads

Vps =0
’ . (4.70)
vg,s = —2Vo sind

where index s denotes surface. Note that the local velocity gets twice as large as the
freestream velocity at the top (8 = 7/2) and the bottom (§ = —/2) of the cylinder.
The surface pressure is obtained from Bernoulli equation (see Eq. 4.35)

V2 P 1)2) X V27’U2,
o) > G’é_i_%:pszpoo_’_p%e’é

2 p 2

.71

where we neglected the gravitation term. The surface pressure is usually expressed as
a pressure coefficient

- vy
sz%ﬁ—%:uzxsm?e (4.72)
using Eq. 4.70.

It should be stressed that although Egs. 4.70 and 4.72 are exact they are not realistic
because of the strict requirement that the flow should be inviscid. This requirement is
valid neither in the boundary layers nor in the wake; the boundary layers may be thin
but the wake is a large part of the domain. Figure 4.13 presents the pressure coefficient
for potential flow and accurate unsteady CFD of two-dimensional viscous flow [9] (the
Reynolds number is sufficiently low for the flow to be laminar); Eqs. 2.3 and 2.9 are
solved numerically [9]. The potential solution agrees rather well with viscous flow up
to 6 ~ 20°.

How do we find the lift and drag force? The only force (per unit area) that acts
on the cylinder surface is the pressure (in viscous flow there would also be a viscous
stress, but it is usually much smaller). To find the lift force, Fr,, we simply integrate
the pressure over the surface. Usually the lift force is expressed as a lift coefficient,
C,, which is scaled with the dynamic pressure pV2 /2. The lift coefficient is obtained
as

L /ld /27r Ps__ GinOrodo
PEovER T Ty vt

1 27
=—r / dxs / (1 — 45sin” ) sin Ad6 4.73)
0 0
27

1 3
=—7 {—cos@—él <ECOS(39) - ZCOS@)]O =0
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Figure 4.14: Flow around a cylinder of radius 7o with additional circulation which give a (neg-
ative) lift force, see Eq. 4.84.

The sin 8 on the first line appears because we project the pressure force in the vertical
direction (see Fig. 4.12) and minus sign is because pressure acts inwards, see Eq. 1.9
and Fig. 4.1. We assume in Eq. 4.73 that the length of the cylinder in the 3 direction
is one. The drag coefficient is computed as

FD 1 2m
=—F—-=-/[d 1 — 4sin® 6) cos frodf
RENE /0 1:3/0 ( sin” 0) cos Org

1 27 4 27
= —ro/ dx3/ [sin@ — —sin® 9} =0
0 0 3 0

The cos 6§ on the first line appears because we project the pressure force in the hori-
zontal direction (see Fig. 4.12). Equations 4.73 and 4.74 give C;, = Cp = 0; hence
we find that inviscid flow around a cylinder creates neither lift nor drag. The reason is
that the pressure is symmetric both with respect to z; = 0 and x> = 0. The lift force
on the lower surface side cancels the force on the upper side. Same argument for the
drag force: the pressure force on the upstream surface cancels that on the downstream
surface.

Cpo
(4.74)

4.4.7 Analytical solutions for flow around a cylinder with circulation

We will now introduce a second example of potential flow around cylinders, which is
by far the most important one from engineering point of view. Here we will introduce
the use of additional circulation which alters the locations of the stagnation points and
creates lift. This approach is used in potential methods for predicting flow around
airfoils in aeronautics (mainly helicopters) and windpower engineering.

We add the complex potential of a vortex line (see Eq. 4.60) to Eq. 4.66 so that

2
Veory

T
= + Viez —im—Inz (4.75)
2T

z

On polar form it reads (see Eqgs. 4.61 and 4.67)

2
Tr

f=Vye (T—O(cose — isin @) + r(cos 6 —l—isin@)) ~ 5 (ilnr —0) (4.76)
r ™
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Figure 4.15: Flow around a cylinder of radius 7o with maximal additional circulation.

The imaginary part gives the stream function

2
r
U=V (7’ - T—O) sinf — — Inr (4.77)
r 2

We get the velocity components as (see Eqs. 4.62 and 4.69)

10V 2
Uy = ;% :Voo (1_7’_2) cos

ov 2 r
vy = = Vs 1—|—T—0 sinf + —
72 2

or wr

(4.78)

The effect of the added vortex line is, as expected, to increase vy while leaving v,
unaffected. The larger the circulation, the larger vg.
The velocity at the surface, » = rg, reads

Vs = 0
4.79)

r
vg,s = —2Vosinf +
27Ty
Now let’s find the location of the stagnation points, i.e. where vg s = 0. Equation 4.79
gives

T r
2Voo sinbsiqg = = 0149 = arcsin ( ) (4.80)

27ry 41ro Vo

The two angles that satisfy this equation are located in the first and second quadrants.
The two positions are indicated with a and b in Fig. 4.14. For a limiting value of the
circulation, I';,, 4., the two locations s and b will merge at @ = 7/2, denoted with ¢ in
Fig. 4.15,

Tnaz = 4nVioro. (4.81)

This corresponds to the maximum value of the circulation for which there is a stag-
nation point on the cylinder surface. For circulation larger than I',,,, the stagnation
point will be located above the cylinder.
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Figure 4.16: Table tennis. The loop uses the Magnus effect. Side view.

The pressure is obtained from Bernoulli equation as (see Eq. 4.72)

,1)2) T 2
Cp=1 9"5:1—(—25in9+ )

V2 2710 Voo
% ot/ (4.82)
4T sin 0 r
=1—4sin?6 -
SO+ 2719 Vso <27TT0VOO)

We found in Section 4.4.6 that a cylinder without circulation gives neither drag nor
lift, see Eqgs. 4.73 and 4.74. What about the present case? Let’s compute the lift. We
found in Eq. 4.73 that the two first terms in Eq. 4.82 give no contribution to the lift.
The last term cannot give any contribution to the lift because it is constant on the entire
surface. Hence we only need to include the third term in Eq. 4.82 so that

FL ! m ps .
Cr = = — d Orodo
L= vz e / / pv2 2 e

1 27 :
T sin 0
— —ro | das / MY sin 0d0 (4.83)
0 0 WTOVOO
ro r I or
= | = in(20)| =-—=—
LTVOO 2 S )] . Voo

We find that the lift force on a unit length of the cylinder can be computed from the
circulation as
Fr, = —pV, I’ (4.84)

This relation is valid for any body and it is called the Kutta-Joukowski law who —
independent of each other — formulated it. The reason to the sign of the lift force can
easily be seen from Fig. 4.14. The stagnation points, where the pressure is largest, are
located at the top of the cylinder and hence the pressure is higher on the top than on the
bottom. The "lift” force is acting downwards, i.e. in the negative x5 direction.

The drag is, however, still zero. In Eq. 4.74 we found that the first and the second
terms in Eq. 4.82 gives no contribution to drag. Hence, we only need to consider the
third terms. In the drag integral (see Eq. 4.74), this term in Eq. 4.82 gives rise to a term
proportional to sin # cos § whose contribution is zero. Hence, the additional circulation
does not give rise to any drag.

4.47.1 The Magnus effect

Circulation around a cylinder is very similar to a rotating cylinder. Instead of adding a
circulation, we let the cylinder rotate with speed w. A rotating cylinder produces lift.
This has interesting application in sports, for example football, table tennis and golf.
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Figure 4.17: Football. A free-kick uses the Magnus effect. Top view
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Figure 4.18: Flettner rotor (in blue) on a ship. The relative velocity between the ship and the
wind is Viyind + Viship. The ship moves with speed Vipip. Top view.

In table tennis, the ball must hit the table on the side of the opponent. One way to
improve the chance that this will happen is to make a loop. This means that you hit the
ball slightly on the top. The ball experiences a force, F', when you hit it (see Fig. 4.16)
and this force makes it rotate with rotation speed w (clockwise direction). The rotation
causes a lift, F,, which acts downwards so that the ball drops down quickly and (hope-
fully) hits the table on the other side of the net. The lift force is downwards because
the stagnation points are located on the upper surface. Recall that the relative velocity
of the air is in the negative x; direction.

Another example where the Magnus effect is important is golf. Here the object is
often vice versa. You want the ball to go as far as possible. Hence you hit it with a
slice so that it spins with a positive w (counter-clockwise). The result is a lift force in
the positive xo direction which makes the ball go further.

A final sports example is football. Here the lift is used sideways. Imagine there is a
free-kick rather close to the opponents’ goal, see Fig. 4.17. The opponents erects a wall
of players between the goal and the location of the free-kick. The player who makes
the free-kick wants to make the ball go on the left side of the wall; after the wall of
players, the ball should turn right towards the goal. The Magnus effect helps to achieve
this. The player hits the ball with her/his left foot on the left side of the ball which
creates a force F' on the ball. This makes the ball rotate clockwise, see Fig. 4.17, and
creates a lift force so that the ball after it has passed the wall turns to the right towards
the goal. The reason that the ball turns to the right first after the wall (and not before)
is that the forward momentum created by F’ (the player) is much larger than F7,.
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Figure 4.19: Airfoil. The boundary layers, 6(x1), and the wake illustrated in red. 1 = 0 and
x1 = c at leading and trailing edge, respectively.

When looking at Figs. 4.16 and 4.17 I know it may be confusing to understand the
direction of the force. The trick is to imagine that the ball is still/non-moving and the
wind is coming towards it with speed —Vj,;;. Then we see that the rotation and on-
coming speed —V4q;;. ~co-operates” at the lower side and thereby increasing the total
speed on the lower side compared to the upper side. Bernoulli (Eq.4.35) then gives a
lower pressure on the lower side of the ball compared to the upper side which gives a
downward force.

If you are interested in football you may be pleased to learn that by use of fluid
dynamics it is now scientifically proven that it was much harder to make a good freekick
in 2010 worldcup than in 2014 [10]. Figure 7b in that paper is particularly interesting.

As an experiment, two identical freekicks are made with the football used at
the 2013 FIFA Confederations. The freekicks are made 25m from the goal. The
initial velocity of the football is 30 m/s. The result of the two freekicks is that the
two footballs reach the goal three meters from each other in the vertical direction.
Why? Because the ball was rotated 45 degrees before the second freekick (see
Figs. 2¢,d) in [10].

Finally we give an engineering example of the use of the Magnus effect. The first
Flettner rotors on ships were produced in 1924. It has recently gained new interest as
the cost of fuel is rising. A Flettner rotor is a rotating cylinder (or many) on a ship,
see Fig. 4.18. The diameter of this rotor can be a couple of meter and have a length
(i.e. height) of 10 — 20 meter. The ship is moving to the right with speed V;,. The
wind comes towards the ship from the left-front (relative wind at an angle of 7/4).
The Flettner rotor rotates in the clockwise direction. The Magnus effect creates a force
in the orthogonal direction to the relative windspeed, i.e. at an angle of —m/4. Note
that if the wind comes from the right instead of from the left, the rotor should rotate
in the counter-clockwise direction. The additional propulsion force is FJ, cos(«). The
Division of Fluid Dynamics recently took part in an EU project where we studied the
flow around rotating cylinders in relation to Flettner rotors [11].

4.4.8 The flow around an airfoil

Flow around airfoils is a good example where potential methods are useful. These
methods are still in use in wind engineering and for helicopters. At the Division of
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Figure 4.20: Airfoil. Streamlines from potential flow. Rear stagnation point at the upper surface
(suction side).

P

Figure 4.21: Airfoil. Streamlines from potential flow with added circulation. Rear stagnation
point at the trailing edge.
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Fluid Dynamics we had a PhD project where we used potential methods for computing
the aerodynamic loads for wind turbine rotor blades [5, 12].

The flow around airfoils is a good example where the flow can be treated as inviscid
in large part of the flow. For low angles of attack (which is the case for, for example, an
aircraft in cruise conditions) the boundary layers and the wake are thin. Outside these
regions the flow is essentially inviscid.

Figure 4.19 (see also Fig. 16.1) shows a two-dimensional airfoil. The boundary
layers and the wake are illustrated in red. The boundary layer is thinner on the pres-
sure (lower) side than on the suction (upper) side. It grows slightly thicker towards the
trailing edge (denoted by 6(z1) in Fig. 4.19). When this flow is computed using po-
tential methods, the location of the front stagnation point is reasonably well captured,
see Fig. 4.20. However, the stagnation point near the trailing edge is located on the
suction side which is clearly nonphysical. The flow on the pressure (lower) side cannot
be expected to make a 180° turn at the trailing edge and then go in the negative x;
direction towards the stagnation point located on the suction side.

The solution is to move the stagnation points in the same way as we did for the
cylinder flow in Section 4.4.7. We want to move the rear stagnation point towards
the trailing edge. This is achieved by adding a circulation in the clockwise direction,
see Fig. 4.21. The magnitude of the circulation is determined by the requirement that
the stagnation point should be located at the trailing edge. This is called the Kutta
condition. The added circulation is negative (clockwise). In aeronautics, the sign of
circulation is usually changed so that I'seronautic = —1'. The lift of a two-dimensional
airfoil (or a two-dimensional section of a three-dimensional airfoil) is then computed
as (see Eq. 4.84)

Fp = pVooFaeronautic (485)
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Figure 5.1: Laminar and turbulent boundary layer.

5 Turbulence

5.1 Introduction

LMOST all fluid flow which we encounter in daily life is turbulent. Typical exam-
Aples are flow around (as well as in) cars, aeroplanes and buildings. The boundary
layers and the wakes around and after bluff bodies such as cars, aeroplanes and build-
ings are turbulent. Also the flow and combustion in engines, both in piston engines
and gas turbines and combustors, are highly turbulent. Air movements in rooms are
turbulent, at least along the walls where wall-jets are formed. Hence, when we com-
pute fluid flow it will most likely be turbulent. In turbulent flow we usually divide the
velocities in one time-averaged part ¥;, which is independent of time (when the mean
flow is steady), and one fluctuating part v} so that v; = o; + v,.

There is no definition on turbulent flow, but it has a number of characteristic fea-
tures (see Pope [13] and Tennekes & Lumley [14]) such as:

I. Irregularity. Turbulent flow is irregular and chaotic (they may seem random,
but they are governed by Navier-Stokes equation, Eq. 2.9). The flow consists of a
spectrum of different scales (eddy sizes). We do not have any exact definition of an
turbulent eddy, but we suppose that it exists in a certain region in space for a certain
time and that it is subsequently destroyed (by the cascade process or by dissipation,
see below). It has a characteristic velocity and length (called a velocity and length
scale). The region covered by a large eddy may well enclose also smaller eddies. The
largest eddies are of the order of the flow geometry (i.e. boundary layer thickness, jet
width, etc). At the other end of the spectrum we have the smallest eddies which are
dissipated by viscous forces (stresses) into thermal energy resulting in a temperature
increase. Even though turbulence is chaotic it is deterministic and is described by the
Navier-Stokes equations.

I1. Diffusivity. In turbulent flow the diffusivity increases compared to laminar flow,
see Fig. 5.1. The turbulence increases the exchange of momentumin e.g. boundary lay-
ers, and reduces or delays thereby separation at bluff bodies such as cylinders, airfoils
and cars. The increased diffusivity also increases the resistance (wall friction) and heat
transfer in internal flows such as in channels and pipes.

III. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds number.
For example, the transition to turbulent flow in pipes occurs that Rep ~ 2300, and in

turbulent
eddy
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flow of kinetic energy

I by
dissipative scales

intermediate scales

y

large scales

Figure 5.2: Cascade process with a spectrum of eddies. The energy-containing eddies are
denoted by vo; ¢1 and /2 denotes the size of the eddies in the inertial subrange such that
ly < £y < Lo; £y is the size of the dissipative eddies.

boundary layers at Re, ~ 500 000.
IV. Three-Dimensional. Turbulent flow is always three-dimensional and unsteady.
However, when the equations are time averaged, we can treat the flow as two-dimensional
(if the geometry is two-dimensional).
V. Dissipation. Turbulent flow is dissipative, which means that kinetic energy in
the small (dissipative) eddies are transformed into thermal energy. The small eddies
receive the kinetic energy from slightly larger eddies. The slightly larger eddies receive
their energy from even larger eddies and so on. The largest eddies extract their energy
from the mean flow. This process of transferring energy from the largest turbulent
scales (eddies) to the smallest is called the cascade process, see Fig. 45.5. cascade
VI. Continuum. Even though we have small turbulent scales in the flow they are  process
much larger than the molecular scale and we can treat the flow as a continuum.

5.2 Turbulent scales

The largest scales are of the order of the flow geometry (the boundary layer thickness,
for example), with length scale ¢y and velocity scale vy. These scales extract kinetic
energy from the mean flow which has a time scale comparable to the large scales, i.e.

— ~tyt ~ /by (5.1
2

Part of the kinetic energy of the large scales is lost to slightly smaller scales with which
the large scales interact. Through the cascade process, kinetic energy is in this way
transferred from the largest scale to the smallest scales. At the smallest scales the
frictional forces (viscous stresses) become large and the kinetic energy is transformed
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(dissipated) into thermal energy. The kinetic energy transferred per unit time from
eddy-to-eddy (from an eddy to a slightly smaller eddy) is the same for each eddy size.
Although the kinetic energy is mostly transferred from large to small scales, it may
instantaneously go the other way, i.e. from small scales to large scales. It may even
happen that kinetic energy goes from fluctuations to the mean flow; this happens when
the production term, P, is negative, see Item I on p. 105.

The dissipation is denoted by € which is energy per unit time and unit mass (¢ =
[m?/s3]). The dissipation is proportional to the kinematic viscosity, v, times the fluc-
tuating velocity gradient up to the power of two (see Section 8.2). The friction forces
exist of course at all scales, but they are largest at the smallest eddies. In reality a small
fraction is dissipated at all scales. However it is assumed that most of the energy that
goes into the large scales per unit time (say 90%) is finally dissipated at the smallest
(dissipative) scales.

The smallest scales where dissipation occurs are called the Kolmogorov scales
whose velocity scale is denoted by v,,, length scale by ¢,, and time scale by 7,,. We
assume that these scales are determined by viscosity, v, and dissipation, €. The argu-
ment is as follows.

viscosity: Since the kinetic energy is destroyed by viscous forces it is natural to assume
that viscosity plays a part in determining these scales; the larger viscosity, the
larger scales.

dissipation: The amount of energy per unit time that is to be dissipated is €. The more
energy that is to be transformed from kinetic energy to thermal energy, the larger
the velocity gradients must be.

Having assumed that the dissipative scales are determined by viscosity and dissipation,
we can express vy, £, and 7, in v and € using dimensional analysis. We write

— a b
vy =

v €
m/s] = [m2/s] [m2/s%] (5.2)

where below each variable its dimensions are given. The dimensions of the left and the
right side must be the same. We get two equations, one for meters [mn]

1= 2a + 2b, (5.3)
and one for seconds [s]
—1=—a—3b, 54

which give ¢ = b = 1/4. In the same way we obtain the expressions for ¢, and 7, so
that

3\ 1/4 1/2
vy = (1/5)1/47 by = (V—) ), Ty = (K) (5.5)

5.3 Energy spectrum

As mentioned above, the turbulence fluctuations are composed of a wide range of
scales. We can think of them as eddies, see Fig. 5.2. It turns out that it is often conve-
nient to use Fourier series to analyze turbulence. In general, any periodic function, g,
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with a period of 2L (i.e. g(z) = g(x + 2L)), can be expressed as a Fourier series, i.e.

1

g(z) = 540 + Z(an cos(knx) + by sin(knx)) (5.6)

n=1
where x is a spatial coordinate and

nmw 2T
Kp=— OFf K= —

7 - (5.7)

Ky, 1s called the wavenumber. The Fourier coefficients are given by

L
ap = —/ g(x) cos(kpx)dx
Lj-p

bo = 7 / ’ (@) sin(knx)da

—L

Parseval’s formula states that

L oo
/ g (x)dx = gag +LY (al+0b2) (5.8)
-L n=1

For readers not familiar to Fourier series, a brief introduction is given in Appendix Al.
An example of a Fourier series and spectra are given in Appendix 36. Let g be a fluc-
tuating velocity component, say v}. The left side of Eq. 5.8 expresses v{? in physical
space (vs. x) and the right side v} in wavenumber space (vs. x,). The reader who is
not familiar to the term “wavenumber”, is probably more familiar to “frequency”. In
that case, express g in Eq. 5.6 as a series in time rather than in space. Then the left
side of Eq. 5.8 expresses v{2 as a function of time and the right side expresses v}2 as a
function of frequency.

The turbulent scales are distributed over a range of scales which extends from the
largest scales which interact with the mean flow to the smallest scales where dissipation
occurs, see Fig. 5.2. Let us think about how the kinetic energy of the eddies varies with
eddy size. Intuitively we assume that large eddies have large fluctuating velocities
which implies large kinetic energy, vjv}/2. It is convenient to study the kinetic energy
of each eddy size in wavenumber space. In wavenumber space the energy of eddies
can be expressed as

E(k)dk (5.9)

where Eq. 5.9 expresses the contribution from the scales with wavenumber between x
and k + dk to the turbulent kinetic energy k. The energy spectrum, F(x), corresponds
to g?(x) in Eq. 5.8. The dimension of wavenumber is one over length; thus we can think
of wavenumber as proportional to the inverse of an eddy’s diameter, i.e x o< 1/d. The
total turbulent kinetic energy is obtained by integrating over the whole wavenumber
space, i.e.

k= /OOO E(r)dk =LY g°(kn) (5.10)

Think of this equation as a way to compute the kinetic energy by first sorting all eddies
by size (i.e. wavenumber), then computing the kinetic energy of each eddy size (i.e.
E(k)dk), and finally summing the kinetic energy of all eddy sizes (i.e. carrying out the
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Figure 5.3: Spectrum for turbulent kinetic energy, k. I: Range for the large, energy containing
eddies. II: the inertial subrange. III: Range for small, isotropic scales. The wavenumber, &,
is proportional to the inverse of the length scale of a turbulent eddy, £, i.e. x o £ . Fora
discussion of €, vs. €, see Section 8.2.2.

integration). Note that the physical meaning of E is kinetic energy per unit wavenum-
ber of eddies of size ¢,, oc x~!. Hence the dimension of E is v2/n, see Eq. 5.10; for a
discussion on the dimension of F, see Appendix 36.

The kinetic energy is the sum of the kinetic energy of the three fluctuating velocity
components, i.e.

1l /—  — — 1—
k=3 (U/12 + v + UéQ) = 51);1); (5.11)
The spectrum of E is shown in Fig. 5.3. We find region I, II and III which are discussed
below.

I. In this region we have the large eddies which carry most of the energy. These
eddies interact with the mean flow and extract energy from the mean flow. This
energy transfer takes places via the production term, P, in the transport equation
for turbulent kinetic energy, see Eq. 8.14. Part of the energy extracted per unit
time by the largest eddies is transferred (per unit time) to slightly smaller scales.
The eddies’ velocity and length scales are vg and £y, respectively.

III. Dissipation range. The eddies are small and isotropic and it is here that the
dissipation occurs. The energy transfer from turbulent kinetic energy to thermal
energy (increased temperature) is governed by ¢ in the transport equation for
turbulent kinetic energy, see Eq. 8.14. The scales of the eddies are described by
the Kolmogorov scales (see Eq. 5.5)

II. Inertial subrange. The existence of this region requires that the Reynolds number
is high (fully turbulent flow). The eddies in this region represent the mid-region.
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The turbulence is also in this region isotropic. This region is a “transport re-
gion” (i.e. in wavenumber space) in the cascade process. The “transport” in
wavenumber space is called spectral transfer. Energy per time unit, P* = ¢, is
coming from the large eddies at the lower part of this range and is transferred
per unit time to the dissipation range at the higher part. Note that the relation
P* = {dissipation at small scales}, see Fig. 5.3, is given by the assumption of
the cascade process, i.e. that the energy transfer per unit time from eddy-size—
to—eddy-size is the same for all eddy sizes.

The kinetic energy, ki, = v, ;v;. ;/2, of an eddy of size (lengthscale), 1/, repre-
sents the kinetic energy of all eddies of this size. The kinetic energy of all eddies
(of all size) is computed by Eq. 5.11. The eddies in this region are indepen-
dent of both the large, energy-containing eddies and the eddies in the dissipation
range. One can argue that the eddies in this region should be characterized by
the spectral transfer of energy per unit time (¢) and the size of the eddies, 1/k.
Dimensional analysis gives

— a b
) = (U] i) 12
We get two equations, one for meters [m]
3=—a+2b,
and one for seconds [s]
—9 = —3b,
so that b = 2/3 and a = —5/3. Inserted in Eq. 5.12 we get
E(k) = Cges k™3 (5.13)

where the Kolmogorov constant C'xr ~ 1.5. This is a very important law (Kol-
mogorov spectrum law or the —5/3 law) which states that, if the flow is fully
turbulent (high Reynolds number), the energy spectra should exhibit a —5/3-
decay in the inertial region (region II, Fig. 5.3).

Above we state that the eddies in Region II and III are isotropic. This means that —
in average — the eddies have no preferred direction, i.e. the fluctuations in all directions
are the same so that v{?> = vf? = vf2. Note that is not true instantaneously, i.e. in
general v} # v} # v}. Furthermore, isotropic turbulence implies that if a coordinate
direction is switched (i.e. rotated 180°), nothing should change. For example if the
21 coordinate direction is rotated 180° the v{v5 should remain the same, i.e. vjv) =
—vjv}. This is possible only if v{ v, = 0. Hence, all shear stresses are zero in isotropic
turbulence. Using our knowledge in tensor notation, we know that an isotropic tensor
can be written as const. - §;;. Hence, the Reynolds stress tensor for small scales can be
written as W = const.d;; which, again, shows us that the shear stresses are zero in
isotropic turbulence.

As discussed on p. 79, the concept of the cascade process assumes that the energy
extracted per unit time by the large turbulent eddies is transferred (per unit time) by
non-linear interactions through the inertial range to the dissipative range where the
kinetic energy is transformed (per unit time) to thermal energy (increased temperature).
The spectral transfer rate of kinetic energy from eddies of size 1/x to slightly smaller
eddies can be estimated as follows. An eddy loses (part of) its kinetic energy during

spectral
transfer

isotropic
turbulence
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one revolution. The kinetic energy of the eddy is proportional to v and the time for
one revolution is proportional to ¢, /v,.. Hence, the energy spectral transfer rate, ¢,
for an eddy of length scale 1/« can be estimated as (see Fig. 5.3)

v2 v2 v3
P/ P S 5.14
ty En/vn L ( )

Kinetic energy is transferred per unit time to smaller and smaller eddies until the trans-
fer takes place by dissipation (i.e. increased temperature) at the Kolmogorov scales. In
the inertial subrange, the cascade process assumes that €,, = €. Applying Eq. 5.14 for
the large energy-containing eddies gives

2 3
T O (5.15)
bofvo o

The dissipation at small scales (large wavenumbers) is determined by how much energy
per unit time enters the cascade process at the large scales (small wavenumbers). We
can now estimate the ratio between the large eddies (with vy and ¢;) to the Kolmogorov
eddies (v, and £,)). Equations 5.5 and 5.15 give

Z_O - (V€)71/4vo = (V”S’/fo)_l/4 vo = (Uogo/l/)l/4 = Re'/*
n

» L3\ /4 V30, —1/4 L3\ /4
— = — Vo = _ - Vo = - =R 3/4
no(5) () (i ‘ (310

: / —1/2 3\ 1/2 / ; 1/2
To _ <V_30> o = (v_o) b _ (%_o) _ Rel/?
T v vl o v

where Re = vgly/v. We find that the ratio of the velocity, length and time scales of the
energy-containing eddies to the Kolmogorov eddies increases with increasing Reynolds
number. This means that the eddy range (wavenumber range) of the intermediate region
(region II, the inertial region) increases with increasing Reynolds number. Hence, the
larger the Reynolds number, the larger the wavenumber range of the intermediate range
where the eddies are independent of both the large scales and the viscosity. or in other
words: the larger the Reynolds number, the larger the difference between the largest
and the smallest scales. This is the very reason why it is so expensive (in terms of
computer power) to solve the Navier-Stokes equations. With a computational grid we
must resolve all eddies. Hence, as the Reynolds number increases, the number of grid
cells increases rapidly, see Eq. 28.1.

5.4 The cascade process created by vorticity

The interaction between vorticity and velocity gradients is an essential ingredient to
create and maintain turbulence. Disturbances are amplified by interaction between the
vorticity vector and the velocity gradients; the disturbances are turned into chaotic,
three-dimensional fluctuations, i.e. into turbulence. Two idealized phenomena in this
interaction process can be identified: vortex stretching and vortex tilting.

The equation for the instantaneous vorticity (w; = @; + w}) reads (see Eq. 4.21)

Qo Owi _  Ovi P
815 Jal'j B Jal'j 8xj8:rj
avk

Wi = €ijk o

8:rj

(5.17)
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Figure 5.4: Family tree of turbulent eddies (see also Table 5.1). Five generations (indidcated in
bold). Orientation of eddy is indicated in red. The large original eddy, with axis aligned in the
x1 direction, is 1% generation. Adapted from [15].

generation | x; | X2 | X3
1%t 1rlofo
ond 0111
3rd 2 |1 1
4th 213 |3
Gth 6| 515
6th 10 | 11 | 11
Tth 22 | 21 | 21

Table 5.1: Number of eddies at each generation with their axis aligned in the x1, x2 or x3
direction, see Fig. 5.4.

T3
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As we learnt in Section 4.2 this equation is not an ordinary convection-diffusion equa-
tion: it has an additional term on the right side which represents amplification and
rotation/tilting of the vorticity lines (the first term on the right side). The i = j com-
ponents of this term represent (see Eq. 4.22) vortex stretching. A positive dv}/dx
will stretch the cylinder, see Fig. 4.2 and from the requirement that the volume must
not change (incompressible continuity equation) we find that the radius of the cylinder
will decrease. We may neglect the viscosity since viscous diffusion at high Reynolds
number is much smaller than the turbulent one and since viscous dissipation occurs at
small scales (see p. 78). Thus we can assume that there are no viscous stresses acting
on the cylindrical fluid element surface which means that the angular momentum

2w} = const. (5.18)

remains constant as the radius of the fluid element decreases. Note that also the cir-
culation, I' — which is the integral of the tangential velocity round the perimeter, see
Eq. 1.23 — is constant. Equation 5.18 shows that the vorticity increases if the radius
decreases (and vice versa). As was mentioned above, the continuity equation shows
that stretching results in a decrease of the radius of a slender fluid element and an in-
crease of the vorticity component (i.e. the tangential velocity component) aligned with
the element. For example, an extension of a fluid element in one direction (z; direc-
tion) decreases the length scales in the x5 direction and increases wj, see Fig. 5.5. At
the same time, vortex tilting creates small-scale vorticity in the 2o and x3 direction,
wh and wj. The increased wj means that the velocity fluctuation in the x5 direction
is increased, see Fig. 5.6. The increased v} velocity component will stretch smaller
fluid elements aligned in the x5 direction, see Fig. 5.6. This will increase their vortic-
ity w’ and decrease their radius. In the same way will the increased wj also stretch a
fluid element aligned in the x5 direction and increase w4 and decrease its radius. At
each stage, the length scale of the eddies — whose velocity scale are increased — de-
creases. Figure 5.4 illustrates how a large eddy whose axis is oriented in the x; axis
in a few generations creates — through vortex stretching — smaller and smaller eddies
with larger and larger velocity gradients. Here a generation is related to a wavenumber
in the energy spectrum (Fig. 5.3); young generations correspond to high wavenumbers.
The smaller the eddies, the less the original orientation of the large eddy is recalled.
In other words, the small eddies “don’t remember” the characteristics of their original
ancestor. The small eddies have no preferred direction. They are isotropic. The cre-
ation of multiple eddies by vortex stretching from one original eddies is illustrated in
Fig. 5.4 and Table 5.1. The large original eddy (1! generation) is aligned in the
direction. It creates eddies in the =5 and 3 direction (2"¢ generation); the eddies in
the x5 direction create new eddies in the =1 and x3 (3"¢ generation) and so on. For
each generation the eddies become more and more isotropic as they get smaller.

The ¢ # j components in the first term on the right side in Eq. 4.22 represent vortex
tilting. Again, take a slender fluid element, now with its axis aligned with the x2 axis,
Fig. 4.3. The velocity gradient dv; /Oxo (or Ov} /Dx2, which is equivalent) will tilt the
fluid element so that it rotates in the clock-wise direction. As a result, the second term
wo0v1 /Ox2 in line one in Eq. 4.22 gives a contribution to wy (and w}). This shows
how vorticity in one direction is transferred to the other two directions through vortex
tilting.

Vortex stretching and vortex tilting qualitatively explain how interaction between
vorticity and velocity gradient create vorticity in all three coordinate directions from
a disturbance which initially was well defined in one coordinate direction. Once this

Vortex
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Vortex

tilting
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Figure 5.5: A fluid element is stretched by g > 0. Its radius decreases (from dashed line to
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Figure 5.6: The rotation rate of the fluid element (black circles) in Fig. 5.5 increases and its
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radius decreases. This creates a positive 8_3 > 0 which stretches the small red fluid element
z3

aligned in the z3 direction and increases wj. The radius of the red fluid element decreases.

process has started it continues, because vorticity generated by vortex stretching and
vortex tilting interacts with the velocity field and creates further vorticity and so on.
The vorticity and velocity field becomes chaotic and three-dimensional: turbulence has
been created. The turbulence is also maintained by these processes.

From the discussion above we can now understand why turbulence always must be
three-dimensional (Item IV on p. 78). If the instantaneous flow is two-dimensional
(z1 — 22 plane) we find that the vortex-stretching/tilting term on the right side of
Eq. 5.17 vanishes because the vorticity vector and the velocity vector are orthogonal.
The only non-zero component of vorticity vector is w3 because

b = v Ovr
8362 83:3

by = Ou Ovs_
8:r3 8351

Since vz = 0, we get w;0v;/0z; = 0.
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We have seen that the diffusion tern in Navier-Stokes include only the strain-rate
tensor, S;;, not the vorticity tensor, {2;;. Here we will show that it is only the strain-rate
tensor that creates vorticity, the vorticity tensor does not. The vortex stretching term
(Eq. 5.17) read

8vi
Y
J (’)xj
Replace the velocity gradient by
sij + i
and then replace

using Eq. 1.19 which gives

because the product of a symmetric tensor, wiw;, and an anti-symmetric tensor, &;;,
is zero. Hence, vorticity is also created only by s;;.
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6 Turbulent mean flow

6.1 Time averaged Navier-Stokes

WHEN the flow is turbulent it is preferable to decompose the instantaneous vari-
ables (for example the velocity components and the pressure) into a mean value
and a fluctuating value, i.e.

— /
V; = U5 +U;

p=p+p ©b
where the bar, -, denotes the time averaged value defined as
1 (T
U= oT . vdt. (6.2)
where 7' is sufficiently large. When we time average Eq. 6.1 we get
By =0; + 0L =0 + U] (6.3)
where we used the fact that v; = 9;, see Section 8.1.4. Hence, Eq. 6.3 gives
vj=0, pP=0 6.4)

One reason why we decompose the variables is that when we measure flow quan-
tities we are usually interested in their mean values rather than their time histories.
Another reason is that when we want to solve the Navier-Stokes equation numerically
it would require a very fine grid to resolve all turbulent scales and it would also require
a fine resolution in time (turbulence is always unsteady).

The continuity equation and the Navier-Stokes equation for incompressible flow
with constant viscosity read

(’)vi

0, 0 (6.5)
ov; Ov;v; dp 9%v;

(At 6.6

The gravitation term, —pg;, has been omitted which means that the p is the hydro-
dynamic pressure (i.e. when v; = 0, then p = 0, see p. 43). Inserting Eq. 6.1 into the
continuity equation (6.5)

v, +v, O, Ov. v O

?

8,%1' o 8,%1' (’)xl o (’)xl o 8,%1'

6.7)

where we used the fact that U_; = 0 (see Eq. 6.4 and U; = ©;, see section 8.1.4).
Next, we use the decomposition in Navier-Stokes equation (Eq. 6.6)

O, +vi)  OWi+v)(v;+v;)  op+p) , 0*(v;+v))
P ot tr axj - ox; T 8:L'j(9$j 6.8)

1 11 II1 Ii%

Let us consider the equation term-by-term.
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Term I: .
0(; +v)) 0y,  ov) 0Ov; O

o ot ot ot ot
We assume that the mean flow, v;, is steady, and hence the term is zero.

Term 1I:

8(1_)1' + U;-)(i_)j + ’U;) . 861-6]- + T)ﬂ)‘; + ’U;’l_)j + ’U;’U;

8xj 81']'
. c’)@iﬁj " 81_11'1); n c’)vgﬁj n 81}1’.1);

o 8xj 8xj 81']' axj

e Section 8.1.4 shows that v;v; = v;7;.

e Section 8.1.3 shows that v;v; = v;v) = 0 and ;v = v,

PV
J i_o

Hence, Term II reads
— /i
81}1-1)]- a’Ui'Uj

axj (’)xj
Term III: _ _
op+p) _ Op N op' _ Op
(’)xi N axi axi - axi
Term IV: _
R +o) 0% 0] 0%0;

axj(’)xj - axj(’)xj + (’)xjaxj N axj(’)xj

Now we van finally write the time averaged continuity equation and Navier-Stokes
equation

on
o, 0 (6.9)
a’lji’Uj ap 0 0v; ——
_ Vi 1
p 81']' 83:1 + 81']' (Ma:p]— p’UZUj (6 0)

It is assumed that the mean flow is steady. This equation is the time-averaged
Navier-Stokes equation and it is often called the Reynolds Averaged Navies-Stokes
(RANS) equation. A new term pvgvé appears on the right side of Eq. 6.10 which is

called the Reynolds stress tensor. The tensor is symmetric (for example v| v}, = vhv}).
It represents correlations between fluctuating velocities. It is an additional stress term
due to turbulence (fluctuating velocities) and it is unknown. We need a model for vév}
to close the equation system in Eq. 6.10. This is called the closure problem: the num-
ber of unknowns (ten: three velocity components, pressure, six stresses) is larger than
the number of equations (four: the continuity equation and three components of the
Navier-Stokes equations).

The continuity equation applies both for the instantaneous velocity, v; (Eq. 6.5),
and for the time-averaged velocity, v; (Eq. 6.9); hence it applies also for the fluctuating
velocity, v}, i.e.

!
% -0 6.11)

RANS

closure
problem
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Figure 6.1: Flow between two infinite parallel plates. The width (i.e. length in the 3 direction)
of the plates, Znq4, is much larger that the separation between the plates, i.e. Zpaz > 9.

6.1.1 Boundary-layer approximation

For boundary-layer type of flow (i.e. boundary layers along a flat plate, channel flow,
pipe flow, jet and wake flow, etc.) the following relations apply
_ 0N 0vy
— < — 6.12
Vo K U1, 921 <<8:L'2, ( )
Assume steady (0/9t = 0), two-dimensional (5 = 9/0x3 = 0) boundary-layer flow.
First we re-write the left side of Eq. 6.10 using the continuity equation

81_)i’l)j _ 0y, _ 81_)j _ O
— o 2y, 2 6.13
p 81']' PYi 8xj +pU 81']' PY; 81']' ( )
=0

Using Eq. 6.13, Eq. 6.10 can be written

_ 0Ny _ 0 op o Oy .
pU1 0z + po2 e R + B [Mau pUh (6.14)

T12,tot

z1 and 2 denote the streamwise and wall-normal coordinate, respectively, see Fig. 6.1.
Note that the two terms on the left side are of the same order, because they both include
the product of one large (7; or 9/9x5) and one small (3 or §/dx) part.

In addition to the viscous shear stress, 1001 /0x2, an additional furbulent one — a
Reynolds shear stress — appears on the right side of Eq. 6.14. The total shear stress is
thus 95

T2 tot = ua—;: — ] (6.15)

6.2 Wall region in fully developed channel flow

The region near the wall is very important. Here the velocity gradient is largest as
the velocity drops down to zero at the wall over a very short distance. One important
quantity is the wall shear stress which is defined as

0ty

= A 1
Tw = My . (6.16)

shear
stress
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Figure 6.2: The wall region (adapted from Ch.7 in [13]) for Re, = 10000. § denotes half
width of the channel, see Fig. 6.1 and 2] = 2ou. /v denotes the normalized wall distance.

From the wall shear stress, we can define a wall friction velocity, u., as
2\ 12
Tw = pUz = u, = (—w) (6.17)
p

In order to take a closer look at the near-wall region, let us, again, consider fully
developed channel flow between two infinite plates, see Fig. 6.1. In fully developed
channel flow, the streamwise derivative of the streamwise velocity component is zero
(this is the definition of fully developed flow), i.e. 0v1/0x1 = 0. The continuity
equation gives now v = 0, see Eq. 3.18 at p. 43. The first term on the left side of
Eq. 6.14 is zero because we have fully developed flow (991 /9x1 = 0) and the last term
is zero because v2 = (. The streamwise momentum equation, Eq. 6.14, can now be
written

ap 0 o0 _
0=————+— — — pvi) 6.18
81'1 + 81'2 (/’L 81'2 pU1U2) ( )
We know that the first term is a function only of x; and the two terms in parenthesis
are functions of x5 only; hence they must be constant (see Eq. 3.24 and the text related

to this equation), i.e.

9%
9P _ constant
1 (6.19)
0 0V — O0T12,t0t '
— | p=— — pvjvh | = ——=— = constant
Oxo \" Ox2 172 O

where the total stress, 712 ¢0¢, 1S given by Eq. 6.15. Integrating Eq. 6.18 from zo = 0
to zo gives

_ o5
b T2 = T12 tot :Tw+—p$2 = Tw (17E) (6.20)
’ 83@1 1)

le,tot($2) — Tw = %
1

At the last step we used the fact that the pressure gradient balances the wall shear stress,
i.e. —0p/Ox1 = 7y /9, see Eq. 3.30 (note that h = 26) and Eq. 6.39.

wall
friction
velocity
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The wall region can be divided into one outer and one inner region, see Fig. 6.2.
The inner region includes the viscous region, x; < 5 (dominated by the viscous diffu-
sion), and the logarithmic region, zg 2 30 (dominated by turbulent diffusion); the log-
arithmic region is sometimes called the inertial region, because the turbulent stresses
stem from the inertial (i.e. the non-linear convection) term. The buffer region acts as a
transition region between these two regions where viscous diffusion of streamwise mo-
mentum is gradually replaced by turbulent diffusion. In the inner region, the total shear
stress is approximately constant and equal to the wall shear stress 7, see Fig. 6.3.
Note that the total shear stress is constant only close to the wall (Fig. 6.3b); further
away from the wall it decreases (in fully developed channel flow it decreases linearly
with the distance from the wall, see Eq. 6.20 and Fig. 6.3a). The Reynolds shear stress
vanishes at the wall because vj = v5 = 0, and the viscous shear stress attains its
wall-stress value 7, = pu2. As we go away from the wall the viscous stress decreases
and the turbulent one increases and at x5 =~ 11 they are approximately equal. In the
logarithmic layer the viscous stress is negligible compared to the Reynolds stress.

At the wall, the velocity gradient is directly related to the wall shear stress, i.e. (see
Eq. 6.16 and 6.17)

0V Tw P o 1,
= ="ul=-u

et = 6.21
Ora|, © p v ®.21)

Integration gives (recall that both v and u2 are constant)

1
2
U1 = —uirs + o
1%

Since the velocity, v1, is zero at the wall, the integration constant C'y = 0 so that

i _ Urt2 (6.22)

Uy v
Equation 6.22 is expressed in inner scaling (or wall scaling) which means that v; and
x9 are normalized with quantities related to the wall, i.e. the friction velocity stemming
from the wall shear stress and the viscosity (here we regard viscosity as a quantity

related to the wall, since the flow is dominated by viscosity). The plus-sign (‘ + ) is
used to denote inner scaling, i.e.

_ U1
sr=2
u
T (6.23)
+ UrT2
IL'2 = —
14

Now equation Eq. 6.22 can then be written as
o =af (6.24)

From the friction velocity and the viscosity we can define the viscous length scale, ¢,
for the near-wall region as

af = aafl, = 0, = ui (6.25)

Further away from the wall at 30 < 23 < 3000 (or 0.003 < 22/6 < 0.3), we

2 ~

encounter the log-law region, see Fig. 6.2. In this region the flow is assumed to be
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Figure 6.3: Reynolds shear stress. Rer = 2000. a) lower half of the channel; b) zoom

near the wall. DNS (Direct Numerical Simulation) data [16, 17]. == —p0jv}/Tw; ==
w(001/0x2) /Tw.
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Figure 6.4: Velocity profiles in fully developed channel flow. Re,; = 2000. == : DNS (Direct
Numerical Simulation) data [16,17]; = = : @1 /u, = (Inz3)/0.41 4 5.2; = = : Ty Ju, = 23 .

independent of viscosity. The Reynolds shear stress, pv} v}, is in the region z3 < 200

~

(i.e. 22/ < 0.1) fairly constant and approximately equal to the wall shear stress, i.e.
Tw = p|VIVh] (6.26)

see Fig. 6.3b. Hence the friction velocity, u,, is a suitable velocity scale in the inner
logarithmic region; it is used in the entire region.

What about the length scale? Near the wall, an eddy cannot be larger than the
distance to the wall and it is the distance to the wall that sets an upper limit on the
eddy-size. Hence it seems reasonable to take the wall distance as the characteristic
length scale; a constant, «, is added so that

! = Kkxo. (6.27)

where x is the von Kdrmén constant, x = 0.41. The velocity gradient can now be

estimated as 95
a _ Ur (6.28)
0xa KXo

based on the velocity scale, u,, and the length scale kz2. Another way of deriving the
expression in Eq. 6.28 is to use the Boussinesq assumption (see Eq. 11.33) in which a
turbulent Reynolds stress is assumed to be equal to the product between the turbulent



6.2. Wall region in fully developed channel flow 94

‘ T32,tot

T2

L.

Figure 6.5: Symmetry plane of channel flow.

3

viscosity and the velocity gradient as

01
8$2
The turbulent viscosity, v, represents the turbulence and has the same dimension as v,

i.e. [m?/s]. Hence v; can be expressed as a product of a turbulent velocity scale and a
turbulent length scale, and in the log-law region that gives

(6.29)

VAP -
—ViVy = Vg

Vi = UrKTo (6.30)
so that Eq. 6.29 gives (inserting —v/ v, = u?)

o0v ov .
uf = fﬁuTacgﬂ = o _ U (6.31)
0xo O0xs KXo

In non-dimensional form Egs. 6.28 and 6.31 read

ooy 1
B 6.32
oxd  wwf (632)
Integration gives now
1
vf = —1n(z;) + B or
K
U1 1 To2U (633)
—==>In ( T) +B
Ur K v

where B is an integration constant. Equation 6.33 is the logarithmic law due to von
Karman [18]. The constant, x, is called the von Karman constant. The constants in the
log-law are usually set to k = 0.41 and B = 5.2.

As can be seen in Fig. 6.2 the log-law applies for x7 < 3000 (x2/5 < 0.3).
Figure 6.4 — where the Reynolds number is lower than in Fig. 6.2 — shows that the log-
law fit the DNS (Direct Numerical Simulation) up to 23 < 500 (x2/ < 0.25). Hence,
the upper limit for the validity of the log-law is dependent on Reynolds number; the
larger the Reynolds number, the larger the upper limit.

In the outer region of the boundary layer, the relevant length scale is the boundary
layer thickness. The resulting velocity law is the defect law

% — Fp (%2) (6.34)

log-law
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where ¢ denotes centerline. The velocity in the log-region and the outer region (often
called the wake region) can be written as
v 1 211
A~ Syt + B+ = sin? (”2) (6.35)
K

u- K 25

where k = 0.38, B = 4.1 and I = 0.5 are taken from boundary layer flow [19-21].

6.3 Reynolds stresses in fully developed channel flow

The flow is two-dimensional (5 = 0 and 9/0xz3 = 0). Consider the x5 — x3 plane,
see Fig. 6.5. Since nothing changes in the x5 direction, the viscous shear stress

. 073 0o .
T32 = [L (al’g + ax3) =0 (6.36)

because U5 = 0U2/0x3 = 0. The turbulent part shear stress, pvhvk, can be expressed
using the Boussinesq assumption (see Eq. 11.33)

— ov ov
—puhvh = i (a—zz + a—ZZ) =0 (6.37)

and it is also zero since 73 = Ovy/0x3 = 0. With the same argument, vjv} = 0.
However note that v2 = v3 # 0. The reason is that although the time-averaged flow
is two-dimensional (i.e. v3 = 0), the instantaneous turbulent flow is always three-
dimensional and unsteady. Hence v3 # 0 and v # 0 so that v§* # 0. Consider, for
example, the time series v3 = v5 = (—0.25,0.125,0.125, —0.2, 0.2). This gives

3 = (—0.25 + 0.125 4 0.125 — 0.2 4+ 0.2) /5 = 0
but
v =02 = [(—0.25)% + 0.1252 + 0.125% + (—0.2) + 0.22] /5 = 0.03475 # 0.

Figure 6.3 presents the Reynolds and the viscous shear stresses for fully developed
flow. As can be seen, the viscous shear stress is negligible except very near the wall. It
is equal to one near the wall and decreases rapidly for increasing wall distance. On the
other hand, the Reynolds shear stress is zero at the wall (because the fluctuating veloc-
ities are zero at the wall) and increases for increasing wall distance. The intersection
of the two shear stresses takes place at x5 =~ 11.

Looking at Eq. 6.18 we find that it is not really the shear stress that is interesting,
but its gradient. The gradient of the shear stress, —d(pv}v})/Oxs and pd*v, /03
represent, together with the pressure gradient, —9p/dx1, the forces acting on the fluid.
Figure 6.6 presents the forces. Start by looking at Fig. 6.6b which shows the forces
in the region away from the wall, see the red fluid particle in Fig. 6.7. The pressure
gradient is constant and equal to one: this is the force driving the flow. This agrees
— fortunately — with our intuition. We can imagine that the fluid (air, for example) is
driven by a fan. Another way to describe the behaviour of the pressure is to say that
there is a pressure drop. The pressure must decrease in the streamwise direction so that
the pressure gradient term, —9p/0x1, in Eq. 6.18 takes a positive value which pushes
the flow in the z; direction. The force that balances the pressure gradient is the gradient
of the Reynolds shear stress. This is the force opposing the movement of the fluid. This
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Figure 6.6: Fully developed channel flow. Re, = 2000. Forces in the v, equation, see Eq. 6.18.
a) near the lower wall of the channel; b) lower half of the channel excluding the near-wall re-

gion. DNS (Direct Numerical Simulation) data [16, 17]. === : —p(9v|v}/0x2)/Tw; == :
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Figure 6.7: Forces in a boundary layer. The red (dashed line) and the blue (solid line) fluid
particle are located at 2} ~ 400 and 23 ~ 20, respectively (see Fig. 6.6).

opposing force has its origin at the walls due to the viscous wall force (viscous shear
stress multiplied by area).

Now let us have a look at the forces in the near-wall region, see Fig. 6.6a. Here the
forces are two orders of magnitude larger than in Fig. 6.6b but they act over a very thin
region (z3 < 40 or x5/6 < 0.02). In this region the Reynolds shear stress gradient
term is driving the flow and the opposing force is the viscous force, see the blue fluid
particle in Fig. 6.7. We can of course make a force balance for a section of the channel,

as we did for laminar flow, see Eq. 3.36 at p. 45 and Fig. 3.9 at p. 46 which reads

0= Z_)lzmaz25 - Z_)2Zmaz25 — 27w LZmax (6.38)
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Figure 6.9: Velocity profiles in a boundary layer along a flat plate. === : DNS (Direct Numer-
ical Simulation) data [22]; = = : U2 /u, = (Inz3)/0.41 + 5.2; =« = : ¥ /u, = x3.

where L is the length of the section. We get

Ap o Tw

I~ 95 s (6.39)
As can be seen the pressure drop is directly related to the wall shear stress. In turbulent
flow the velocity profile in the center region is much flatter than in laminar flow (cf.
Fig. 6.4 and Fig. 3.8 at p. 45). This makes the velocity gradient near the wall (and
the wall shear stress, 7,,) much larger in turbulent flow than in laminar flow: Eq. 6.39
shows why the pressure drop is larger in the former case compared to the latter; or —
in other words — why a larger fan is required to push the flow in turbulent flow than in
laminar flow. o L

Figure 6.8 presents the normal Reynolds stresses, pviZ, pvf? and pvi?. As can

be seen, the streamwise stress is largest and the wall-normal stress is smallest. The
former is largest because the mean flow is in this direction; the latter is smallest because
the turbulent fluctuations are dampened by the wall. The turbulent kinetic energy,
k= W/Q, is also included. Note that this is smaller than v’f.

6.4 Boundary layer

Up to now we have mainly discussed fully developed channel flow. What is the dif-
ference between that flow and a boundary layer flow? First, in a boundary layer flow
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the convective terms are not zero (or negligible), i.e. the left side of Eq. 6.14 is not
zero. The flow in a boundary layer is continuously developing, i.e. its thickness, &,
increases continuously for increasing z;. The flow in a boundary layer is described by
Eq. 6.14. Second, in a boundary layer flow the wall shear stress is not determined by
the pressure drop (indeed it is zero); the total shear stress is balanced by the convective
terms. Third, the outer part of the boundary layer is highly intermittent, consisting of
turbulent/non-turbulent motion.

However, the inner region of a boundary layer (x2/d < 0.1) is principally the same
as for the fully developed channel flow, see Fig. 6.9: the linear and the log-law regions
are very similar for the two flows. However, in boundary layer flow the log-law is
valid only up to approximately x5/ ~ 0.1 (compared to approximately z2 /6 ~ 0.3 in
channel flow)
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Figure 7.1: Time history of v'. Horizontal red lines show +v; .

7 Probability density functions

OME statistical information is obtained by forming the mean and second moments,
for example v and vg, as was done in Section 6. The root-mean-square (RMS) can
be defined from the second moment as

Vpms = (W)W (7.1)

The RMS is the same as the standard deviation which is equal to the square-root of the
variance. In order to extract more information, probability density function is a useful
statistical tool to analyze turbulence. From the velocity signals we can compute the
probability densities (sometimes called histograms). With a probability density, f,,, of
the v velocity, the mean velocity is computed as

U= /00 vfy(v)dv (7.2)

Normalize the probability functions, so that

/Oo fo(v)dv =1 (7.3)

Here we integrate over v. The mean velocity can of course also be computed by
integrating over time, as we do when we define a time average, (see Eq. 6.1 at p. 88),
ie.

T

— dt 7.4
T (7.4)

v =
where T is “sufficiently” large.
Consider the probability density functions of the fluctuations. The second moment
corresponds to the variance of the fluctuations (or the square of the RMS, see Eq. 7.1),
ie.

V2 = / 0" for (V)0 (7.5)
As in Eq. 7.4, v'2 is usually computed by integrating in time, i.e.
— 1 [T
V2 = v (t)dt

=oF »

root-mean-
square
RMS

standard
deviation
variance
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Figure 7.2: Probability density functions of time histories in Fig. 7.1. Vertical red lines show
+vrms. The skewness, S, and the flatness, F', are given for the three time histories.

A probability density function is symmetric if positive values are as frequent and
large as the negative values. Figure 7.1 presents the time history of the v’ history at
three different points in a flow (note that v/ = 0). The red horizontal lines indicate the
RMS value of v". The resulting probability densities functions are shown in Fig. 7.2.
The red vertical lines show plus and minus RMS of v’. Let us analyze the data at the
three points.

Point 1. The time history of the velocity fluctuation (Fig. 7.1a) shows that there ex-
ists large positive values but no large negative values. The positive values are
often larger than +v,.,,s (the peak is actually close to 8v,,,s) but the negative
values are seldom smaller than —wv,.,,s. This indicates that the distribution of v’
is skewed towards the positive side. This is confirmed in the PDF distribution,
see Fig. 7.2a.

Point 2. The fluctuations at this point are much smaller and the positive values are as
large the negative values; this means that the PDF should be symmetric which is
confirmed in Fig. 7.2b. The extreme values of v’ are approximately +1.5v,,s,
see Figs. 7.1b and 7.2b.

Point 3. At this point the time history (Fig. 7.1c) shows that the fluctuations are clus-
tered around zero and much values are within +v,,s. The time history shows
that the positive and the negative values have the same magnitude. The PDF
function in Fig. 7.2c confirms that there are many value around zero, that the ex-
treme value are small and that positive and negative values are equally frequent
(i.e. the PDF is symmetric).

In Fig. 7.2 we can judge whether the PDF is symmetric, but instead of “looking” at
the probability density functions, we should use a definition of the degree of symmetry,
which is the skewness. It is defined as

V3 = / V3 for (V) dv'

— 00

3

rms?

1 * 13 ! ! 1 ’ 13
Sy = V" for (V) dv" = 208 T v (t)dt

3 3
Urms J —co 2’07'ms =T

and is commonly normalized by v so that the skewness, S,, of v’ is defined as

skewness
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Note that f must be normalized (see Eq. 7.3).

There is yet another statistical quantity which sometimes is used for describing
turbulent fluctuations, namely the flatness. The variance (the square of RMS) tells us
how large the fluctuations are in average, but it does not tell us if the time history
includes few very large fluctuations or if all are rather close to v,.,,s. The flatness gives
this information, and it is defined computed from v’ and normalized by v

s 1-€.

F = L /OO V™ fur(v)dv

Ugms — 00
The fluctuations at Point 1 (see Fig. 7.1a) includes some samples which are very large
and hence its flatness is large (see caption in Fig. 7.2a), whereas the fluctuation for
Point 3 all mostly clustered within £2v,.,,5 giving a small flatness, see Fig. 7.1c and
the caption in Fig. 7.2c. For a Gaussian distribution

) = e (e

2
Urms 2vrms

for which F' = 3.

flatness
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8 Transport equations for turbulent Kinetic energy

N this section and Section 9 we will derive various transport equations. There are two
tricks which often will be used. Both tricks simply use the product rule for derivative
backwards.

Trick 1: Using the product rule we get

DA, B, OB, DA;
=A,— B,——
8$k 8$k + J 8$k

8.1)

This expression can be re-written as
A 0B, _ 0A;B; B. 0A;
! oxy oxy ! Oxy,

and then we call it the “product rule backwards”.

(8.2)

Trick 2: Using the product rule we get

104;A; 1 0A; 0A; 0A;
S (AT A ) = A 8.3

This trick is usually used backwards, i.e.

0A; 1044
la$j o 2 ij

(8.4)

8.1 Rules for time averaging

8.1.1 What is the difference between v} v}, and v/ v,?
Using Eq. 6.2 we get

- 1 /T
vivh = ﬁ[z‘ vyvhdL.

whereas

We take a numerical example. Assume that we have a time-series of four time instants
with the values of v{ and v}, as

v} =[0.2,-0.3,0.18, —0.08]
v, = [0.15,—0.25,0.04, 0.06]

N
— 1
V= > vh,=(02-03+0.18-0.08)/4=0
n=1
N
o 1 /
vh= Z vh, = (0.15—0.25 +0.04 + 0.06) /4 = 0

so that
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However, the time average of their product is not zero, i.e.

Vvl = ZvanQn = (0.2-0.154-0.3-0.25+0.18-0.04—0.08-0.06) /4 = 0.02685

8.1.2 'What is the difference between v_f and J2?

Using Eq. 6.2 we get

— 1 [T
vt = — V2 dt.
1 2T 7 1
whereas )
—2 1 /T '
v = = v .
1 or |
The numerical example gives
Zu = (0.2% + 0.3% + 0.18% + 0.08%) /4 = 0.0422
n=1
1 X
VR = ~ vy, = (0.15% + 0.25% + 0.04> + 0.06%) /4 = 0.02255
n=1

but

N 2
_ 1
= < v'17n> =[(0.2 - 0.3+ 0.18 — 0.08) /4]* =
—2 1 ’
vl = <N > v;m) = [(0.15 — 0.25 + 0.04 + 0.06) /4]* =

8.1.3 Show that vlv’Q = vlv’12

Using Eq. 6.2 we get
T

12 1_)11)/12dt

1_)11)1 = ﬁ

and since v does not depend on ¢ we can take it out of the integral as
T

1
vlﬁ viRdt = Ulvf

Now let us do it with numerical values. Assume that v; = 10.
— 1 41 &
= a2 - 2 _
EEEINEDY ) .
n=1 m=1

= (10-0.2> +10-0.3> + 10-0.18% 4+ 10 - 0.08%) /4 = 0.422

- (b5 (b -

= [10-(0.2% + 0.3% + 0.18% + 0.08%) /4] = 0.422
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8.1.4 Show that 51 =11

Using Eq. 6.2 we get

2

1 T
1= — 01dt
2T [T

and since v does not depend on ¢ we can take it out of the integral as
1 (T

1
b | dt =027 =70
Yot | 4T e u

With numerical values we get

<l

N
1 _
1:Nngl:(10+10+10+10)/4:10:v1

8.2 The Exact k£ Equation

The equation for turbulent kinetic energy, k = %W, is derived from the Navier-Stokes
equation. Again, we assume incompressible flow (constant density) and constant vis-
cosity (cf. Eq. 6.6). We subtract Eq. 6.10 from Eq. 6.6 and divide by density, multiply

by v} and time average which gives

/ 9 =
Y B [viv; — 5;74] =
J
(8.5)
I’
_lv{i 5+ ! 02 [vi—z’)i]Jranj .
p ‘oz t0x;0x; Ox; '
Using v; = 0; + vj, the left side can be rewritten as
/i [(7'"‘1‘ /)(—‘_’_ /)_—,—‘] — [—4 g+ /} (86)
Ui&rj Ui + ;) (05 + vj) — 005 _Ui&rj Uiv; + 005 + v;v5 ] .

Using the continuity equation 81}} /0z; = 0 (see Eq. 6.11), the first term is rewritten as

9 N _ 77 90

v;a—w] (17ivj) = v} oz, 8.7)
For the second term in Eq. 8.6 we start using 99, /0z; = 0
_ _,0u)
v;a—% (vjv;) = v} 9z, (8.8)

Next, we use Trick 2

ol 0 (1 0 0
V. / 2 = 0. — | =0 = V;— = — (Vs
o (’Uz 5$j> o oz, <2’U1’U1> oh oz, (k) oz, (v;k) (8.9)

The third term in Eq. 8.6 can be written as (replace v; by vé and use the same technique
as in Eq. 8.9)

N~

a [
9, (U;U;v;) (8.10)
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The first term on the right side of Eq. 8.5 is re-written using Trick 1

1 L op 18pv 1, 0v; 18pv
z b= 8.11
18% p Ox; pp Ozx; p Ox; @10

where the continuity equation was used at the last step. The second term on the right
side of Eq. 8.5 can be written

0%v] 0 (0ov 0 o} ov} v}
v = vvf— L) =v— (v 12
l@xjaxj i Ox; <8$j) V@xj (”lax) 81:3 830] 8.12)

applying Trick 1 (A = v} and B = 9v}/dx;). For the first term in Eq. 8.12 we use the
same trick as in Eq. 8.9 so that

0 , OV} 0 81} 81}’
V—— | v, = y— —
Ox; \ "0x; Oz, 8z 8xj
0 (1 (ovj! 1 0%vju] 0%k
v— | = =v- =v
ij 2 8:rj 28£Ej8$j 8xj8:rj
The last term on the right side of Eq. 8.5 is zero because it is time averaging of a

fluctuation, i.e. ab/ = ab’ = 0. Now we can assemble the transport equation for the
turbulent kinetic energy. Equations 8.7, 8.9, 8.11, 8.12 and 8.13 give

(8.13)

0v;k -0v;, 0 (15— 15— ok 81} o

= - |- SV, — Ve 8.14
O0x; Ui 830] O0x; [ upE 9 it V@xj 830] O0x; 8.14)
T T 77 ' v

The terms in Eq. 8.14 have the following meaning.

I Convection.

II Production, P*. The large turbulent scales extract energy from the mean flow.

This term (including the minus sign) is almost always positive. It may happen that
the production is negative which means that turbulent kinetic energy is transferred
from the fluctuations to the mean flow. In turbulent flow which includes recircula-
tion, this often occurs locally in small regions.
The production is largest for the energy-containing eddies, i.e. for small wavenum-
bers, see Fig. 5.3. This term originates from the convection term (the first term on
the right side of Eq. 8.6). It can be noted that the production term is an accelera-
tion term, v};0v; /0, multiplied by a fluctuating velocity, v;, i.e. the product of an
inertial force per unit mass (acceleration) and a fluctuating velocity. A force mul-
tiplied with a velocity corresponds to work per unit time. When the acceleration
term and the fluctuating velocity are in opposite directions (i.e. when P* > 0), the
mean flow performs work on the fluctuating velocity field. When the production
term is negative, it means that the fluctuations are doing work on the mean flow
field. In this case, v; and the acceleration term, v;07; /0, have the same sign.

Using Eq. 1.11, the production terms reads

V(S + Qij) = —v[v; Sy (8.15)
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Figure 8.1: The size of the largest eddies (dashed lines) for different velocity profiles.

(the product of the symmetric tensor, W, and the anti-symmetric tensor, Qij, is
zero). Thus it is only the symmetric part of the velocity gradient (Sij, the part
that deforms a fluid element) that creates turbulence. The production does not
depend on Qij, the part of the velocity gradient that rotates a fluid element. This
is consistent with the fact that the stress tensor, 0;;, depends only on S;;, not on
Q;;, see discussion below Eq. 2.5.

IIT The two first terms represent turbulent diffusion by pressure-velocity fluctua-
tions, and velocity fluctuations, respectively. The last term is viscous diffusion.
The velocity-fluctuation term originates from the convection term (the last term
on the right side of Eq. 8.6).

IV Dissipation, . This term is responsible for transformation of kinetic energy at
small scales to thermal energy. The term (excluding the minus sign) is always
positive (it consists of velocity gradients squared). It is largest for large wavenum-
bers, see Fig. 5.3. The dissipation term stems from the viscous term (see Eq. 8.12)
in the Navier-Stokes equation. It can be written as v;07;; /0z;, see Eq. 4.1. The
divergence of 7;; is a force vector (per unit mass), i.e. 7] = O7;;/0x;. The

dissipation term can now be written v,T7, which is a scalar product between two
vectors. When the viscous stress vector is in the opposite direction to the fluctuat-
ing velocity, the term is negative (i.e. it is dissipative); this means that the viscose

stress vector performs work and transforms kinetic energy into internal energy.

The transport equation for k£ can also be written in a simplified easy-to-read sym-
bolic form as
CF=pPF4Dr—¢ (8.16)

where C*, P*, DF and ¢ correspond to terms I-IV in Eq. 8.14.

Above, it is stated that the production takes place at the large energy-containing
eddies, i.e. we assume that the large eddies contribute much more to the production
term more than the small eddies. There are two arguments for this:
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E(k)

Kk + dk

dr

Figure 8.2: Zoom of the energy spectrum for a wavenumber located in Region II or III, see
Fig. 5.3.

1. The Reynolds stresses (which appear in P*) are larger for large eddies than for
small eddies.

2. The mean flow generates large eddies which will have same time scale as the
mean velocity gradient, 97;/0x;. In the fully turbulent region of a boundary
layer, for example, both time scales are proportional to xKx2/u,. The time scale
of the velocity gradient is given by xx2/u,, see Eq. 6.28, and the time scale of
a large eddy is also given by £o/vg = kx2/u,. Figure 8.1 shows how different
velocity profiles create different largest eddies. The largest eddies created by the
velocity profile A are much smaller than those created by the velocity profile
B, because the gradient of profile A acts over a much shorter length than the
gradient of profile B.

In the cascade process (see Section 5.3) we assume that the viscous dissipation, ¢,
takes places at the smallest scales. How do we know that the majority of the dissipation
takes place at the smallest scales? First, let us investigate how the time scale varies with
eddy size. Consider the inertial subrange. let us denote the energy that is transferred
in spectral space (i.e. from eddy-to-eddy) per unit time by ¢,. How large is € — that
is generating heat — at wavenumber «, which we here denote (k) (see Section 8.2.2
and Fig. 8.2)? Recall that the viscous dissipation, €, is expressed as viscosity times
the square of the velocity gradient, see Eq. 8.14. The velocity gradient for an eddy
characterized by velocity v,, and lengthscale ¢,; can be estimated as

9 K
(8_1:;)K o< Z_,«u o< (Ui)l/Qm (8.17)
since £,, oc k1. We know that the energy spectrum (see Eqs. 5.10 and 5.13),

E(k) x ky/kx v} /e 67°% = 02 k73 (8.18)

in the inertial region. Inserting Eq. 8.18 into Eq. 8.17 gives

1/2
<@> x (,%72/3) ko k3K o K23 (8.19)
ox ).
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Thus the viscous dissipation at wavenumber « can be estimated as (see the last term in

Eq. 8.14)

o, Ovl ov\?

e=v——" = gk x|=— o<n4/3, 8.20
Ox; Ox; () (81:) . (8:20)

i.e. €(k) does indeed increase for increasing wavenumber.

The energy transferred from eddy-to-eddy per unit time in spectral space can also be
used for estimating the velocity gradient of an eddy. The cascade process assumes that
this energy transfer per unit time is the same for each eddy size, i.e. e, = ¢ = v3 /{,, =
02 /73 = 03/73, see Eq. 5.14. We find from ¢2 /73 = (%/73 that for decreasing eddy
size (decreasing /,;), the time scale, 7,;, also decreases, i.e.

7\ 2/3
T = <i> T (8.21)

where 7y and ¢ are constants (they are given by the flow we’re looking at, for example
a boundary layer which has the large scales, 7y and ¢;). Hence

9v x 2 77 o 073 o K23, (8.22)
or /), Ly

which is the same as Eq. 8.19.

8.2.1 Expressing dissipation with s;;; non-isotropic dissipation

The Navier-Stokes for incompressible flow (Eq. 2.6) expressed in s;; reads

dv; 190p 0s;:
=—= 22— 8.23
dt p Ox; e O0x; (8:23)
The corresponding RANS equation (Eq. 6.10) reads
dv; 1 0p s; OVl
v 10p 05 0vv; (8.24)

dt N ; (’)xl V(’)xj (’)xj

The v} equation is obtained by subtracting Eq. 8.24 from Eq. 8.23

dv; _ 1 op’ N 21/85% N 81}1’-1)3
dt p O0x; Ox; Ox;
Multiplying by v} and time-averaging gives
T ad W
{d_1)§ = 711}'4 o + 21/1)’-6817 + v(%
tdt p "0x; 'Oz * Oz
Re-write the viscous term as
os’. ov'ls’. o’ ovls’. —
v — =y _9 g =o—2Y _9oy(s. + Q) s
vu; oz, v oz, V(?:Ej Si; v oz, V(Sw + Z]) Sij

ov's! -
— _vy /ol
=2v oz, 21/,91]51]
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The last term (we use fact that the product of a symmetric and anti-symmetric tensor is
zero, i.e. s;;(2;; = 0, and Eq. 1.11) can be written

o, 8“} o,
ATy = 2 ) = (e ) £

This dissipation is sometimes called the non-isotropic dissipation [2]; the usual dissi-
pation, € (term IV in Eq. 8.14), is then the isotropic dissipation.

8.2.2 Spectral transfer dissipation ¢, vs. “true” viscous dissipation, ¢

As a final note to the discussion in the previous section, it may be useful to look at the
difference between the spectral transfer dissipation €, and the “true” viscous dissipa-
tion, ¢; the former is the energy transferred from eddy-to-eddy per unit time, and the
latter is the energy transformed per unit time to internal energy (i.e. increased temper-
ature) for the entire spectrum (occurring mainly at the small, dissipative scales), see
Fig. 5.3. Now consider Fig. 8.2 which shows a zoom of the energy spectrum. We as-
sume that no mean flow energy production occurs between « and x + dk, i.e. the region
may be in the —5/3 region or in the dissipation region. Turbulent kinetic per unit time
energy enters at wavenumber « at a rate of ¢,; and leaves at wavenumber x + dk a rate
of extdx. If k and k + dk are located in the inertial region (i.e. the —5/3 region),
then the usual assumption is that €, ~ €44, and that there is no viscous dissipation to
internal energy, i.e. (k) ~ 0. If there is viscous dissipation at wavenumber x (which
indeed is the case if the zoomed region is located in the dissipative region), then (k)
is simply obtained through an energy balance per unit time, i.e.

e(K) = €xtdr — €x (8.25)

8.3 The Exact k£ Equation: 2D Boundary Layers

In 2D boundary-layer flow, for which 9/0xo > 9/0xz1 and U2 < 1, the exact k
equation reads

81‘1 8x2 o 172 81‘2 826
o 1 ok ol ovl (8:20)

Ty Y
Vy + S0 0, — V

B Ozs | p 2 8—302 - V@xj Ox;

Note that the dissipation includes all derivatives. This is because the dissipation term
is at its largest for small, isotropic scales for which all derivatives are of the same order
and hence the usual boundary-layer approximation 90/0x; < 8/0x2 does not apply
for these scales.

Figure 8.3 presents the terms in Eq. 8.26 for fully developed channel flow. The left
side is — since the flow is fully developed — zero. In the outer region (Fig. 8.3b) all terms
are negligible except the production term and the dissipation term which balance each
other. This is called local equilibrium, see p. 111. Closer to the wall (Fig. 8.3a) the
other terms do also play a role. Note that the production and the dissipation terms close
to the wall are two orders of magnitude larger than in the logarithmic region (Fig. 8.3b).
At the wall the turbulent fluctuations are zero which means that the production term is
zero. Since the region near the wall is dominated by viscosity the turbulent diffusion
terms due to pressure and velocity are also small. The dissipation term and the viscous

local equilib-
rium
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Figure 8.3: Channel flow at Re, = 2000. Terms in the k equation scaled by u?/v. Re, =
2000. a) Zoom near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [16,17].
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Figure 8.4: Channel flow at Re, = 2000. DNS (Direct Numerical Simulation) data [16, 17].

diffusion term attain their largest value at the wall and they much be equal to each other
since all other terms are zero or negligible.

The turbulence kinetic energy is produced by its main source term, the production
term, P~ = —vjvh 01 /Oxo. The velocity gradient is largest at the wall (see Fig. 8.4a)
where the shear stress is zero (see Fig. 8.4b)); the former decreases and the magnitude
of the latter increases with wall distance and their product takes its maximum at 2 ~
11. Since P* is largest here so is also k, see Fig. 6.8. k is transported in the 2 direction
by viscous and turbulent diffusion and it is destroyed (i.e. dissipated) by €.

8.4 Spatial vs. spectral energy transfer

In Section 5.3 we discussed spectral transfer of turbulent kinetic energy from large to
small eddies (which also applies to the transport of the Reynolds stresses). In Sec-
tion 8.2 we derived the equation for spatial transport of turbulent kinetic energy. How
are the spectral transfer and the spatial transport related? The reason that we in Sec-
tion 5.3 only talked about spectral transfer was that we assumed homogeneous tur-
bulence in which the spatial derivatives of the time-averaged turbulent quantities are
zero, for example Ov? /0z; = 0, Ok/Oz; = 0 etc. (Note that the derivatives of the
instantaneous turbulent fluctuations are non-zero even in homogeneous turbulence, i.e.

homogeneous
turbulence
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0v} /Ox; # 0; the instantaneous flow field in turbulent flow is — as we mentioned at the
beginning of this section, p. 78 — always three-dimensional and unsteady). In homoge-
neous turbulence the spatial transport terms (i.e. the convective term, term I, and the
diffusion terms, term III in Eq. 8.14) are zero. Hence, in homogeneous turbulence there
is no time-averaged spatial transport. However, there is spectral transfer of turbulent
kinetic energy which takes place in wavenumber space, from large to small eddies. The
production term (term II in Eq. 8.14) corresponds to the process in which large energy-
containing eddies extract energy from the mean flow. The dissipation term (term IV in
Eq. 8.14) corresponds to transformation of the turbulent kinetic energy at the small ed-
dies to thermal energy. However, real flows are hardly ever homogeneous. Some flows
may have one or two homogeneous directions. Consider, for example, fully developed
channel turbulent flow. If the channel walls are very long and wide compared to the
distance between the walls, 24, then the turbulence (and the flow) is homogeneous in
the streamwise direction and the spanwise direction, i.e. 991 /9x1 = 0, dv/?/dxy = 0,
o2 0z = 0 ete.

In non-homogeneous turbulence, the cascade process is not valid. Consider a large,
turbulent eddy at a position x4 (see Fig. 6.1) in fully developed channel flow. The
instantaneous turbulent kinetic energy, k, = vj v, ;/2, of this eddy may either be
transferred in wavenumber space or transported in physical (spatial) space, or both. It
may first be transported in physical space towards the center, and there lose its kinetic
energy to smaller eddies. This should be kept in mind when thinking in terms of the
cascade process. Large eddies which extract their energy from the mean flow may not
give their energy to the slightly smaller eddies as assumed in Figs. 5.3 and 5.2, but k,
may first be transported in physical space and then transferred in spectral space (i.e. to
a smaller eddy).

In the inertial range (Region II), however, the cascade process is still a good ap-
proximation even in non-homogeneous turbulence. The reason is that the transfer of
turbulent kinetic energy, k., from eddy-to-eddy, occurs at a much faster rate than the
spatial transport by convection and diffusion. In other words, the time scale of the cas-
cade process is much smaller than that of convection and diffusion which have no time
to transport k,; in space before it is passed on to a smaller eddy by the cascade process.
We say that the turbulence at these scales is in local equilibrium. The turbulence in
the buffer layer and the logarithmic layer of a boundary layer (see Fig. 6.2) is in local
equilibrium. In Townsend [23], this is (approximately) stated as:

the local rates of turbulent kinetic energy (i.e. production and dissipation)
are so large that aspects of the turbulent motion concerned with these pro-
cesses are independent of conditions elsewhere in the flow.

This statement simply means that production is equal to dissipation, i.e. P* = ¢, see
Fig. 8.3.

In summary, care should be taken in non-homogeneous turbulence, regarding the
validity of the cascade process for the large scales (Region I).

8.5 The overall effect of the transport terms

The overall effect (i.e. the net effect) of the production term is to increase k, i.e. if we
integrate the production term over the entire domain, V', we get

/ PFaV >0 (8.27)
1%

local
equilibrium
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Similarly, the net effect of the dissipation term is a negative contribution, i.e.

/ —edV <0 (8.28)
1%

What about the overall effect of the transport terms, i.e. convection and diffusion?
Integration of the convection term over the entire volume, V, gives, using Gauss diver-

gence law,

o0v:k

/V%dvzfsajknjds (8.29)
J

where S is the bounding surface of V. This shows that the net effect of the convection
term occurs only at the boundaries. Inside the domain, the convection merely transports
k with out adding or subtracting anything to the integral of &, fv kdV; the convection
acts as a source term in part of the domain, but in the remaining part of the domain it
acts as an equally large sink term. Similarly for the diffusion term, we get

0 (14— 11— ok
Y S Gy o —v— |V
/Vaxj <2vjvkvk+pp v; Vaxj

l——— 1— ok
= —/S (5“}”1@“2 + ;p’v} - Va—xj) n;dS

The only net contribution occurs at the boundaries. Hence, Eqs. 8.29 and 8.30 show
that the transport terms only — as the word implies — transports k without giving any
net effect except at the boundaries. Mathematically these terms are called divergence
terms, i.e. they can both be written as the divergence of a vector A4;,

(8.30)

0A;
Y 8.31
8:rj ( )
where A; for the convection and the diffusion term reads
vk convection term
- l—— 1— 0Ok
A; — (ivév,’cv; + ;p’v} - V('?—xj) diffusion term (8.32)

8.6 The transport equation for v;v;/2

The equation for K = ©,7;/2 is derived in the same way as that for m/ 2. Multiply
the time-averaged Navier-Stokes equations, Eq. 6.10, by ; so that
9%v; _ ov,

7. s g
+m}15xj8xj V; oz, (8.33)

 OT,T; 1 0p
(3 = ——UV;—
Ox; p Ox;

Using the continuity equation and Trick 2 the term on the left side can be rewritten as

Lov,o;,  OvK
=g 2t = 8.34
U] 81']' 81']' ( )

(’)@iﬁj — 5.5 0v;
= | —
J 8:rj

Vs
! 8xj

The viscous term in Eq. 8.33 is rewritten in the same way as the viscous term in Sec-
tion 8.2, see Eqgs. 8.12 and 8.13, i.e.

82’51‘ _ ’K _ V&ﬁi 0v;
8zj8xj o a$jall'j axj 81']'.

(8.35)

v;

divergence
terms
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Figure 8.5: Channel flow at Re; = 2000. Comparison of mean and fluctuating dissipation
terms, see Egs. 8.39 and 8.40. Both terms are normalized by u?>/v. DNS (Direct Numerical
Simulation) data [16, 17]. —— : (971 /0x2)%; — = : €.

Equations 8.34 and 8.35 inserted in Eq. 8.33 gives

0v; K 0’K v; Op 0v; 0v; (’)Ugv’-
YTy A A B R Rt (8.36)
836]- 8zj8xj 14 8351 axj 835]- axj
The last term is rewritten using Trick 1 as
v’ Ov vl O,
—p—L = tJ Tyt =2, 8.37
v axj c’)xj + UZ’UJ c’)xj ( )

Note that the first term on the right side differs to the corresponding term in Eq. 8.14
by a factor of two since Trick 2 cannot be used because v; # v,. Inserted in Eq. 8.36
gives (cf. Eq. 8.14)

= V.. _— - | UV, —V— | =V
Oz " 0x;  p Oxi Ow; o Ox Oz d; (8.38)
I,Pk7 Sinkl source Emean, Sink

On the left side we have the usual convective term. On the right side we find:
e loss of energy to k due to the production term

e work performed by the pressure gradient; in channel flow, for example, this term
gives a positive contribution to K (as expected) since —919p/dx1 > 0

o diffusion by velocity-stress interaction
e viscous diffusion.

e viscous dissipation, €,,eqn. This corresponds to the dissipation term in Eq. 2.23;
if you replace v; with v; and use the continuity equation to get rid of the sec-
ond velocity gradient in S;; you find that the dissipation term in Eq. 2.23 (see
Eq. 2.26), is identical to €y,eqn.-

Note that the first term in Eq. 8.38 is the same as the first term in Eq. 8.14 but with
opposite sign: here we clearly can see that the main source term in the k equation (the
production term) appears as a sink term in the K equation.
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Figure 8.6: Transfer of energy between mean kinetic energy (kK), turbulent kinetic energy (k)

and internal energy (denoted as an increase in temperature, AT). K = vwl and k = 1v/v] 5Vi0;.

In the K equation the dissipation term and the negative production term (represent-
ing loss of kinetic energy to the  field) read

_ 0 8.39
V(’)xj axj vlv] axj ’ ( )

and in the k£ equation the production and the dissipation terms read
7ﬁ8@- B 81} o} (8.40)

I 0z 830] 81:3

The gradient of the time-averaged velocity field, ¥;, is much smoother than the gradient
of the fluctuating velocity field, v}. Hence, the dissipation by the turbulent fluctuations,
€, in the turbulent region (logarithmic region and further out from walls), is much larger
than the dissipation by the mean flow (left side of Eq. 8.39). This is seen in Fig. 8.5
(x§r 2 15). The energy flow from the mean flow to internal energy is illustrated in
Fig. 8.6. The major part of the energy flow goes from K to k and then to dissipation.
In the viscous-dominated wall region (x5 < 5), the mean dissipation, (97, /0x2)?,
is much larger than ¢, see Fig. 8.5. At the Wall, the mean dissipation takes the value

v = 1/2000 (normalized by uZ /v).
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11 Reynolds stress models and two-equation models

11.1 Mean flow equations

11.1.1 Flow equations

For incompressible turbulent flow, all variables are divided into a mean part (time av-
eraged) and fluctuating part. For the velocity vector this means that v; is divided into
a mean part ¥; and a fluctuating part v} so that v; = ¥; + v;. Time average and we get
(see Eq. 6.9 at. p. 89):

07v; .
B, =0 (11.1)

8p()’l_)i i( 1_)_1_).)77(9]_)+ 821_)i 7(97'”'
ot ow; U T T 0w T ow0n;, 0y

— Bpo(0 —0o)g;  (11.2)

(note that 6 denotes temperature) where pg is a constant reference density, the volume
force f; = —B(0 — 0y)g; and the turbulent stress tensor (also called Reynolds stress
tensor) is written as:

Tij = POV} (11.3)

The pressure, p, denotes the hydrodynamic pressure, see Eq. 3.22, which means that
when the flow is still (i.e. v; = 0), then the pressure is zero (i.e. p = 0). We have
assumed that the temperature variations are small (typically smaller than 10 °C) so
that the density variations can be neglected (using pg) in all terms except the gravity
term. This is called the Boussinesq approximation.

The body force f; — which was omitted for convenience in Eq. 6.9 — has here been
re-introduced. The body force in Eq. 11.2 is due to buoyancy, i.e. density differences.
The basic form of the buoyancy force is f; = g; where g; denotes gravitational acceler-
ation. Since the pressure, p, is defined as the hydrodynamic pressure we have re-written
the buoyancy source as

pofi = (p— po)gi (11.4)

so that p = 0 when ¥; = 0 (note that the true pressure decreases upwards as pgAh
where Ah denotes change in height). To understand than ¥; = 0 is solution when
p = 0, set 9p/0x; = 0in Eq. 11.2. We see that v; = 0 is a solution. dp/dx; = 0
means that the p = const in the entire domain. Then we set p = 0 in one point which
so that p = 0 in the entire domain. Now we let density in Eq. 11.4 depend on pressure
and temperature, and differentiation gives

_ (% o
dp_(@@)pd9+(8p)9dp (11.5)

Our flow is incompressible, which means that the density does not depend on pressure,
i.e. dp/Op = 0; it may, however, depend on temperature and mixture composition.
Hence the last term in Eq. 11.5 is zero and we introduce the volumetric thermal expan-

sion, 3, so that
po \90 ), (11.6)

dp = —pofdf = p — po = —PBpo(6 — o)

Reynolds
stress
tensor

Boussinesq
approximation
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where (3 is a physical property which is tabulated in physical handbooks. For a perfect
gas it is simply 8 = #~1 (with  in degrees Kelvin). Now we can re-write the buoyancy
term as

(p— po)gi = —poB(0 — 0o)g; (1.7

which is the last term in Eq. 11.2. Consider the case where x3 is vertically upwards.
Then g; = (0,0, —g) and a large temperature in Eq. 11.7 results in a force vertically
upwards, which agrees well with our intuition.

11.1.2 Temperature equation

The instantaneous temperature, 0, is also decomposed into a mean and a fluctuating
component as § = 6 + #’. The transport equation for 6 reads (see Eq. 2.18 where
temperature was denoted by 1)

90 dvo 9%

il = 11.8
where a = k/(pc,), see Eq. 2.18 on p. 33. Introducing § = 0 + 0’ we get
0 00 20 V0
00  ove 0 _ Oy (11.9)
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The last term on the right side is an additional term whose physical meaning is turbulent
heat flux vector. This is similar to the Reynolds stress tensor on the right side of the
time-averaged momentum equation, Eq. 11.2. The total heat flux vector — viscous plus
turbulent — in Eq. 11.9 reads (cf. Eq. 2.14)

4 . - o0
_Qz,tot _ qi _ Qiturb a _ ’U;H’ (1 1]0)
pep  PCp POy O

11.2  The exact v}v; equation

Now we want to solve the time-averaged continuity equation (Eq. 11.1) and the three
momentum equations (Eq. 11.2). Unfortunately there are ten unknowns; the four usual
ones (¥;, p) plus six turbulent stresses, vz’-vé. We must close this equation system; it is
called the closure problem. We must find some new equations for the turbulent stresses.
We need a turbulence model.

The most comprehensive turbulence model is to derive exact transport equations
for the turbulent stresses. An exact equation for the Reynolds stresses can be derived
from the Navies-Stokes equation. It is emphasized that this equation is exact; or, rather,
as exact as the Navier-Stokes equations. The derivation follows the steps below.

e Set up the momentum equation for the instantaneous velocity v; = ¥; + v} —
Eq. (A)

e Time average — equation for v;, Eq. (B)
e Subtract Eq. (B) from Eq. (A) — equation for v}, Eq. (C)
e Do the same procedure for v; — equation for v;-, Eq. (D)

e Multiply Eq. (C) with v}; and Eq. (D) with v}, time average and add them together

o 1,0
— equation for v;v;

closure
problem
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In Section 9 at p. 115 these steps are given in some detail. More details can also be
found in [24] (set the SGS tensor to zero, i.e. Tiaj =0).
The final vgvé—equation (Reynolds Stress equation) reads (see Eq. 9.12)

A S e e L e KL ) TS
ot ) oz, o R O J ’“axk. p \Oz;  Ox;
Ci' Pij Hij
o |- p’v;- U] 821)1’-1/}
_ Y ~ iy, Yo J
oxy, ViV p L p ik |+ Vazk[?xk (11.11)
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where D;; ; and D;; ,, denote turbulent and viscous diffusion, respectively. The total
diffusion reads D;; = D;; ¢ + D;;,. This is analogous to the momentum equation
where we have gradients of viscous and turbulent stresses which correspond to viscous
and turbulent diffusion. Equation 11.11 can symbolically be written

Cij = Py + 11 + Dy + Gy — €45
where
C;; Convection
P;; Production
IT;; Pressure-strain
D;; Diffusion
G;; Buoyancy production
€;; Dissipation

Which terms in Eq. 11.11 are known and which are unknown? First, let’s think
about which physical quantities we solve for.

v; 1s obtained from the momentum equation, Eq. 11.2

vjv; is obtained from the modeled v;v’; equation, Eq. 11.101

Hence the following terms in Eq. 11.11 are known (i.e. they do not need to be modeled)
o The left side
e The production term, P;;

e The viscous part of the diffusion term, D;;, i.e. D;’j

e The buoyancy term, G;; (provided that a transport equation is solved for v.6’,
Eq. 11.22; if not, v}’ is obtained from the Boussinesq assumption, Eq. 11.35)
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11.3 The exact v/0 equation

If temperature variations occur we must solve for the mean temperature field, see
Eq. 11.9. Then we need the unknown turbulent heat fluxes, v;6’. To derive its transport
equation, start with the equation for the fluctuating temperature. Subtract Eq. 11.9 from
Eq. 11.8

o0 O a Iy
EnLa—xk(vkeJrva +v,0") =

20/ W
Q00 Oud (11.12)

To get the equation for the fluctuating velocity, v}, subtract the equation for the mean
velocity v; (Eq. 11.2) from the equation for the instantaneous velocity, v; (Eq. 6.6) so
that

ov, 0 10p 0*v] N ovjvy,

o T gy (VkPi Ok U0 = =
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Multiply Eq. 11.12 with v} and multiply Eq. 11.13 with ¢’, add them together and
time average

vl d d _

o0 T Vi (VO 0+ 0}8) + 6/ 5 (Biv) + O]+ vioy) (11.14)
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The Reynolds stress term in Eq. 11.13 multiplied by 6’ and time averaged is zero, i.e.

A J oviv __
tlgr=_"Jg =0

If you have forgotten the rules for time-averaging, see Section 8.1.
The first term in the two parentheses on line 1 in Eq. 11.14 are combined into two
production terms (using the continuity equation, 0v;,/Oxj = 0)
ov

L U — 11.1
kD Dy, (1115

,U/

The second term in the two parenthesis on the first line of Eq. 11.14 are re-written using
the continuity equation

] A
O O] k( a9 +9,%>

(11.16)

=1

i o dxy "\ omy | Oy
Now the two terms can be merged (product rule backwards, Trick 1)

oo’ ov! ovle’  Ovpvle’
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where we used the continuity equation to obtain the right side. The last two terms
on the first line in Eq. 11.14 are re-cast into turbulent diffusion terms using the same
procedure as in Egs. 11.16 and 11.17

!
9 (vlv),) = kT v;v6 (11.18)

0
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L Oxy, oxy,



11.3. The exactw equation 132

The viscous diffusion terms on the right side are re-written using the product rule back-
wards (Trick 1, see p. 102)

%67 0 (59')_ ) ( 89’) 90" ou,

!
AV, ——F—— =V, — | m— | = a—
18xk8xk 18:75;9 a:L'k 81‘k 81‘k 8$k 81‘k

o 0% :y@/i o] :Vi o o} 89’ (’)vk
Inserting Eqs. 11.15, 11.17, 11.18 and 11.19 into Eq. 11.14 gives the transport
equation for the heat flux vector v;6’

(11.19)
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where Pjg, I1;9 and D;p ; denote the production, scramble and turbulent diffusion term,
respectively. The production term includes one term with the mean velocity gradient
and one with the mean temperature gradient. On the last line, D;g ., €, and G;9 denote
viscous diffusion, dissipation and buoyancy term, respectively. The unknown terms —
110, Dyg , €19, Gip — have to be modeled as usual; this is out of the scope of the present
course but the interested reader is referred to [25].

It can be noted that there is no usual viscous diffusion term in Eq. 11.20. The
reason is that the viscous diffusion coefficients are different in the v; equation and
the @ equation (v in the former case and « in the latter). However, if v ~ « (which
corresponds to a Prandtl number of unity, i.e. Pr = v/a ~ 1, see Eq. 2.19), the
diffusion term in Eq. 11.20 assumes the familiar form

D (DTN D (O
oxy, al’k Oxy, Oy,
%00’ ) v, %L’ ) o0’
— (=] +v L —y— |
awkal’k 8:% al’k awkal’k al’k lal’k
SRR T A LT B
o Pr/) 0x,0x; oxy, Oxy, oxy, axk
v 92010
= _— 1 — D v
(V + Pr) Oxp0xy i,
where D, ,, cancels the corresponding term in Eq. 11.20 if o = v. Often the viscous

diffusion is simplified in this way. Hence, if oo =~ v the transport equation for v}§’ can
be simplified as

(11.21)
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The same question arises as for the vz’-v} equation: which terms need to be modeled
in Eq. 11.22? The following quantities are known:

¥; 1is obtained from the momentum equation, Eq. 11.2

0 is obtained from the temperature equation, Eq. 11.9

vl vé is obtained from the modeled v;v’; equation, Eq. 11.101

vz’ﬂ’ is obtained from the modeled W equation
Hence the following terms in Eq. 11.22 are known (i.e. they do not need to be modeled)
The left side

The production term, P;

e The viscous diffusion term, D;g ,,

The buoyancy term, Gy (provided that a transport equation is solved for 0'2; if
not, 6’2 is usually modeled via a relation to k)

11.4 The £ equation

The turbulent kinetic energy is the sum of all normal Reynolds stresses, i.e.

1 1—
kz—( + V5 Jrv)zivgv;

By taking the trace (setting indices ¢ = j) of the equation for v]v’, vl and dividing by two
we get the equation for the turbulent kinetic energy

ot~ 7ox; U I0x 81:3 830]
Ck Pk 3

(11.23)
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where — as in the vjv} equation — DF and D¥ denotes turbulent and viscous diffusion,

respectively. The total diffusion reads D¥ = DF + D. Equation 11.23 can symboli-
cally be written:

Ct=Pr 4+ DF +GF —¢ (11.24)
The known quantities in Eq. 11.23 are:
¥; 1is obtained from the momentum equation, Eq. 11.2
k is obtained from the modeled k equation, Eq. 11.97
Hence the following terms in Eq. 11.23 are known (i.e. they do not need to be modeled)

e The left side

e The viscous diffusion term, D¥

e The buoyancy term, G;; (provided that a transport equation is solved for W,
Eq. 11.22; if not, v}¢’ is obtained from the Boussinesq assumption, Eq. 11.35)
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11.5 The € equation

Two quantities are usually used in eddy-viscosity model to express the turbulent vis-
cosity. In the k — € model, k and ¢ are used. The turbulent viscosity is estimated —
using dimensional analysis — as the product of a turbulent velocity, I/, and length scale,
L,

v UL (11.25)

The velocity scale is taken as k'/? and the length scale as k>/2 /e which gives

k2
Vy = CN?

where C, = 0.09. An exact equation for the transport equation for the dissipation

v} O]
e=v——t
8xj 81']'

can be derived (see, e.g., [26]), but it is very complicated and in the end many terms
are found negligible. It is much easier to look at the k£ equation, Eq. 11.24, and to setup
a similar equation for €. The transport equation should include a convective term, C¢,
a diffusion term, D?, a production term, P¢, a production term due to buoyancy, G¢,
and a destruction term, W€, i.e.

O = P° + D° + G° — ¢ (11.26)

The production and destruction terms, P and ¢, in the k equation are used to for-
mulate the corresponding terms in the £ equation. The terms in the & equation have
the dimension [m? /s3] (look at the unsteady term, Ok /0t) whereas the terms in the ¢
equation have the dimension [m?/s%] (cf. 9z/9t). Hence, we must multiply P* and ¢
by a quantity which has the dimension [1/s]. One quantity with this dimension is the
mean velocity gradient which might be relevant for the production term, but not for the
destruction. A better choice should be €/k = [1/s]. Hence, we get

Pe+GE—0F = % (ce1 P + co1 GF — cone) (11.27)

where we have added new unknown coefficients in front of each term. The turbulent
diffusion term is expressed in the same way as that in the £ equation (see Eq. 11.40)
but with its own turbulent Prandtl number, 0. (see Eq. 11.37), i.e.

e 0 v\ O
Df = o, KVJFJE) axj] (11.28)

The final form of the ¢ transport equation reads

Oe Oe € 0 v Oe
— 40— = —(c P* LGP — ¢, — ) = 11.2
ot +UJ8:E]- k(C 1 + a1 G c 25)+ 81']' |:(l/+ J€> 3zj:| ( 9)

Note that this is a modeled equation since we have modeled the production, destruction
and turbulent diffusion terms.
For details on how to derive the constants, see [27].
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11.6 The Boussinesq assumption

In the Boussinesq assumption an eddy (i.e. a turbulent) viscosity is introduced to model
the unknown Reynolds stresses in Eq. 11.2. Consider the diffusion terms in the incom-
pressible momentum equation in the case of non-constant viscosity (see Eq. 2.6)

0 0v; (91_)]' —
oz, {V <5$j + 81@) — VU5 (11.30)

Now we want to replace the Reynolds stress tensor, vz’-v}, by a turbulent viscosity, v,
so that the diffusion terms can be written

0 0v; (91_)]'
i 11.31
axj {(V+Vt) <(’)x3 +(’)xl)} ( )
Note that v is not constant. Identification of Egs. 11.30 and 11.31 gives
07v; a’ljj
_vév} = (3$j + azi) (11.32)

This is identical to the assumption for the Newtonian, viscous stress for incompressible
flow, see Eq. 2.4. Equation 11.32 is not valid upon contraction * (the right side will be
zero due to continuity, but not the left side). Hence we add the trace of the left side to
the right side so that

=y <§;J + gij> + %51-]-1;;% = —2u5;; + gaijk (11.33)
Now the equation is valid also when it is contracted (i.e taking the trace); after contrac-
tion both left and right side are equal (as they must be) to vjv; = 2k. When Eq. 11.33
is included in Eq. 11.2 we replace six turbulent stresses with one new unknown (the
turbulent viscosity, v4). This is of course a drastic simplification. With the Boussinesq
assumption the momentum equation reads (see Eq. 11.2 and 11.33)

8p061- 8 ( _.__)
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where the turbulent kinetic energy (last term in Eq. 11.33) has been incorporated in the
pressure, i.e. pp = p+ 2k /3. There is a fundamental difference between 1 and pis:  is
different for each fluid (water, air, methane, ...) and depends mainly on temperature;
¢ depends on the flow, i.e. it is function of the location (u; = pe(;)).

If the mean temperature equation, Eq. 11.9, is solved for, we need an equation for
the heat flux vector, v/¢’. One option is to solve its transport equation, Eq. 11.22.
However, it is more common to used an eddy-viscosity model for the heat flux vector.
The Boussinesq assumption reads

v = —oy (11.35)

¢ 8%

3contraction means that i is set to j
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where o; denotes the turbulent thermal diffusivity. Note that this is the same assump-
tion as Fourier’s law for a Newtonian flux, see Eq. 2.14. The turbulent thermal diffu-
sivity, i, is usually obtained from the turbulent viscosity as

o = 2 (11.36)
g6
where oy is the turbulent Prandtl number; it is an empirical constant which is usually
set to 0.7 < 0y < 0.9. The physical meaning of the turbulent Prandtl number, oy,
is analogous to the physical meaning of the usual Prandtl number, see Eq. 2.19; it
defines how efficient the turbulence transports (by diffusion) momentum compared to
how efficient it transports thermal energy, i.e.

og = 2 (11.37)
Qg
It is important to recognize that the viscosity (v), the Prandtl number (Pr), the
thermal diffusivity («) are physical parameters which depend on the fluid (e.g. water
or air) and its conditions (e.g. temperature). However, the turbulent viscosity (1), the
turbulent thermal diffusivity (o) and the turbulent Prandtl number (o) depend on the
flow (e.g. mean flow gradients and turbulence).

11.7 Modeling assumptions
Now we will compare the modeling assumptions for the unknown terms in the vz J,

Z’-H’ , k and € equations and formulate modeling assumptions for the remaining terms in
the Reynolds stress equation. This will give us the Reynolds Stress Model [RSM] (also
called the Reynolds Stress Transport Model [RSTM]) where a (modeled) transport
equation is solved for each stress. Later on, we will introduce a simplified algebraic
model, which is called the Algebraic Stress Model [ASM] (this model is also called
Algebraic Reynolds Stress Model, ARSM)

Summary of physical meaning:

P;j, Py and P* are production terms of /v, vl 29’ and k
Gij, Gip and G* are production terms of v; ;, ;9’ and k due to buoyancy
D¢, Dig t, D are the turbulent diffusion terms of v/v/; vl j, ;9’ and k

I1;p is the pressure-scramble terms of v}¢’

II;; is the pressure-strain correlation term, which promotes isotropy of the tur-
bulence

€ij, €ip and € are dissipation of v 0 v;0’ and k, respectively. The dissipation
takes place at the small-scale turbulence
11.7.1 Production terms

In RSM and ASM the production terms are computed exactly

—aﬁj 81}1 k 1 —8’171‘
P = _Ug%a_xk a ”/“;‘a K’ P = §P”' = —0v; O

S (11.38)
Py = —vjv — 0 0v;
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k is usually not solved for in RSM but a length-scale equation (i.e. € or w) is always
part of an RSM and that equation includes P*.

In the k£ — ¢ model, the Reynolds stresses in the production term are computed
using the Boussinesq assumption, which gives

ov; (91_)]' 2
_’U,E’U;- = UVt (a—x‘7 + axz) — géwk
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(11.39)

where on the third line we used the fact that 5;;€2;; = 0 because the product between a
symmetric tensor (5;;) and an asymmetric tensor (£);;) is zero. The incompressibility
condition, 97; /0x; = 0, was used to obtain the third line.

11.7.2 Diffusion terms

The diffusion terms in the k and e-equations in the k¥ — € model are modeled using the
standard gradient hypothesis which reads

0 v ok

E_ Y zt) 2
b= Ox; KVJrUk) 5%}
.0 vy \ Oe
P Oy KVJFUE) 3%‘]

The gradient hypothesis simply assumes that turbulent diffusion acts as to even out
all inhomogeneities. In other words, it assumes that the turbulent diffusion term, Df,
transports k from regions where k is large to regions where & is small. The turbulent
diffusion flux of k is expressed as

(11.40)

== (11.41)

Note that this is the same assumption as Fourier’s law for a Newtonian flux, see
Eq. 2.14. Only the triple correlations are included since the pressure diffusion usu-
ally is negligible (see Fig. 8.3 at p. 110). Taking the divergence of Eq. 11.41 (including
the minus sign in Eq. 11.23) gives the turbulent diffusion term in Eq. 11.40.

Solving the equations for the Reynolds stresses, vév}, opens possibilities for a more
advanced model of the turbulent diffusion terms. Equation 11.41 assumes that if the
gradient is zero in x; direction, then there is no diffusion flux in that direction. A more
general gradient hypothesis can be formulated without this limitation, e.g.

—— Ok
d¥, o o V% Far (11.42)

which is called the general gradient diffusion hypothesis (GGDH). It was derived in
[28] from the transport equation of the triple correlation v}v;v;. In GGDH the turbulent
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flux d¥ +.c» for example, is computed as

, — 0k ok ok
AT e U et éaxg (11.43)
Hence, even if 0k/0xz1 = 0 the diffusion flux d’f)tG may be non-zero. A quantity of
dimension [s] must be added to get the correct dimension, and as in Eq. 11.27 we take

k/e so that

—— 0k
d¥ o= ckEv Uf—— Do (11.44)
The diffusion term, D, in the k equation is obtained by taking the divergence of this
equation
ad; 0 —— Ok
Df = —B4C = 11.45
K O0x; 81:3 Ck V% Gy Oxy, ( )

This diffusion model may be used when the £ equation is solved in an RSM or an ASM.
The corresponding diffusion terms for the ¢ and vgvg equations read

0 k Oe
Di=— (e
b Owy <C UiV Eaxk)

) L G (11.46)
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Equation 11.46 often causes numerical problems. A more stable alternative is to model
the diffusion terms as in 11.40 which for vjv reads

o’
Dij,t:—aa (ﬁ—vlv3> (11.47)
T,

ok 0T

11.7.3 Dissipation term, ;;

The dissipation term ¢;; (see Eq. 11.11) is active for the small-scale turbulence. Be-
cause of the cascade process and vortex stretching (see Figs. 5.3 and 5.4) the small-
scale turbulence is isotropic. This means that the velocity fluctuations of the small-
scale turbulence have no preferred direction, see p. 82. This gives:

2 2
1. vl =05 = vy,

2. All shear stresses are zero, i.€.
vy =0 if iF#j
because the fluctuations in two different coordinate directions are not correlated.

What applies for the small-scale fluctuations (Items 1 and 2, above) must also apply
for the gradients of the fluctuations, i.e.

ovy Ovy  Ovh Ovl,  Ovh v
Oxg vy Owmy Drg Oy, Oy,
al’k 8:%

(11.48)
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Figure 11.1: Physical illustration of the pressure-strain term.

The relations in Eq. 11.48 are conveniently expressed in tensor notation as
€dij (11.49)
where the factor 2/3 is included so that ¢ = %Eii is satisfied, see Eqs. 11.11 and 11.23.

11.7.4 Slow pressure-strain term

The pressure-strain term, II;;, makes a large contribution to the W equation. In
Section 9 it was shown that for channel fl; ﬂow it is negative for for the streamwise equation,
v{2, and positive for the wall-normal, v, and spanwise, v§?, equations. Furthermore,
it acts as a sink term for the shear stress equation. In summary, it was shown that the
term acts as to make the turbulence more isotropic, i.e. decreasing the large normal
stresses and the magnitude of the shear stress and increasing the small normal stresses.
The pressure-strain term is often called the Robin Hood terms, because it “takes from
the rich and gives to the poor”.

The role of the pressure strain can be described in physical terms as follows. As-
sume that two fluid particles with fluctuating velocities v] bounce into each other at O
so that dv] /Ox1 < 0, see Fig. 11.1. As a result the fluctuating pressure p’ increases at

O so that P
v
— <0

p 8:r1
The fluid in the z; direction is performing work, moving fluid particles against the
pressure gradient. The kinetic energy lost in the x; direction is transferred to the xo
and z3 directions and we assume that the collision makes fluid particles move in the
other two directions, i.e.

ov), v

— >0, —=>0 11.50
al’g 8$3 ( )

Indeed, if Jv]/0r1 < 0, the continuity equation gives Ovh/0xs + Ovs/0x3 > 0.

However, in Eq. 11.50 we assume that not only their sum is positive but also that they

both are positive. If this is to happen the klnetlc tic energy in the x; direction must be

larger than that in the 25 and z3 direction, i.e. v2 > v} and vi* > vf. va ~ 2,

the pressure strain re-distributes kinetic energy from both v} and v:’f to v}

Now let’s assume that v/2 > v and v/> > v{2. The amount of kmetic energy

transferred from the z; direction to the x5 and 3 directions, should be proportional to
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the difference of their energies, i.e.
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(11.51)

where t denotes a turbulent timescale. The expression in Eq. 11.51 applies only to
the normal stresses, i.e. the principal axis of UZ/-U}. Let us show that by transform-
ing the fluctuations to a coordinate system which is rotated an angle & = m/4 then
P (O] )0z + OVl /Ox1) x —vjvh (v = /4 corresponds to the special case when the
normal stresses are equal). We express Eq. 11.51 in principal coordinates, (14, Z2x ),
and then transform the equation to (x1, x2) by rotating it angle a = 7 /4, see Appendix
53.1. Replacing u;2 in Eq. 53.6b by v} v}, we get

Tl =05 (Wf@) (11.52)

since m* = w* Now we have transformed the right side of Eq. 11.51 (the right
side on the first line). Next step is to transform the left side, i.e. the velocity gradi-
ents. We use Eqgs. 53.6b and 53.6¢: replacing u12 and ugy by Ov|/0xs and Ov) /024,
respectively, and adding them gives

vy Qup _ Ovy, vy,

(’)xl al’g o 61’1* 8:52*

(11.53)

the pressure-strain term in Eqs. 11.11 and 11.51 can be written

ovh, o, v’ ol
s 272 1 — 1x 2% 11. 4
P (81‘1 + 81‘2) P ((%1* 81‘2*) ( > )

Now we apply Eq. 11.51 in the z;, and —x9, directions (looking at the right side of
Eq. 11.54) so that

(91)/ 81)/ 3p —5 5
/ 1 2% o 12 )02 11.
4 ((’)xl* 8:52* ) x 2t (vl* v2*) ( 55)

Inserting Eqgs. 11.52 and 11.54 into Eq. 11.55 gives finally

ovl,  0vj 3 —
e L) o —=pvfv) 11.
p <5$1 + a@) X =2 PUIV (11.56)

This shows that the pressure-strain term acts as a sink term in the shear stress equation.
Thus, Egs. 11.51 and 11.56 lead as to write

81/. (91)/»
(I)i =9 | =% J
g1 P (81'] + axz)

where ® denotes the modeled pressure-strain term and subscript 1 means the slow part;
the concept “slow” and “rapid” is discussed at p. 142. We have introduced the turbulent
time scale ¢ = k/e and a constant ¢;. This pressure-strain model for the slow part was
proposed by Rotta in 1951 [29].

2
- —clp% (U;U; - géijk) (11.57)
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Figure 11.2: Decaying grid turbulence. The circles (a) and the thin rectangles (b) illustrates part
of the grid which consists of a mesh of circular cylinders.

Letus investigate how Eq. 11.57 behaves for decaying grid turbulence, see Fig. 11.2.
Flow from left with velocity ¥; passes through a grid. The grid creates velocity gra-
dients behind the grid which generates turbulence. Further downstream the velocity
gradients are smoothed out and the mean flow becomes constant. From this point and
further downstream the flow represents anisotropic turbulence (homogeneous in the x4
and x3 directions) which is slowly approaching isotropic turbulence; furthermore the
turbulence is slowly dying (i.e. decaying) due to dissipation. The exact vgv; equation
for this flow reads (no production or diffusion because of homogeneity)

dvlv’, 'Oy O
A N i J
=== — &ii 11.58
U1 4z, P <0xj+8$i> €ij ( )

Rotta’s pressure-strain model is supposed to reduce anisotropy. Thus it should be in-
teresting to re-write Eq. 11.58 expressed in the normalized anisotropy Reynolds stress
tensor which is defined as

1ay/
vivh 2

L 26 11.59

3 5 0ij ( )
Note that when the turbulence is isotropic, then a;; = 0. We introduce a;; (Eq. 11.59),
Rotta’s model (Eq. 11.57) and the model for the dissipation tensor (11.49) into Eq. 11.58

so that Ak - )
1_)1 ( ( aij) +5 i > = 76160,1']' — _5ij€ (1160)

Qi =

day 93 dxy 3
Analogously to Eq, 11.58, the k equation in decaying grid turbulence reads

alﬁ =—¢ (11.61)
d:z:l
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Inserting Eq. 11.61 in Eq. 11.60, the left side reads

dk da; dk 2 dk da;;
D1ai;— + 1k 61 =\ aij + 3015 | 01— + ko1 —
U1ty d:z:l v dx X1 T3 jvl d:z:l (a J * 3 ]> U1 d:z:l + kv d:z:l

2 da;
—(aij+§6ij)€+k 1d
Dividing by k and inserting into Eq.Eq. 11.60 we get

da;; € 2. & ¢ €
J — Eaij—?)éwk‘f'kazg‘i‘ 6”]{ L
Provided that ¢; > 1 Rotta’s model does indeed reduce non-isotropy as it should.
The model of the slow pressure-strain term in Eq. 11.57 can be extended by in-

cluding terms which are non-linear in vév}. To make it general it is enough to include

aij(l —Cl) (11.62)

terms which are quadratic in vz’-v}, since according to the Cayley-Hamilton theorem, a
second-order tensor satisfies its own characteristic equation (see Section 1.20 in [30]);

. . —3
this means that terms that are cubic in v/v/, v} (ie. vzv]

expressed in terms that are linear and quadratlc in vjv}. The most general form of ®;; 1
can be formulated as [31]

— U !yl /! /
= VU Uy, Vp,U;) can be

1
Pija = —c1p [Eaij +c (aikakj - g(sijakéaék)]

(11.63)

aij = — =)

a;; is an anisotropy tensor whose trace is zero. In isotropic flow all its components are
zero. Note that the right side is trace-less (i.e. the trace is zero). This should be so
since the exact form of ®;; is trace-less, i.e. ®;; = 2p/'Ov,/0z; = 0.

11.7.5 Rapid pressure-strain term

Above a model for the slow part of the pressure-strain term was developed using phys-
ical arguments. Here we will carry out a mathematical derivation of a model for the
rapid part of the pressure-strain term.

The notation “rapid” comes from a classical problem in turbulence called the rapid
distortion problem, where a very strong velocity gradient 97;/9x; is imposed so that
initially the second term (the slow term) can be neglected, see Eq. 11.65. It is assumed
that the effect of the mean gradients is much larger than the effect of the turbulence,
ie.

’avi /(s/kz) o0 (11.64)
8:rj

Thus in this case it is the first term in Eq. 11.65 which gives the most “rapid”
response in p’. The second “slow” term becomes important first at a later stage when
turbulence has been generated.

Now we want to derive an exact equation for the pressure-strain term, II;;. Since
it includes the fluctuating pressure, p’, we start by deriving an exact equation for p’
starting from Navier-Stokes equations.

1. Take the divergence of the incompressible Navier-Stokes equation assuming con-

9] 8 i .
stant viscosity (see Eq. 6.6) i.e. Vi) = = Equation A.
Oz, (9%
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Z2,Y2

T1,Y1

Figure 11.3: The exact solution to Eq. 11.66. The integral is carried out for all points, y, in
volume V.

2. Take the divergence of the incompressible time-averaged Navier-Stokes equation
. . . . o (_ oy .
assuming constant viscosity (see Eq. 6.10)i.e. — | ;— | = ... = Equation
(’)xi (’)xj
B.

Subtraction of Equation B from Equation A gives a Poisson equation for the fluc-
tuating pressure p’

1 o au; OV, 92

Z —_9Z 23 ({/‘7 /4/‘) 11.65

P 8$jal’j axj ox; 8$i8$j vy — v ( )
lrapid form | slow term

The factor two in the rapid term appears because when taking the divergence of the
convective term there are two identical terms, see right-side of Eq. 8.6. For a Poisson
equation
0%

(’)xj 8acj
there exists an exact analytical solution given by Green’s formula, see Appendix 54 (it
is derived from Gauss divergence law)

1 [ f(y)dyidyzdys

p(x) = w Ty (11.67)

=f (11.66)

where the integrals at the boundaries vanish because it is assumed that f — 0 at the
boundaries, see Fig. 11.3. Applying Eq. 11.67 on Eq. 11.65 gives

'(x) = 2

Quily) 0v;(y)  0* Ly e | dy
2 + v (y)v;(y) — vi(y)v)
/V oy, o Iayiayj( (¥)v5(y) = vi(y) j(Y))l Te—

rapid term slow term

3 (11.68)

where dy® = dy; dy>dys. Now make two assumptions in Eq. 11.68:
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i) the turbulence is homogeneous (i.e. the spatial derivative of all time-averaged
fluctuating quantities is zero). This means that the last term in square brackets
is zero. This requirement is not as drastic as it may sound (although very few
turbulent flows are homogeneous). This term is indeed very small compared to

/

the second derivative of the instantaneous fluctuations, v;(y)v’ (y).

ii) the variation of 9v;/0x; in space is small. The same argument can be used as
above: the mean gradient 0v;/0z; varies indeed much more slowly than the
instantaneous velocity gradient, 0v}(y)/Jy;

Assumption i) means that the last term in the integral in Eq. 11.68 is zero, i.e.

2,070,/
dvjv;

oyidy;

Assumption ii) means that the mean velocity gradient can be taken outside the integral.
Now multiply Eq. 11.68 with 9v;/0x; + Ov};/dx;. Since this term is not a function of
y it can be moved in under the integral. We obtain after time averaging

Lo (20, 2509

Oz ox;
_omx) 1 / dv}(x) +8v3(X> vy(y) dy?
Or, 2m )i,y \ Oz ox; Ay |y — x|
s (11.69)
1 duj(x)  Ovix)\ o> dy®
el v( S 5 ) o RO

Ai]‘

Note that the mean velocity gradient, 90/, is taken at point x because it has been
moved out of the integral. In order to understand this better, consider the integral

(P g(©)de
f(ﬂﬂ)f/0 P (11.70)

Note that = and ¢ are coordinates along the same axis (think of them as two different
points along the x axis). If the two points, z and &, are far from each other, then the
denominator is large and the contribution to the integral is small. Hence, we only need
to consider £ points which are close to z. If we assume that g(&) varies slowly with &,
9(&) can be moved out of the integral and since z is close to £, Eq. 11.70 can be written

as .
d§
f@ =g [ %5
o lz—¢
Going from Eq. 11.70 to Eq. 11.71 corresponds to moving the mean velocity gradient
out of the integral. Equation 11.69 can be written on shorter form as
7L
p \Oz; Ox;

(11.71)

ov
) = A + Mijkl—k =51+ Pyj0 (11.72)
al’g

where the first term represents the slow term, ®;; 1 (see Eq. 11.57), and second term is
the rapid term, ®;; o (index 2 denotes the rapid part).
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Now we will take a closer look at the rapid part (i.e. the second term) of M; .
The second term of Mj;, in the integral in Eq. 11.69 can be rewritten as

(%) Oy (y) 9 ( , 8v§(x)> o )a2v;(x)
Uy

e oy op \ 1Y) on Y oy0m;

P (e 0 ()
= m (UZ(Y)UJ‘(X)) - a—yk (Uj(x) Z;xz ) (11.73)

s (775)

9°v}j(x)/dyxOz; on line 1 is zero because v (x) is not a function of y. For the same
reason the last term on line 2 is zero.

Note that the terms above as well as in Eq. 11.69 are two-point correlations, the
two points being x and y. Introduce the distance vector between the two points

Ty =Yi — T4 (11.74)
Differentiating Eq. 11.74 gives
0 0 0
- = = 11.75

Equation 11.74 is a coordinate transformation where we replace x; and y; with
I. z; and r;, or
1I. Yi and ;.

Assumption i) at p. 143 gives that 9/0x; = 0 (Item I) or 9/9y; = 0 (Item II). In other
words, the two-point correlations are independent of where in space the two points are
located; they are only dependent on the distance between the two points (i.e. ;). Hence
we can replace the spatial derivative by the distance derivative, i.e.

o B 0
axi N (’)ri
o 0 (11.76)
ayi o 87’1'
We can now write M;;, in Eq. 11.69, using Egs. 11.73 and 11.76, as
1 0? 0? dr3
=5 | [ () s ()]
= Ton /V [arkam Ve ) ¥ Grear; \) | T (11.77)

= Qijke + Ajike

It can be shown that a;j¢ is symmetric with respect to index j and ¢ (recall that v, and
v} are not at the same point but separated by r;), i.e.

QAijke = Qigk; (11.78)

see Appendix 39 on p. 361. Furthermore, Eq. 11.77 is independent of in which order
the two derivatives are taken, so that a; ;¢ is symmetric with respect to 4 and £, i.e.

Qijke = Qkjie (11.79)
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Now let us formulate a general expression of a;jre which is linear in vjv

% and
symmetric in (4, ¢) and (i, k). We get

ijke = C103V}V;

+ c20;0v}vy,

+ ¢3(0i5v,,v) + dpjvivy + 00V v + Okevvy) (11.80)

+ c40500irk

+ ¢5(0i50ke + 0100k
Each line is symmetric in (4, ¢) and (4, k). For example, on line 3, term 1 & term 3 and
term 2 & term 4 are symmetric with respect to j and £ and term 1 & term 2 and term 3
& term 4 are symmetric with respect to ¢ and k.

Consider Eq. 11.69. Here it is seen that if ¢ = j then M;;, = 0 due to the
continuity equation; looking at Eq. 11.77 we get

aiire =0 (11.81)
Applying this condition to Eq. 11.80 gives
0 = 16k Vjv) + c26:00jv), + ¢3(30},0) + ki VU] + 83V 0] + Skevjv])
+ c40iedirk + c5(30ke + dirdir)k
= c1vv) + cauyvy, + c3(3v 0] + vy 4+ vv) + 20k0k) (11.82)
+ cadpek + c5(30ke + Ore)k

= v v)(c1 + c2 + 5¢3) + kdpe(ca + 2¢3 + 4es)

Green’s third formula reads (see Appendix 39 on p. 361)
Qijie = 2’031)2 (1183)
Using Eq. 11.83 in Eq. 11.80 gives
2v§v2 = 3011)31)2 + 02(5ng + 03(5@% + (%% + (51-31);1); + 5%1}21}3)
+ (3cadje + c5(8i0i0 + 0;i0:0) )k
= 3011)31)2 + 2c20,0k + 4C3’U3’1}2 + (3cq + 2¢5)d,0)k
= vivy(3e1 + des) + 6j0k(2c2 + 3ca + 2¢5)

(11.84)

Equations 11.82 and 11.84 give four equations

c1+ca+5c3=0, c4+2c3+4c5 =0

(11.85)
3c1+4c3—2=0, 2co+3cs4+2c5=0
for the five unknown constants. Let us express all constants in ¢ which gives

4410
11

3co + 2
11

_ 50cp 44
55 7

_ 20c2+6
55

c1 c3 Cy4 Ccs (11.86)
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Inserting Eq. 11.86 into Eq. 11.80 and 11.72 gives

0v 0v
¢1J,2 - z]ké i (azjké + a]lké)axlz
—81_)i k 81}
Cl(”é'”%%”’ >“2( Lo Ty 1187
ALt (11.87)

0 8
+c3 (2613Uk1}28 +v (9 + 8 +v 8 +o k za )

ov; 51)] 0v; ~ 0v;
+C4k’( )—f— Sk(azi +8xj)

We find that the ¢; term and the second and third part of the c3 term can be merged.
Furthermore, the co term and the third and fourth part of the c3 term can be merged as
well as the ¢4 and c5 terms; using Eq. 11.85 we get

8 8cy — 2 6 4 .  4-60
Pij2 = *ipij -2 Dij + 2t pk g 762]6513'
' 11 11 11 55
om0 (11.88)
D;; = vvka—fv o,

Finally we re-write this equation so that it is expressed in trace-less tensors

co+ 8 2

8cy — 2 2 60cy — 4 (11.89)
2t (Dij - §5ijpk) ~ 22 ks

11 95

where ca = 0.4. Note that ®;; = 0 as we required in Eq. 11.81. This pressure-strain
model is called the LRR model and it was proposed in [32].

All three terms in Eq. 11.89 satisfy continuity and symmetry conditions. It might
be possible to use a simpler pressure-strain model using one or any two terms. Since
the first term is the most important one, a simpler model has been proposed [32,33]

Dij0 = —cap ( 5szk> (11.90)

It can be noted that there is a close similarity between the Rotta model and Eq. 11.90:
both models represent “return-to-isotropy”, the first expressed in vév} and the second
in P;;. The model in Eq. 11.90 is commonly called the IP model (IP=Isotropization
by Production) . Since two terms are omitted we should expect that the best value of
~v should be different than (cz + 8)/11; a value of v = 0.6 (c2 = —1.4) was found to
give good agreement with experimental data. Since Eq. 11.90 is a truncated form of
Eq. 11.89 it does not satisfy all requirements that Eq. 11.89 do. Equation 11.90 does
satisfy symmetry condition and continuity but it does not satisfy the integral condition
in Eq. 11.83. Although Eq. 11.90 is a simpler, truncated version of Eq. 11.89, it is
often found to give more accurate results [34]. Since the IP model is both simpler and
seems to be more accurate than Eq. 11.89, it is one of the most popular models of the
rapid pressure-strain term. The coefficients for the slow and rapid terms in the LRR
and LRR-IP models are summarized in Table 11.1
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LRR model | LRR-IP model
c1 (Eq. 11.57 1.5 1.5
cs (Eq. 11.89) 0.4 -
cs (Eq. 11.90) - 0.6

Table 11.1: Constants in the LRR and LRR-IP pressure-strain models.

T2

Z1

e

Figure 11.4: Modeling of wall correction in pressure-strain terms.

11.7.6 'Wall model of the pressure-strain term

When we derived the rapid pressure-strain model using Green’s function in Eq. 11.68
we neglected the influence of any boundaries. In wall-bounded domains it turns out
that the effect of the walls must be taken into account. Both the rapid term in the LRR
model and the IP model must be modified to include wall modeling.

The effect of the wall is to dampen turbulence. There are two main effects whose
underlying physics are entirely different.

1. Viscosity. Close to the wall the viscous processes (viscous diffusion and dissi-
pation) dominate over the turbulent ones (production and turbulent diffusion).

2. Pressure. When a fluid particle approaches a wall, the presence of the wall is felt
by the fluid particle over a long distance. This is true for a fluid particle carried
by the wind approaching a building as well as for a fluid particle carried by a
fluctuating velocity approaching the wall in a turbulent boundary layer. In both
cases it is the pressure that informs the fluid particle of the presence of the wall.

Since the pressure-strain term includes the fluctuating pressure, it is obviously the
second of these two processes that we want to include in the wall model. Up to now
we have introduced two terms for modeling the pressure-strain term, the slow and the
fast term. It is suitable to include a slow and a fast wall model term, i.c.

D =Pij1+ Pijo+ Pijiw + Pijow (11.91)

where subscript w denotes wall modeling.

Consider a wall, see Fig. 11.4. The pressure fluctuations dampens the wall-normal
fluctuations. Furthermore, the damping effect of the wall should decrease for increasing
wall distance. We need to scale the wall-normal distance with a relevant quantity and
the turbulent length scale, k3/2 /&, seems to be a good candidate. For the wall-normal
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fluctuations, the IP wall model reads [35]

£—s
_ 72
D2 1w = —2C10 P

L (11.92)
— i 1.0
f = min 2.55|14 0 (%5 — T50)|€

where n; , (; — ;) denotes the distance to the wall. f may exceed one near the wall
and that’s why we put an upper limit on it. As explained above, this damping is inviscid
(due to pressure) and affects the turbulent fluctuations well into the log-region. It has
nothing to do with viscous damping. Away from the wall, in the fully turbulent region,
the damping function goes to zero since the distance to the wall, |n; o (z; — 24.)
increases faster than the turbulence length scale, k3/2 /&. Moreover, function f should
not exceed one.
The IP wall model for the wall-parallel fluctuations reads

>

e—
D11,10 = P33,10 = CMEvf (11.93)
The requirement that the sum of the pressure strain term should be zero. i.e. ®;; 1, =
0, is now satisfied since ®11,1 + P22,10w + P33,100 = 0.
The wall model for the shear stress is set as

3 €—r
D210 = *iclwgvﬂvéf (11.94)

The factor 3/2 is needed to ensure that ®;; 1, = 0 is satisfied when the coordinate sys-
tem is rotated. You can prove this by rotating the matrix [<I>11_’1w, D12 1w; P21, 1w, @227171]]
and taking the trace of ® in the principal coordinates system (i.e. taking the sum of the
eigenvalues).

The general formula for a wall that is not aligned with a Cartesian coordinate axis
reads [35]

e [[—— 3——
— ! VAN !,
Dij1w = Clw— <Ukvmnk,wnm,w5ij = SV ww — VLV wkw | ]

k 2 2
(11.95)
An analogous wall model is used for the rapid part which reads

3 3
Dij20 = Cow (¢km,2nk,wnm,w5ij - §‘I>ki,2nk,wnj,w — —Ppjoniwnkw | f

2
(11.96)
In Section 61, you find some detail on how to compute one of the terms, U;C V) e, Mo w-

11.8 The k — ¢ model

The exact k equation is given by Eq. 11.23. By inserting the model assumptions for
the turbulent diffusion (Eq. 11.40), the production (Eq. 11.39) and the buoyancy term
(Egs. 11.35 and 11.36) we get the modeled equation for k

%—i—f’%—y 81_21' 817j 8171+ 4614 85
ot " ox;  "\ox; | 0w ) 0m;

A AAY
Ox; or) Oz

09 O
(11.97)
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In the same way, the modeled € equation is obtained from Eq. 11.29

%4»1_)-&*50 U 8@i+8ﬁj (91_)1'
ot oz, k- '\0x; Oz ) Ox,
z ) (11.98)
R A NS
Elgzk 0 01; 2k Ox; oe ) Ox;j
The turbulent viscosity is computed as
k2
v =cp— (11.99)
€
The standard values for the coefficients read
(CpsCet, Ce2, 05, 0-) = (0.09,1.44,1.92,1,1.3) (11.100)

For details on how to obtain these constants are obtained, see Section 11.14.2 and
Section 3 in Introduction to turbulence models. In that report, details on wall-functions
and low-Reynolds number models can be found in Sections 3 and 4, respectively.
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11.9 The modeled v/v/ equation with IP model

With the models for diffusion, pressure-strain and dissipation we get the Reynolds

Stress Model [RSM]

i

2
_q% ¢¢—§@ﬁ)
2
—C2 (Pij - §5ijpk)

4 < VUl npnm0ii — =UiU nEn;
“’pk EYmTtkTtmOig ETUETYG

Vi
3
,gvgv;nkni :| f
3
+cow | Prm,2MiNm iy — §@ik,2nknj

3
_§<I>jk,2nkni :| f

9?vlv’
4y—27

0 147 am‘|

O0xm | oK O,

—9iBVi0 — g;BV}0
2
_ggéij

(unsteady term)
(convection)

(production)

(pressure strain, slow part)

(pressure strain, rapid part, IP model))

(pressure strain, wall, slow part)

(pressure strain, wall, rapid part, IP model))

(viscous diffusion)

(turbulent diffusion)

(buoyancy production)

(dissipation)
(11.101)

11.10 Algebraic Reynolds Stress Model (ASM)

The Algebraic Reynolds Stress Model is a simplified Reynolds Stress Model. The
RSM and k£ — £ models are written in symbolic form (see p. 130 & 133) as:

RSM : Cij — Dij = Pij +q)” 76'1']'

k—e: CF - DF

=pPF—¢

(11.102)

In ASM we assume that the transport (convective and diffusive) of vz’-v3 is related to

that of k, i.e.
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Inserting Eq. 11.102 into the equation above gives
viv

/
Pij—i-q)ij—&"ij:sz(Pk—E) (]]103)

Thus the transport equation (PDE) for vév} has been transformed into an algebraic
equation based on the assumption in Eq. 11.102.

Now we want to re-write this equation as an equation for W Insert the IP models
for ®;;1 (Eq. 11.57) and ®;; » (Eq. 11.90) and the isotropic model for ¢;; (Eq. 11.49)
in Eq. 11.103 and multiply by k/e so that

k — 2 k 2 ) 2
gPij — C1 (’U;Ué — géwk) — ng (PZJ — géiij) — géijk

~
~

k VU
+= (Pijrw + Pij2w) =

N
<

(P"—¢)

Collect all vz’-v3 terms so that

k
9

2

o | 7

2 2
P _6ij§Pk —c2 (Pij - §5ijpk) + ®@ij 1w + Pij 2w

3

where (2/3)3;; P*k /e was added and subtracted at the last line (shown in boxes). Di-
viding both sides by P* /e — 1 4 ¢; gives finally
k(1 —cg) (Pij — 26, P%) + @410 + Pijow

—— 2
vivg = 30k + - P = oy (11.104)

In boundary layer flow Eq. 11.104 reads (without any wall terms, i.e. ®;;1, =
D;j,20 = 0)
Js
c1 — 1+ CQPk/E k2 0v1
(c1—1+PF/e) ¢ Oy

—vivy = - (1 = c2)

[ col o

&
i
As can be seen, this model can be seen as an extension of an eddy-viscosity model
where the c,, constant is made a function of the ratio P* /e.

11.11 Explicit ASM (EASM or EARSM)

Equation 11.104 is an implicit equation for vgv;—, i.e. the Reynolds stresses appear both
on the left and the right side of the equation. It would of course be advantageous to
be able to get an explicit expression for the Reynolds stresses. Pope [36] managed
to derive an explicit expression for ASM in two dimensions. He assumed that the
Reynolds stress tensor can be expressed in the strain-rate tensor, 5;;, and the vorticity
tensor, §2;;. Furthermore, he showed that the coefficients, G™  in that expression can
be a function of not more than the following five invariants

(K*/e®)5i5550,  (K*/e*)Qi;Q,  (K*/€)51;5 85k
(ks/ES)Qijﬁjk@gi, (k4/54)0iijk§km§mi

(11.105)

2 2
|:]Dij —C2 <Pij - §5ijpk> + Pij1w + q)ij,Qw:| + §5ijk(*1 + 1)

+ —(Sijk/’(Pk/E -1 —l—Cl)
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There are five invariants because when 5;; and {);; are transformed to principal coordi-
nates, there are three eigenvalue for each of them. Furthermore, 5;; = 0 which means
there are only five independent invariants.

In two dimension the expression reads

v} Sy — Qundry) (11.106)

4
J

2 k2 _ K3
= 51@5” + G(l)?SZ] + G(2)§(

In general three-dimensional flow, the Reynolds stress tensor depends on 10 ten-
SOrs, T[j’ [36],1i.e.

_ _ 1
1 _ = 2 _ . 3 _ - = -
T = 58ij, T =55 — 5k T = SikSkj — §5ij8mk8km

o 1. - _ _
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T = QiQOkSknsnj - Simskaannj - géijmekasannp

Tiljo = Qimgmkgknﬁnpﬂpj - Qimﬂmkgkngnpﬁpj
(11.107)

where G™) may depend on the five invariants in Eq. 11.105. Equation 11.107 is a
general form of a non-linear eddy-viscosity model. Any ASM may be written on the
form of Eq. 11.107.

It may be noted that Eq. 11.107 includes only linear and quadratic terms of 5;;
and Qij. That is because of Cayley-Hamilton theorem which states that a second-
order tensor satisfies its own characteristic equation (see Section 60.1 and Section 1.20
in [30]); hence cubic terms or higher can recursively be expressed in linear (5;;) and
quadratic tensors (5;15;). Furthermore, note that all terms in Eq. 11.107 are symmetric
and traceless as required by the left side, W — 20;;k/3.

11.12 Derivation of the Explicit Algebraic Reynolds Stress Model
(EARSM)

The algebraic stress model (ASM) is given by Eq. 11.104. This equation is implicit,
since the Reynolds stresses appear on the right side (in the production and the rapid
pressure-strain terms). In this section we will derive an explicit algebraic Reynolds
stress model (EARSM). The derivation presented here is based on [37]. Whereas the
ASM employs the IP model (Eq. 11.90) for the rapid pressure-strain term, the EARSM
is based on the LRR model (Eq. 11.89). Thus we start with Eq. 11.103 using the Rotta
model for the slow part (Eq. 11.57) and the LRR model (Eq. 11.89) for the rapid part.
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2 8 2
(a5 + 30) (P" = &) = Py — creas; — % (Pi‘ - 55”Pk)

8co — 2 2 60cy — 4 2
_ 22 (Dij — g(SUPk) — Lkgij — —61'3‘5

11 55 3
(11.108)

where the anisotropy tensor, a;;, in Eq. 11.59 is used on the left side. The wall correc-
tion terms are neglected (as they usually are in the LRR model). Equation 11.108 is
re-arranged as

11

~2 2 —4
11 3 55

i 2 i 2
aij(Pk + ci1e — E) = ]Dij — géiij — w <Pz] — g(swpk)
(11.109)

Now we introduce the anisotropy tensor, a;;, also on the right side. Start by ex-
pressing the production term, P;; (see Eq. 11.11) in a5, 5;; and §2;; (see Eq. 9.12)

2 _ 2 _
Pij = —k(aix + §5ik)(§jk + Q) — k(ajn + §5jk)(§ik + Qi)
4 _ _
= fgkgij — kaip (56 + Qjk) — kajr (S + Qir) (11.110)
4 _ _
= *gkgij — k(Sjraik + ajk5ki) + k(ainQy; — Qirag;)

The production term, P¥, is equal to 0.5P;;, and Eq. 11.110 gives
PF = —kSipair (11.111)
so that we can express the P* terms on the right side in Eq. 11.109 as

962*5
11

2 ) co + 8 8cog — 2
6P —14 =——
35] < ot

2
> = —géijk:gikaik (11.112)
D;; is the same thing as P;; except that the indices on the velocity gradients (i.e.
the tensors a and €2 in Eq. 11.110 are switched), see Eq. 11.88. Hence we get (cf.
Eq. 11.110)

4 _ _
Dij = _gk/’gij — k(gjka/ki + ajkg;ﬂ-) — k‘(aikﬂkj — Qikakj) (11.113)
Collect all terms including P;;, 5;; and D;; in Eq. 11.109
co + 8 8co — 2 60co — 4 2 _ 9¢co — 5
P.l1— _ Do 2 T 25
R < 11 ) T 55 FSis ~ 30iukSmnnm =

Inserting Eqs. 11.110 and 11.113 gives

c2+8 4 ~ B - B
k (1 - 211 > <§SZ] — (8jk0ik + ajrSki) + (@inldi; — Qikak]‘))

8co — 2 4 _ _
211 < =5i; — (8jkaki + ajkSki) — (i Qrj — Qikakj)) (11.114)

—k _ 3 ij
2 — —4
. —5”' k§mnanm 962 5 . 6002 kgij
3 11 59
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Gathering all terms including 5;; gives

4 c2+8  8c;—2 360c;—4 8
ks (1 _ 2 = k3, 11.11
g i ( 11 11 4 55 ) 15 (11.115)

The terms including the product of the tensors a and s in Eq. 11.114 read

co+ 8 _ _ 8co —2 B

—k (1 - 211 ) (Sjkaix + a;k3ki) + iilk(sjkaki + @, Ski) =
2 (11.116)

17 (Bikani + azisei)(9ez = 5)

and the product of the tensors a and Q in Eq. 11.114 read
c2+8 = = 8co — 2 _ _

k <1 - 211 ) (ai; — Qivary) + k7211 (aikQj — Quikar;) =

(11.117)

k _ _
ﬁ(aikﬂkj — Qigar; ) (1 + Tea)

Using Eqs. 11.115, 11.116, 11.117 and the underlined term in Eq. 11.114, Eq. 11.114
can now be written

8 1+ 7c _ ~
—k—35;; + k#(aikﬂk]‘ — Qipar;)
15 11
(11.118)
902 -5 _ _ 2 _
+k 3ikQki + 0jkSki — §5ijk8mnanm

11

Equation 11.118 is the right side of Eq. 11.109. Insert Eq. 11.118 into Eq. 11.109 and
divide by €

P* k8 k147 _ _
aij <? + C1 — 1) = 7E1—5§ij + ETCQ(GJ“CQ}C]' — Qikakj)
(11.119)

2
(Sjkaki + a5k — §5ijk8mnanm)

The coefficient, ca, in the LRR model is usually set to co = 0.4, see Table 11.1.
In [38—40], they noted that the relation in Eq. 11.119 is substantially simplified if co =
5/9. This assumption is made in EARSM [37], which gives

Pk 8 . 4 = =
Qjj <? +c1 — 1> = 71_5§ij + §(aikﬂk]— — Qikakj) (11.120)

where the strain-rate and vorticity tensors are made non-dimensional

. k_ ~ . k
Equation 11.120 can now be written as
6—* ) * ) *
Naij = —gsij + (aikaj — Qikakj) (]]122)
9Pk , , 9
N:4—€+Cl, 6121(61_1) (]]123)
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The most general form of a;; is given by Eq. 11.107. In two-dimensional flow, it is
sufficient to include only the two first terms (see Eq. 60.2), i.e.

518” + Ba(Sim, m] Q;km_:n]) (11.124)

where we now denote the coefficients by 1 and 4 as in [37]. In order to solve
Eq. 11.122, insert Eq. 11.124 which gives

+ (515:/@ + 54(§:m7:<nk - sz mk))Qk]
— Q5 (81555 + Ba(55m Qi — VemSimj))

6—* —% )k M)k =k * =k
= 7gsij + ﬂl(sikaj - iksk]) + /84( Sim ka 2sz kakj + Q kasmj)
(11.125)

—% =% ()* O* =% 6—*
N(B157; + Ba(55, 80, — QUk3y;)) = 55

The last term including 4 can be considerably simplified. Recall that Q5 =05, =0
and 7, = —3,, see Eq. 1.11. We get for the 11 component of Eq. 11.125

Sk 1 — 2905k U1+ QS

e A . (11.126)
= 511912921 — 207585, + Q1,05 57, = 457, 01,05,

since 5%, = —33, ( 55; = 0 due to continuity). In the same way we get 433,Q7%,Q3, for
the 22 component. The 12 component (and the 21 component) read
5Tm ez — 2B Uiz + Uk Qi 5o

= 5105, Q5 — 207,55, Q15 + 97,0557 (11.127)

= 510005, Q5 + 201,55, Q5 + Q1,035,557 = 407,05, 57,
We find that the last term including 84 in Eq. 11.125 can be written as 2/ IQs where

Il = Qf, Q. = Q508 + Q5,07 = 2Q7,Q35,. Equation 11.125 can now be
re-written as

N(B15}; + Ba(575 25y — Qindr;)) =

6—* —% ()* * =%k —k
— 51 + B85, — Qy5k;) + 2841105

5
(11.128)
Separating 57; and (5 kQZj — kagzj) we get two equations for 81 and B4
Npy = 8 + 268411
1775 4 (11.129)
NBy =P
so that
6 1
Bi= 2
5 N*—2llg (11.130)
5, = 6 N
T 5N 20

In order to get the final equation for N, multiply Eq. 11.124 by 57, and then take the
trace (which is equal to the production P* /e = a;;S};, see Eq. 11.111), i.e.

Pk

c GU ]z - 61[15+ﬁ4( zm m] Q:{mii:n])i;kz (]]131)
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where [1g = 55.5%.. The (4 term reads

ij 251
(51290, — Q15531)5T
+ §* Q* Q* 5* §*
(711 12 127?)7? (11.132)
+(8528051 — 03,571)51,
+(831075 — 023,515)52, =0
since line 2 and 3 are zero and line 1 and 4 cancel each other (0}, = —Q%,, 5%y = 55,
and 57; = —3555). (1 is now obtained from Eq. 11.131 as
})k
= — 11.133
B TTae ( )

Inserting 37 in Eq. 11.130 gives

Ptk 6 N
=2 gy 11.134
e  5NZ_2[I, ° ( )

Equations 11.123 and 11.134 gives finally an equation for N

96 N

~ SE e lls el (11.135)

which is re-written as
2 27 o AT2
N(N® —2IIg) — EIISN — 1 (N*=21Ig)=0
so that

3 / 2 27 / _
NP = eiN® = ( 3gls +211o | N + 2611 = 0.

The analytical solution for the positive root reads [37]

/ 1/3 1/3
N=S+ (P+vVP)  sien (P-VB) A= VR P20

/

c 1/6 1 Py
N=242(P-P - — ||, <0
3+ (1 2) COS[?’MCCOS(m) , o <
(11.136)
where 0 < £ < 7 in arccos(§) and
1 9 2
Po= =+ =IIs— Il
1 <27Cl+20 3 Q>Cl (11.137)
Py =P — lc’2+3U +2H i .
S N R Ti R St

Equation 11.137 is valid for two-dimensional flow. For three-dimensional flow,
Eq. 11.124 includes more (six) of the terms in 11.107. This derivation is given in [37].
It results in a 6" -order equation for N which must be solved numerically.

In the original LRR model, ¢; = 1.5 and c; = 0.4 (see Table 11.1). In the EARSM,
¢1 = 1.8 and ¢2 = 5/9; recall that this choice of ¢, simplifies the rapid pressure-strain
model (cf. Egs. 11.119 and 11.120).
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T2

Figure 11.5: Boundary layer flow.

11.13 Boundary layer flow

In order to better understand the Reynolds stress equation, Eq. 11.101, it is useful to
look at its source terms which to a large degree govern the magnitude of vz’-v;. A

large source term in the equation for the v}? equation, for example, will increase v{?

and vice versa, see Section 9.1. Let us study boundary layer flow (Fig. 11.5) where
Ty >~ 0, 001/0x2 > 0v1/0x1. The production P;; has the form:

Po— o (91—)]' v ov;
b R Oy Tk Oy,
In this special case we get:
o0vy
Py = —2vjvh—
11 1 an2
0v
Py = —vf?
2 81'2
P22 =0

Is @ zero because its production term P»g is zero? No! The sympathetic term ®,;,

which takes from the rich (i.e. ﬁ) and gives to the poor (i.e. @), saves the unfair
situation! The IP model for ®;; 1 and ®;; 2 (Eq. 11.57) and ®;; > (Eq. 11.90) gives

2 N
@2211 = ClE (gk — ’UéQ) >0

k
1 2—— 00,
@2212 = C2§P11 = 7025’[)/1’0/26—:62 >0

Note also that the dissipation term for the vjv} is zero, but it takes the value %5 for
the v/ and v? equations (see p. 139). Since the modeled vjv} does not have any
dissipation term, the question arises: what is the main sink term in the v} v} equation?
The answer is, again, the pressure strain term ®12 1 and @12 5.

11.14 Wall boundary conditions
There are two options for treating the wall boundary conditions.

e Use a coarse mesh near the walls and assume that the logarithmic law applies.
This is called wall functions
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Figure 11.6: Boundary along a flat plate. Energy balance in k equation [41]. Res; ~ 4400,
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Figure 11.7: Wall-adjacent cell. Cell-centered finite volume grid.

e Use a fine mesh near the walls and modify the turbulence models to account for
the viscous effects. This is called Low-Reynolds number models

11.14.1 Wall Functions

The natural way to treat wall boundaries is to make the grid sufficiently fine so that
the sharp gradients prevailing there are resolved. Often, when computing complex
three-dimensional flow, that requires too much computer resources. An alternative is to
assume that the flow near the wall behaves like a turbulent boundary layer (see Fig. 6.2)
and prescribe boundary conditions employing wall functions. The assumption that the
flow near the wall has the characteristics of a that in a boundary layer if often not true
at all. However, given a maximum number of nodes that we can afford to use in a
computation, it is often preferable to use wall functions which allows us to use fine
grid in other regions where the gradients of the flow variables are large.
The log-law we use can be written as

1_)1 1 <Eu7z2>
I P (i)
Ur K v (11.138)

E=9.0

Comparing this with the standard form of the log-law (see Eq. 6.33)

o )
“—1=—1n(“ $2)+B. (11.139)
Ur K v
‘We find that i
B=-IE.

KR
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Figure 11.8: Turbulent kinetic energy in a boundary layer predicted by Large Eddy Simulations
at Reg = 8200 [42].

We compute the friction velocity from Equation 11.138 as

KU1, p

" In(Bu, oz /v) (11140

Ur
where 91, p is the velocity in the wall-adjacent cell and x5 is the distance from the cell
center, P, to the wall, see Fig. 11.7. Equation 11.140 is solved by iterating (the newest
value of u; is inserted at the right-hand side at every iteration). The equation converges
very quickly. The wall shear stress, 7, = pu? (see Eq. 6.16) is then used as a force
wall boundary condition for the ©; equation.

For the wall-normal velocity, vs, it is much easier. The convective velocity is zero
at the wall and hence vo = 0. It is the diffusion term in the ¥; equation which causes
the problems: then we must estimate the gradient, 971 /Ox2 at the wall, and that’s why
we need to use the log law.

In a turbulent boundary layer the production term and the dissipation term in the
log-law region (30 < @3 < 400) are much larger than the other terms, see Figs. 8.3
and 11.6. Hence, we can approximate the modelled k£ equation (see Eq. 11.97) as

N
0="PF—pe=yu <%) — pe. (11.141)
83@2
where we have assumed that the buoyancy term is zero. In the log-law region the shear
stress —pv] v} is equal to the wall shear stress 7, see Eq. 6.26 and Fig. 6.3. The
Boussinesq assumption for the shear stress reads (see Egs. 6.29 and 11.33)

00,

Tw = —pUivh = M (11.142)
Inserting Eq. 11.142 into Eq. 11.141 gives
772 4
0=2% _ % (11.143)
147 V¢

which with Eq. 11.99 gives

w2\’
C.= - (11.144)
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From experiments and DNS we have that in the log-law region of a boundary layer
u?/k ~ 0.3 so that C;, = 0.09, see Figs. 6.8 and 11.8 (it may be noted that the
DNS/LES data give a slightly larger values of k/u2 than 1/0.3).

When we are using wall functions k and € are not solved at the nodes adjacent to
the walls. Instead they are fixed according to the theory presented above. The turbulent
kinetic energy is set from Eq. 11.144, i.e.

kp = C; %2 (11.145)

where the friction velocity u, is obtained, iteratively, from the log-law (Eq. 11.138).
Index P denotes the first interior node (adjacent to the wall).
The dissipation ¢ is obtained from Eq. 11.141. The dissipation can thus be written

as
ud
ep=PF=—" (11.146)
KOxo
where the velocity gradient in the production term P¥ = —v|v,0v; /02 ~ u20v; /0xo

is computed from the log-law (see Eqgs. 6.28 and 11.138), i.e.

81_)1 . Ur

02s ~ nots’ (11.147)
For the velocity component parallel to the wall the wall shear stress is used as a
force boundary condition (cf. prescribing heat flux in the temperature equation). When
the wall is not parallel to any velocity component, it is more convenient to prescribe
the turbulent viscosity [27].
The log-law is valid for 30 < z3 < 400. If 23 for some wall-adjacent cells is
small, the friction velocity, u., is obtained from the linear law (see Eq. 6.22), i.e.

5 1/2
u, = <y1—P) (11.148)

6$2

The point at which we switch from the log-law to the linear law is taken at x; =11
which is the intersection point of the two laws. For ac;r < 11, 77 is set to zero at the
wall and £ and € are set from Eqs. 11.145 and 11.146 taking u, from Eq. 11.148. For
11 < 23 < 30, a combination of the linear law and the log-law is sometimes used. In
many commercial codes they interpolate between the linear law and the log-law for the
velocity, k and . In STAR-CCM+ this is called All y+ Wall Treatment.

11.14.2 Low-Re Number Turbulence Models

In the previous section we discussed wall functions which are used in order to reduce
the number of cells. However, we must be aware that this is an approximation which, if
the flow near the boundary is important, can be rather crude. In many internal flows —
where all boundaries are either walls, symmetry planes, inlet or outlets — the boundary
layer may not be that important, as the flow field is often pressure-determined. For
external flows (for example flow around cars, ships, aeroplanes etc.), however, the flow
conditions in the boundaries are almost invariably important. When we are predicting
heat transfer it is in general no good idea to use wall functions, because the heat transfer
at the walls are very important for the temperature field in the whole domain.

When we chose not to use wall functions we thus insert sufficiently many grid lines
near solid boundaries so that the boundary layer can be adequately resolved. How-
ever, when the wall is approached the viscous effects become more important and for

C, constant

b.c. for k

b.c. for

b.c. for veloc-
ity
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2
Figure 11.9: Direct numerical simulations [43]. Re = ©1,c6/v = 7890 (subscript C' denotes
the center of the channel). u,/71,c = 0.050. Energy balance in k equation. Production Pk,
dissipation &, turbulent diffusion (by velocity triple correlations and pressure) DT 4 DP, and

viscous diffusion D”. All terms have been scaled with u? /v.

x; < 5 the flow is viscous dominating, i.e. the viscous diffusion is much larger that
the turbulent one (see Fig. 11.9). Thus, the turbulence models presented so far may
not be correct since fully turbulent conditions have been assumed; this type of models
are often referred to as high-Re number models. In this section we will discuss mod-
ifications of high- Re number models so that they can be used all the way down to the
wall. These modified models are called low Reynolds number models. Note that “high
Reynolds number” and “low Reynolds number” do not refer to the global Reynolds
number (for example Rer, Re,, Re, etc.) but here we are talking about the local tur-
bulent Reynolds number Re, = U{/v formed by a turbulent fluctuation and turbulent
length scale, see Eq. 5.16. This Reynolds number varies throughout the computational
domain and is proportional to the ratio of the turbulent and physical viscosity v; /v, i.e.
Rey v /v. This ratio is of the order of 100 or larger in fully turbulent flow and it
goes to zero when a wall is approached.

We start by studying how various quantities behave close to the wall when x5 — 0.
Taylor expansion of the fluctuating velocities v} (also valid for the mean velocities 7;)
gives

v = ag + a1x + asxs + ...
vh = bo + biag + boxa + ... (11.149)

/ 2
V3 = Co + C1T9 + C2T5 + ...

where ag . . . co are functions of x1, x3 and ¢. At the wall we have no-slip conditions,
i.e. v} = vh = v§ = 0 which gives ag = by = ¢¢. Furthermore, at the wall Ov} /0z1 =
Ovh/Oxg = 0 so that the continuity equation gives 0v}/0xe = 0. This means that
b1 = 0. Equation 11.149 can now be written

v =airs 4+ asw3+ ...
vy = boxd + ... (11.150)
vy =cize + cxd ...
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Figure 11.10: Flow between two parallel plates. Direct numerical simulations [43]. Re =

D1l /v = 7890. u, /D1 = 0.050. Fluctuating velocity components v; = EZ

From Eq. 11.150 we immediately get

v _% + .. = 0(z2)
o2 =b3zs + .. = O(x3)
W —dd+. _ o)
vivlh = arbex3 + = O(x3)
k = (a2 + 2)r3 + = O(x3) (11151
0v1/0x2 =a1+ = O(29)
oy /0xe =a1+ = 0(29)
ovh/0xe = 2baxa + ... = 0O(x3)
Ovs/0xy =ai1+... = O(29)

In Fig. 11.10 DNS data of velocity fluctuations for the fully developed flow in a
channel are presented.

11.14.3 Low-Re k£ — ¢ Models

There exist a number of Low-Re number k — ¢ models [44—48]. When deriving low-
Re models it is common to study the behavior of the terms when x2 — 0 in the exact
equations and require that the corresponding terms in the modelled equations behave
in the same way. Let us study the exact k equation near the wall (see Eq. 8.26).

_ 0k g ok —0v1  Op'v) 0 1———

V1 —— Vy—— = —pPU1Vg— — ——— | =PV

p 181‘1 p 28%2 ! ang 8352 83:2 2p 27
————

O(x3 O(z3
(r2) I (z2) (11.152)
A

+ Ma—xg B M@xj c’)xj
——

O(x3)

The dissipation term includes all velocity gradients but most of them go to zero close
to the wall, see Eq. 11.151. The only velocity gradients that do not go to zero are
O} /Oz2 and Ovh /Do and hence e x O(29). The pressure diffusion dp'vh/dxo term
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Figure 11.11: Flow between two parallel plates. Direct numerical simulations [43]. Re =
01,00/v = 7890. u,/01,c = 0.050. Energy balance in k equation. Turbulent diffusion by
velocity triple correlations DT, Turbulent diffusion by pressure DP, and viscous diffusion D".
All terms have been scaled with u /v.

is usually neglected, partly because it is not measurable, and partly because close to
the wall it is not important, see Fig. 11.11 (see also [49]). The modelled equation reads
(see Eq. 11.97)

ok Ok on > 9 [ Ok
PULH =+ Plam— = it o\ 5

83@1 8—552 8$2 O’_k 8$2

O(x3) O(x3) (11.153)
2
T T L

When arriving at that the production term is O(x3) we have used

k> _ O(z3) 4
vy = CM? = o) " O(z5) (11.154)

Comparing Eqs. 11.152 and 11.153 we find that the dissipation term in the modelled
equation behaves in the same way as in the exact equation when xo — 0. However,
both the modelled production and the diffusion term are of O(x3) whereas the exact
terms are of O(z3). This inconsistency of the modelled terms can be removed by
replacing the C, constant by C,, f,, where f,, is a damping function f, so that

fu=0(x3") (11.155)

when 2o — 0 and f, — 1 when z3 > 50. Now we get v; = O(z3). Please note that
the term “damping term” in this case is not correct since f,, actually is increasing ji;
when x5 — 0 rather than damping it. However, it is common to call all low-Re number
functions for “damping functions”.

Instead of introducing a damping function f,,, we can choose to solve for a modified
dissipation which is denoted &, see Refs. [27,50]

It is possible to compare the exact and the modeled € equation when deriving damp-
ing functions for the € equation [51]. An alternative way is to study the modelled
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€ equation near the wall and keep only the terms which do not tend to zero. From
Eq. 11.29 we get (note that 9s/dxs = O(29), de/0x1 = O(x9))

PﬂlﬁJFPT@ﬁ - 051£Pk+i (Mt ﬁ)

(’)xl al’g k 8$2 0'_56.172
1
o)  O@?) O(x3) O(x3)
) ) (11.156)
0%¢ €

+ HoaZ Ceap-

—_—

O Olaz”)
The left-side has been written on non-conservative form (see Section 2.4) which makes
it easier to see that the term goes to zero at the wall. Furthermore, it has been assumed
that the turbulent viscosity has been suitable modified so that v; = O(z3). We find that

the only terms which do not vanish at the wall are the viscous diffusion term and the
dissipation term so that close to the wall the dissipation equation reads

0% e?

0=p— — Coop—. 11.157
uaxg 2P ( )

This equation needs to be modified since the diffusion term cannot balance the destruc-
tion term when z2 — 0. We multiply the destruction term by fo o< O(x3) For more
details, see [27].

11.14.4 Wall boundary Condition for %

The wall boundary condition of k is simple. Since the first cell is in the viscous sublayer
(3 =~ 1) and the turbulent fluctuations are zero at the wall we set

k=0 (11.158)

11.14.5 Different ways of prescribing ¢ at or near the wall

When setting wall boundary condition for € we look at the k equation. The largest term
in the k equation (see Eq. 11.152) close to the wall, are the dissipation term and the
viscous diffusion term which both are of O(x3) so that

0%k
0= W — Pe: (11.159)

From this equation we get immediately a boundary condition for ¢ as

0%k
Ewall = Va—w%- (11.160)

From Eq. 11.159 we can derive alternative boundary conditions. The exact form of
the dissipation term close to the wall reads (see Eq. 8.26)

B AN
su{<ax2> +<81}2> (11.161)
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where 0/0x2 > 0/0x1 ~ 0/0xs and OV} /Oxs ~ Ovs/0xs > OV} /Dxs have been
assumed. Using Taylor expansion gives (see Eq. 11.150)
— (a2 L2
s—l/(al—i—cl)—i—... (11.162)

In the same way we get an expression for the turbulent kinetic energy (see Eq. 11.150)

1 /— —
kzi(a%vch) 22+ ... (11.163)
so that )
vk 1 /—= =
<6\£> =3 (a% +c§) .. (11.164)
Comparing Eqgs. 11.162 and 11.164 we find
VAN
Ewall = 2V ( 3 ) . (11.165)
X2

In many k& — € models the following form is used

2

k
ep =2U— (11.166)
)

where subscript P denotes wall-adjacent cells, see Fig. 11.7. This is not really a bound-
ary condition; instead we prescribe ¢ at the wall-adjacent cells. This is obtained by
assuming a; = c; in Eqs. 11.162 and 11.163 so that

€= 21/(1%
_ (11.167)

_ 2.2
k = ajz;

which gives Eq. 11.166.
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A Introduction to tensor notation

The convection-diffusion equation for temperature reads

0
(pv1T) + 92s (pvoT) +

0 oT
prs (F%> *

Using tensor notation it can be written as

D5 (pvsT) =
0 oT
o (F%> +
0 0 (p )
€L

- T =
dx; (1) =3

ory

ar
8:rj
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0

6173

oT

——
( 6173

)

The Navier-Stokes equation reads (incompressible and 1 = const.)

5 () + 5= (vavn) + 5 . (113”1)
1 8p 821)1 82Ul
T 61:1 ox? 83@2 81:%
0 0
pr (v1v2) + 5— 9 (v2v2) + 5— e (v3v2)
i (P P o
) 81:2 ox? 83@2 81:%
0 0 0
8—;p1 (’1}11)3) + a—u (’1}2’1}3) + 8—;p3 (’1}3’1}3)
1 8]) 621}3 621}3 821)3
‘;a—xg“(a z " 52 T ol
Using tensor notation it can be written as
0 1 dp 0%v;
8z; ) = 5w By
Zj P OoT; LjO0Z;
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a: A tensor of zeroth rank (scalar)

a; =(2,1,0)
a;: A tensor of first rank (vector) /

a;j: A tensor of second rank (tensor)
A common tensor in fluid mechanics (and solid mechanics) is the stress tensor o5

011 012 013
Oij = 021 022 023
031 032 033

Itis symmetric, i.e. 0;; = 0;. For fully, developed flow in a 2D channel (flow between
infinite plates) o;; has the form:

d’l)l

012 = 021 = M%
2

and the other components are zero. As indicated above, the coordinate directions

(21, x2,x3) correspond to (z,y, 2), and the velocity vector (vy, v2, v3) corresponds to
(u, v, w).

A.1 Whatis a tensor?

A tensor is a physical quantity. Consequently it is independent of which coordinate
system. The tensor of rank one (vector) b; below

/'

is physically the same expressed in the coordinate system (x1, z2)

€2

L.

1

where b; = (1/v/2,1/+/2,0)T and in the coordinate system (x1/, zo/)

\/ Ty

where b;r = (1,0,0)T. The tensor is the same even if its components are different.
The stress tensor o;; is a physical quantity which expresses the stress experienced
by the fluid (or the solid); this stress is the same irrespective of coordinate system.
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A.2 Examples of equations using tensor notation

A.2.1 Newton’s second law

d?x
mE=x
dt?

which on component form reads

d2l’1
e

d2l’2
"

d2l’3
S

=F (A.1)

On tensor notation:
d2$i o
T T
When an index appears once in each term (a free index) it indicates that the whole
equation should be applied in each coordinate direction, cf. Eq. A.1.

A.2.2 DivergenceV-v =0

The equation above reads

Ovi , Ovz | Ovs
8$1 al’g 8$3

3

8vi

=0 & Zaxi =0 (A.2)
=1

In tensor notation the following rule is introduced: if an index appears twice (a dummy
index) within a term, we should apply summation over this index. Normally the sum-
mation is taken from 1 to 3 (the three coordinate directions). If our coordinate system
is 2D, the summation goes, of course, only from 1 to 2.

Equation A.2 is thus written as

8vi
(’)xi

=0. (A.3)

Note that, since the dummy index implies a summation over each term, it can be inter-
changed against any index, i.e.

0
2k .
8:L'k
is exactly the same equation as Eq. A.3. Equation A can, for example, be written as
0 1 Op ov?
A (va) = o

o0xy 7; 0xm + V@xkaxk

where different dummy indices have been used (¢ and k); this is perfectly correct,
because the summation is carried out for each term separately. What is not allowed,
however, it to choose the dummy index same as the free index, i.e. for the equation
above we are not allowed to use m as a dummy index.
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A.2.3 The left-hand side of Navier-Stokes v,0v,,, /0xy

For simplicity, let’s assume 2D. The left-hand side of the equation above includes both
a free index (m) and a dummy index (¢). Let’s first write out the summation on com-
ponent form so that

Ovp, n Ovpm,
V] —— + Vg——.
! (9%1 2 81‘2

The free index indicates that the equation should be written in each coordinate direction
(x1 and x5 in this case, since we have assumed 2D flow), cf. Eq. A.1, i.e.

A.3 Contraction

If two free indices are set equal, they are turned into dummy indices, and the rank of
the tensor is decreased by two. This is called contraction.If the tensor equation

aij = bjed; — fij

is contracted, the result is
ai; = bicd; — fii.

For a tensor of rank two, a;;, contraction is simply summation of the diagonal elements,
i.e. a11 + agg + ass.

A.4 Two Tensor Rules

A.4.1 The summation rule

A summation over a dummy index corresponds to a scalar product or a divergence; it
should not appear more than twice. The following expressions are not valid:

arick = 0, aurby; = dij, abic; =d

A.4.2 Free Index

In an expression the free index (indices) must be the same in all terms The following
expressions are not valid:

aikk = by, ciab; = di, aijdjp = cim

A.5 Special Tensors

A.5.1 Kroenecker’s ¢ (identity tensor)

o 1 i1=3
5”{0 oy

It is defined as



A.6. Symmetric and antisymmetric tensors 283

Contraction of d;; yields
0ii = 011 + 022 + 033 = 3

Another example of contraction can now be given. We have the expression for the
turbulent stress tensor based on the Boussinesq hypothesis (see Eq. 11.33)

— ov; 0y, 2
/. /. = — ki J _67, k A-4
pU'L’U‘] /’Lt (8[1,'] + axz) + 3 ]p ( )
Contraction gives
ov; 2 ov;
= —2 L+ =0ipk = =2 ° + 2pk.
pUL “tazi +3 P Mtaxi-f' P

For incompressible flow the first term on the right-hand side is zero (due to continuity)
so that
U;U; = Qk,

which actually is the definition of k. Thus Eq. A.4 is valid upon contraction; this should
always be the case. As can be seen, contraction of Eq. A.4 corresponds simply to the
sum of the diagonal components (elements 11, 22 & 33).

A.5.2  Levi-Civita’s ¢;;;, (permutation tensor)

It is defined as

1 if (4,4, k) are cyclic permutations of (1,2, 3)
g; =14 0 if at least two indices are equal (AS5)
—1 otherwise
Examples:
€123 =1, €132 = —1, €113 =0
es12 =1, €321 = —1, €233 =0

A.6 Symmetric and antisymmetric tensors

A tensor a;; is symmetric if a;; = a;;.
A tensor b;; is antisymmetric if b;; = —b;;. It follows that for an antisymmetric
tensor all diagonal components must be zero (for example, b;; = —b1; = b1 = 0).
The (inner) product of a symmetric and antisymmetric tensor is always zero. This
can be shown as follows:

aijbij = ajibi; = —a;ibj; = —aizbyj,

where we first used the fact that a;; = a;; (symmetric), then that b;; = —b;; (antisym-
metric), and finally we interchanged the indices ¢ and 7, since they are dummy indices.
Thus the product must be zero.

This can of course also be shown be writing out a;;b;; on component form, i.e.

ai;bi; = a11b11 + arebia + a13biz + ... + azabsze + aszzbzz =0
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By inserting
a12 = 21, (13 = asi, 023 = A32
bi1 = bay = b33 =0

bz = —ba1, b1z = —b31, baz = —b32

the relation above, i.e. a;;b;; = 0, is verified.

A.7 Vector Product

The vector cross product
c=axb

1S on tensor notation written
C; = Eijkajbk.

This is easily shown by writing it on component form. Using Sarrus’ rule we get

X y z
c=| a1 ax a3z | = (a2bs — asbs,asby — a1bs, a1bs — azby
by by b3

We find that the first component of Eq. A.6 is

Cc1 = sljkajbk =
= e111a1b1 + €112a1b2 + €11301b3
+ €121a201 + €122a2b2 + €123a2b3
+ €131a3b1 + £13203b2 + £1330303

= €12302b3 4 €132a3b2 = agbz — azbs.

Recall that ;5, is zero if any two indices are equal (see Eq. A.5, p. 283).

A.8 Derivative Operations
A.8.1 The derivative of a vector B:

Tensor notation  Vector notation

9B grad(B) or VB
axj

The result is a tensor of rank two (rank of B; plus one)

A.8.2 The gradient of a scalar a:

Tensor notation  Vector notation
Oa

— grad(a) or Va
8:rj

The result is a vector.

284

(A.6)
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A.8.3 The divergence of a vector B:
Tensor notation  Vector notation
0B;

—Z div(B) or V-B
8$ yi
The result is a scalar.

A.8.4 The curl of a vector B:

Tensor notation  Vector notation

0B
Eijkﬁ—:r]-c curl(B) or Vx B
J

The result is a vector.

A.8.5 The Laplace operator on a scalar a:

Ten;or notation  Vector notation
9]
ngj V- (Va) = V2a
The result is a scalar.
A.9 Integral Formulas

fCB-dx/S(vXB)-ds,

where the surface S is bounded by the line C'. On tensor notation:

B
% Bzd$Z or / skadSZ
c s O

/B-dsz/v-BdV,
S 1%

where the volume V is bounded by the surface S. On tensor notation:

/ B;dS; or / 9B: v/
S Vv 8%

A.10 Multiplication of tensors

Stokes theorem

Gauss theorem

Two tensors can be multiplied in two ways: either the number of free indices is reduced
by two (inner product), or it is unchanged (outer product). The product

aijkbre = Cije

represents an inner product; the rank of the product is the sum of the rank of the two
tensors (3 + 2 = 5) on the left-hand side minus two (5 — 3 = 2). An outer product
between the two tensors reads

@ij1bme = dijkem-
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Now the rank of the resulting tensor d;;x¢m (rank 5) is the sum of the rank of the two
tensors (3 + 2 = 5).
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B TME226: ¢ — ) identity

THE € — 0 identity reads

€inm€Emjik = Emin€mjk = €nmi€mjk = 61]571]6 - 5116571]

In Table B.1 the components of the ¢ — ¢ identity are given.

ilnl|J|k €inmEmijk 0ij0nk — OitOn;j
1 2 1 2 €12m€m12 — €123€312 — 1-1=1 1-0=1
211 |1 1] 2] €1mEmiz =€azezina=—1-1=—1 0—-1=-1
1 2 2 1 €12m€Em21 = €123€321 — 1-—-1=-1 0—-1=-1

1 3 1 3 €13m€m13 — €132€213 — —-1.--1=1 1-0=1
3111 1]3 | eimemiz=egpeqz=1--1=-1 0-1=-—

1 3 3 1 €13m€Em31 — €132€231 — —-1-1=-1 0—-1=-1
2 3 2 3 €23m€Em23 — €231€123 = 1-1=1 1-0=1
312|2] 3| es2mbmas = e€321€123 = —1-1=-1 0-1=-1
213 ]13]2)| eé23mEm32 =€231€132=1-—-1=-1 0—-1=-1

Table B.1: The components of the ¢ — § identity which are non-zero.

287
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C TME226 Assignment 1 in 2024: laminar flow in a
channel

ouU will get results of a developing two-dimensional channel flow (i.e. flow be-

tween two parallel plates), see Fig. C.1. The flow is steady and incompressible.
The simulations have been done with Calc-BFC [199]. The inlet boundary condition
(left boundary) is v1 = V;,, = 0.9. The height of the channel is h = 0.01m and
L = 0.6385m; the fluid is air of 20°C.

You’ll use data from a coarse DNS. Although some of the data are probably not
fully accurate, in this exercise we consider the data to be exact. You can use Matlab,
Octave or Python. Both Octave and Python are open-source software. Octave is a
Matlab clone. Many large Swedish industries prefer engineers to use Python instead of
Matlab due to Matlab’s high license fees

e First, find out and write down the governing equations (N.B:. you cannot assume
that the flow is fully developed).

From the course www page https://www.tfd.chalmers.se/ lada/MoF/,
download the data file channel_flow_data.dat and the m-file channel_flow.m
which reads the data and plot some results. Open Python or Matlab/Octave and execute
channel_flow.

Open channel_flow.min an editor and make sure that you understand it. There
are three field variables, v1, v2 and p; the corresponding Python/Matlab/Octave arrays
are v1_2d, v2_2d and p_2d. The grid is 199 x 28, i.e. ni = 199 grid points in
the x; direction and nj = 28 grid points in the zo direction. The field variables are
stored at these grid points. We denote the first index as ¢ and the second index as 7, i.e.
v1_2d (i, j). Hence in Python

v1_2d[:, 0] arethe v; values at the lower wall;
v1.2d[:,nj-1] arethe v; values at the upper wall;
v1_2d[0, :] arethe vy values at the inlet;
v1_2d[ni-1, :] arethe vy values at the outlet;

and in Matlab/Octave

v1_2d(:, 1) arethe v; values at the lower wall;
v1_2d (:,n7j) are the vy values at the upper wall;
v1_2d (1, :) arethe v; values at the inlet;
v1_2d(ni, :) arethe v; values at the outlet;

The work should be carried out in groups of two (you may also do it on your
own, but we don’t recommend it). At the end of this Assignment the group should
write and submit a report (in English). Divide the report into sections corresponding
to the sections C.1 — C.9. In some sections you need to make derivations; these should
clearly be described and presented. Present the results in each section with a figure
(or a numerical value). The results should also be discussed and — as far as you can —
explained.


https://www.mathworks.com
https://www.gnu.org/software/octave/
https://www.python.org
https://www.tfd.chalmers.se/~lada/MoF/
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Figure C.1: Flow between two plates (not to scale).

It is recommended (but the not required) that you use IfTEX (an example of how to
write in I&TEXis available on the course www page). You find IZTEX here. You can also
use IATEX on-line.

C.1 Fully developed region

Fully developed conditions mean that the flow does not change in the streamwise di-
rection, i.e. Qvy1/dxz1 = 0. If we define “fully developed” as the location where the
velocity gradient in the center becomes smaller than 0.01, i.e. |0v1 /01| < 0.01, how
long distance from the inlet does the flow become fully developed?

Another way to define fully developed conditions can be the x; position where the
centerline velocity has reached, for example, 99% of its final value. What z; value do
you get?

In Section 3.2.2, a distance taken from the literature is given. How well does this
agree with your values?

In the fully developed region, compare the velocity profile with the analytical pro-
file (see Section 3.2.2).

Look at the vertical velocity component, v5. What value should it take in the fully
developed region (see Section 3.2.2)? What value does it take (at zo = h/4, for
example)?

C.2 Wall shear stress

On the lower wall, the wall shear stress, 7,,, 7, (index L denotes Lower), is computed as

8’1}1

— 1
Hows |, (C.1)

Tw,L = T21,w,L =

Recall that 715 = p(9dv1/0x2+ Ova /1) (see Egs. 2.10) but at the wall dve /Ox1 = 0;
Plot 7, 1, versus x1. Why does it behave as it does?

Now we will compute the wall shear stress at the upper wall, 7, 7. If you use
Eq. C.1, you get the incorrect sign. Instead, use Cauchy’s formula (see Fig. 1.3 and [3],
Chapt. 4.2)

t(-ﬁ) = TjiTy (CZ)

2

which is a general way to compute the stress vector on a surface whose (outward point-
ing) normal vector is i = n;. The expression for 7;; can be found in Eqs. 1.9 and
2.4; recall that the flow in incompressible. On the top wall, the normal vector points
out from the surface (i.e. n; = (0,—1,0)). Use Eq. C.2 to compute the wall shear


https://www.latex-project.org/get/
https://www.overleaf.com/
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stress at the upper wall. Plot the two wall shear stresses in the same figure. How do
they compare? In the fully developed region, compare with the analytical value (see
Eq. 3.30).

C.3 Inlet region

In the inlet region the flow is developing from its inlet profile (v; = V = 0.9) to
the fully developed profile somewhere downstream. The vy velocity is decelerated
in the near-wall regions, and hence the v; velocity in the center must increase due
to continuity. Plot v; in the center and near the wall as a function of x;. Plot also
vy /0x1. If you, for a fixed x1, integrate vy, i.e.

h
5(351)/0 vi (21, 22)dxs

what do you get? How does &(z1) vary in the 2 direction? How should it vary?

C.4 Wall-normal velocity in the developing region

In Section C.3 we found that, in the developing region, v; near the walls decreases for
increasing x;. What about v2? How do you explain the behaviour of v5?

C.5 Vorticity

Do you expect the flow to be irrotational anywhere? Let’s find out by computing the
vorticity vector w;, see Section 1.4 (note that only one component of w; is non-zero).
Plot it in the fully developed region as w3 vs. x2. Where is it largest? Plot the vorticity
also in the inlet and developing regions; what happens with the vorticity in the inlet
region? Now, is the flow rotational anywhere? Why? Why not?

C.6 Deformation

In Section 1.6, we divided the velocity gradient into a strain-rate tensor, S;;, and a vor-
ticity tensor, €;;. Since the flow is two-dimensional, we have only two off-diagonal
terms (which ones?). Plot and compare one of the off-diagonal term of S;; and €2;;.
Where are they largest? Why? What is the physical meaning of S;; and Q;;, re-
spectively? Compare 2;; with the vorticity, w;, you plotted in Section C.5. Are they
similar? Any comment?

C.7 Dissipation

Compute and plot the dissipation, ® = 7;;0v;/0x;, see Eq. 2.15. What is the physical
meaning of the dissipation? Where do you expect it to be largest? Where is it largest?
Any difference it its behaviour in the inlet region compared to in the fully developed
region?

The dissipation appears as a source term in the equation for internal energy, see
Eq. 2.15. This means that dissipation increases the internal energy, i.e. the temperature.
This is discussed in some detail at p. 34.

Use Eq. 2.17 to compute the temperature increase that is created by the flow (i.e. by
dissipation). Start by integrating the dissipation over the entire computational domain.
Next, re-write the left side on conservative form (see Section 2.4) and then apply the
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Gauss divergence theorem, See Section 3.2.3. Assume that the upper and the lower
wall are adiabatic; furthermore we can neglect the heat flux by conduction, ¢;, (see
Eq. 2.14) at the inlet and outlet.

Compute the increase in bulk temperature, 7}, from inlet to outlet. The bulk tem-
perature is defined as

h
Td
7, - Jo T (€3)
fO ’Uldl’g

When you compute the convective flux in Eq. 2.12 at the outlet, for example, you get

h
/ V1 TdIL'Q
0

which indeed is very similar to the bulk temperature in Eq. C.3.

C.8 Eigenvalues

Compute and plot the eigenvalues of the viscous stress tensor, 7;;. Use the Python com-
mand np.linalg.eig or the Matlab/Octave command e ig. If you have computed
the four elements of the 7;; matrix you can use the following commands in Python

tau=[tau_11 tau_12; tau_21 tau_22]
lambda, n=np.linalg.eig(tau)

and in Matlab/Octave

tau=[tau_11 tau_12; tau_21 tau_22];
[n, lambda]l=eig (tau);

where n and lambda denote eigenvalues and eigenvectors, respectively. Note that
tau-ll, tau-12, tau-21, tau_22 arescalarsandhencethe coding above must
be inserted in for loops.

What is the physical meaning of the eigenvalues (see Chapter 1.8)? Pick an x; loca-
tion where the flow is fully developed. Plot one eigenvalue as a z — y graph (eigenvalue
versus x2). Plot also the four stress components, 7;;, versus . Is (Are) anyone(s) neg-
ligible? How does the largest component of 7;; compare with the largest eigenvalue?
Any thoughts? And again: what is the physical meaning of the eigenvalues?

C.9 Eigenvectors

Compute and plot the eigenvectors of 7;;. Recall that at each point you will get two
eigenvectors, perpendicular to each other. It is enough to plot one of them. An eigen-
vector is, of course, a vector. Use the Python command plt.quiver or the Mat-
lab/Octave command quiver to plot the field of the eigenvectors. Recall that the sign
of the eigenvector is not defined (for example, both ¥; and —¥; in Fig. 1.11 at p. 30
are eigenvectors).

Recall that the stress vector, tgn), (see Eq. C.2 and Fig. 1.3) can be computed as
the product of the eigenvalues and eigenvectors. Do that as a vector plot ’. In regions
where the eigenvalues are close to zero, the eigenvectors have no meaning.

Try to analyze why the eigenvectors behave as they do.

7If you plot it over the entire region, you’ll see nothing; make a zoom
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AH TME226, Assignment 2: Turbulent flow using STAR-
CCM+

IN this task, a commercial CFD software (STAR-CCM+ 2402) will be used. The task
is to do simulation of a two-dimensional hill flow. Several turbulence models will be
used and the results will be compared with experimental data. Before doing the task,
it is recommended to first do one of the tutorials in the User Guide (Version 2402) of
STAR-CCM+. The tutorial which is similar to this task is the ”Steady Flow: Backward
Facing Step”.

You can do the assignment on your own or in a group of two. It is recommended
(but the not required) that you use IXTEX (an example of how to write in IXTEXis avail-
able on the course www page). You find IZTEX here. You can also use IXTEX on-line.

AH.1 Backward Facing Step Tutorial (Optional)

This tutorial is a good bridge before doing different cases. Here are some steps to
access the tutorial:

1. Open a terminal window. In the terminal window, type starccm+
2. To start a new simulation, click File — New
3. Tick the Power-On-Demand box and fill the license box with the POD Key.

4. Download the tutorial instruction and data from the course homepage

AH.2 2D Hill Flow

Figure AH.1: flow over two consecutive hills

In this case, a two-dimensional, steady and incompressible flow over two consecu-
tive hills mounted on the bottom of the channel will be studied. The height of the chan-
nel is H = 151.75 mm. The maximum height and length of each hill are 7,4, = 50
mm and R = 192.8 mm, respectively. The space between each of the consecutive
hills is 9.0h,,4,. The fluid is water of 20° Celsius and the Reynolds number (Re =
37000) is based on the mean centerline velocity at inlet and the inlet channel height.
The inlet boundary condition (left boundary) is imposed as the velocity profile of the


https://www.latex-project.org/get/
https://www.overleaf.com/
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fully-developed channel flow in the absence of the hills. The case is built based on the
paper [201]. Please read this paper.

AH.3 Steady Flow: 2D Hill Flow Tutorial
1. Start the STAR-CCM+
e Open a terminal window — type starccm+
2. Create a new simulation
e Click the new simulation icon (left icon of the system toolbar) — tick the

Power-On-Demand (POD) box.

e In the Process Options section, choose Serial (default option) mode. DO
NOT change it to any other options.

e Fill the POD box with the POD Key and then press OK button.
3. Importing the Geometry and Mesh

e Select File — Import — Import Volume Mesh from the menu bar.

e In the Open window, navigate to the stored location and select the file
2dHill.ccm

e Click the Open button to import the mesh file.

e Save the new simulation as 2dHill.sim
4. Visualizing the Imported Mesh

e Right-click the node Scenes in the explorer pane (to the left) and then select
New Scene — Mesh. The mesh can be seen in a scene in the graphics
window.

e The edges of the square are boundaries. By clicking on each edge in the
graphics window, a label with its name appears on the graphics window.
The node corresponding to the selected edge (boundary) is also highlighted
in the explorer pane, Regions — Fluid — Boundaries.

5. Setting Up the Physics Models

e Expand the node Continua.

o Edit the default continuum (Physics 1) including appropriate physical mod-
els for the simulation. Right-click the node Physics 1 and then in the new
window, click Select models:

In the left-bottom of the window Physics 1 Model Selection, untick
the Auto-select recommended models. Choose the required models as:

Time box: Steady

Material box: Liquid

Flow box: Segregated flow

Equation of State box: Constant Density

Viscous Regime box: Turbulent

Turbulence box: Reynolds-Averaged Navier-Stokes™
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Reynolds-Averaged Turbulence box: K-Epsilon Turbulence model
K-Epsilon Turbulence Models box: Standard K-Epsilon Low-Re

Choose desired sub-model(s) for the selected turbulence model in the
K-Epsilon Damped Low Re Wall Treatment box: Low y+ Wall Treat-
ment

Close the window Physics 1 Model Selection

e Turning the color of the node Physics 1, from gray to blue, indicates that
sufficient models have been activated.

e Expand the node Physics 1, go to Initial Conditions — Turbulence Spec-
ification.

e In the properties window, set the Method to be the same as the selected
turbulence model (K-Epsilon).

e Save the simulation.

6. Setting Fluid Properties

e Go to the node Continua — Physics 1 — Models — Liquid — Water —
Material Properties — Density — Constant — Value = 998.29 kg/m?3.

e Go to the node Continua — Physics 1 — Models — Liquid — Water
— Material Properties — Dynamic Viscosity — Constant — Value =
0.001003 Pa — s.

7. Importing Inlet and Measurement Data

e Go to the node Tools — Tables.
e Right click on Tables and select New Table — File Table.

e In the Open window, navigate to the stored location and select all *.xy files.

e Click the Open button to import all data.

8. Setting Boundary Conditions and Values

e Expand the node Regions and go to Fluid — Boundaries.

e Inlet

Click on the node Inlet. In the properties window, change the Type
from WalltoVelocity Inlet.

Expand the node Inlet and go to Physics Conditions — Turbulence
Specification.

In the properties window, set the Method to be the same as the selected
turbulence model, e.g. K+Epsilon.

Under the node Inlet, go to Physics Conditions — Velocity Specifi-
cation.

In the properties window, set the Method to be Components.

In case of choosing K+Epsilon turbulence model, in the node Inlet,
go to Physics Values and select Turbulent Dissipation Rate.

In the properties window, set the Method to be Table (x, vy, z) .
Table(x,y,z) is created under Turbulent Dissipation Rate.
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— Click on Table(x,y,z). In the properties window, set the Table to be
inletProfile and Table:Data to be Epsilon.

— In the node Inlet, go to Physics Values and select Turbulent Kinetic
Energy.

— In the properties window, set the Method to be Table (x, vy, z) .
— Table(x,y,z) is created under Turbulent Kinetic Energy.

— Click on Table(x,y,z). In the properties window, set the Table to be
inletProfile.xy and Table:Data to be K.

— In the node Inlet, go to Physics Values and select Velocity.
— In the properties window, set the Method to be Table (x, vy, z) .
— Table(x,y,z) is created under Velocity.

— Click on Table(x,y,z). In the properties window, set the Table to be
inletProfile.xy. Similarly, set Table: X-Data, Table: Y-Data
and Table: Z-Data to be U, V and W, respectively.

e Outlet

— Click on the node Outlet. In the properties window, change the Type
fromWall to Pressure Outlet.

e Save the simulation.
9. Setting the Solver Parameters and Stopping Criteria

e Solvers

Expand the node Solvers and keep the default settings.

— To Extract more variables from the simulation (e.g., Kolmogorov Length
Scale), expand the node related to the selected turbulence model (e.g.,
K-Epsilon Turbulence).

In the properties window, tick Temporary Storage Retained.

By enabling Temporary Storage Retained, additional scalar, vector and
tensor variables are appeared in the node Tools — Field Functions.

o Stopping Criteria
— Expand the node Stopping Criteria and select Maximum Steps.

In the properties window, set Maximum Steps to 2000.

Again, go to the node Solvers — Steady — Stopping Criteria, cre-
ate Maximum Steps by clicking right. Check that in the properties
window, the value of Maximum Steps must be greater than or equal
to the value of Maximum Steps in the node Stopping Criteria.

Change Logical Rule to And in the Stopping Criteria Maximum Steps.

A new stopping criterion should also be created as:

(a) Right click on the node Stopping Criteria and select New Moni-
tor Criterion.

(b) In the Select Monitor window, Choose your interested Monitor(s)
(e.g., X-Momentum) and press the OK button. A new sub-node,
X-Momentum Criterion is created.

(¢c) Go to X-Momentum Criterion. In the properties window, set
Criterion Option to Minimum and change Logical Rule to And.
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(d) Go to X-Momentum Criterion — Minimum Limit. In the prop-
erties window, set Minimum Value equal to 1 . 0OE-4.

10. Initializing and Running the Simulation

e Go to the menu bar and click Solution — Initialize Solution. Generally,
you may specify initial conditions through the node Continua — Physics
1 — Initial Conditions. (Disregard eventual warnings on turbulent viscos-

ity.)
e Again, go to the menu bar and click Solution — Run to execute the simu-
lation.

e After running, the Residuals plot is shown automatically in the graphics
Window.

e You may stop the simulation process (before the stopping criteria are satis-
fied) by clicking Solution — Stop Iterating in the menu bar. By clicking
Solution — Run, the simulation will be run again.

o If all the previous steps were correct, the simulation should stop after about
4500 iterations.

11. Visualizing the Solution. This is optional. You can do all plotting in Python or
Matlab/Octave (see Item 14)
e Right click on the node Scenes, and select New Scene — Scalar.
e A new sub-node Scalar Scene 1 is created under the node Scenes.
e Expand Scalar Scene 1 and go to Displayers — Scalar 1.
e Expand the sub-node Scalar 1 and then click Scalar Field.

e In the properties window in front of Function, click <Select Function>
to open Scalar Field-Function window.

e Scroll down, expand the node Velocity and select Magnitude.
12. Creating Parts (Plane, Line or Probe) to Extract Simulation Data

e Right click on the node Derived Parts and select New Part — Probe —
Line.

e In Create Line Probe window, set the parameters as:

Property Value
Input Parts [Fluid]
Point 1 [0.10, 0.0, 0.0]
Point 2 [0.10, 0.16, 0.0]
Resolution 200
Display No Displayer

e Click on Create button and then Close.
e In the node Derived Parts, a new sub-node, Line Probe is created.
e Right-click on Line Probe and rename it to x/h=2.

e x/h=a means the streamwise station at x="h,,q. *a (Rymae-=50 mm). For
instance, x/h=2 indicates the streamwise station at x=2*50 mm=0.1 m (See
the Point I and Point 2 in the above table).
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Do the same procedure for other streamwise stations (same as the measure-
ment locations), i.e. xhl.xy, xh2.xy, ... and xh8.xy.

13. Plotting Simulation Data.

Right-click on the node Plot and select New Plot — XY Plot.
In the node Plot, a new sub-node displayed as XY Plot 1 is created.
Rename it to U@x/h=2

Set the parameters as:

Node Property Value
U@x/h=2 Parts [x/h=2]
X Type X-Axis Bottom Axis
Data Type Scalar
Scalar Function Field Function | Velocity[i]
Y Types
Y Type 1 Y-Axis Left Axis
Data Type Direction
Smooth Values | v/
Vector Quantity Value [0,1,0]
Line Style Style
Symbol Style | Shape o

To add the measurement data to compare with the simulation results, go to
the node Plots — U@x/h=2 — Data Series.

Right-click on Data Series and then click Add Data.

In the Add Data Providers to Plot window, select the measurement file
corresponds to the location you have chosen for the simulation. As an
example, we choose xh2.

A new sub-node, xh2 is created. Click on it.

In the properties window, set X Column, X-Axis, Y Column and Y-Axis equal
to U, Bottom Axis,yand Left Axis,respectively.

You may change line and symbol style for the measurement plot different
than the ones for simulation.

To extract the plot data as a table (in *.csv format), right-click on the node
Plot — U@x/h=2 and then click Export.

Choose an appropriate file name and storage location, then press Save but-
ton.

14. Extracting Simulation Field Data as Table for Python/Matlab/Octave

Go to the node Tools — Tables.
Right click on the node New Table, and select XYZ Internal Table.
The sub-node XYZ Internal Table is created under the node Table.

Set the parameters as the table below.
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Node Property Value

XYZ Internal Table Scalars Cell Index
Velocity[i]
Velocityl[3j]

Pressure

Turbulent Kinetic Energy

Turbulent Dissipation Rate

Turbulent Viscosity

Parts [Fluid]
Data on Vertices

Update | Enabled v
Auto Extract NV
Trigger None

Right-click on XYZ Internal Table, then click on Extract and Export...,
respectively.

Specify an appropriate file name and storage location, then press Save but-
ton.

15. Loading data in Python/Matlab/Octave

Use Python/Matlab/Octave to read the extracted data from STAR-CCM+.
Download the experimental data from the course homepage.

At the course homepage, you can download a file (p1_vect) which reads
the simulation and experimental data and plot some results.

Change the open(’output_standard-keps-low-re.csv’) in the Python script
pl_vect.py or in the fileName=sprintf(’*.csv’) in the Matlab/Octave
script (p1l_vect .m) according to the name of “csv” file which you have
generated from the STAR-CCM+ simulation.

Make sure you put all files (extracted table in * . csv format from STAR-

CCM+ and the measurement data in * . xy format), in the directory where
you execute pl_vect.

Open Python or Matlab/Octave in an editor and execute p1_vect. There are six
field variables, vy, U2, D, k, €, and v4; the corresponding Python/Matlab/Octave arrays
arevl_2d,v2_2d,p-2d,k_2d,e_2d and mut_2d, respectively. The grid is 200

x 202, i.e.

ni = 200 cells in the z; direction and nj = 202 cells in the x5 direction.

The field variables are stored at the center of these cells. We denote the first index as ¢
and the second index as j,i.e. v1_2d (i, Jj).
Hence in Python

v1_2d[:, 0] arethe v; values at the lower wall;
vl_2d[:,nj-1]orvl_2d[:,-1] arethe v; values at the upper wall;
v1_2d[0, :] are the vy values at the inlet;

vl_2d[ni-1,:] orvl_2d[-1, :] arethe vy values at the outlet;

and in Matlab/Octave

v1_2d(:, 1) arethe v; values at the lower wall;

v1l_2d(:,n7j) arethe v; values at the upper wall;

v1_2d(1, :) arethe vy values at the inlet;

v1_2d(ni, :) arethe v; values at the outlet;
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AH.3.1 Pressure

Execute the p1_vect file with Python/Matlab/Octave. It plots the contours of 75, the
velocity vector field and the v; profile along z2 at 1 = 1 comparing with experiments.
As you can see, there is a large recirculation region where the flow goes backwards.

» Plot a contour plot of the pressure. Where is it high and low and why? (think of
the Bernoulli equation, see Eq. 4.35)

The Bernoulli equation describes one-dimensional flow (inviscid, without friction).
Let’s compare the pressure from STAR-CCM+ and the Bernoulli equation. Since the
2D hill geometry is horizontal, then the gravity term does not contribute in the Bernoulli
equation. Then you must make the velocity from STAR-CCM+ one-dimensional.

» Compute the bulk velocity (at each 1 station)

1 T2, max

V, = h(:L'l)/z v1dxo (AH.1)

2,min

where h(%1) = %2 maz —L2,min is the local height of the channel. Then compute
the pressure from Bernoulli equation (Eq. 4.35). Compare it with the bulk STAR-
CCM+ pressure computed similar to the bulk velocity in Eq. AH.1. Compare the
pressure drop from inlet to outlet for STAR-CCM+ and the Bernoulli equation.
Why do they differ? How large is the pressure drop from the Bernoulli equation?
How large should it be?

hint: the domain is symmetric in the z; direction.

How large is the pressure drop in terms of dynamic pressure, i.e. pVi, , ,/2?
How large is it compared to pipe flow pressure drop? In pipe flow, }710u may
compute the friction factor (fp) either from Turbulent regime/Smooth-pipe
regime equation or from Figure 2. Then you can compute the pressure drop
(Ap) from the first equation (Darcy-Weisbach equation) in pipe flow.

The pressure drop is usually an important engineering quantity. A large pressure
drop means a large, expensive pump. You have used the AKN K-Epsilon turbulence
model. How dependent are your results on the choice of turbulence model?

» Try some other turbulence models. Does the flow change a lot? And, more
important, how much does the pressure drop change? This part is optional.

AH.3.2 SKkinfriction

The skinfriction, C'y, is an important concept in fluid dynamics. It is a non-dimensional
wall shear stress which is defined as
Tw

Cp— v _ AH.2
I~ 05p12 (AH-2)

where V} is the bulk velocity (which is the same at all 1 planes due to continuity). The
bulk velocity at any x; plane is defined in Eq. AH.1. The wall shear stress is defined
in Eq. 6.16.

e We must first extract data for the bottom wall


https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation#Turbulent_regime
https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation#Turbulent_regime
https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation#Turbulent_regime
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— Go to the node Tools — Tables.
— Right-click on the node New Table, and select XYZ Internal Table.
— The sub-node XYZ Internal Table is created under the node Table.

— Set the parameters as the table below.

306

Node Property Value
XYZ Internal Table Scalars Ustar
Wall Y+
Wall Shear Stress Magnitude
Parts [Fluid Bottom]
Data on Vertices
Update | Enabled v
Auto Extract NV
Trigger None

— Right-click on XYZ Internal Table, then click on Extract and Export...,

respectively.

— Specify an appropriate file name and storage location, then press Save but-

ton.

Now create another XYZ Internal Table table for the top wall.

» First, load the two exported files from STAR-CCM+ (bottom and top wall). Then

plot the skinfriction along the top and bottom walls.

AH.3.3 Vorticity

In the first assignment you computed the vorticity in laminar flow. Now you will do it
for turbulent flow. The velocity gradients are computed in p1_vect using the function

dphidx_dy.

» Compute w3, see Eq. 1.12. Where is it largest? (cf. Fig 8.4). In the first assign-
ment we could identify a region of inviscid flow (no vorticity). What about this

case?

AH.3.4 Turbulent viscosity

You have computed a turbulent flow with a turbulence model. We have said that the
turbulent viscosity is much larger than the viscous one.

» Plot the ratio x;/u as a contour plot. What is the maximum turbulent viscosity?

Where?

e When you use another turbulence model, does the maximum value change? This

part is optional.

e Plot pi;/p versus x5 also as x-y graphs at a couple of 1 stations. Plot 1,/ also
versus z; = u, 22 /v for the bottom wall (you have exported u, (Ustar) at the
bottom wall in Section AH.3.2). Please note that in x; = u,Ta/V, To is the wall
distance. Zoom also in near the wall. Does the turbulent viscosity go to zero at

the wall as it should?
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AH.3.5 Diffusion

You have computed a turbulent flow with a turbulence model. You have learnt — hope-
fully — that the turbulent diffusion in channel flow is much larger than the usual physical
(viscous) diffusion (except very close to the wall), see Fig. 6.6. Channel flow is essen-
tially two attached boundary layer whereas the hill flow includes recirculation regions.

» Compute the viscous and turbulent diffusion terms in the ¥; equation (see the
expression for both viscous and turbulent diffusions in Eq. 11.31). Plot them in
x-y graphs at a couple of x; stations (choose one x; station at the top of a hill).
Plot them also versus zg for the bottom wall. Compare with Fig. 6.6. Do you
see the same behaviour as in in channel flow?

Hint: Use the function dphidx_dy when computing the derivative of 07, /2
and ut(’)ﬁl/axg.

AH.3.6 Production

The production term, P¥, in the k equation is usually a large term (see Figs. 8.3 and
11.6). When a source is large, it usually also means that the variable in question is large
(see Section 9.1), i.e. when P¥ is large so is k. If this is not the case, it means simply
that other terms are larger. Now let’s see how strong the relation between k and P* is.

» Plot k and P* as contour plots. (The k exists in the csv file extracted from your
STAR-CCM+ simulation. You only need to compute P* according to Eq. 11.39).
Is there any strong relation?

The turbulent viscosity is computed as iz = pC,,k?/e. There is a fair chance that
1z is large where PF is large.

» Plot y; as a contour plot. Is there any strong relation between ; and P*?

AH.3.7 Wall boundary conditions for ¢

The wall boundary conditions for € are discussed in Section 11.14.5. The boundary
condition for the turbulent kinetic energy is simply £ = 0. The boundary condition for
€ is given by Eq. 11.166 which means that ¢ is set to that value at the wall-adjacent
cells. Please note that x5 in Eq. 11.166 is the wall distance and k is the value at the
wall-adjacent cells.

» Compare ¢ from STAR-CCM+ at the wall-adjacent cells with Eq. 11.166 (both
upper and lower wall). Do they agree?

AH.3.8 Near-wall behaviour of f,

In Section 11.14.3 we show that the f,, damping function near the wall actually must
be an augmentation function, see Eq. 11.155. The f,, damping function in the AKN
model reads (see Eq. 1798 in Section Damping Functions in the STAR-CCM+ User
guide)

*

fu= [1—exp(—f—i)r{1+#exp[— (%)1} (AH.3)
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where R, = k?/(ve) and a5 = (ev)'/*ay/v. Show mathematically that f, =
O3 ).
Hint: Taylor expansion gives 1 — exp(—x) =z — 2% ...

AH.3.9 Compare with experiments

The measurement data at seven x; locations can be download from the course home-
page. Each file consists of seven columns that are xo, 01, U2, v}2, v, vivh and w3,
respectively. Since it is a 2D case, the x3 values are zero. The predicted v; velocity is

compared with experiments at 1 = Ayq, (zhl.zy) in pl_vect.
» Compare v; with experiment and the other six locations.

The agreement between predictions and experiments is not good. The main reason
is that you are simulating the flow over only one hill. The inlet boundary conditions
are taken from another CFD simulation of an infinite long channel (periodic boundary
conditions were used).

In the experiments they use ten hills. The object is to achieve a periodic flow where
the time-averaged flow is identical between two hills. In the CFD simulations one can
then use periodic boundary conditions.

» Change the boundary conditions at the inlet and outlet boundaries to periodic
boundary conditions. Compare the v; velocities with experiments. This part is
optional.

e Change Inlet-Outlet boundary conditions to Periodic boundary conditions

— Expand Regions/Fluid/Boundaries

— Press Ctrl key and choose Inlet and Outlet. Right-click and select Create
Interface

— You have now created an interface and need to change type and topology
— Expand Interface

— Right-click on Interface 1 and select Edit

— Change Type to Fully-Developed Interface

— Change Topology to Periodic

— Expand Interface 1/Physics Condition and click on Fully Developed
Condition and select Mass Flow Rate

— Expand Interface 1/Physics Values and click on Mass Flow Rate and set
an appropriate value. To get the mass flow rate you can integrate the inlet
velocity profile in pl_vect.
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V2A

(V2|T)

Vi
(V1|T)

Figure AL.1: Scalar product.

Al TME226: Fourier series

HERE a brief introduction to Fourier series extracted from [202] is given.

ALl Orthogonal functions

Consider three vectors, V1, Va, Vg, in physical space which form an orthogonal base
in R3 (i.e. their scalar products are zero). Let us call them basis functions. Any vector,
T, in R3 can now be expressed in these three vectors, i.c.

T = Clvl + CQVQ + 63V3 (All)

see Fig. AL.1. Now define the scalar product of two vectors, a and b, as a- b = (a|b).
The coordinates, ¢;, can be determined by making a scalar product of Eq. Al.1 and V;
which gives
(T|V;) = (a1 V1|V3) + (2V2| Vi) + (e3 V3| Vy)
= (01V1|V1) + (CQV2|V2) + (03V3|V3) (AL2)
= 61|V1|2 + CQ|V2|2 + 63|V3|2 = Ci|Vi|2

where |V;| denotes the length of V;; the second line follows because of the orthogo-
nality of V. Hence the coordinates, c;, are determined by

ci = (T|V)/|Vil? (AL3)
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Now let us define an infinite (co-dimensional) functional space, B, with orthogonal
basis functions {¢}$°. The “scalar product” of two functions, f and g,,, is defined as

b
(Flgn) = / F(@)gn(@)de (AL4)

Then, in a similar way to Eq. Al.1, any function can, over the interval [a, b], be ex-
pressed as

F=Y " cngn (ALS)
n=1

As above, we must now find the “coordinates”, ¢,, (cf. the coordinates, ¢;, in Eq. AIL.1).
Multiply, as in Eq. AL.2, f with the basis functions, g;, i.e.

(flgi) = cnlgnlg) (AL6)
n=1

Since we know that all g,, are orthogonal, Eq. AI.6 is non-zero only if 7 = n, i.e.

(flgi) = (c191lg:) + (0292|gz‘) o cigilgi) - - civ1(givalgi) . = (ALT)
= ci(9ilg:) = cillgill

Similar to Eq. Al3, the “coordinates” can be found from (switch from index ¢ to n)

Cp = (f'gn)/||gn||2 (ALSB)

The “coordinates”, ¢, are called the Fourier coefficients to f in system {g}$° and
[|gn|| is the “length” of g, (cf. |V;| which is the length of V; in Eq. AL3), i.e.

1/2

b
llgnll = (gnlgn)"’* = </ gn(x)gn(fc)dw> (AL9)

Let us now summarize and compare the basis functions in physical space and the
basis functions in functional space.

1. Any vectorin R? can be expressedin 1. Any function in [a,b] can be ex-

the orthogonal basis vectors V; pressed in the orthogonal basis func-
tions g,
2. The length of the basis vector, V;,is 2. The length of the basis function, g,,,
Vil is |lgnl|
3. The coordinates of V; are computed 3. The coordinates of g,, are computed
as ¢; = (T[V;)/|Vi? as cn = (flgn)/llgnll?

AL2 Trigonometric functions

Here we choose g,, as trigonometric functions which are periodic in [—,7]. The
question is now how to choose the orthogonal function system {g}° on the interval
[—7, w]. In mathematics, we usually start by doing an intelligent “guess”, and then we
prove that it is correct. So let us “guess” that the trigonometric series

[1,sinz, cosz,sin(2z), . . ., sin(nz), cos(nz), . . .] (AL10)
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is an orthogonal system. The function system in Eq. AL.10 can be defined as

gn(x){ or(z), forn=2k=24,... (ALL1)

Yr(z), forn=2k+1=1,3,...

where ¢y, (z) = sin(kz) (k = 1,2,...) and ¢y (x) = cos(kz) (k =0,1,...). Now we
need to show that they are orthogonal, i.e. that the integral of the product of any two
functions ¢y, and v is zero on B[—7, 7] and we need to compute their “length” (i.e.
their norm).

Orthogonality of v, and vy,

(Vn|1k) /7r cos(nx) cos(kx)dx = % /7r [cos((n + k)x) + cos((n — k)z)] dx

—T —T

N~

1 1 "
[nJrksm((n—i—k:)x) + = ksm((n— k:)x)} =0 for k#n

Uy

(AL12)

AL2.1 “Length” of ¢,

T

(Geln) = [l :/

—T

1 T
cos? (kx)dx = [g + e sin(Qkx)} =7 for k>0

(oltbo) = |10 :/ |- de = 2r

—T

(AL13)
AlL2.2 Orthogonality of ¢,, and

(Pnlthr) = /7r sin(nz) cos(kx)dzx = %/W [sin((n + k)z) + sin((n — k)z)] dx

—T —T

= —% [n Jlr : cos((n+ k)x) + - ! k cos((n — k)x) =0

—T

(AL14)
because cos((n + k)m) = cos(—(n + k)m) and cos((n — k)m) = cos(—(n — k)7).

AL2.3 Orthogonality of ¢,, and ¢y,

(Pnlor) = /7T sin(nz) sin(kx)dz = %/W [cos((n — k)x) — cos((n + k)x)] dx

—T —T

= % [nlksin((n—k)x)— n}rksin((n—i—k)x)]w =0 for k#n

Uy

(AL15)

AL24 “Length” of ¢y,

T

(éxl6x) = [| x| :/

—T

1 s
sin? (kz)dz = {g I sin(2k:c)] - =7 for k>1

(AL16)
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AL3 Fourier series of a function

Now that we have proved that {¢}3° in Eq. AL.11 forms an orthogonal system of func-
tions, we know that we can express any periodic function, f (with a period of 27) in

{g}1° as N
flx)=c+ Z(an cos(nx) + by, sin(nzx)) (AL17)

n=1

where z is a spatial coordinate. The Fourier coeffients are given by

bo = (6160l = = [ fo)sintuots (AL18
— (/P =% [ f@)eosinakde (LIS
= ool = 3= [ fa)ds (AL18O
where n > 0. If we set ¢ = ag/2, then ay is obtained from Eq. AL 18b, i.e.
f(z) = % i (an cos(nz) + by sin(nz)) (AL19a)
bn = (f16n)/llénl* = ; . " f(a)sinna)d (AL19b)
on = Tl = = [ ) costua)ds (aL190)

Note that ag/2 corresponds to the average of f. Taking the average of f (i.e.
integrating f from —7 to m) and dividing with the integration length, 27, gives (see
Eq. Al.19a)

;1" _lao _a
f= [W fla)dx = 7 2 2 = 5 (AL20)

Hence, if f = 0 then ag = 0.

AL4 Derivation of Parseval’s formula

Parseval’s formula reads

/W(f( ))%d =—a0+7rza +02) (AL21)

—T

We will try to prove this formula. Assume that we want to approximate the function
f as well as possible with an orthogonal series

i tngn (AL.22)

Now we want to prove that the Fourier coefficients are the best choice to minimize the
difference

N
||f - Z angn” (AL23)
n=1
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Later we will let N — oo. Using the definition of the norm and the laws of scalar
product we can write

N
||f ZangnHQ ( Zangn _Zakgk>
k=1

N N N
= (fIf) - Zan flgn) =Y " ax(Flor) + > Y anar(gnlgr) = (AL24)
n=1 k=1
N

n=1k=1
N
n=1 n=1

because of the orthogonality of the function system, {g}#V. Expressing f in the second
term using the Fourier coefficients ¢,, (see Eqs. AL5 and AL.8) gives

N N
(flf) -2 Z anCn(gnlgn) + Z a%(gnwn)

n=1 n=1

=|IfI?+ Z llgnl[? (a2 — 2ancn) (AL25)

2
= [IfII*+ Z llgnl|? (an — n)” — Z llgnll*cp
n=1 n=1

The left side of Eq. Al.24 is thus minimized if the coefficients a,, are chosen as the
Fourier coefficients, ¢,, so that

N N
1 =D angall® = [IF17 =D llgnl P (AL26)
n=1 n=1

The left side must always be positive and hence

s

ZHgn 1122 < ||f]I? = / (f(x))%dz forall N (AL27)

—T

As N is made larger, the magnitude of the left side increases, and its magnitude gets
closer and closer to that of the right side, but it will always stay smaller than || f]|?.
This means that the series on the left side is convergent. Using the Fourier coefficients
in Eq. AL19 and letting N — oo it can be shown that we get equality of the left and
right side, which gives Parseval’s formula,

™ N ag N
191 = [ e = 3l P = ioll () + 32 Il + 1
27r< )+7r2a +b2fﬁa0+7r2a +b2)

n=1

Note that 27 and 7 on the second line are the “length” of ||g,||, i.e. the length of ||¢]|,
[|tn|| and ||¢y || (see Sections AL.2.1 and AL.2.4).

Appendix 46 describes in detail how to create energy spectra from two-point cor-
relations.
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ALS Complex Fourier series

Equation AI.19 gives the Fourier series of a real function. It is more convenient to
express a Fourier series in complex variables even if the function f itself is real. On
complex form it reads

fz) = Z cn exp(ine)) (AI.28a)
1 s
Cn = 5 - f(z) exp(—wnx)dz (AI.28b)

where the Fourier coefficients, ¢,,, are complex. Below we verify that if f is real, then
Eq. AL.28 is equivalent to Eq. AI.19. The Fourier coefficients, ¢,,, read — assuming that
f is real — according to Eq. AI.28

1 s

Cn = 5o (x)(cos(nzx) — esin(nz))dx = %(an —by), n>0  (AL29)

where a,, and b,, are given by Eq. AI.19. For negative n in Eq. AL.28 we get

cn=c¢ L f(z)(cos(nx)+rsin(nz))dx = %(an—i—zbn), n >0 (AL30)

L o

where ¢}, denotes the complex conjugate. For n = 0, Eq. AI.28 reads

1 g 1
o= 5 - (x)dx = 540 (AL31)

see Eq. AL.19. Inserting Eqs. AL.29, AL.30 and AIL.31 into Eq. AL.28 gives

1 1 o
flx) = 540 + 3 ;(an —1by,) exp(inz) + (an + tby,) exp(—nx)
1 1 — : .
= 50 + 3 Z(an —1by)(cos(nx) + esin(nax)) + (an + by ) (cos(nx) — sin(na))
n=1
= la + ia cos(nx) — 1%by, sin(nx) = la + i ap, cos(nz) + by, sin(nx)
2 0 P n n 2 0 o] n n

(A132)

which verifies that the complex Fourier series for a real function f is indeed identical to
the usual formulation in Eq. AI.19 although the Fourier coefficients, ¢,,, are complex.
One advantage of Eq. AL.28 over the formulation in Eq. AI.19 is that we don’t need any
special definition for the first Fourier coefficient, ag. The trick in the formulation in
Eq. AL28 is that the imaginary coefficients for negative and positive n cancel whereas
the real coefficients add. This means that the real coefficients are multiplied by a factor
two except the first coefficient, ag, which makes up for the factor % in front of ag in
Eq. AL 19.
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AL TME226 Discussion seminars

Discussion seminar 1

Course material. Recorded Lecture 1; eBook: Section 1.1, 1.2, Appendix B, Section
1.3-1.7

Lecture 1

1. Show which stress components, o;; (see figure below), that act on a Cartesian
surface whose normal vector is n; = (0, 1, 0). Show also the stress vector, ¢7".

Hint: tEﬁ) = TjiNj

(&1)
012 ti

011
013

Z2

T

Stress components and stress vector on a surface.

Ovi _ 1 (0v 4 0vj 1L(ov _ 0v) _ g g
2. ij_2(6:cj+8mi)+2(61j oz, _SU+QU'

Explain the physical meaning of diagonal and off-diagonal components of S;;.

3. Consider the stagnation flow in the figure below at time ¢ = In(2).

2,72

T,
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Flow path 2 = 1/z;. The filled circle shows the point at time ¢ = In(2) (Lagrangian) and at
(z1,22) = (2,1/2) (Eulerian). r1 = x1 = exp(t),r2 = 2 = exp(—t).

(a) Compute the Lagrangian and Eulerian velocities at this location.

L
(b) Compute the Lagrangian and Eulerian time derivative, dstz

E
(c) Compute the local Eulerian time derivative, 6;52

(d) Compute the vorticity and the strain-rate using the Eulerian velocities. Try
to explain why the vorticity is zero by looking at Fig. 1.4.

4. What is the definition of irrotational flow?
5. Consider 2D flow (1 — x2 direction)
(a) The definition of the vorticity vector is w; = €;;x, %. Give w1, ws and wg.
J

(b) The definition of the strain-rate tensor is S;; = % (STU; + g—;ﬁ). Give S11
and 512.

(c¢) The definition of the vorticity tensor is §2;; = % (gTU; — g—g). Give Q11
and 912.
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Discussion seminar 2
Course material. Recorded Lectures 1 and 2; eBook: Sections 1.8, 2.1-2.4, 3.1

1. Explain the physical meaning of the eigenvectors and the eigenvalues of the
stress tensor (see Section 1.8 and the Lecture notes of Ekh [4])

2. Explain — in words — how to show that the vorticity is zero in an ideal vortex (see
Item 13vi above)

Hint:
€2
V1] = —V9—5—5—7=
(xF + 23)'/?
Z1
Vo =

NCETE

3. Consider an ideal vortex. Discuss the difference between a vortex and vorticity.

Ideal vortex.

4. Consider the two-dimensional shear flow below (e.g. a boundary-layer flow).
Compute the three vorticity components (w; = €;;, %).

>
U1 ,’
—»
—>
T2
«
T

A shear flow. A fluid particle with vorticity. v; = cx3.
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5. Watch the on-line lecture Vorticity, part 1 at
http://www.tfd.chalmers.se/ lada/MoF/flowviz.html
After 4:20 minutes, the teacher shows the figure of a boundary layer. He says
that one of the “vorticity legs” is parallel to the wall and the other leg rotates in
the counter-clockwise direction (positive «); hence there is vorticity.


http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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Lecture 2

1. The Navier-Stokes equations read
d’Ui oprP aTji oprP 0 2 Gvk
=— = — — | 2uSi; — sp=—10;; i
p dt ox; + Oz +of ox; + Oz ( H2i 3M3zk ]) +of

Describe — in words — how to simplify the Navier-Stokes equation for incom-
pressible flow and constant viscosity (Eq. 2.9)

(a) The transport equation for the internal energy, u, reads

du ov; 2 o0 oT
— = —Po— +2u5;;5; — 3 ita— |k
pdt 6951 +. MS]SJ 3’uSkkS .Jr@xi ( 6ml>

P

What is the physical meaning of the different terms? Simplify the transport
equation for internal energy, u, to the case when the flow is incompressible
(Eq. 2.18).
(b) The basic form (without inserting the constitution law) of the transport
equation for the kinetic energy, k = v;v; /2, reads
dk Gviaji a’UZ‘
- = - i i) AL.l
P dt Ox; 7 Oz +pvif ( )
Describe (in words) how to derive the transport equation above. What is
the physical meaning of the different terms?

(c) The basic form (without inserting the constitution laws) of the transport
equation for internal energy, u, reads
du ov; 0q;
2 gt
p dt 7 ox j 8:01
Explain the energy transfer between kinetic energy, k, and internal energy,
u (Egs. AL.1 and AL.2).

(AL.2)

2. The left side of the temperature equation and the Navier-Stokes, for example,
can be written in three different ways

dv; ov; ov; Opv;  Opvjv;
o =Pt YPer, T ot g,

@ T ®

dr oT or  opl'  0Opv;T
Pt =P TPr, T ot o,

(a) (b)

Explain how the expressions (a) and (b) are obtained.
3. Consider the Rayleigh problem below

X2

# 5
T
—_—

The plate moves to the right with speed Vj for ¢t > 0.
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T2 t3
. t .
i1
0 02 04 06 08 1
v1/Vo
The v velocity at three different times. t3 > t2 > 5.
(a) How is the Navier-Stokes equation

ov;
axi
dv;  0v; ov;

=0

_ 0P
N axi

82’Ui

Maxjax

J

+pfi

simplified for the Rayleigh problem?
(b) What are the boundary conditions?
(c) We introduce a similarity variable, 7, related to z2 and ¢ as
)
n=sr=
2Vt

Explain how the Navier-Stokes is transformed from the independent vari-
ables x; and ¢ to 7.

(AL.3)

(d) The transformed Navier-Stokes reads

d? d
TS oy _g pon
dn? dn Vo
What are the boundary conditions expressed in 1?
(e) The final solution to Eq. AL.4 is

f(n) =1—erf(n)

Why is there only one curve in the figure below but three (or many more)
in the figure above?

+2n (AL.4)

3

25

0 0.2 0.4 0.6 0.8 1
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The velocity, f = v1/Vb, given by Eq. 3.11.

(f) Given v and ¢, show how the boundary layer thickness can be estimated
from the Rayleigh problem using f and 7 and the figure above.
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Discussion seminar 3

Course material. Recorded Lectures 3 and 4; eBook: Sections 3.2-3.3,4.1-4.2

Lecture 3

1. Explain the pressure levels at points 1, 2 and 3 at the entrance (smooth curved
walls) to a plane channel (see the figure below).

Py
\\ — —
P # P
» —
7/ Pl
v’ / TZEQ

Flow in a horizontal channel. The inlet part of the channel is shown.

Vv

\
N
-
7’

\
\
7/

x

Explain the flow physics in a channel bend (Fig. 3.6). Watch also the on-line
lecture Pressure field and acceleration
http://www.tfd.chalmers.se/ lada/MoF/flowwviz.html.

(a) at 28 minutes into the movie the teacher discusses how the pressure varies
in a fixed-body rotation flow

(b) at 18 minutes into the movie the teacher discusses how the pressure varies
for the flow in a bend.

T T '
V ‘— X1
Flow in a channel bend.

Explain the flow physics in a channel bend (see figure above) and in a duct bend
(see figure below).


http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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DN A
C

x2

Secondary flow in a duct bend.

2. Consider steady, fully developed flow between two parallel plates, i.e. fully
developed channel flow

(a) What is the main flow criterion of fully developed flow between two paral-
lel plates?

(b) The incompressible, Navier-Stokes equation reads

8’Ui
81‘1'
d’l}i 81)1- a’l}i oP 62%

o =P T ipr, T " ow Mooz,

=0

+pfi

i. Simplify the v; equation for this flow (i.e. which terms are zero?)
ii. Do the same thing for the vo
iii. How large is Qvy/0x1?
iv. How large is Ova/0x2? Why?

3. The Blasius equation.

(a) The stream function is defined as

_ovy __09%
78,%27 vz = 8$1

Show that the continuity equation is automatically satisfied in 2D when the
velocity is expressed in the streamfunction, ¥
(b) Explain in words how the v; component of the Navier-Stokes (see above)
is transformed into an equation for ). For a flat-plate boundary layer we
get the following equation
ov 9% ov 92V P

e _TE AL.
Oro Ox1012 011 O3 v ox3 (AL-5)

U1

(c) The final Blasius equation reads

1 d?g N d®g 1
27 dg? &3 2
Explain why this equation is expressed in g and £ whereas Eq. AL.S is
expressed in vy, 1 and x3.
Hint: compare with Eq. AL.3

ggl/ _"_glll — 0
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Lecture 4

1. Explain (using words) why vorticity can be created only by an imbalance (i.e. a
gradient) of shear stresses, see the figure below. Explain why pressure and the
gravity force cannot create vorticity.

T21 ($2 + 05A$2)n2

EE— -
7'12({,61 + O.5A$1)n1 U1<$2)

__________ ..

P($1 — 05A[E1) (56'1,562) P(l’l + 05A£L'1)

H [ ] & —————— >
g
7'12(.’11‘1 —0.5Am1)n1 -
B S

T21 (172 - O5AI2)TL2
To

T1

Surface forces acting on a fluid particle. The fluid particle is located in the lower half of fully
developed channel flow. The v; velocity is given by Eq. 3.28 and v2 = 0. Hence 711 = 722 =
O112/0x1 = 0 and —9721/0x2 > 0. The v1 velocity field is indicated by dashed vectors.

1. The incompressible Navier-Stokes equation can be re-written on the form

Ovp n ok 1 dp d?v, by

— — —EpikVjW = ——— + V———

ot Oxyp &kj_k/ p 0z 0z ;0 P
~ rotation

no rotation

(a) Describe the first step in deriving the transport equation (3D) for the vor-
ticity vector, Eq. 4.21
Hint: w; = €p4i0vp /024

(b) Which terms are zero?
Hint: the product of a symmetric tensor and a non-symmetric tensor is zero.

(c) Show that the divergence of the vorticity vector, w;, is zero
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Discussion seminar 4
Course material. Recorded Lectures 4 and 5; eBook: Sections 4.2— 4.4

1. Explain vortex stretching, see figure below.
Hint: The vortex stretching/tilting terms reads

W twe—+wz3—, =1
181‘1 281'2 381‘3
ov Ovs Ova Ova
We— + wo +wso—, p=2
8xk 0 1 ox 8$3
V3 + 81)3 + 8v3 3
— two—— twy— =
Lor, 202 0x3’
e :
| 1
— U 1 W] —m > : —_— U
1

T2

Z1

. . . . 0
Vortex stretching. Dashed lines denote fluid element before stretching. 8_1)1 > 0. Angular
1

momentum, 72w , is constant.

2. Explain vortex tilting, see figure below.

(%1 (,’Eg) 2;)12 >0

Z2

L.

Z1

Vortex tilting. Dashed lines denote fluid element before bending or tilting.

3. Watch the on-line lecture Vorticity, part 2 (11 minutes into the movie) at
http://www.tfd.chalmers.se/ lada/MoF/flowviz.html

It presents interesting discussions on vorticity.


http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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4. Show that the vortex stretching/tilting term is zero in two-dimensional flow
Hint: The vortex-stretching term reads wyOvy, / Oz = 0.
The 3D transport equation for the vorticity vector reads
dw,  Ow, Owp, vy 2w,

G = ot am, “Yon, TV on,00,

Describe — in words — the form of the corresponding equation in 2D.

5. Show the similarities between the vorticity and temperature transport equations
in fully developed flow between two parallel plates.

Use the diffusion of vorticity to show that % X /7 =4/ Le, see figure below

and the expressions from the Rayleigh flow.

Hint: n = 1.8 = 2\”71/7 = § = 3.6v/vt. Furthermore, recall that vorticity is

created along the wall only near the leading edge: why?

Vo

X2 -
1 ié
- .

Boundary layer. The boundary layer thickness, J, increases for increasing streamwise distance
from leading edge (x1 = 0).
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Lecture 5

1. Consider the derivative of the complex function (f(z + z9) — f(2))/z0 where
z =x + iy and f = u + v. The derivative of f must be independent in which
coordinate direction the derivative is taken (either along the real or the imaginary
axis), i.e.

df lim flzo + Az) — f(20)

dz =~ Az=0 Az
— lim f(zo + Az, iyo) — f(wo,iyo) _ lim f(zo,iyo + iAy) — f(xo, Z'yo)'

Az—0 Ax Ay—0 1Ay

The second line can be written as

of _1of _iof __.of
dr  i9dy 29y Oy

Show that this leads to the Cauchy-Riemann equations

ou Ov ou ov

dr oy 9y Oz
2. Explain — in words — why in potential flow both the velocity potential
vy = 0P /01, vo = OP/0x4
and the stream function
vy = 0V /029, va = =0V /024

satisfy the Laplace equation.

3. Introduction: above, we formulated the complex function in a generic way, f =
u + tv. Now we move to fluid mechanics.

(a) We formulate a “fluid mechanics” complex function f = ®447W¥ which is a
potential function since both the real and imaginary part satisfy the Laplace
equation.

(b) We guess a complex function f = C12", 2 =z + iy

(c) It turns out that it is sometimes more convenient to express f is polar coor-
dinates, i.e. f = Cyre’? = C1r"™(cos(nf) + isin(nd))

(d) Describe — in words — how to prove that f = (12" satisfy the Laplace
equation.
How are the velocity components for n = 1 and n = 2 obtained. What
physical flow do these two cases correspond to?

4. Describe how to derive the polar velocity components for the complex potential
f=—illnz/(27) (" denotes circulation).
Tip: express z in polar coordinates (Euler form), i.e. z = re’
How do you show that the complex potential satisfy the Laplace equation? What
does the physical flow look like?

0
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Discussion seminar 5

Course material. Recorded Lectures 5 and 6; eBook: Section 4.4, 5.1-5.3, 6.1

1. Consider the potential flow around a cylinder.

Voot , ré _, -
f= LGO + Viore? = Voo [ Le ¥ 4 e
ret T

2

=V (r—o(cos 0 —isinf) + r(cosf + isin 9))
T

It is a super-position of two “elementary” flow cases: which ones? Describe —

in words — how to show that the radial velocity is zero at the surface. How can

you get the surface pressure? Describe how you would then get the drag and lift.

How large do you expect drag and lift to be? Why?

2. Consider the potential flow around a rotating cylinder.

~_ 5

2
_ Veor§

z

2
T

=V <T—O(cost9isin9) +r(cos€+isin9)) ~ 5 (ilnr —0)
r T

r
f 4+ Veoz—t—Inz
2

in polar coordinmates

I'= %Uiﬁidf

t;dl

The circulation is defined as

€2

x
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The surface, S, is enclosing by the line £. The vector, ¢;, denotes the unit tangential vector of the
enclosing line, /.

Where are the stagnation points located? How is the lift of the cylinder com-
puted? (which applies for any body).

3. What is the Magnus effect? Explain the three applications below: why is it
efficient to use loops in table tennis? Why does the Magnus effect help a football
player get the ball around the wall (of players) when making a free-kick? How
does the Magnus effect help propulsing a ship using Flettner rotors. To look at
old and new installations of Flettner rotors, see Wikipedia.

w
~ A

i) F ////',—————\\\\‘
—v 7 \ FL

o// / N
1 table net

Table tennis. The loop uses the Magnus effect. Side view.

e wall of players

F
/' z
O

Football. A free-kick uses the Magnus effect. Top view

)

L.

T1

Flettner rotor (in blue) on a ship. The relative velocity between the ship and the wind is Viyind +
Visnip. The ship moves with speed Vpip. Top view.


https://en.wikipedia.org/wiki/Rotor_ship
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Lecture 6

1. What characterizes turbulence? Explain the characteristics. What is the life time
of a turbulent eddy?

2. Explain the cascade process. How large are the largest scales? What is dissi-
pation? Which eddies extract energy from the mean flow? Why are these these
eddies “best” at extracting energy from the mean flow?

Hint: Look at the figure with two velocity profiles below.

3. The energy spectrum consists of three subregions: which? Describe their char-
acteristics. Show the flow of turbulent kinetic energy in the energy spectrum.
Given the energy spectrum, F/(x), how is the turbulent kinetic energy, k, com-
puted? Describe — in words — how to use dimensional analysis to derive the —5/3
Kolmogorov law.

iy a<@i>
—<U¢Uj>a—xj

A I
E

Spectrum for turbulent kinetic energy, k. The wavenumber, k, is proportional to the inverse
of the length scale of a turbulent eddy, /., i.e. K o E;l. For a discussion of €, vs. ¢, see
Section 8.2.2.
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0B

xIo 5A

T

The size of the largest eddies (dashed lines) for different velocity profiles.

4. What are the Kolmogorov dissipation scales? Describe — in words — how to use
dimensional analysis to derive the expression for, for example, the length scale,
l,.

n

5. What does isotropic turbulence mean? What about the shear stresses?

6. Describe how the ratio of the large eddies to the dissipative eddies depends on
the Reynolds number.
/ 3 —1/4
Hint; -2 = v Lo
n €
Why is this expression useful for DNS (Direct Numerical Simulation)?

7. Draw a laminar and turbulent velocity profile for pipe flow. What is the main
0v1

difference? In which flow is the wall shear stress 7, = ua—
€2

largest, laminar or

turbulent?
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Lecture 7

1. Describe — in words — how to use the decomposition v; = v; + vg to derive the
time-averaged Navier-Stokes equation. We start from the Navier-Stokes equa-
tion:

(91)1' 8’[)in ap 821)1'
Pat "o, oz;  V'ox,00;
A new terms appears: what is it called? What is the physical meaning of the
terms in the equation above?

. How is the friction velocity, u,, defined? Define 2 and o;".
The wall region is divided into an inner and outer region. The inner region is
furthermore divided into a viscous sublayer, buffer layer and log-layer. Find
those three regions in the figure below.

1074 1073 1072 1071 1
] L | | | | ©2/0
outer region
overlap region
o)
g 'S

z 5

= inner region =
; a
b
S L1 \ \ \ | %y =Yt

1 5 10 30 100 1000 10000

The wall region

3. What are the relevant velocity and length scales in the viscous-dominated region
(x§r < 5)? What are the suitable velocity and length scales in the inertial region
(the fully turbulent region)? When deriving the log-law for this region, we start
by making an estimate of the velocity gradient: how is it estimated?

. Consider fully developed turbulent channel flow. In which region (viscous sub-
layer, buffer layer or log-layer) does the viscous stress dominate? In which re-
gion is the turbulent shear stress large? The turbulent and the viscous shear
stresses are shown in the figures below. Which is which?

0.1

2000 1 200

1500
+ '
100}

8 :

+ ‘
S 1000:

500

02 04 06 08 {
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Reynolds shear stress. Re- = 2000. a) lower half of the channel; b) zoom near the wall.

5. In fully developed turbulent channel flow, the time-averaged Navier-Stokes con-
sists only of three terms (which?). Identify them in the figures below and discuss
their physical meaning.

200 2000 .
1800
1501 1600 g
1400 '
n 4 1200 :
ZTo 100r T '
2 2 1000 :
800 :
50 600 :

400 '
- L]
5o o0 50 0 50 100 150 200, 1 0 1

a) b)

Fully developed channel flow. Re, = 2000. Forces in the ¥1 equation. a) near the lower wall of
the channel; b) lower half of the channel excluding the near-wall region.
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Lecture 8

1. In order to analyze the k equation it is useful to look at the source terms. A
positive source term in a transport equation, for example 7', increases the value of
T. A simple example is the one-dimensional unsteady heat conduction equation

oT o*T
=
ot 0?2
where ( is a heat source, see figure below. Note that the source term(s) should

always appear on the opposite side of the unsteady term (or the same side as the
diffusion term).

+Q

wall wall

Z1

B — .

One-dimensional unsteady heat conduction. In the middle there is a heat source, Q).

The exact equation for turbulent kinetic energy, & = 0.5v/v] reads

0v;k —0v; 0 1’—/+ 1—— ok ov} v}

= —ulv - | =0 vl —v—| —v—L—
Ox; I 0x;  Oxj |p AN A Ox; Oz Ox;
— — s

Discuss the physical meaning of the different terms in the k equation. Which
terms are transport terms? Which is the main source term? Which is the main
sink (i.e. negative source) term?

2. Rules for time-averaging, see Section 8.1. Assume that we have a time-series of
four time instants with v] and v} as

v} =1[0.2,-0.3,0.18, —0.08]
vty = [0.15, —0.25,0.04, 0.06]

N
— 1
V= > 01, =(02-03+0.18-0.08)/4=0

N
— 1
vh= > b, =(0.15-0.25+0.04+0.06)/4 =0

—— (1 1 &
vy vh = <—Zv’1n> <szl2n> =0-0=0

n=1

so that

However, the time average of their product is not zero, i.e.

N
— 1
vivh = % > vf 5, = (0.2:0.15+0.3-0.25+0.18-0.04—0.08-0.06) /4 = 0.02685
n=1
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Discussion seminar 6

Course material. Recorded Lectures 8, 9 and 10; eBook: Section 6.2-6.3, 8.1, 11.6,
8.2,8.3

1. The exact k equation for 2D Boundary Layers reads

ourk a’ng/’ 0k 0k ﬁa’ﬁl
lal'l + 81'2 8:r1 +v28—$2I: _U1v28_:r2
convervative form non-convervative form
1—— ok 81} v}
53@2 + 21)21) i~ 5—302 81:3 830]

All spatial derivatives are kept in the dissipation term: why? Which terms are
non-zero at the wall? Note that it easier to realize that the left-hand side is
zero when it is formulated on the non-conservative form. Can you express the
turbulent diffusive terms on non-conservative form?

2. Where is the production term, Pk = — v vh 001 /Oxo, largest? In order to explain
this, look at the figures below.

0.02
w

1001 X
8]

% 02 0.4 056 08 1 0 02 04 06 08 1
st 19+
0] /0xy —v vl Ju?
Velocity gradient Reynolds shear stress

Channel flow at Re, = 2000.
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Lecture 9

1. The exact transport equation for mean kinetic energy, K = 0.5v;7; reads

= vV, -2 ——— | o —v=—) —
Ox; "Jox; pOx; Oxj v Oz O0x; Ox;
L 1L ] - 4
—Pk, sink source Emean, sink

Discuss the physical meaning of the different terms. One term appears in both
the k and the K equations: which one? Consider the dissipation terms in the
k and the K equations: which is largest near the wall and away from the wall,
respectively?

2. Which terms in the £ equation need to be modeled?

7orl
2 —p'Uy + = V5V,
(’)xl al’g al’g 8$2 2 27 8$2

ok _ 0Ok —— 0ty 9] {1— 11— (’)kz} 8_1}{(’)_1);
p 2

75 1o T
VM7— +tV7— = —VjVg7— — +— -V
172 (’)xjaxj

3. Which term is unknown in the time-averaged Navier-Stokes equations? (also
called the RANS equations [RANS=Reynolds-Averaged Navier-Stokes])

66i17j__8]§+i 8@_ o
p 8xj o 81‘1 axj 'uaxj PY; J

4. The Boussinesq approximation reads (almost)
0v; 0v;

—vvl = v + )
tJ K (81:3 (’)xl

5. Show how the modeled production term, P* = —vgv}%, is modelled in the
k — £ model.

Which term is missing?

6. The modeled k equation can symbolically be written:
CF=P"+DF+GF —¢

Using this equation, describe how to derive the modeled € equation.
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Lecture 10

1. Two options are used for treating the wall boundary conditions: which ones?
Explain the main features.

2. Consider wall functions. Describe how the expression

. KU1, p

~ In(Bu,dz2/v)

is obtained. What is the wall boundary condition for the velocity equation?

v 1 Eu,
Hint: The log-law reads ™ ( “ x2)
u

r K v

Ur

3. How is the k equation simplified in the log-law region? Show how the boundary
condition
kp = C;1/%02

i T
for k is derived (wall functions).

, 071 \°
Hint: Simplified k& equation: 0 = P* — pe = p, <a—;}1) — pe. The wall shear
2

— I — 0v
stress reads T, = —pv Uy = it G-

4. Show how the boundary condition for ¢ (used in wall functions)

3
b

KOTo

u
EP:Pk:

is derived (wall functions).
Hint: ¢ ~ U3 /L.

5. How fine should the grid be near the wall when using a low-Reynolds number
model? Why must the turbulence model be modified?

6. In the eBook we derive the following expressions using Taylor expansion:

U1 =aiz2 +. = O(x3)
T 0(:3)
g = b33 + . = O(a3)
o7 = a3 + .. = O(a3)
vivh = arbord + ... = O(x3)
k =(a?+A)r3+... =0(z3)
8’171/8,%2 =a1+... :O(l’g)
vy /0xa =a1+... = O(29)
ovh[0xg = 2bowo + ... = 0O(z3)
ovh/0xs =a1+... = 0(29)

Describe how they are obtained.

7. The exact k equation reads

AL e ACAL R AL N
P 181‘1 P 28%2 R 2(91'2 83:2 83:2




AL. TME226 Discussion seminars 360

10.
11.

12.

Using the Taylor expansions above, show how the production term, the viscous
and turbulent diffusion terms and the dissipation vary near the wall.

The modeled k eq. reads

s Ok ok (00N O (e Ok
plaxl p28x2_'ut 0xo Oxa \ o), Oxo

2
+ 'u[?—xg — pE
Using the Taylor expansions above, show how the production term, the turbulent

diffusion term and the dissipation vary near the wall.

Looking at how the exact and the modelled terms in the k behave near walls,
which terms need to modified? How?

In low-Reynolds number models, what is the boundary condition for k?

A boundary condition for € can be derived by looking at the two terms in the &
eq. (see above) that do not go to zero. Show this boundary condition.

In the eBook it is shown that Taylor expansion gives
s:y<a_§+2) +...
and

1 /— —
k::§(af+c%)x§+...

Show how the “third b.c.” for ¢ is obtained using these two expressions.
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