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Large-Eddy Simulation of the Flow Around a Bluff Body

SiniÏsa Krajnović¤ and Lars Davidson†

Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

Large-eddy simulations are made of the �ow around a surface-mounted cube, showing that it is possible to obtain

accurate results in a coarse grid simulation. The inadequate resolution is compensated for by the use of a dynamic

one-equation subgrid-scale model. Two one-equation subgrid models are used here to model the subgrid-scale

stress tensor. A series of time-averaged velocities and turbulent stresses are computed and compared with the

experiments and show good agreement. Global quantities such as drag and lift coef�cients and vortex shedding

frequency are presented. The transfer of the turbulent energy was studied and the reverse transfer of energy

(backscatter) was predicted. Coherent structures and other �ow features were also examined. The results showed

good agreement with experimental observations.

Introduction

T HE �ow around a three-dimensional bluff body is of great in-
terest in engineering practice. Typical examples of engineering

applications are the computation of wind loads on buildings and sim-
ulations of the �ow around vehicles. This work is connected to the
latter and studies some aspects related to vehicle aerodynamics, such
as drag and lift. Most studies of this kind of �ow are experimental.
Early studies were done by Castro and Robins1 and Hunt et al.,2

and the most recent papers are by Scho�eld and Logan,3 Larousse
et al.,4 Martinuzzi and Tropea,5 and Hussein and Martinuzzi.6

The best documented experimental work on this �ow is by
Martinuzzi and Tropea5 concerning the �ow around a surface-
mounted cube. This �ow was recently computed by Shah and
Ferziger7 using large-eddy simulation (LES). This was the test case
used at two workshops8;9 at which both LES and Reynolds-averaged
Navier–Stokes (RANS) results were presented. Simulations were
made at two Reynolds numbers, Re D 3 £ 103 and 4 £ 104. Many of
these LES were done using a �ne resolution (more than 106 nodes
for the low Reynolds number case). Near the wall, these simula-
tions approach direct numerical simulation (DNS), resolving the
near-wall streaks and may be described as quasi-DNS (QDNS).10

The in�uence of the subgrid-scale (SGS) model is then small. Al-
though these LES were carried out with considerable success, the
extension of this kind of simulation to higher Reynolds number and
more complex geometry (typical for vehicle aerodynamics) implies
very high computational costs.

An interesting simulation is Iaccarino and Durbin’s,11 who made
unsteady RANS (URANS) simulations of this �ow using the v2– f

turbulent model. They reduced the spanwise length from the 7 cube
heights H used in the LES to only 3H . A computational mesh of
half a million nodes was used, but the actual resolution was similar
to that used in LES7¡9 because the URANS computational domain
is smaller by some 58% in the spanwise direction.

A large amount of effort was spent in the last decade to overcome
the high computational cost required in wall-resolved LES. Many of
the suggested modi�cations of LES include modeling of the near-
wall region in one way or another (for example, see Refs. 12–14).
Speziale15 proposed to combine URANS and very large-eddy sim-
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Copyright c° 2002 by SiniÏsa Krajnović and Lars Davidson. Published by the
American Institute of Aeronautics and Astronautics, Inc., with permission.
Copies of this paper may be made for personal or internal use, on condi-
tion that the copier pay the $10.00 per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code
0001-1452/02 $10.00 in correspondence with the CCC.

¤Graduate Student, Department of Thermo and Fluid Dynamics; sinisa@
tfd.chalmers.se.

†Professor, Department of Thermo and Fluid Dynamics; lada@tfd.
chalmers.se.

ulation (VLES) in simulations with coarse mesh. Woodruff et al.16

demonstrated that LES can be used in coarse meshes in the absence
of solid walls.

The purpose of this paper is to present LES of the �ow around a
surface-mounted cube at moderate Reynolds number (Re D 4 £ 104 )
where the SGS model plays an important role and a relatively
coarse mesh is used. The inadequate resolution is compensated for
by the use of a dynamic one-equation SGS model. The previous
LES presented in Refs. 7–9 used the Smagorinsky,17 the dynamic
Smagorinsky (see Refs. 18 and 19), the dynamic mixed Smagorinsky,
and theSchuman20 models. The dynamic mixed model and the Schu-
man model were used for low-Reynolds-number simulation only.
The in�uence of these two SGS models was small because of the
very �ne resolution (524,000 and 1,152,000 nodes, respectively).
The use of a coarse mesh will dramatically reduce the computational
cost of the simulations described in Refs. 7–9 and hopefully still give
reasonable results. Depending on the decrease in the computational
cost, more challenging �ows could then be simulated with LES.

Problem Statement and Computational Details

The bluff body used in this work is a sharp-edged, surface-
mounted cube. The geometry of the computational domain is given
in Fig. 1. The Reynolds number was Re DUb H=º D 4 £ 104 based
on the incoming mean bulk velocity Ub and the cube height H . The
cube is located between x=H D 0 and 1, and the channel height is
h D 2H (Fig. 1). Six simulations were made with two dynamic one-
equation SGS models. To assess the effect of the SGS model, we
made an additional three simulations without a SGS model (NOM,
NOM2, and NOM3 in Tables 1–3). To establish the results’ grid
independence, we made computations on three different computa-
tional grids. Details of these simulations are given in Tables 1 and 2.
The computational domain had an upstream length of x1=H D 3 and
downstream length of x2=H D 6, and the spanwise width was set to
b=H D 7. The time step was set to 0:02 in the coarse grid simulations
and 0:01 in the medium and �ne grid simulations. This gave a max-
imum Courant–Friedrichs–Lewy (CFL) number of approximately
1:5. The CFL number was smaller than one in 98% of the cells. The
in�uence of the temporal resolution was investigated (not shown in
the paper), and it was found that a decrease in time step did not
affect the results. The distance from the solid walls to the nearest
grid point is denoted ±x , ±y , and ±z in the x , y, and z directions,
respectively (see Table 1). The grid distribution was uniform with a
cell size of 1x close to the inlet and outlet and 1z close to the lateral
friction-free surfaces of the channel. A geometric distribution was
used to stretch the cell size between these limiting cell sizes and in
the y direction.

Boundary Conditions

Instantaneous results of LES of channel �ow were used as the
inlet boundary condition in Refs. 7–9. This inlet boundary condi-
tion provides correct turbulent intensity and shear in the upstream
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928 KRAJNOVIĆ AND DAVIDSON

�ow. Such a boundary condition can be created for this test case
because the Reynolds number is low or moderate, making LES of
the channel �ow feasible. In �ow with higher Reynolds number, for
example, the �ow around a buslike body,21;22 it is too costly to ob-
tain this kind of inlet boundary condition. The experimental pro�le
(constant in time) was used at the inlet in this work. We also tried
to superimpose random noise (2% of the mean statistical pro�le) on
the mean pro�le. This random noise had a very harmful in�uence
on the pressure solution, leading to high-frequency oscillations of
global quantities, such as drag and lift, and was thus removed. The
lateral boundaries were treated as slip surfaces using the symmetry
conditions @u=@z D @v=@z D w D 0. At the downstream boundary,
the convective boundary condition @u i=@t C Uc.@u i=@x/ D 0 was
used. Here, Uc was set equal to the mean bulk velocity Ub . No-slip
conditions were used at the solid walls. The homogeneous Neumann
condition was used for the pressure at all boundaries.

Numerical Method

An implicit �nite volume method is used for solving the incom-
pressible Navier–Stokes equations on nonstaggered grids.13;23;24

Both convective and viscous plus subgrid �uxes are approximated
by central differences of second-order accuracy. A Crank–Nicolson
second-order scheme was used for time integration. Although no
explicit dissipation is added to prevent odd–even decoupling, an
implicit dissipation is present. This is done by adding the differ-
ence between the pressure gradient at the face and the node. It can
be shown that this term is proportional to the third derivative of
pressure, that is, @3 p=@x3

i . This term corresponds to Rhie–Chow
dissipation.25 This implicit dissipation in combination with an im-
plicit computational code used in this work is probably the reason
for converged simulation in the no-model case. Details about this
code are given in Ref. 13.

This work uses the top-hat �lter. The grid �ltering is applied
implicitly through the discretization. The explicit �ltering at the test
level is done numerically by integrating over the test cell assuming
linear variation of the variables,26 that is (Fig. 2),

Table 1 Summary of simulations

Case Nx
a Ny

b Nz
c ±x ±y ±z 1x 1z

OEM 16 24 16 0.048 0.023 0.078 0.20 0.20
LDKM 16 24 16 0.048 0.023 0.078 0.20 0.20
NOM 16 24 16 0.048 0.023 0.078 0.20 0.20
OEM2 24 32 32 0.023 0.014 0.029 0.10 0.135
LDKM2 24 32 32 0.023 0.014 0.029 0.10 0.135
NOM2 24 32 32 0.023 0.014 0.029 0.10 0.135
OEM3 40 32 48 0.024 0.014 0.020 0.083 0.135
LDKM3 40 32 48 0.024 0.014 0.020 0.083 0.135
NOM3 40 32 48 0.024 0.014 0.020 0.083 0.135

aNumber of points on the surface of the cube in the streamwise direction.
bNumber of points on the surface of the cube in the y direction.
cNumber of points on the surface of the cube in the spanwise direction.

Table 2 Lengths for reattachment, XR1 , and separation, XF1, as well as vortex

shedding frequency Sr from the lateral walls

Contribution Model Grid XF1 X R1 Sr

Martinuzzi and Tropea5 Experiment —— 1.04 1.61 0.145
OEM OEM 82 £ 50 £ 66 0.970 1.380 0.134
LDKM LDKM 82 £ 50 £ 66 0.944 1.413 0.115
NOM —— 82 £ 50 £ 66 0.339 1.887 0.092
OEM2 OEM 162 £ 66 £ 98 1.115 1.454 0.119
LDKM2 LDKM 162 £ 66 £ 98 1.090 1.544 0.092
NOM2 —— 162 £ 66 £ 98 0.560 2.210 0.100
OEM3 OEM 210 £ 66 £ 114 1.100 1.453 0.146
LDKM3 LDKM 210 £ 66 £ 114 1.135 1.443 0.115
NOM3 —— 210 £ 66 £ 114 0.711 1.746 0.111
Shah and Ferziger7 Smagorinsky 192 £ 64 £ 96 1.050 1.650 ——
Breuer et al. (see Refs. 9 and 46) Smagorinsky 165 £ 65 £ 97 1.287 1.696 ——
Breuer et al. (see Refs. 9 and 46) Dynamic 165 £ 65 £ 97 0.998 1.432 ——
Wengle (see Refs. 9 and 46) Smagorinsky 144 £ 58 £ 88 0.808 1.722 ——
Iaccarino and Durbin11 RANS 500,000 (b D 3H ) 0.640 3.315 ——
Iaccarino and Durbin11 URANS 500,000 (b D 3H ) 0.732 1.876 0.17
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An overbar denotes a grid �lter with �lter width 1, and __ is a test
�lter with �lter width

_

1 D 21.

Governing Equations and SGS Modeling

In LES, the contribution of the large, energy-carrying scales
to momentum and energy transfer is computed exactly, and only
the effect of the smallest scales of the turbulence is modeled.

Fig. 1 Geometry of the computational domain.

Fig. 2 Grid �ltering volume (——) and test �ltering volume (- - - -).



KRAJNOVIĆ AND DAVIDSON 929

Table 3 Mean and rms values of drag
and lift coef�cients

Case hCD it CD;rms hCL it CL ;rms

OEM 1.140 0.062 0.920 0.038
LDKM 1.160 0.070 0.910 0.040
NOM 1.244 0.051 0.837 0.032
OEM2 1.179 0.055 1.217 0.038
LDKM2 1.171 0.057 1.206 0.043
NOM2 1.240 0.041 1.101 0.052
OEM3 1.166 0.047 1.119 0.038
LDKM3 1.148 0.051 1.099 0.041
NOM3 1.224 0.051 1.099 0.040

Decomposition into a large-scale component and a small SGS is
done by applying a �ltering operation,

Nf .xi / D

Z

Ä

f .x 0
i /G.xi ; x 0

i / dx 0
i

(2)

where G is the �lter function and Ä is the entire �ow domain.
A top-hat �lter with �lter function G D .1=1/H . 1

2
1 ¡ jx ¡ x 0j/,

where H .x/ is the Heaviside function, is used in this work. The
�lter width 1 is de�ned as 1 D .111213/1=3 , where 1i are the
computational mesh sizes in each coordinate directions. Filtering
the Navier–Stokes and the continuity equations gives the governing
equations
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Note that the derivation of Eqs. (3) and (4) from the Navier–Stokes
equations, the continuity equation, and Eq. (2) requires that the dif-
ferentiation operations commute with the �ltering operator, that is,
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The commutation property in Eq. (5) is valid if the �lter width 1 is
constant. However, a variable �lter width is used in inhomogeneous
�ow (including the �ow studied in this paper). That results in a vio-
lation of Eq. (5). An analysis of the commutation error27 shows that
the error is of order O.12/, and thus, in this work it is of the same
order as the discretization error.

The effect of the small scales appears in the SGS stress tensor,
¿i j D u i u j ¡ Nui Nu j , which must be modeled. Two one-equation sub-
grid models are used in the present study. Both models are SGS
kinetic energy models. The SGS stress tensor is modeled as ¿i j D

¡2ºsgs
NSi j with the eddy viscosity de�ned as ºsgs D C1k

1=2
sgs and SGS

kinetic energy as ksgs D 1=2¿i i .
The �rst model was developed by Davidson28 [dynamic one-

equation model (OEM)] and has been successfully applied to
fully developed channel �ow29 and vortex shedding �ow around
square cylinders.30;31 The modeled transport equation for the sub-
grid kinetic energy ksgs reads
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The �rst term on the right-hand side is the SGS dissipation of the
resolved kinetic energy and is de�ned as 5ksgs D 2C1k

1=2
sgs

NSi j
NSi j .

Chom [see Eq. (8)] is a constant value of the dynamic coef�cient C
in space, and C¤ [see Eq. (10)] is the dissipation coef�cient. The
dynamic coef�cient C is computed as
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Nu j is the SGS stress on the test level. NSi j

is the strain rate tensor on the grid level. A constant value of C in
space, Chom , is used in the momentum equations and in the diffusion
term in Eq. (6). The reason for using a homogeneous coef�cient is
that the local coef�cient C yields a highly oscillating eddy viscosity
�eld including a signi�cant partition with negative values, which is
destabilizing in numerical simulations. Chom is computed with the
requirement that the SGS dissipation of the resolved kinetic energy
5ksgs in the whole computational domain remains the same as it is
with the local coef�cient C , that is,
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where h ix yz denotes space averaging over the entire domain.
The Smagorinsky model17 is based on the assumption of local eq-

uilibrium of SGS turbulent kinetic energy ksgs, that is 5ksgs ¡ "ksgs D
0, where "ksgs is the dissipation of ksgs. A slightly better assumption
for estimating the coef�cient C¤ in the dissipation term, would be to
assume that the �ltered right-hand side of the ksgs equation is equal
to that of the K equation, that is,
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This gives the coef�cient C¤ in the dissipation term, for time step
n C 1,
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Note that Cn
¤ has been kept inside the �ltering process. All local

dynamic information is included through the source terms. This is
physically more sound because large local variations in C appear
only in the source term and the effect of the large �uctuations in
the dynamic coef�cients will be smoothed out. The coef�cients in
the one-equation model affect the stresses in only an indirect way.
In the dynamic Smagorinsky model (see Refs. 18 and 19), the C
coef�cient is linearly proportional to the stresses, which makes it
numerically unstable.

The second model studied in this paper is the localized dynamic
ksgs equation model (LDKM) proposed by Menon and Kim.32 The
following transport equation is solved in the LDKM:
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One-equation SGS models offer a number of advantages over the
dynamic Smagorinsky model (see Refs. 18 and 19).

1) One-equation models can predict backscattering. In the dy-
namic Smagorinsky model (see Refs. 18 and 19), the dynamic coef�-
cient must be averaged in some homogeneous direction or be clipped
in an ad hoc manner. This averaging and clipping often implies that
º C ºsgs ¸ 0, that is, 5ksgs ¸ ¡2º NSi j

NSi j . Thus, the backscattering is
restricted.

2) Although it is necessary to solve an additional transport equa-
tion, one-equation models are often computationally cheaper than
the dynamic Smagorinsky model (see Refs. 18 and 19) because of
greater numerical stability.30;33
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Although the two SGS models appear similar, there are some
signi�cant differences. The LDKM uses local dynamic coef�cient
C , whereas the OEM requires some volume averaging of this coef-
�cient. In the OEM, similarity assumptions are made between the
grid level (length scale ` < 1, velocity scale k

1=2
sgs ) and the test level

(length scale ` <
_

1, velocity scale K 1=2). However, in the LDKM,
the similarity assumption is made between the grid level and the in-
termediate level (length scale 1 < ` <

_

1, velocity scale [0:5Lkk ]1=2 ).
The denominator in Eq. (13), ¾i j ¾i j , does not tend toward zero as
much as the denominator, Mi j Mi j , in the OEM [Eq. (7)], which ex-
plains why C does not oscillate as much in the LDKM (see Ref. 34).

Results
Statistics of the Mean Flow

A series of time-averaged resolved velocities and turbulent
stresses are computed and compared with the experiments. We eval-

Fig. 3 Comparison between LDKM (- - - -), OEM (——), calculation without a model (–¢– ), and experiments5 (+).

uated the results for most of the positions measured in Ref. 5. We
concentrate in this paper on the results downstream of the front
edge of the cube, where the effect of the model is expected to be
pronounced. The results for the velocities are generally in much
better agreement with the experiment than are the results for the
stresses. Some results are shown in Fig. 3. Results for other posi-
tions are presented in Ref. 35. Numerical wiggles are present in the
mean velocity pro�le h Nuit for x=H D ¡1:0 (see Ref. 34) because of
a combination of coarse mesh in that part of the domain and the use
of the central differencing scheme. As can be seen, the predictions
made without a model give poor agreement, whereas the two subgrid
models give good agreement with experiments. The separation re-
gion at the top of the cube without a model is much too thin (Fig. 3).
This is probably because, without a model, the resolved �uctuations
are not damped by any subgrid viscosity, and the resolved �uctua-
tions consequently become too large. This gives excessively large
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turbulent diffusion, making the separation region smaller and thin-
ner. It can be seen in Fig. 3 that the resolved shear stress hu0v 0it is not
larger without a model than that obtained with a model; however,
care should be taken in comparing these because the time-averaged
velocity �elds are very different. Instead, we could argue as follows:
The resolved shear stress without a model is of approximately the
same magnitude as with a model, although the velocity gradient of
the time-averaged velocity �eld without a model is much smaller;
thus, when the difference in the time velocity �elds is taken into
account, the resolved shear stress without a model is indeed larger.
The two one-equation models gave similar results, but the results
obtained with the LDKM are slightly better. The LDKM is local and
capable of predicting the shear layer close to the upper wall of the
channel. (See hu 0u0it=U 2

b
in Figs. 3 and 4.)We also computed hu 02it C

h¿11it , hv 02it Ch¿22it , and hw02it Ch¿33it and compared them with the

Fig. 4 Comparison of simulations on different grids.

experiments. The total, that is, resolved plus SGS, turbulent stresses
are not shown here because we found that the differences between
these and the resolved mean turbulent stresses are almost negligible.

The effect of the models is noticeable in a comparison with the cal-
culation made without a model. These differences are especially vis-
ible close to the roof of the cube and far downstream. The case stud-
ied in this paper was a test case at the 6th ERCOFTAC/IAHR/COST
Workshop8 using RANS models. The velocity pro�les, especially
farther downstream of the cube, are much better predicted by LES
in the present work. The turbulent stresses are in signi�cantly better
agreement with the experimental values.

In�uence of the Resolution and SGS Model

The number of grid points in medium and coarse grid simula-
tions was chosen to be close to those in the simulations described in
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Refs. 7–9. The grid was re�ned proportionally in all directions in the
medium grid simulations as compared to the coarse grid simulations,
whereas the re�nement in the �ne grid simulations is concentrated
around the cube. An overview of the simulations made is given
in Tables 1–3. The reattachment length X R1 behind the cube and
the separation length X F1 upstream the cube are determined from
the distribution of the skin-friction coef�cient, C f D 2h¿w it=½Ub ,
on the channel �oor. Table 2 shows comparisons of different time-
averaged recirculation lengths with experiments. Grid re�nement
has a greater effect on the separation length X F1 than the reat-
tachment length X R1 . The best agreement with the experiments for
the reattachment length is found in the medium mesh simulations.
The local resolution at the position of the reattachment was lower
in the �ne mesh simulations than in the medium grid simulations.
It appears that the local resolution is more important for the predic-
tion of the reattachment length than is the resolution of the boundary
layer on the top of the cube, which was much �ner in the �ne mesh
simulations (Tables 1 and 2). Simulations made without a model
show a far too short separation length X F1 and far too long reat-
tachment length X R1 . Table 2 includes a comparison of the present
simulations with some previous LES7¡9 and RANS simulations.11

We �nd that the results for X F1 and X R1 in the present simulations
are comparable to the results of previous LES.7¡9 All LES give re-
sults that are in much better agreement with experiments than RANS
simulations.

The side force signal was Fourier transformed, and a peak is found
in the spectrum. The Strouhal number Sr of this periodic component
is also given in Table 2. The �ne mesh resolution gives the best
agreement with the experimental value of Strouhal number. The
coarse grid simulation using the OEM gives a Strouhal number of
0.134 as compared to the experimental value of 0.145. No shedding
frequency was reported in previous LES,7 whereas the shedding
period corresponding to a Strouhal number of 0.17 was observed
in the unsteady RANS simulation by Iaccarino and Durbin.11 No
vortex shedding is observed for the shear layer separating from the
roof of the cube, and no peak is found in the Fourier-transformed
signals of CD and CL . This agrees with unsteady RANS results by
Iaccarino and Durbin.11

The mean and rms drag and lift coef�cients are given in Table 3.
We know of no experimental values for drag and lift coef�cients.
The values of mean and rms values for the OEM and the LDKM on
the coarse grid are very similar. There is a 5–9% difference in the
mean drag coef�cient and up to an 11% difference in the mean lift
coef�cient between simulations with and without SGS models. The
rms values of drag and lift coef�cients vary by some 40% between
simulations made with and without SGS models. The impact of the
grid resolution on the lift coef�cients is much larger than on the drag
coef�cients (Table 3). This is in agreement with observations found
on vortex shedding around a square cylinder.30;31;36

Accuracy of the numerical results in this paper is judged from the
grid re�nement study. There is some 20% difference in the mean
velocity pro�les h Nuit between the simulations using the coarse and
�ne grids at x=H D 2:0 (Fig. 4). This difference reduces to only
1–3% in the rest of the domain. We �nd very small differences be-
tween the mean velocity pro�les h Nuit using the medium and the
�ne grid (Fig. 4). The grid re�nement leads to a decrease in the
oscillations of the mean velocity �eld upstream of the cube, as ex-
pected (not shown in this paper). The numerical accuracy of the
mean velocity pro�le h Nvit is worse than that for h Nuit . The largest
differences between the simulations appear in the stresses on the top
of the cube. (See x=H D 0:5 and 1.0 in Fig. 4.) The reattachment
length X R1 changes 1–13% (OEM) and 4–15% (LDKM) between
different grid simulations. The similar difference for the separation
length X F1 is up to an 5% in OEM and 8–9% in LDKM (Table 2).
There is 2–8% difference in the mean drag coef�cient hCDit be-
tween the coarse and the �ne grid simulations (Table 3). The corre-
sponding difference for the mean lift coef�cient hCLit is 20%. Note
that grid re�nement does not automatically lead to better results.
Contrary to expectation, we �nd that the agreement of some results
with experiments is better on the medium grid than on the �ne one.
Similar results were also found in circular cylinder LES made by
Breuer.37

SGS Dissipation of the Resolved Kinetic Energy

Most commonly used SGS models, that is, the Smagorinsky
model17 and the dynamic model of Germano (see Refs. 18 and
19), are able to account for properly the net energy �ux from the re-
solved to the SGSs. It is well known that, in addition to this forward
transport of the turbulent energy, reverse transport is also possible
(backscatter). Piomelli et al.38 and Domaradzki et al.39 studied DNS
of turbulent and transitional �ows and showed that the backscatter
is comparable and often larger than the net SGS dissipation. In the
Smagorinsky model,17 the SGS dissipation of the resolved kinetic
energy Nk is 5ksgs D ¡¿i j

NSi j ¸ 0, that is, the model is purely dissipa-
tive. This is also the case for the Germano model (see Refs. 18 and
19) because of averaging and clipping of the dynamic coef�cient,
as mentioned earlier. Only a few of the SGS models used today are
capable of mimicking backscatter. The mixed model26;40 and one-
equation models20;41;42 are probably the best known of this class of
models. We refer to Refs. 39 and 43 for further discussions of the
importance of backscatter and the ability of various SGS models to
model this reverse transfer of turbulent energy.

Both one-equation models used in this work are able to predict
a negative SGS dissipation of Nk, indicating backscatter. Backscatter
can be of importance, depending on how large a fraction of the total
energy transport is contained in the reverse transport. The coef�-
cient C in the model for the SGS dissipation of Nk is permitted to
be negative in both the OEM and the LDKM. When C becomes
negative, it represents modeled backscatter. The SGS dissipation of
Nk, 5ksgs , was studied instantaneously and in the mean.34 The LDKM
gives a smaller magnitude of negative 5ksgs than does the OEM.
The strongest backscatter occurs near the front vertical corners of
the cube.34 It was also found in simulations by Sohankar et al.30;31

of the �ow around a square cylinder that strong backscatter occurs
near the front corners. In the �ow around the cube, the lower values
of negative 5ksgs follow a horseshoe vortex in the case of the OEM.
It was found that the LDKM predicts backscatter far upstream of the
cube in regions where the grid is re�ned. Thus, the LDKM seems to
be more sensitive to grid re�nement than the OEM. This is because
the LDKM is more local than the OEM. To identify the reasons
for the existence of a negative 5ksgs , we computed the numerator
in the expression of C in Eq. (7), h¡Li j Mi j it , in the position of
the strongest backscatter. It is seen in Fig. 5a that h¡L12 M12it and
h¡L13 M13it are the dominant terms in the regions of strongest neg-
ative h5ksgs it . L13 is the most important negative term, as is shown
in Fig. 5b. Additional results and discussion on the backscatter in
this �ow are provided in Ref. 34.

Flow Features

The �ow patterns around a cube were sketched �rst by Hunt et al.2

They used the information derived from visualization of the �ow by
smoke, hydrogen bubbles, dye, etc. A similar picture of this �ow was
sketched by Larousse et al.4 and Martinuzzi and Tropea5 with the
support of their laser Doppler anemometer velocity measurements
(Fig. 6a). We calculated vortex cores using EnSight postprocessing
software and according to algorithms based on techniques outlined
by Sujudi and Haimes.44 Core segments are then used as emitters
of the ribbon traces shown in Fig. 6. Note that the vortex cores in
Figs. 6b–6d are plotted for the same value of vortex core strength.
All of the main features of this �ow observed in Refs. 2, 4, and 5 are
visible in Fig. 6. These are the horseshoe vortex H, lateral vortices
L, the vortex on the top of the cube T, and two recirculation vortices
behind the cube W. Two simulations using one-equation models
(Figs. 6b and 6c) give a similar picture of these coherent structures,
in good agreement with kinematic and experimental results (Fig. 6a).
The no-model simulation (Fig. 6d) gives lateral vortices that are
much too short. When no model is used, the vortex on the roof of the
cube is located closer to the leading edge than in the two simulations
using one-equation models. The technique used for the prediction
of vortex cores failed to �nd a horseshoe vortex in the simulation
made without a model (Fig. 6d). Additional visualizations of these
features can be found in Ref. 34. The two corner vortices behind the
cube join in the plane of symmetry, forming an arch.34 This con�rms
the �ndings in the experiments.2;4;5
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a)

b)

Fig. 5 OEM, x/H = ¡¡ 0.2 and z/H = 0.6: a) , hh Pksgs
ii t/300; ——,

hh ¡¡ L12M12 ii t; – – – , hh ¡¡ L13M13iit;¢¢¢¢, hh ¡¡ L11M11 ii t; –¢– , hh ¡¡ L22M22iit;

, hh ¡¡ L23M23ii t; and +, hh ¡¡ L33M33ii t; and b) , hh Pksgs ii t/10; ——,

hh L12 ii t; – – –, hh L13iit; , hh ¡¡ M12ii t/3; and +, hh ¡¡ M13ii t.

Fig. 6a Schematic representation of the �ow features by Martinuzzi
and Tropea (from Ref. 6 with permission).

Fig. 6b Ribbon traces emit-

ted from cores of the vortices
around the cube, OEM.

We �nd that the location of the horseshoe vortex varies from
z=H ¼ 1:7 at x=H D 1:75 to z=H ¼ 0:97 at x=H D 5:3 (Ref. 34).
In the experiment, the position of the horseshoe leg varied from
z=H ¼ 1:25 at x=H D 1:75 to z=H ¼ 0:95 at x=H D 5:3 (Refs. 5
and 4). To explain this difference in the location of the horseshoe
legs we refer to �ndings by Martinuzzi and Tropea.5 They found that
the shape of the horseshoe vortex is in�uenced by the oncoming
boundary layer. As already mentioned, we used the experimental
velocity pro�le (constant in time) as the inlet boundary condition.
Most likely, only a real, fully developed channel �ow inlet boundary
condition can give the correct boundary-layer thickness. Note that

Fig. 6c Ribbon traces emitted

from cores of the vortices around
the cube, LDKM.

Fig. 6d Ribbon traces emitted from
cores of the vortices around the cube,
without a model.

in that case the resolution of the boundary layer would have to be
very �ne (1zC · 20). This would correspond to a QDNS.

In Fig. 7, the oil-�lm visualization by Martinuzzi and Tropea5 is
compared with streamlines projected onto the �oor. Note that the
streamlines in Figs. 7b–7d are emitted from the same positions in
the �ow. The predicted streamline pictures show most of the details
observed in the experiments. In the experiments, Martinuzzi and
Tropea observed three main curves in front of the cube. Curve A
corresponds to the primary, upstream separation curve and curve
B to the approximate time-averaged location of the horseshoe vor-
tex. Curve C indicates a secondary recirculation at the front base
of the cube.5 Curves A and C are clearly visible in the picture of
the predicted streamlines, whereas curve B is somewhat weaker.
The uncertainty of the experiment in this region is very large, and
the �ow between curves A and B is unstable. From this we conclude
that it is not clear whether experiments or LES give the most truthful
results in this part of the domain. The contour of the recirculation
downstream of the cube is also clearly visible. The saddle points on
the channel �oor adjacent to the cube trailing-edge corners (shown
as S1 in Fig. 7a) can be observed in both simulations with the one-
equation models. The other pair of saddle points on the channel
�oor along the reattachment line (shown as S2 in Fig. 7a) was found
only in LES with LDKM (Fig. 7c). The position of saddle points
S2 in LES with LDKM was measured to be x=H ¼ 2:3, z=H ¼ 0:5,
as compared to the experimental x=H ¼ 2:4, z=H ¼ 0:5. Because
of the inability to average over statistically equivalent points, the
symmetry was used as a measure of whether the simulation was run
for a suf�ciently long time. The averaging time in the simulation
was t H=Ub D 300 (15,000 time steps). As can be seen in Fig. 7, the
surface streamlines downstream the cube are approximately sym-
metric, which indicates that the number of averaging samples is
suf�cient.

Figure 8 compares the streamlines in the symmetry plane resulting
from LES with experiments.5 Note that the streamlines in Figs. 8b–

8d are emitted from the same positions in the �ow. The vortices on
the top and behind the cube and the head of the horseshoe are clearly
visible in simulations using one-equation models (Figs. 8b and 8c).
Figures 8b and 8c are in good agreement with the experimental re-
sults in Fig. 8a. The main difference between experiment and LES
result is in the position of the head of the horseshoe vortex. Similar
observation was made in previous LES.9 The mean �ow does not
reattach on the top side of the cube (Figs. 8b and 8c) in the sim-
ulations with one-equation models. This agrees with experimental
�ndings (Fig. 8a) (Refs. 6 and 45) and previous LES.7 A half-saddle
was observed at a height of 0.72H on the front face of the cube as
compared to the experimental height of 0.76H (Ref. 4). A free sad-
dle point above the trailing edge observed in Refs. 4 and 5 is seen
in both simulations using one-equations models in Figs. 8b and 8c.
There is a substantial difference between the no-model prediction
in Fig. 8d and the experimental results in Fig. 8a.
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a)

b)

c)

d)

Fig. 7 Comparison of a) oil-�lm visualization by Martinuzzi and
Tropea (from Ref. 6 with permission) with streamlines of the mean �ow

projected onto the channel �oor for LES with b) OEM, c) LDKM, and
d) without a model.

We visualized the lateral vortices using the second invariant of the
velocity gradient Q de�ned in Ref. 46 and followed their lifespan
from the formation close to the front vertical edge of the cube to
the breakdown close to the rear vertical edge of the cube. Here,
we are limited to showing only some snapshots in Fig. 9, with a
fully developed lateral vortex in Fig. 9a and a breakdown of this
vortex in Fig. 9b. The lateral vortex is nicely shown in Fig. 9a and
has the shape of the ear of a tea cup. At approximately 80% of the

a)

b)

c)

d)

Fig. 8 Streamlines of the mean �ow projected onto the center plane
of the cube using a) experiment6 (from Ref. 45 with permission),

b) LDKM, c) OEM, and d) NOM.

a)

b)

Fig. 9 Instantaneous second invariant of the velocity gradient Q = 5.
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cube height (the tea cup), the vortex (the ear) attaches to the lateral
side of the cube. The lateral vortex can also be seen in Fig. 6. There
are two primary �ow states characterized by different positions of
the horseshoe vortex (Fig. 9). The probability density function (PDF)

of drag shows two peaks corresponding to these two �ow states (not
shown in the paper). Similar observation is made in the LES by Shah
and Ferziger.7 We also found a distinct bimodal form of the PDF
of the velocity distribution in the region between curves A and B
in Fig 7a. This agrees with LES results in Ref. 7 and experimental
�ndings by Larousse et al.4

Conclusions

LES was used to simulate the �ow around a three-dimensional
bluff body. This �ow was studied thoroughly, both in the mean and
instantaneously. The inlet boundary condition was the experimental
velocity pro�le constant in time. This together with an insuf�ciently
�ne resolution of the boundary layer unavoidably leads to an incor-
rect boundary-layer thickness upstream of the body. Still, the sharp
edges of the body de�ne the separations and minimize the in�uence
of the inlet boundary condition on the statistics.

It was shown that it is possible to obtain accurate results at an
acceptable computational cost. The computational cost for the case
of the surface-mounted cube is represented by »60 CPU h on an
SGI R10000. Two one-equation subgrid models were compared.
Although the two models gave similar results, there are some dif-
ferences. The LDKM is more local, and results for the statistics
are slightly better than with the OEM (Fig. 3). The topology of
the �ow predicted with the LDKM is somewhat closer to that in
the �ow visualization compared to the OEM. The saddle points on
the channel �oor along the reattachment line (S2 in Fig. 7c) were
predicted with the LDKM, whereas the OEM failed to do so. Both
models were able to predict separation and reattachment lengths in
good agreement with experiments and previous LES.7¡9 The OEM
gives a shedding frequency of the side force that is in slightly better
agreement with experiments than the LDKM. Flow features ob-
served in the visualization by Martinuzzi and Tropea5 are found in
simulations using both models. Computations with a model gave
considerably better results than computation without a model. The
transfer of the turbulent energy was studied, and the reverse transfer
of energy (backscatter) was predicted. Finally, we conclude that the
LES proposed in this paper using simple inlet boundary conditions,
a relatively coarse grid, and a one-equation model gives accurate
results.
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