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Abstract

A new mixed one-equation subgrid-scale (SGS) model for large-eddy simulation is presented. The scale-similarity part of the

model is used for the description of the local energy transport (Domaradzki et al., 1993, 1994), i.e. the energy transport between

scales very close to the cut-off. The eddy-viscosity part of the model represents the non-local transfer of energy, i.e. the transfer

between all scales smaller than grid-filter size D and larger than D. A priori tests done by Bardina et al. (1980) have shown a high

correlation between the scale-similarity model and the exact SGS stress, sij. The magnitude of the scale-similarity part in the mixed

one-equation SGS model is either larger than or equal to that of the eddy-viscosity part. The modeled SGS stress is thus expected to

correlate well with the exact stress, sij. In the proposed model, the SGS kinetic energy, ksgs, is used to obtain the velocity scale for the

eddy-viscosity part of the model. The modeled ksgs equation is derived and contains some additional scale-similarity parts as

compared with the ksgs equation used in the models of Ghosal et al. (1995) or Davidson (1997). It has been shown that the model is

Galilean invariant and realizable. Moreover, the approximately correct near-wall behavior of the model has been proven. The model

was tested for both channel flow and the case of a surface-mounted cube (Martinuzzi and Tropea, 1993). It was found that the model

gives accurate results in both cases. � 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

The energy transfer between large and small scales is
mainly between the scales closest to the cut-off. The
scale-similarity models (Bardina et al., 1980) are foun-
ded upon this argument. These models use the correla-
tion between the smallest resolved scales and the largest
unresolved scales in large-eddy simulation to model the
main part of the subgrid-scale (SGS) energy. They are
always used together with some dissipative model such
as the Smagorinsky model under the name mixed
models. In early simulations using mixed models (Bar-
dina et al., 1980; Piomelli et al., 1988), the constant in
the Smagorinsky model was prescribed a priori. Zang
et al. (1993) used this model in the dynamic mode in the
simulation of recirculating flows. The SGS model should
be capable of covering a large part of the turbulent ki-
netic energy in an attempt to make LES a practical tool
for complex flows at high Reynolds numbers. A large

part of the SGS energy is modeled with the scale-simi-
larity part. Still, a significant amount of the SGS en-
ergy in a coarse LES remains to be represented by the
Smagorinsky model, see Sarghini and Piomelli (1999).
The Smagorinsky model assumes the isotropy of the
small scales. Obviously this model is not suitable for
modeling a significant part of the SGS energy resulting
from the scales with evident anisotropic character. It
does not contain any information on the SGS energy.
The SGS velocity scale of the Smagorinsky model, j�SSj ¼
ð2�SSij�SSijÞ1=2, is strongly affected by the mean flow. On the
other hand, the smallest unresolved scales are assumed
not to be correlated with the large scales (Bardina et al.,
1980). Clearly, a more suitable model containing some
information about the SGS energy is needed for mod-
eling the smallest SGS scales.

In a coarse LES, a substantial fraction of the energy
is in the SGS motion, indicating the need for con-
structing a more accurate model. This can be achieved
by incorporating a history effect through the transport
equation for the SGS kinetic energy. A model of
this kind is the localized dynamic ksgs equation model
of Ghosal et al. (1995). However, the additional
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computational cost involved in solving equations for the
dynamic coefficients (Fredholm’s integral equation of
the second kind) is not justified by more accurate results.
Computationally less consuming dynamic procedures
are obviously needed to obtain the coefficients in the
transport equation for ksgs.

This paper presents a mixed dynamic model in which
the SGS kinetic energy model is used as a dissipative
part in the model. The dynamic models based on the ksgs
proved to give an accurate representation of the unre-
solved scales in a course LES (Krajnovi�cc and Davidson,
2001; Krajnovi�cc and Davidson, 1999; Sohankar et al.,
2000a,b). They are more robust than the Germano
model, (Sohankar et al., 2000a,b) and allow transfer
of turbulent energy from small to large scales (back-
scatter). Furthermore, the velocity scale, k1=2sgs , in the
mixed models contains some information on the small
scales, and the solution of the transport equations for
ksgs contributes a history effect in the model.

2. Formulation of the proposed model

This section presents a new mixed one-equation SGS
model and derives the dynamic procedures for the model
coefficients. We then summarize the model as it is im-
plemented in the code.

We first give some notations needed for the formu-
lation of the model. The mixed models for the SGS
stresses consist of one scale-similarity part and one eddy-
viscosity part of the SGS stress tensor, sij ¼ uiuj � �uui�uuj.
Here, an overbar denotes a grid filter with a filter width
D. If we denote our modeled SGS stress by sMij , its scale-
similarity part by sSSij and the eddy-viscosity part by sEVij ,
then

sMij ¼ sSSij þ sEVij : ð1Þ

The scale-similarity and the eddy-viscosity stresses are
defined as

sSSij ¼ �uui�uuj � ��uu�uui��uu�uuj;

sEVij ¼ �2Cðx; y; z; tÞDk1=2sgs
�SSij þ 2

3
dijksgs; ð2Þ

where Cðx; y; z; tÞ is a space and time-dependent coeffi-
cient. �SSij is the strain rate tensor on the grid level. In-
stead of using the velocity scale j�SSj, which is common
practice in the dynamic models, we use k1=2sgs as the ve-
locity scale. Through k1=2sgs , information from the small
scales is included in the SGS model. The SGS kinetic
energy, ksgs, is defined as ksgs ¼ ð1=2ÞsEVii . The coefficient,
Cðx; y; z; tÞ, is computed using a dynamic procedure and,
for that, we must define some quantities on the test level.
If we introduce :_ as a test-filter with a filter width of
D
_

¼ 2D the SGS stress on the test level can be written as
Tij ¼

z {
uiuj �

z {
�uui
z {
�uuj . Similar to sSSij and sEVij , T SS

ij and

Nomenclature

Cðx; y; z; tÞ space and time-dependent coefficient
ChomðtÞ homogeneous coefficient
Ce dissipation coefficient
CK convection term in K equation
Cksgs convection term in ksgs equation
CSS damping constant
DK diffusion term in K equation
Dksgs diffusion term in ksgs equation
H cube height
ksgs subgrid-scale kinetic energy
K subgrid-scale kinetic energy on the test level
k turbulent kinetic energy
�kk resolved kinetic energy
Lij resolved Leonard stress
p pressure
Res Reynolds number based on the friction ve-

locity
�SSij strain rate tensor on the grid levelz {
�SS ij strain-rate tensor on the test level
Tij subgrid-scale stress on the test level
ui instantaneous velocity in i direction
us friction velocity
xmax; ymax; zmax channel length, height and width,

respectively

yþ usy=m

Greeks
D grid-filter size
D
_

test-filter size
d half channel height
eK dissipation term in K equation
eksgs dissipation term in ksgs equation
msgs subgrid-scale turbulent viscosity
m laminar viscosity
P production term in ksgs equation (dissipation

term in �kk equation)
Pksgs eddy-viscosity part of the SGS dissipation of

the resolved kinetic energy
PSS scale-similarity part of the SGS dissipation of

the resolved kinetic energy
PK production term in K equation

Superscripts
EV eddy-viscosity
M modeled
n time step n
SS scale-similarity

Subscripts
c consistent
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T EV
ij are introduced as the scale-similarity and the eddy-

viscosity parts of the modeled SGS stress on the test
level, TM

ij , i.e.

TM
ij ¼ T SS

ij þ T EV
ij : ð3Þ

T SS
ij and T EV

ij are modeled as

T SS
ij ¼

z {
�uui�uuj �

z {
��uu�uui
z {
��uu�uuj ;

T EV
ij ¼ �2Cðx; y; z; tÞD

_

K1=2
z {
�SS ij þ2

3
dijK; ð4Þ

where the strain-rate tensor on the test level,
z {
�SS ij, is

defined as

z {
�SS ij ¼

1

2

o
z {
�uu i

oxj

0
BB@ þ

o
z {
�uu j

oxi

1
CCA: ð5Þ

The SGS kinetic energy on test level, K, is defined as
K ¼ ð1=2ÞT EV

ii . The eddy-viscosity part, Pksgs , and the
scale-similarity part, PSS, of the SGS dissipation of the
resolved kinetic energy are defined as

Pksgs ¼ �sEVij �SSij; PSS ¼ �sSSij �SSij: ð6Þ

The SGS kinetic energy, ksgs, is obtained from the
modeled transport equation (for the derivation of the
ksgs equation, see Appendix A),

oksgs
ot

þ o

oxj
ð�uujksgsÞ

¼ Pksgs þ
o

oxj
msgs
	


þ m
� oksgs
oxj

�
� Ce

k3=2sgs

D
þ PSS

þ m
o2

oxjoxj
1
2
sSSii
	 �

� o

ot
1
2
sSSii
	 �

� o

oxj
1
2
sSSii �uuj

n o
: ð7Þ

A homogeneous coefficient, ChomðtÞ, is used in the defi-
nition of the SGS turbulent viscosity, msgs, as

msgs ¼ ChomðtÞDk1=2sgs ð8Þ

in Eq. (7) and in the momentum equations. The reason
why a homogeneous coefficient is used is that the local
coefficient Cðx; y; z; tÞ yields a highly oscillating eddy
viscosity field including a significant partition with
negative values, which is destabilizing in numerical sim-
ulations. ChomðtÞ is computed with the requirement that
the SGS dissipation of the resolved kinetic energy in the
whole computational domain remains the same as with
the local coefficient Cðx; y; z; tÞ, i.e.
2Cðx; y; z; tÞDk1=2sgs

�SSij�SSij
D E

xyz
¼ 2ChomðtÞ Dk1=2sgs

�SSij�SSij
D E

xyz
;

ð9Þ
where h	ixyz denotes space averaging over the entire do-
main.

We now use the Germano identity, i.e.

Lij ¼ Tij � s
_
ij; ð10Þ

where the resolved stress, Lij, is

Lij ¼
z {
�uui�uuj �

z {
�uui
z {
�uuj : ð11Þ

By substituting modeled stresses from Eqs. (1)–(4) into
Eq. (10) we have

Lij � Hij ¼ 2Cðx; y; z; tÞMij; ð12Þ
where

Hij ¼
z {
��uu�uui��uu�uuj

�
�
z {
��uu�uui
z {
��uu�uuj

�
; ð13Þ

Mij ¼ D
z {
k1=2sgs

�SSij �D
_

K1=2
z {
�SS ij : ð14Þ

The square error, EijEij ¼ ðLij � Hij � 2Cðx; y; z; tÞMijÞ2,
is minimized (Lilly, 1992) to obtain

Cðx; y; z; tÞ ¼ ðLij � HijÞMij

2MijMij
: ð15Þ

Taking the trace of the Germano identity in Eq. (10) and
using the definitions of the SGS kinetic energy on the
grid filter level, ksgs, and on the test filter level, K, we can
compute the test level kinetic energy as

K ¼ k
_

sgs þ 1
2
ðLii � HiiÞ: ð16Þ

In RANS, Rodi (1976) proposed that the convective and
diffusive transport of uiuj are proportional to that of k
with the proportionality coefficient uiuj=k. Here we use a
similar assumption when computing the dissipation co-
efficient, Ce, in Eq. (7). We assume that the convective
and diffusive transport of ksgs are proportional to that of
K with the proportionality coefficient ksgs=K. Since

CK þ DK ¼ PK þ PSS
K � eK ;

C
_

ksgs þ D
_

ksgs ¼ P
_

ksgs þ
z {
PSS � e

_
ksgs ;

with the convection terms CK and Cksgs and the diffusion
terms DK and Dksgs , we obtain (note that the scale-simi-
larity terms have been absorbed in the convection and
diffusion terms)

ksgs
K

ðPK þ PSS
K � eKÞ ¼ P

_

ksgs þ
z {
PSS � e

_
ksgs ; ð17Þ

where

PK ¼ �T EV
ij

z {
�SS ij; PSS

K ¼ �T SS
ij

z {
�SS ij;

eK ¼ Ce
K3=2

D
_ ; eksgs ¼ Ce

k3=2sgs

D
: ð18Þ

This gives

Cnþ1
e ¼ PK

2
64 þ PSS

K � K
ksgs

P
_

ksgs

0
B@ þ

z {
PSS �

z {
Cn

e

k3=2sgs

D

1
CA
3
75 D

_

K3=2
;

ð19Þ

where Cnþ1
e denotes the dissipation coefficient for time

step nþ 1. Since the viscous dissipation must be non-
negative by definition, Ce is constrained as Ce P 0.
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The new mixed one-equation SGS model can be
summarized as follows:

1. The modeled transport equation (Eq. (7)) for the sub-
grid kinetic energy ksgs is solved.

2. The eddy-viscosity and the scale-similarity parts of
the SGS dissipation of the resolved kinetic energy in
Eq. (6) are computed. When computing the eddy-vis-
cosity part of the SGS dissipation of the resolved ki-
netic energy, the local dynamic coefficient (Eq. (15)) is
used in the expression for the eddy-viscosity stress in
Eq. (2).

3. The local dynamic dissipation coefficient is computed
from Eq. (19).

4. The eddy-viscosity part of the subgrid stresses in the
momentum equation is computed using a homoge-
neous coefficient, ChomðtÞ. ChomðtÞ is also used in the
diffusion term in the modeled ksgs equation.

5. The nodes adjacent to the wall are located in the vis-
cous sublayer and thus the boundary condition for
the subgrid kinetic energy is ksgs ¼ 0 at all walls.

2.1. Numerical method

An implicit finite-volume method is used for solving
the incompressible Navier–Stokes equations on non-
staggered grids (Davidson, 2001; Emvin, 1997). Both
convective and viscous plus subgrid fluxes are approxi-
mated by central differences of second-order accuracy. A
Crank–Nicolson second-order scheme was used for time
integration. Although no explicit dissipation is added to
prevent odd–even decoupling, an implicit dissipation is
present. This is done by adding the difference between
the pressure gradient at the face and the node. It can be
shown that this term is proportional to the third deriv-
ative of pressure, i.e. o3p=ox3i . This term corresponds to
Rhie–Chow dissipation (Rhie and Chow, 1983). Details
about this code are given in Davidson (2001).

This work uses the top-hat filter. The grid filtering is
applied implicitly through the discretization. The ex-
plicit filtering at the test level is done numerically by
integrating over the test cell assuming linear variation of
the variables (Zang et al., 1993), i.e. (see Fig. 1)z {
�uu I ;J ;K ¼ 1

8
ð�uuI�1=2;J�1=2;K�1=2

þ �uuIþ1=2;J�1=2;K�1=2 þ �uuI�1=2;Jþ1=2;K�1=2

þ �uuIþ1=2;Jþ1=2;K�1=2 þ �uuI�1=2;J�1=2;Kþ1=2

þ �uuIþ1=2;J�1=2;Kþ1=2 þ �uuI�1=2;Jþ1=2;Kþ1=2

þ �uuIþ1=2;Jþ1=2;Kþ1=2Þ: ð20Þ

The source terms in the numerical solution of Eq. (7) are
discretized as S ¼ Spksgs þ Su with Sp ¼ minðbÞ=ksgs and
Su ¼ maxðbÞ. Here, b is the scale-similarity terms and
the eddy-viscosity production and dissipation terms in
Eq. (7).

3. Results

The mixed one-equation model was first applied to
the simple case of the flow in a plane channel. Despite its
simplicity, this flow is sensitive to the choice of model
and can expose problems in a model. It is a standard test
case for new models and, at a relatively low Reynolds
number (Res ¼ 395), an accurate prediction of this flow
is probably a minimum requirement for a model.

Although the model may work for the channel flow
simulation, our main object was to evaluate the model in
a fully inhomogeneous recirculation flow. The model
was thus applied to the flow around a surface-mounted
cube. This flow is fully inhomogeneous with multiple
recirculations.

3.1. Channel flow

We simulated the flow in a plane channel with Res ¼
395. The computational domain is xmax ¼ 2pd, ymax ¼ 2d
and zmax ¼ pd (d being the half channel height) and the
mesh is 64� 64� 64 cells. Periodic boundary conditions
were used in the stream-wise and span-wise directions.
No-slip conditions were used at the solid walls. The
homogeneous Neumann condition was used for the
pressure at the walls. The grid was stretched in the wall-
normal direction and thus the implicit filter was also
non-uniform. It is well known that for the non-uniform
filters a filtering operation and the spatial differentiation
do not commute, see Ghosal and Moin (1995). It is
practice in LES of channel flows to filter only in the
stream-wise and the span-wise directions, thus avoiding
difficulties with the commutation error. In more com-
plex geometries, the grids are non-uniform in all direc-
tions and filtering is performed in all directions. To test
the model under the same conditions in both the channel
flow and the cube simulations, we also filtered in the
wall-normal direction in the channel flow LES. Such a

Fig. 1. Grid filtering volume (solid line) and test filtering volume

(dashed line).
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simulation gives a more fair picture of the model per-
formance in complex geometries.

The mean velocity and the RMS fluctuations are
compared with DNS data of Kim et al. (1987). We
find good agreement between our LES and the DNS in
Fig. 2.

3.2. Flow around a surface-mounted cube

In this section we present LES of the flow around a
surface-mounted cube placed on a channel wall at
Re ¼ 40000, based on the incoming mean bulk velocity
and the cube height. The flow is complex and has mas-
sive separations (Krajnovi�cc and Davidson, 2001). The
geometry of the computational domain is given in Fig.
3. A domain with an upstream length of x1=H ¼ 3 and a
downstream length of x2=H ¼ 6 was used for the simu-
lation, while the span-wise width was set to b=H ¼ 7 (see
Fig. 3). The experimental profile (constant in time) was
used at the inlet in this work. The lateral boundaries
were treated as slip surfaces using the symmetry con-
ditions o�uu=oz ¼ o�vv=oz ¼ �ww ¼ 0. At the downstream
boundary, the convective boundary condition o�uui=otþ
Ucðo�uui=oxÞ ¼ 0 was used. Here, Uc was set equal to the
mean bulk velocity, Ub. No-slip conditions were used at
the solid walls. The homogeneous Neumann condition
was used for the pressure at all boundaries. A compu-
tational mesh of 82� 50� 66 nodes was used. Near the
walls of the channel, yþmin ¼ 3:7, while yþmin ¼ 5:2 on the
top of the cube. Such a coarse resolution implies that a
significant fraction of the turbulent energy is modeled.
Thus the model has a large influence on the resulting
statistics.

A series of time-averaged velocities and turbulent
stresses are compared with the experiments of Martin-
uzzi and Tropea (1993) (see Figs. 4–6). The separation
region at the top of the cube is in good agreement with
the experiments (see Fig. 4). There is some difference
between experimental and LES velocity profiles at po-
sitions x=H ¼ 0:75, x=H ¼ 1:08 and x=H ¼ 2:0, but the
results are still fairly accurate. The difference becomes

insignificant as we move further downstream. The re-
solved Reynolds stresses shown in Figs. 5 and 6 are in
somewhat poorer agreement with the experiments than
are the velocities, but the results are still fairly accurate.
The time history of the homogeneous dynamic coeffi-
cient, Chom, is shown in Fig. 7. The time-averaged mean
value is approximately 2:5 times lower than in the eddy-
viscosity one-equation model of Davidson (1997), see
Krajnovi�cc and Davidson (1999).

4. Mathematical consistency and computational cost

The importance of expressing the SGS stress tensor
on test level, Tij, entirely in the test-level velocity,

z {
�uui ,

was addressed in Vreman et al. (1994a). According to
these authors, the modeled Tij should, in order to be
mathematically consistent, be expressed entirely in

z {
�uui .

Here, we have replaced the model in Eq. (4) by the ex-
pression

Fig. 2. Channel flow with Res ¼ 395. CSS ¼ 0:2. Comparison of mixed one-equation model (solid line) and DNS data (symbols).

Fig. 3. Surface-mounted cube. Geometry of the computational do-

main.
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T SS
ijc

¼
z {z {
�uui
z {
�uuj �

z {z {
�uui

z {z {
�uuj ð21Þ

proposed by Vreman et al. (1994a) and obtained

Hijc ¼
z {z {
�uui
z {
�uuj �

z {z {
�uui

z {z {
�uuj �ð

z {
�uui�uuj �

z {
��uu�uui��uu�uuj Þ

ð22Þ

instead of Eq. (13). Subscript ‘c’ in Eqs. (21) and (22)
denotes consistency. In the simulations we find that Hij

obtained from Eq. (13) is larger than Hijc . This gives a
larger magnitude of C when Eq. (22) is used. The same
observation was also made by Vreman et al. (1994a).
They noted that �uui contains more small-scale structures
than

z {
�uui and therefore Hij is larger than Hijc . We

Fig. 5. Surface-mounted cube. Resolved stresses. Comparison of mixed one-equation model (solid line) and experiments (symbols).

Fig. 4. Surface-mounted cube. Comparison of mixed one-equation model (solid line) and experiments (symbols).
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compared the models in Eqs. (13) and (22) and found
very little difference in the results for the two test cases
presented in this paper. The mathematically consistent
model increased the computational cost by some 5%
owing to the extra filtering. This suggests the use of the
basic model from Eq. (4). However, a more important
reason to use Eq. (13) rather than Eq. (22) is that the
implementation of Eq. (13) is much less complicated.

The computational cost is of course dependent on the
implementation (programming and parallelization) and
on the machine used in the simulation. This work used
SGI R10000 CPUs. The solution of the ksgs equation
and the dynamic procedure increases the computational
cost by some 18% in the case of the surface-mounted
cube as compared to when the Smagorinsky model is

used. Carati et al. (1995) reported that the one-equation
model of Ghosal et al. (1995) required 67% more CPU
time than the standard Smagorinsky model.

5. Proper dissipation

The problem of insufficient model dissipation when
using the dynamic mixed models is little discussed in the
literature. This problem occurs because the eddy-vis-
cosity part of the model becomes too small and does not
produce enough dissipation. This is especially the case
when an energy conservative scheme such as the central
differencing scheme is used for the discretization.

Zang et al. (1993) implemented a dynamic mixed
model which was applied to the simulations of recircu-
lating flows. In addition to the SGS dissipation from the
eddy-viscosity part of the model, some numerical dissi-
pation is present owing to the use of some upwinding in
the convection terms in their code (Sarghini and Pio-
melli, 1999; Meneveau and Katz, 2000). This upwinding
reduces both the numerical and the physical oscillations.

Ribault et al. (1999) introduced a damping on the
similarity part of the model in large-eddy simulation of a
plane jet using the dynamic mixed model (Zang et al.,
1993; Vreman et al., 1994a). Damping the similarity part
of the model increases the relative importance of the
dissipative part, sEVij , thereby stabilizing the computa-
tion. We introduced this damping through the damping
coefficient, CSS, in the expression for the subgrid stress
model on the grid level,

Fig. 6. Surface-mounted cube. Resolved stresses. Comparison of mixed one-equation model (solid line) and experiments (symbols).

Fig. 7. Surface-mounted cube. Time history of the dynamic coefficient

Chom.
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sSSij ¼ CSS �uui�uuj
�

� ��uu�uui��uu�uuj
�

ð23Þ

(Liu et al., 1994), and on the test level,

T SS
ij ¼ CSSð

z {
�uui�uuj �

z {
��uu�uui
z {
��uu�uuj Þ; ð24Þ

in the momentum equations. Here, we have assumed the
scale invariance and used the same coefficient ðCSSÞ at
the grid-filtered level and the test-filtered level. This
coefficient should have a magnitude between 0 and 1.
CSS ¼ 0:2 was used for the channel flow simulation,
giving some improvement in the results. The results of
the cube simulation were almost unchanged when
damping was introduced. The scale-similarity stress in
Eq. (2) is Galilean invariant, see Germano (1986), and
thus CSS can be chosen arbitrarily between 0 and 1.

6. Turbulent energy transport

It was found in Domaradzki et al. (1993, 1994) that
the SGS energy transfer is a local phenomenon caused
by the interaction of the scales immediately above the
cut-off with those immediately below it. We expect the
scale-similarity part of the SGS stresses to give a correct
representation of this interaction. The non-local transfer
of energy is represented by the eddy-viscosity part of the
model.

The transfer of the turbulent energy takes place
through the dissipation term, P ¼ �sijðo�uui=oxjÞ, in the
equation for the resolved kinetic energy

o�kk
ot

þ o

oxj
ð�uuj�kkÞ ¼ � 1

q
o

oxi
ð�uui�ppÞ þ

o

oxj
m
o�kk
oxj

 !

� o

oxj
ð�uuisijÞ � m

o�uui
oxj

o�uui
oxj

� P: ð25Þ

The term P ¼ Pksgs þ PSS appears in the equation for
ksgs (Eq. (7)) as a production term. Sarghini and Piomelli
(1999) found that the similarity term contributes to

about half of the SGS dissipation P in channel flow
simulations. The mixed one-equation model gives the
same results except at yþ � 15, where the scale-similar
part of hPixzt is some 20% larger than the eddy-viscosity
part (see Fig. 8(a)).

The SGS dissipation P is positive in the mean (see
Fig. 8(a)) although there is local backscatter, i.e. transfer
of the turbulent energy from small to resolved scales (see
Fig. 8(b)). The backward and the forward scatter com-
ponents of P, respectively denoted P� and Pþ, are
computed as

P� ¼ 1
2
ðP � jPjÞ; ð26Þ

Pþ ¼ 1
2
ðP þ jPjÞ: ð27Þ

In a study of the reverse flow of energy, Krajnovi�cc and
Davidson (1999, 2001) computed the SGS dissipation of
the resolved kinetic energy, Pksgs ¼ �sij�SSij, in the one-
equation models of Davidson (1997) and Menon and
Kim (1996). It was found that the strongest backscatter
occurs near the front corners of the cube. It was also
found in simulations by Sohankar et al. (2000a,b) of the
flow around a square cylinder that strong backscatter
occurs near the front corners.

In the present paper, we studied both the eddy-vis-
cosity, Pksgs ¼ �sEVij �SSij, and the scale-similarity part of
the SGS dissipation of the resolved kinetic energy,
PSS ¼ �sSSij �SSij, in Eq. (7). Also here we found the
strongest backscatter near the front corners. We find
that the scale-similarity forward scatter is larger than the
eddy-viscosity one. The eddy-viscosity backward scatter
is slightly larger than the scale-similarity backward
scatter (see Fig. 9).

7. Properties of the model

The modeled SGS stresses must satisfy the same
properties as the exact ones. These properties are dis-

Fig. 8. Channel flow with Res ¼ 395. (a) Dissipation: dhPSSixzt (solid line); dhPEVixzt (dashed-dotted line); (b) dissipation: dhPSSþ ixzt (solid line);

dhPSS� ixzt (dashed line); dhPEVþ ixzt (dashed-dotted line); dhPEV� ixzt (thin solid line).
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cussed in Fureby and Tabor (1997) and Ghosal (1999).
It is trivial to supply mathematical proof for some of the
properties and very difficult for others (e.g. the realiz-
ability of one-equation models). This section discusses
the most important properties of the mixed one-equa-
tion model.

7.1. Galilean invariance

According to Speziale (1985), the basic physics of the
turbulence requires that the description of turbulence is
the same in all inertial frames of reference. This re-
quirement is satisfied if the SGS stress model is invariant
under the Galilean transformation. sSSij in Eq. (2) is de-
fined using the redefinition of the turbulent stresses ac-
cording to Germano (1986) and thus is Galilean
invariant. The diffusion term,

o

oxj
ðmsgs



þ mÞ oksgs
oxj

�
;

in the equation for the SGS kinetic energy (Eq. (7)) is
Galilean invariant. The sum of the transient and con-
vective term,

o

ot
ðsSSii Þ þ

o

oxj
ðsSSii �uujÞ;

is Galilean invariant, making the entire equation Gali-
lean invariant. The Galilean invariance of the resolved
stresses, Lij, and the quantities on the test level, K andz {
�SS ij, follows from Eqs. (11), (16) and (5). Using these
results in Eq. (15), it can be shown that the dynamic
coefficient, C, is Galilean invariant. The invariance of
the model now follows from Eqs. (2) and (1).

7.2. Realizability

If the model violates the realizability condition, it
may give unphysical solutions. These conditions have
earlier been described for the SGS stress tensor by

Vreman et al. (1994b) and Ghosal (1999). The realiz-
ability conditions are given by the following two in-
equalities:

ðiÞ sii P 0 ð28Þ

with no summation on i.

ðiiÞ jsijj6 ðsiisjjÞ1=2 8i 6¼ j ð29Þ

with no summation on i and j. Here we present the re-
alizability conditions for the mixed one-equation SGS
model.

The first realizability condition is fulfilled if

sMii ¼ sSSii þ sEVii P 0 ð30Þ

i.e.

1

2Dk1=2sgs
�SS33

sSS33
	

þ 2
3
ksgs
�
6C6

1

2Dk1=2sgs
�SS11

sSS11
	

þ 2
3
ksgs
�
:

ð31Þ
Here we assume that

�SS33 ¼ min
i
ð�SSiiÞ6 0; �SS11 ¼ max

i
ð�SSiiÞP 0:

The second realizability condition is fulfilled if

jsSSij þ sEVij j6 ðsSSii
n

þ sEVii ÞðsSSjj þ sEVjj Þ
o1=2

ð32Þ

i.e.

�b
2a

�
b2 � 4ac
	 �1=2

2a
6C6

�b
2a

þ
b2 � 4ac
	 �1=2

2a
ð33Þ

with

a ¼ 4D2ksgs �SS2
ij

�
� �SSii�SSjj

�
; ð34Þ

b ¼ 2Dk1=2sgs sSSii �SSjj
�

þ sSSjj �SSii � 2sSSij �SSij
�
þ 4

3
Dk3=2sgs

�SSii
�

þ �SSjj
�
;

ð35Þ

Fig. 9. Surface-mounted cube. Dissipation: hPSSþ it (solid line); hPSS� it (dashed line); hPEVþ it (dashed-dotted line); hPEV� it (thin solid line).
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c ¼ �sSSii sSSjj � 2
3
ksgs sSSii
�

þ sSSjj
�
� 4

9
k2sgs þ sSSij

� �2
: ð36Þ

The bounds onC following fromEqs. (31) and (33) ensure
that ksgs P 0. It was found for both test cases studied in
this paper that at least 99% of the grid points satisfy
both realizability conditions in Eqs. (31) and (33) at
every time step during the entire simulation. The cor-
responding number of points in the model by Ghosal
et al. (1995) was 95% for the first realizability condition,
when they simulated for the experiment of decaying iso-
tropic turbulence of Comte-Bellot and Corrsin (1971).

A positive filter function like the top-hat filter and the
Gaussian filter is a necessary requirement for realiz-
ability (Vreman et al., 1994b). As already mentioned, we
used the top-hat filter. It was found in Vreman et al.
(1994b) that ksgs was negative in many regions of the
flow when a spectral cut-off filter, which is non-positive,
was used. Moreover, the correlation between sSSij and sij
decreases to almost zero when a spectral cut-off filter is
used, see Liu et al. (1994). For these reasons, positive
filters should be used together with the mixed one-
equation model.

7.3. Near-wall behavior

The exact SGS stresses behave close to the wall such
that: s11 � y2, s22 � y4, s33 � y2, s12 � y3, s13 � y2 and
s23 � y3. Near the wall

�uu1 � y; �uu2 � y2; �uu3 � y: ð37Þ
Thus the scale-similarity part of the SGS stresses in Eq.
(2) displays the correct behavior near the wall. In the
computation of the eddy-viscosity part in Eq. (2), the
homogeneous coefficient ChomðtÞ � y0 is used. Obviously
the SGS viscosity exhibits behavior different from y3

close to the wall. This is less important because the
magnitude of the scale-similarity part of the stresses
is large close to the wall. For CSS ¼ 0:2 used in Eq. (23),
some 50% of the total SGS stress is carried by the
scale-similarity part of the model. This means that the
modeled SGS stress sMij has approximately the correct
behavior near the wall.

7.4. Dynamic coefficients

As already mentioned, a homogeneous coefficient
ChomðtÞ is used in the diffusion term of the ksgs equation
and in the momentum equations for stability reasons.
Here we consider the influence of the increase of the
computational domain on the ChomðtÞ. From Eq. (9)
follows

ChomðtÞ ¼
2Cðx; y; z; tÞDk1=2sgs

�SSij�SSij
D E

xyz

2 Dk1=2sgs
�SSij�SSij

D E
xyz

: ð38Þ

There are three main cases:

1. An increase of the domain in the laminar far-field
flow will not influence the homogeneous coefficient
ChomðtÞ in Eq. (38) because ksgs ¼ 0 in the laminar
part of the domain.

2. A change of the volume of homogeneous flow, e.g. a
channel flow with periodic boundary conditions,
from e.g. V1 to V2 will only lead to multiplication on
the numerator and the denominator in Eq. (38) with
V2=V1 and thus not change the value of ChomðtÞ.

3. In case of inhomogeneous flow, e.g. flow around a
surface-mounted cube, the homogeneous coefficient
ChomðtÞ in Eq. (38) is weakly dependent on the size
of the computational domain.

The dissipation coefficient, Ce is constrained as Ce P 0. It
was found that in the case of a channel flow negative Ce

occurred in some 40% of the nodes. These nodes were
concentrated around the symmetry line of the channel,
i.e. in the low turbulent part, which does not have any
large impact on the results.

8. Conclusions

A new mixed one-equation SGS model is presented.
This model is constructed following the observation that
the transfer of turbulent energy is a local process
that occurs between the scales closest to the cut-off.
The history effects are built into the model through the
transport equation for the SGS kinetic energy. The dy-
namic procedure in the new model is computationally
much cheaper than the one used in the model of Ghosal
et al. (1995).

Accurate results are obtained in the simulation of the
channel flow with Res ¼ 395 and the flow around a
surface-mounted cube with the bulk velocity Reynolds
number Re ¼ 40000. Both mathematically consistent
and inconsistent models for T SS

ij were tested. It was
found that they give very similar results. The former
gives slightly better results with an increase in the
computational cost of some 5% in the case of a surface-
mounted cube. The scale-similarity part of the SGS
stresses on both the grid and the test levels is larger than
the eddy-viscosity part. This reduces the significance of
the incorrect assumption that the SGS stress is aligned
with the resolved strain rate in the eddy-viscosity part of
the model.
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Appendix A. Derivation of the ksgs equation for the mixed

one-equation model

Let us consider Navier–Stokes equations (Eq. (A.1))
and the filtered Navier–Stokes equations (Eq. (A.2))

oui
ot

þ o

oxj
uiuj
	 �

¼ � 1

q
op
oxi

þ m
o2ui
oxjoxj

; ðA:1Þ

o�uui
ot

þ o

oxj
ð�uui�uujÞ ¼ � 1

q
o�pp
oxi

þ m
o2�uui
oxjoxj

� osij
oxj

; ðA:2Þ

where the SGS stress tensor,

sij ¼ uiuj � �uui�uuj ðA:3Þ
is modeled as

sMij ¼ sSSij þ sEVij : ðA:4Þ

Here, the scale-similarity part of the SGS stress tensor is
modeled as

sSSij ¼ �uui�uuj � ��uu�uui��uu�uuj ðA:5Þ

and the eddy-viscosity part is modeled as

sEVij ¼ �2Cðx; y; z; tÞDk1=2sgs
�SSij þ 2

3
dijksgs: ðA:6Þ

Now we subtract the product of �uui and Eq. (A.2) from
the filtered product of ui and Eq. (A.1) to obtain:

ui
oui
ot

� �uui
o�uui
ot|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Term 1

þ ui
o

oxj
uiuj
	 �

� �uui
o

oxj
�uui�uuj
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term 2

¼ � 1

q
ui
op
oxi

� �uui
o�pp
oxi

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term 3

þ mui
o2ui
oxjoxj

� m�uui
o2�uui
oxjoxj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term 4

þ �uui
osMij
oxj|fflffl{zfflffl}

Term 5

:

ðA:7Þ

A.1. Term 1

We define the SGS kinetic energy as

ksgs ¼ 1
2
sEVii ðA:8Þ

and obtain

ui
oui
ot

� �uui
o�uui
ot

¼ o

ot
1
2
ðuiui

n
� �uui�uuiÞ

o
¼ o

ot
1
2
ðsSSii

 
þ sEVii Þ

!
¼ Eq: ðA:8Þf g

¼ o

ot
ð1
2
sSSii Þ þ

oksgs
ot

: ðA:9Þ

A.2. Term 2

Assuming that the resolved and the total kinetic en-
ergy are

�kk � 1
2
�uui�uui; k � 1

2
uiui; ðA:10Þ

we can model the total kinetic energy as

k ¼ �kk þ ksgs þ 1
2
sSSii ; ðA:11Þ
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oxj
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oxj
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2
uiuiuj � �kk�uujg
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oxj
f1
2
uiuiuj � ðk � ksgs � 1

2
sSSii Þ�uujg: ðA:12Þ

A.3. Term 3
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A.4. Term 4
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ðA:14Þ

A.5. Term 5

�uui
osMij
oxj

¼ o

oxj
ð�uuisMij Þ � sMij

o�uui
oxj

: ðA:15Þ

Substitution of Eqs. (A.9), (A.12)–(A.15) into Eq. (A.7)
gives
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Now we model the SGS diffusion terms in Eq. (A.16)

D ¼ � o

oxj

1

2
uiuiuj



� k�uuj þ
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q
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as

D ¼ o

oxj
msgs

oksgs
oxj


 �
: ðA:17Þ

Although the diffusion term,

o

oxj
�uuisMij
n o

; ðA:18Þ

is computable, it is included in the model

D ¼ o

oxj
msgs

oksgs
oxj
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ðA:19Þ

since it is not Galilean invariant.
The dissipation in Eq. (A.16)

eksgs ¼ m
oui
oxj

oui
oxj

 
� o�uui
oxj

o�uui
oxj

!
ðA:20Þ

can be modeled as

eksgs ¼ Ce

k3=2sgs

D
: ðA:21Þ

We model the production term in Eq. (A.16), i.e. the
SGS dissipation of the resolved kinetic energy,

P ¼ �sMij
o�uui
oxj

; ðA:22Þ

as

P ¼ PSS þ Pksgs ¼ �sSSij
o�uui
oxj

� sEVij
o�uui
oxj

: ðA:23Þ

From this, we obtain the modeled ksgs equation for the
mixed one-equation model:
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