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SUMMARY

The present work concerns development and application of turbulence models
for forced convective heat transfer in ducts. The numerical approach is based
on the finite volume technique and a non-staggered arrangement is employed.
The SIMPLEC-algorithm is used for handling the pressure-velocity coupling.
Cyclic boundary conditions are imposed in the main flow direction. The
standard k- model with wall functions is used as a reference. The non-linear
k-& model of Speziale is applied to calculate the turbulent shear stresses. The
turbulent heat fluxes are calculated by the simple eddy diffusivity concept, the
GGDH method and the WET method. The overall comparison between the
methods is presented in terms of the friction factor and average Nusselt
number. In particular the secondary flow field is investigated.

1. INTRODUCTION

Ducts of various cross-section are frequently occuring in heat transfer equip-
ment. Sometimes the ducts are curved, corrugated or wavy in the main flow
direction. Many investigations have shown that the flow in noncircular
straight ducts is accompanied by secondary motions in the plane perpendicular
to the streamwise flow direction. The secondary motion may be caused by
different mechanisms and depends on the Reynolds number, the precise
geometry of the cross-section etc. The secondary flow distorts the axial flow



and reduces the volumetric flow rate. The secondary flow may also affect the
wall shear stress and the heat transfer at the walls. In [1], results for laminar
and turbulent flow for a variety of ducts are provided.

The present investigation concerns turbulent flow and convective heat
transfer in straight square ducts. The main purpose is to further develop, apply
and evaluate a non-linear k-€ turbulence model for calculation of the turbulent
shear stresses (ref. [2]) combined with the generalized gradient diffusion
hypothesis (GGDH) and the wealth equals earning times time (WET) method
for determination of the turbulent heat fluxes, ref. [3].

In the literature both experimental and numerical investigations have been
presented on turbulent flow in straight square ducts. Since the secondary flow
is weak and its velocity components are only a few percent of the main flow
velocity, measurements of the secondary motion becomes very difficult. In
this work, we are focusing on fully developed flow and the most relevant
experimental investigations are those of Gessner [4] and Gessner and Emery
£5].

Two-equations turbulence models have been applied by some investigators
in the past but more recently the large eddy simulation method (LES) has been
applied, see [6].

The combined modelling approach of this paper is new and the
investigation thus provides a contribution in the field of numerical methods
for turbulent convective heat transfer.

2. PROBLEM STATEMENT

In this study a straight duct with a square cross-section is considered.
Symmetry conditions are being used as shown in Fig. 1.
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Figure I. Duct under consideration.

The side length of the cross-section is 2a and the duct length is L. The
investigation is for fully developed turbulent flow and periodic conditions are
imposed at the inlet and outlet.

The overall performance of the duct in terms of the friction factor and
Nusselt number is to be determined numerically. The secondary flow motion
in the cross-sectional plane is also of major concern. Various turbulence
models are applied.



3. GOVERNING EQUATIONS

The governing equations are the continuity, momentum and energy equations.
Fully developed periodic turbulent flow is considered in this investigation.
The following assumptions are employed: steady state, no-slip at the walls and
no natural convection. One then has:
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The turbulent shear stresses —puju; and turbulent heat fluxes (~pi}?£) are

modeled as described in the following sections.

3.1 Turbulence models for shear stresses

Both the linear k-¢ (standard) and non-linear k-& models based on Speziale's
method are used in this study, see {2].

The k-& model for steady state is given by

9 ol w) ok

— \ e —— —_— —— P .

ox; (PU}R) x; [H““Gk] axj‘F k ~PE (4)
d d fly | de £ g’
= (pUig) =) | p+iz | P~ Cepp— 5
ix, (p ;8) axi ”+GEJ8><J+C£’ Pk Ceap (5

where Py is the production term expressed as
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In the linear k-2, Tjj is expressed as
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In the non-linear k-¢, the Speziale description is used. Thus
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where Sij is the frame-indifferent Oldroyd derivative {7] of Sij in the form of
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£
k is the turbulent kinetic energy, € the dissipation rate of the turbulent kinetic

energy and Cy, is a constant. The values of the constants in equations (4), (5),
g 1l q

(9) and (11) are given in Appendix 1.

3.2 Turbulence Models for Heat Flux

Three models are used to express the turbulent heat flux.
a) Simple Eddy Diffusivity (SED) based on the Boussinesq viscosity model as
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b) Generalized Gradient Diffusion Hypothesis (GGDH) expressed by Daly

and Harlow [8] as
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c) Wealth o EarningsxTime (WET) expressed by Launder [9] as
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where ? is the buoyancy-driven heat flux which is zero in this case. The

constant Cy is set to 0.3 in both cases.

3.3 Periodic Case

The pressure P is expressed by

P(x,y,z)=-Bx+P (x,y,z) (15)
where f is a constant which represents the non-periodic pressure gradient in
the main flow direction. P¥ is related to the detailed local manner and behaves
periodically in the flow direction.



The dimensionless temperature 6 is defined in the cyclic case as

B(x.y.2) = ey 2) = Ty (16)
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where Ty, is the constant wall temperature and Ty is the fluid bulk

temperature. Using this expression and inserting it into the energy equation (3)

one obtains
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In the GGDH method E,E 18 calculated from
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Since the energy equation contains two unknowns, 8(x,y,z) and A{x),

an additional condition is needed to close the problem. This condition can be
obtained from the definition of the bulk temperature. In dimensionless form
one has

[lUbdA = [|Ulda, (22)
where A is the cross-sectional area in the main flow direction. The shape of
non-dimensional temperature profile 6(x,y,z) repeats itself in the fully

developed periodic region.
4. BOUNDARY CONDITIONS

Periodicity conditions at the inlet and outlet are imposed
O(x,y,z) = ®(x+L,y,z) $=U,V,W,0,P k.e. uu G A, Sy



4.1 Wall Boundaries

For the near wall region, the law of the wall is assumed to be valid for both
the flow and temperature fields. The procedure adopted here is similar to that
presented in e.g. [10] but due to lack of space the details are omitted in this
paper.

A non-uniform grid distribution is employed. Close to all walls the
number of grid points or control volumes is increased to enchance the
resolution and accuracy.

The pressure gradient perpendicular to any wall will be quite small close
to the considered wall and is neglected at the wall proximity in the

corresponding momentum equation. The extra terms ——a—( f ?U—j—), which
X i X;

appear due to the varying viscosity and often are neglected, will also be small
close to a wall. At the grid point adjacent to the wall, these terms are
neglected as the equation for the velocity component perpendicular to a wall is
solved. The advantage of this procedure is that it enables more efficient
convergence in achieving the secondary velocity vector parallel to the wall in
the non staggered grid. However, the accuracy is not lost by this procedure,

5. NUMERICAL SOLUTION PROCEDURE

In order to deal with complex geometries, a general finite-volume technique is
employed. A boundary fitted coordinate method is also applied.

The method allows us to map the complex flow domain in the physical
space to a rectangular domain in the computational space by using a
curvilinear coordinate transformation. The Cartesian coordinate system in the
physical space is replaced by a general non-orthogonal coordinate system. The
method is implemented in CALC-BFC [11].

The momentum equations are solved for U, V and W in the Cartesian
coordinate system on a non-staggered grid. The Rhie-Chow interpolation
method is used for the velocity components at the control volume faces. The
pressure velocity coupling is handled by the SIMPLEC-method. TDMA and
SIP based algorithms are employed for solving the equations. The convective
terms are treated by the hybrid, van Leer, QUICK and Upwind schemes while
the diffusive terms are treated by the central-difference scheme.

5.} Sample Calculations

The Prandtl number was set to 0.73 and the Reynolds number was varied from
6500 to 65000 by choosing appropriate values of B, the per-cycle pressure
gradient. The computations were terminated when the sum of absolute
residuals normalized by the inflow was below 10-5 for all variables. To
achieve this convergence criterion, the under-relaxation factor was set to 0.6
for all variables. The calculations were carried out on a DEC 3000/400 AXP



computer. 21 grid points were chosen in the y- and z-direction and 3 in the x-
direction. The calculations show that the number of grid points in the y- and z-
direction should not be chosen less than 10. The calculations show also that
choosing more than 21 grid points does not improve the results (Nu-number
and friction factor) significantly.

6. ADDITIONAL EQUATIONS

The Re-number is defined by
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where A ¢ 18 the cross sectional area, Uy, is the mean velocity which is
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related to mas

= [pUAA = pUpyAross (24)
A
The pressure drop per cycle is defined by
2
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where f is the Fanning friction coefficient. From (25) one has
f= ﬁ})é1 /4 (26)
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This friction factor is compared with the Prandtl friction law [11]
|
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The Nu-number can be found to follow
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By these equations and the definition of the Ty, one finds

Nu, = PrDy 1 gw (30)
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a) If y* < 11.63 at the wall adjacent grid point (index p) Nu, is found
from
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where ep is the dimensionless temperature .

b) If y* > 11.63 at the wall adjacent grid point (index p) . Nu, follows
_ PrDy pUe,
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where the P-function according to Jayatillika is defined as
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The overall heat transfer coefficient is calculated by

hy, = —% (34)
AGAT,
where
Q =mCy(Ty; -~ Ty;) (35)
1
ATyp =5{(Tw—Tb2)+(Twab1)} (36)
Combining these equations one finds
Nug, = 2Aeoss 1=V p po 37
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where 7 in the cyclic case can be derived as
L
¥ =exp(J, hdx) (38)
In non cyclic cases one has
y=w b (39)
Ty =Ty

The Nu-number is compared to the Dittus-Boelter [12] equation for
circular ducts:

Nu = 0.023Re? 8 p0-4 (40)
7. RESULTS and DISCUSSION

The secondary flow velocity vectors predicted by Speziale's non-linear k-
€ model in a square duct in the fully developed region are shown in Fig. 2b.



The corresponding grid is shown in Fig. 2a. This secondary flow is predicted
at all the considered Reynolds numbers. The agreement with the results in
[5.6] is very good.
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Figure 2. a) Grid specification, b) Secondary velocity vectors.

Table 1 shows the calculated Nuy (local)- and overall Nu-numbers. It
should be noted that the turbulent shear stresses used in the GGDH and WET
models are calculated by the Speziale's non-linear model. The results are
compared with the Nu-number in circular ducts, because the experimental



investigations show that the Nu-number in the square duct can be calculated
by the formula for a circular one, see [13,14].

Table 1. Local (Nuy) and overall Nu-number

Type

kgl
Speziale 1
GGDH?2
WET2

kgl
Spezialel
GGDHZ
WET2

kgl
Speziale !
GGDH2
WET2

k-gl
Speziale !
GGDH2
WET2

k-el
Speziale!
GGDH?2
WET?

k-gl
Speziale I
GGDHZ2
WETZ2

Re

64769.14
64344.91

L1

H

49259.87
48977.45

£t

2949951
29332.02

t

20953.09
20859.87

H

12473.28
12480.39

1F

L2}

6514.167
6527.677

L1

[}

Nuyg

154.89
155.40
147.67
148.97

123.77
124.24
118.68
11972

81.559
82.005
79.307
79.964

62.234
62.539
61.030
61.502

41.628
41.723
41.539
41.777

25.766
25.756
26.388
26417

Nu {cir)

147.85
147.07

L1

H

118.77
118.08

L1

78.809
78.451

£+

59.941
59.727

39.583
39.601

L

23.540
23.579

Li

11

diff3 %

-4.76
-5.66
-0.41
-1.29

~4.21
-5.08
-0.38
-1.26

-3.54
-4.53
-1.09
-1.92

-3.83
-4.71
-2.18
-2.97

-5.17
-5.36
-4.89
-5.49

-9.45
-9.23
-11.9
~12.0

Nu_over-
all

157.38
157.17
149.11
150.44

126.08
125.97
120.07
121.06

83.706
137.20
80.639
81.265

64.160
63.987
62.240
62.704

43.234
42.990
42.632
42.867

20.641
26.613
27.126
27.168

INu-number calculated by Simple Eddy Diffusivity (SED) model.

2The turbulent shear stresses in the GGDH and WET used from Speziale's

non-linear k-¢

3DIff % =

Nu(cir) — Nu(calculated) <1

Nu(cir)

00

diff3 o

-6.65
-6.86
-1.38
-2.29

-6.15
-0.55
-1.56
-2.40

-6.62
-6.55
-2.79
-3.59

-7.04
-7.13
-4.21
-4.98

-9.22
-8.56
-1.65
-8.25

-13.17
-12.87
-15.04
-15.22



Table 1 shows that the combination of Speziale's non-linear k-¢ model and
GGDH gives best result for Re-number greater than 10000. It shows also that

GGDH and WET give better result than Simple Eddy Diffusivity (SED). yg

for all calculations is between 42 and 44. It should also be noted that the
results calculated by the hybrid, QUICK, van Leer and upwind schemes are
almost the same. The results in the table 1 are calculated by the hybrid
scheme.

Figure 3 shows the Fanning friction factor calculated by the linear k-¢ and
non-linear Speziale's model. The figure shows that both models give almost
identical results for all Re-numbers. The predicted Fanning friction factor is
much higher than expected. However, the friction factor depends strongly on

the yg -value for the point adjacent to the wall. This y";; -value is between 42

and 44 for the calculations in Fig.3.
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Figure 3. Fanning friction factor as function of Re-number.

Appendix 1

The values of the coefficients in equations (4), (5), (9) and (11} are: G} =1.0,
Ce=1.314, Cg=144, Cep=1.92, Cn=Cg=1.68 and C“=0.09. The turbulent

Prandtl-number (o) is set to 0.8,
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