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Abstract
This report gives some details on pyCALC-RANS and how to use it. It is written in
Python (3.8). The code solves the two-dimensional, steady. incompressible momentum
equations, the continuity equation and the k − ω turbulence model. The density is
assumed to be constant and equal to one, i.e. ρ ≡ 1. The grid may be curvi-linear.

pyCALC-RANS is a finite volume code. It is fully vectorized (i.e. no for loops).
The solution procedure is based on the pressure-correction method (SIMPLEC). Two
methods for discretizing the convection terms are available, second-order central differ-
encing and a hybrid scheme of first-order upwind and second-order central differenc-
ing. The discretized equations are solved with Pythons sparse matrix solvers (currently
linalg.lgmres or linalg.gmres are used).

The Explicit Algebraic Reynolds Stress (EARSM) is also available in pyCALC-
RANS . It has been improved using Neural Network [1].

pyCALC-RANS was written starting from the 3D, unsteady LES/DES code pyCALC-
LES [2].
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Figure 2.1: ni=5. The bullets denote cell centers of the control volumes where the
solution vector, ϕ, is stored. They are labeled 0–4. Dashed lines denote control volume
faces labeled 0–5.

1 Flow equations
The momentum equations read

∂ūj ūi

∂xj
= −1

ρ

∂p̄

∂xi
+

∂

∂xj

[
(ν + νeff )

(
∂ūi

∂xj
+

∂ūj

∂xi

)]
−

∂(v′iv
′
j)r

∂xj
(1.1)

When EARSM is used, νeff is the effective viscosity including the EARSM coefficient
β1, see Eq. 7.9. The last term includes (v′iv

′
j)r which is the residual stress tensor in

EARSM. The total stress tensor is

v′iv
′
j = −νeff

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
+ (v′iv

′
j)r (1.2)

When the standard k − ω is used without EARSM the residual stress vanishes and
νeff = νt.

2 Geometrical details of the grid

2.1 Grid
The grid (x2d,y2d) must be generated by the user. The nodes of the control volume
xp2d,yp2d are placed at the center of the control volume. In any coordinate direc-
tion, lets say ξ, there are ni+1 control volume faces, and ni control volumes. The
grid may be curvilinear.

2.1.1 Nomenclature for the grid

Figure 2.1 shows a 1D grid. The first cell is number 0. Note that there are no ghost cells.
This means that all Dirichlet boundary conditions must be prescribed using sources.

A schematic 2D control volume grid is shown in Fig. 2.2. Single capital letters
define nodes [E(ast), W(est), N(orth) and S(outh)], and single small letters define faces
of the control volumes. When a location can not be referred to by a single character,
combination of letters are used. The order in which the characters appear is: first east-
west (i direction) and then north-south (j direction).
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Figure 2.2: Control volume.

2.1.2 Area calculation of control volume faces

The x and y coordinates of the corners of the face in Fig. 2.3 are given by

x2d(i,j),y2d(i,j)

x2d(i+1,j),y2d(i+1,j)

x2d(i,j+1),y2d(i,j+1)

x2d(i+1,j+1),y2d(i+1,j+1)

The vectors a⃗, b⃗ and c⃗ for faces in Fig. 2.3 are set in a manner that the normal vectors
point outwards. For the west face they are defined as

a⃗: from corner (i,j) to (i,j+1)

b⃗: from corner (i,j) to (i+1,j)

The Cartesian components of a⃗ and b⃗ are thus

ax = x2d(i, j + 1)− x2d(i, j) (2.1)

A1

A2a⃗

b⃗

c⃗

d⃗

x2d(i,j+1)

x2d(i,j)

x2d(i+1,j+1)

x2d(i+1,j)

xp2d(i,j)

x

y

Figure 2.3: Calculation of areas of cell i,j.
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ay = y2d(i, j + 1)− y2d(i, j)

bx = x2d(i+ 1, j)− x2d(i, j)

by = y2d(i+ 1, j)− y2d(i, j)

Since the grid in the z direction is uniform, it is simple to compute the west and
south areas of a control volume. The outwards-pointing vector areas reads

Awx = −ay∆z

Awy = ax∆z

Asx = by∆z

Asy = −bx∆z

which are stored in Python arrays areawx, areawy, areasx and areasy.
The area of the control volume in the x − y plane is calculated as the sum of two

triangles. The area of the two triangles, A1, A2, is calculated as the cross product.

A1 =
1

2
|⃗a× b⃗|; A2 =

1

2
|⃗b× c⃗| (2.2)

2.1.3 Interpolation

The nodes where all variables are stored are situated in the center of the control volume.
When a variable is needed at a control volume face, linear interpolation is used. The
value of the variable ϕ at the west face is

ϕw = fxϕP + (1− fx)ϕW (2.3)

where

fx =
|−−→Ww|

|−→Pw|+ |−−→Ww|
(2.4)

where |−→Pw| is the distance from P (the node) to w (the west face). In pyCALC-
RANS the interpolation factors (fx, fy) are stored in the Python array fx and fy. The
interpolation factor in the z direction is 0.5 since ∆z is constant.

All geometrical quantities are computed in the module init.

2.2 Gradient
The derivatives of ϕ (∂ϕ/∂xi ) at the cell center are in pyCALC-RANS computed as
follows. We apply Green’s formula to the control volume, i.e.

∂Φ

∂x
=

1

V

∫
A

ΦnxdA,
∂Φ

∂y
=

1

V

∫
A

ΦnydA

where A is the surface enclosing the volume V . For the x component, for example, we
get

∂Φ

∂x
=

1

V
(ΦeAex − ΦwAwx +ΦnAnx − ΦsAsx) (2.5)

where index w, e, s, n denotes east (i+1/2), west (i− 1/2), north (j+1/2) and south
(j − 1/2).
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Figure 3.1: 1D control volume. Node P located in the middle of the control volume.

The values at the west and south faces of a variable are stored in the Python arrays
u face w, u face s, v face w, etc. They are computed in the Python module
compute face phi.

The derivative ∂Φ/∂x and ∂Φ/∂x, are computed in the Python modules dphidx
and dphidy.

3 Diffusion
We start by looking at 1D diffusion for a generic variable, ϕ, with diffusion coefficient
Γ

d

dx

(
Γ
dϕ

dx

)
+ S = 0.

To discretize (i.e. to go from a continuous differential equation to an algebraic discrete
equation) this equation is integrated over a control volume (C.V.), see Fig. 3.1.

∫ e

w

[
d

dx

(
Γ
dϕ

dx

)
+ S

]
dx =

(
Γ
dϕ

dx

)
e

−
(
Γ
dϕ

dx

)
w

+ S̄∆x = 0 (3.1)

where (see Fig. 3.1):

P: an arbitrary node

E, W: its east and west neighbor node, respectively

e, w: the control volume’s east and west face, respectively

S̄: volume average of S

The variable ϕ and the diffusion coefficient, Γ, are stored at the nodes W , P and
E. Now we need the derivatives dϕ/dx at the faces w and e. These are estimated from
a straight line connecting the two adjacent nodes, i.e.(

dϕ

dx

)
e

≃ ϕE − ϕP

δxe
,

(
dϕ

dx

)
w

≃ ϕP − ϕW

δxw
. (3.2)

The diffusion coefficient, Γ, is also needed at the faces. It is estimated by linear
interpolation between the adjacent nodes. For the east face, for example, we obtain

Γw = fxΓP + (1− fx)ΓW , (3.3)
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Insertion of Eq. 3.2 into Eq. 3.1 gives

aPϕP = aEϕE + aWϕW + SU (3.4)

aE =
Γe

δxe

aW =
Γw

δxw

SU = S̄∆x

aP = aE + aW

3.1 Convergence criteria
Compute the residual for Eq. 3.4

R =
∑

all cells

|aEϕE + aWϕW + SU − aPϕP |

In Python it corresponds to |Ax − b|. Since we want Eq. 3.4 to be satisfied, the dif-
ference of the right-hand side and the left-hand side is a good measure of how well
the equation is satisfied. The residual R is computed using the Python command
np.linalg.norm. Note that R has the units of the integrated differential equa-
tion. For example, for the temperature R has the same dimension as heat transfer rate
divided by density, ρ, and specific heat, cp, i.e. temperature times volume per second
[Km3/s]. If R = 1, it means that the residual for the computation is 1. This does not
tell us anything, since it is problem dependent. We can have a problem where the total
heat transfer rate is 1000, and a another where it is only 1. In the former case R = 1
means that the solutions can be considered converged, but in the latter case this is not
true at all. We realize that we must normalize the residual to be able to judge whether
the equation system has converged or not. The criterion for convergence is then

R

F
≤ ε

where 0.0001 < ε < 0.01, and F represents the total flow of ϕ.
Regardless if we solve the continuity equation, the Navier-Stokes equation or the

temperature equation, the procedure is the same: F should represent the total flow of
the dependent variable.

Continuity equation. F is here the total incoming volume flow V̇ .

Navier-Stokes equation. The unit is that of a force per unit volume. A suitable value
of F is obtained from F = V̇ ū at the inlet.

Temperature equation. F should be the total incoming temperature flow. In a convection-
diffusion problem we can take the convective flow at the inlet i.e. F = V̇ T . In
a conduction problem we can integrate the boundary flow, taking the absolute
value at each cell, since the sum will be zero in case of internal source. If there
are large sources in the computational domain, F could be taken as the sum of
all sources.
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Figure 3.2: 2D control volume.

3.2 2D Diffusion
The two-dimensional diffusion equation for a generic variable ϕ reads

∂

∂x

(
Γ
∂ϕ

∂x

)
+

∂

∂y

(
Γ
∂ϕ

∂y

)
+ S = 0. (3.5)

In the same way as we did for the 1D case, we integrate over our control volume, but
now it’s in 2D (see Fig. 3.2, i.e.∫ e

w

∫ n

s

[
∂

∂x

(
Γ
∂ϕ

∂x

)
+

∂

∂y

(
Γ
∂ϕ

∂y

)
+ S

]
dxdy = 0.

We start by the first term. The integration in x direction is carried out in exactly the
same way as in 1D, i.e.∫ e

w

∫ n

s

[
∂

∂x

(
Γ
∂ϕ

∂x

)]
dxdy =

∫ n

s

[(
Γ
∂ϕ

∂x

)
e

−
(
Γ
∂ϕ

∂x

)
w

]
dy

=

∫ n

s

(
Γe

ϕE − ϕP

δxe
− Γw

ϕP − ϕW

δxw

)
dy

Now integrate in the y direction. We do this by estimating the integral∫ n

s

f(y)dy = fP∆y +O
(
(∆y)2

)
(i.e. f is taken at the mid-point P ) which is second order accurate, since it is exact if f
is a linear function. For our equation we get∫ n

s

(
Γe

ϕE − ϕP

δxe
− Γw

ϕP − ϕW

δxw

)
dy

=

(
Γe

ϕE − ϕP

δxe
− Γw

ϕP − ϕW

δxw

)
∆y

Doing the same for the diffusion term in the y direction in Eq. 3.5 gives(
Γe

ϕE − ϕP

δxe
− Γw

ϕP − ϕW

δxw

)
∆y
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Figure 4.1: 1D control volume. Node P located in the middle of the control volume.

+

(
Γn

ϕN − ϕP

δyn
− Γs

ϕP − ϕS

δys

)
∆x+ S̄∆x∆y = 0

Rewriting it as an algebraic equation for ϕP , we get

aPϕP = aEϕE + aWϕW + aNϕN + aSϕS + SU (3.6)

aE =
Γe∆y

δxe
, aW =

Γw∆y

δxw
, aN =

Γn∆x

δyn
, aS =

Γs∆x

δys

SU = S̄∆x∆y, aP = aE + aW + aN + aS − SP .

In this 2D equation we have introduced the general form of the source term, S =
SPΦ+ SU ; this could also be done in the 1D equation (Eq. 3.4).

For more detail on diffusion, see
http://www.tfd.chalmers.se/˜lada/comp fluid dynamics/lecture notes.html

4 Convection – diffusion
The 1D convection-diffusion equation reads

d

dx
(ūϕ) =

d

dx

(
Γ
dϕ

dx

)
+ S

We discretize this equation in the same way as the diffusion equation. We start by
integrating over the control volume (see Fig. 4.1).

∫ e

w

d

dx
(ūϕ) dx =

∫ e

w

[
d

dx

(
Γ
dϕ

dx

)
+ S

]
dx. (4.1)

We start by the convective term (the left-hand side)∫ e

w

d

dx
(ūϕ) dx = (ūϕ)e − (ūϕ)w .

We assume the velocity ū to be known, or, rather, obtained from the solution of the
Navier-Stokes equation.

http://www.tfd.chalmers.se/~lada/comp_fluid_dynamics/lecture_notes.html
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4.1 Central Differencing scheme (CDS)
How to estimate ϕe and ϕw? The most natural way is to use linear interpolation (central
differencing); for the east face this gives

(ūϕ)w = (ū)w ϕw

where the convecting part, ū, is taken by central differencing, and the convected part, ϕ,
is estimated with different differencing schemes. We start by using central differencing
for ϕ so that

(ūϕ)w = (ū)w ϕw, where ϕw = fxϕP + (1− fx)ϕW

where fx is the interpolation function (see Eq. 3.3, p. 8), and for constant mesh spacing
fx = 0.5. Assuming constant equidistant mesh (i.e. δxw = δxe = ∆x) so that
fx = 0.5, inserting the discretized diffusion and the convection terms into Eq. 4.1 we
obtain

(ū)e
ϕE + ϕP

2
− (ū)w

ϕP + ϕW

2
=

=
Γe(ϕE − ϕP )

δxe
− Γw(ϕP − ϕW )

δxw
+ S̄∆x

which can be rearranged as

aPϕP = aEϕE + aWϕW + SU

aE =
Γe

δxe
− 1

2
(ū)e, aW =

Γw

δxw
+

1

2
(ū)w

SU = S̄∆x, aP =
Γe

δxe
+

1

2
(ū)e +

Γw

δxw
− 1

2
(ū)w

We want to compute aP as the sum of its neighbor coefficients to ensure that aP ≥
aE +aW which is the requirement to make sure that the iterative solver converges. We
can add

(ū)w − (ū)e = 0

(the continuity equation) to aP so that

aP = aE + aW .

Central differencing is second-order accurate (easily verified by Taylor expansion),
i.e. the error is proportional to (∆x)2. This is very important. If the number of cells
in one direction is doubled, the error is reduced by a factor of four. By doubling the
number of cells, we can verify that the discretization error is small, i.e. the difference
between our algebraic, numerical solution and the exact solution of the differential
equation.

Central differencing gives negative coefficients when |Pe| > 2; this condition is
unfortunately satisfied in most of the computational domain in practice. The result is
that it is difficult to obtain a convergent solution in steady flow.
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Figure 4.2: Constant mesh spacing. ū > 0.
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Figure 4.3: 1D grid. Boundary conditions at x = 0.

4.2 First-order upwind scheme
For turbulent quantities upwind schemes must usually be used in order stabilize the
numerical procedure. Furthermore, the source terms in these equations are usually very
large which means that an accurate estimation of the convection term is less critical.

In this scheme the face value is estimated as

ϕw =

{
ϕW if ūw ≥ 0
ϕP otherwise

• first-order accurate

• bounded

The large drawback with this scheme is that it is inaccurate.

4.3 Hybrid scheme
This scheme is a blend of the central differencing scheme and the first-order upwind
scheme. We learned that the central scheme is accurate and stable for |Pe| ≤ 2. In
the Hybrid scheme, the central scheme is used for |Pe| ≤ 2; otherwise the first-order
upwind scheme is used. This scheme is only marginally better than the first-order
upwind scheme, as normally |Pe| > 2. It should be considered as a first-order scheme.

4.4 Inlet boundary conditions using source term
Since pyCALC-RANS does not use any ghost cells or cell centers located at the bound-
aries, the boundary conditions must be prescribed through source terms. By default,
there is no flux through the boundaries and hence Neumann boundary conditions are
set by default. Here, we describe how to set Dirichlet boundary conditions.
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Consider discretization in a cell, P , adjacent to an inlet, see Fig. 4.3. Consider only
convection. For the ū equation at cell i = 0 we get

aP ūP = aW ūW + aE ūE + SU (4.2)
aP = aW + aE − SP , aW = Cw, aE = −0.5Ce

Cw = ūWAw

aP = Cw − 0.5Ce

Note there’s no 0.5 in front of Cw since the west node is located at the inlet. Since
there is no cell west of i = 0, Eq. 4.2 has to be implemented with additional source
terms

aw = 0 (4.3)
Su
U,add = Cwūin

Su
P,add = −Cw

For v̄ it reads

Sv
U,add = Cwv̄in (4.4)

Sv
P,add = −Cw

(4.5)

The additional term for the diffusion reads

Su
U,add,diff =

νtotAw

∆x
ūin (4.6)

Sv
U,add,diff =

νtotAw

∆x
v̄in

SP,add,diff = −νtotAw

∆x

where SP,add,diff is the same for ū and v̄. The viscous part of Eq. 4.6 is implemented
in module bc. The turbulent part and the convective part (Eqs. 4.3 and 4.4) are imple-
mented in module u, module v etc.

4.5 Wall boundary conditions using source term
We use exactly the same procedure as in Section 4.4. At walls, there is no convection
and the velocity is zero. Hence we simply use Eq. 4.6 with ū = v̄ = 0, i.e. (for west
wall)

SP,add,diff = −νAw

∆x

Note that we use ν instead of νtot since the turbulent viscosity is zero at the wall.
This boundary condition is implemented in module bc.

4.6 Pressure correction equation
The pressure correction equation is obtained by applying the SIMPLEC algorithm [3]
on the non-staggered grid. The mass flux ṁ is divided into one old value, ṁ∗, and
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another correction value, ṁ′. The mass flux correction at the east face can be calculated
by

ṁe = ṁ∗
e + ṁ′

e, ṁ′
e =

(
A⃗ · u⃗′

)
e
= (Aexu

′
e +Aeyv

′
e) (4.7)

where u′ and v′ are the correction velocities. The velocity components are related to
the pressure gradient

u′ = −∆V

aP

∂p′

∂x
, v′ = −∆V

aP

∂p′

∂y
, (4.8)

where ∆VP denotes the volume of the control volume. By introducing Eq. 4.7 into
Eq. 4.8 we obtain

ṁ′ = −
[
∆VP

aP
A⃗ · ∇p′

]
= −∆VP

aP

[
A⃗x

∂p′

∂x
+ A⃗y

∂p′

∂y

]
(4.9)

Consider, for simplicity, the continuity equation in one dimension

ṁe − ṁw = 0 (4.10)

If ṁ = ṁ∗ + ṁ′ and Eq. 4.9 are substituted into eq. 4.10 we obtain[
∆VPAx

aP

∂p′

∂x

]
w

−
[
∆VPAx

aP

∂p′

∂x

]
e

+ ṁ∗
e − ṁ∗

w = 0 (4.11)

This is a diffusion equation for the pressure correction p′ which is discretized as Eq. 3.6
by replacing Φ by p

′
and setting Γ = ∆VP /aP . The boundary conditions at all bound-

aries is homogeneous Neumann, i.e. ∂p′/∂x = 0 at west and east boundaries and
∂p′/∂y = 0 at south and north boundaries.

Given the boundary conditions for the flow to be predicted, the solution proceeds
as follows

1. Assign initial values (usually 10−10) to the variable fields ū∗, v̄∗, p̄∗ and turbu-
lence quantities k and ω.

2. Solve the ū-momentum equation by first calculating the coefficients and sources,
then imposing the ū-velocity boundary conditions followed by application of the
Python solver.

3. Point 2 is repeated for v̄

4. Solve the pressure-correction equation by first calculating the coefficients and
sources, then imposing the pressure-correction boundary conditions followed by
application of the Python solver.

5. Correct the velocity fields ū∗, v̄∗ and mass fluxes (see Eq. 4.7) ṁ∗
e and ṁ∗

n with
u′, v′.

6. Correct the pressure field p̄∗ with p′ to give the correct pressure field p̄.

7. Solve additional equations such as k, ω, T etc.

8. Go to step 2 and repeat step 2 to 7 until convergence.

You can find more details about discretization and the pressure correction method
in lecture notes (Chapter 2-9).

http://www.tfd.chalmers.se/~lada/comp_fluid_dynamics/lecture_notes.html
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Figure 5.1: Outlet boundary condition. Small outlet
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Figure 5.2: Outlet boundary condition. Large outlet.

5 Boundary Conditions

5.1 Outlet velocity, small outlet
For small outlets, the outlet velocity can be determined from global continuity. As the
outlet is small a constant velocity over the whole outlet can be used. The outlet velocity
is set as (see Fig. 5.1)

ūinhin = ūouthout ⇒ ūout = ūinhin/hout

5.2 Outlet velocity, large outlet
For large outlets the outlet velocity must be allowed to vary over the outlet. The proper
boundary condition in this case is ∂ū/∂x = 0. Hence it is important that the flow near
the outlet is fully developed, so that this boundary condition corresponds to the flow
conditions. The best way to ensure this is to locate the outlet boundary sufficiently far
downstream. If we have a recirculation region in the domain (see Fig. 5.2), the outlet
should be located sufficiently far downstream of this region so that ∂ū/∂x ≃ 0.

The outlet boundary condition is implemented as follows (see Fig. 5.2)

1. Set ūe = ūw for all nodes (i.e. for j = 0 to 4, see Fig. 5.2);

2. In order to speed up convergence, enforce global continuity.

– Inlet volume flow: V̇in =
∑

inlet ūin∆y

– Outlet volume flow: V̇out =
∑

outlet ūout∆y

– Compute correction velocity: ūcorr = (V̇in− V̇out)/(Aout), where Aout =∑
outlet ∆y.

– Correct ūe so that global continuity (i.e. V̇in = V̇out) is satisfied: ūnew
e =

ūe + ūcorr

This boundary condition is implemented in module modify outlet.
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5.3 Remaining variables
Set ∂Φ/∂x = 0, and implement it through Φni = Φni−1 each iteration. This is done
in module compute face phi if phi bc east type =’n’.

6 The k − ω model
modules: calck kom, calcom, vist kom

The Wilcox k − ω turbulence model reads [4]

∂v̄jk

∂xj
= P k +

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
− Cµkω

∂v̄jω

∂xj
= Cω1

ω

k
P k +

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
− Cω2ω

2 (6.1)

νt =
k

ω

The standard coefficients are used, i.e. Cω1 = 5/9, Cω2 = 3/40, σk = σω = 2 and
Cµ = 0.09. When EARSM is used, the production term is computed as

P k = −v′iv
′
j

∂v̄i
∂xj

(6.2)

and the dissipation in the EARSM reads

ε = Cµkω (6.3)

In the k − ω model (without EARSM), the production term is computed as

P k = νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

(6.4)

The wall boundary conditions are

kw = 0, ωw = 10
6ν

Cω2y2
(6.5)

where y is the wall distance between the wall-adjacent cell center and the wall. Some-
times we prescribe this boundary condition by setting ω in the control volume adjacent
to the wall. Then we omit the factor of 10 so that

ωP =
6ν

Cω2y2
(6.6)

where index P denotes the cell P adjacent to the wall. where y is the wall distance
between the wall-adjacent cell center and the wall. Sometimes we prescribe this

7 The EARSM
modules: calc earsm



7. The EARSM 18

The Algebraic Stress Model (ASM) [5] with the LRR pressure-strain model [6]
reads [7](

c1 − 1 + P k/ε
)
aij = − 8

15
s̄ij +

7c2 + 1

11
(aikΩ̄kj − Ω̄ikakj) (7.1)

− 5− 9c2
11

(
aiks̄kj + s̄ikakj −

2

3
amns̄nmδij

)
aij =

v′iv
′
j

k
− 2

3
δij , s̄ij =

1

2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
, Ω̄ij =

1

2

(
∂v̄i
∂xj

− ∂v̄j
∂xi

)
Note that the last term in Eq. 7.1 is zero if c2 is set to 5/9 [8]. Equation 7.1 can be
written as [9]

Naij = −A1s̄
∗
ij + (aikΩ̄

∗
kj − Ω̄∗

ikakj)−A2

(
s̄∗ikakj + aiks̄

∗
kj −

2

3
δij s̄

∗
mnanm

)
s̄∗ij =

k

ε
s̄ij , Ω̄∗

ij =
k

ε
Ω̄ij (7.2)

where
A1 = 1.54, A2 = 0.37, A3 = 1.45, A4 = 2.89 (7.3)

In order to get an explicit form of Eq. 7.2, Girimaji [10, 11] and Wallin & Johansson [9,
12], formulated aij in terms of the strain-rate tensor (s̄ij) and the vorticity tensor (Ω̄ij).
In 2D, it reads [13]

aij = β1s̄
∗
ij + β2

(
s̄∗iks̄

∗
kj −

1

3
s̄∗mns̄

∗
nmδij

)
+ β4(s̄

∗
ikΩ̄

∗
kj − Ω̄∗

iks̄
∗
kj) (7.4)

By inserting Eq. 7.4 in Eq. 7.2, Girimaji [10, 11] and Wallin & Johansson [9] derived
an explicit form which in 2D reads [9] (a detailed derivation is given in [7])

β1 = −A1N

Q
, β2 = 2

A1A2

Q
, β4 = −A1

Q
, Q = N2 − 2IIΩ − 2

3
A2

2IIS (7.5)

where N is given by the cubic equation

N3 − A3N
2 −

((
A1A4 +

2

3
A2

2

)
IIS + 2IIΩ

)
N + 2A3

(
1

3
A2

2IIS + IIΩ

)
= 0

IIS = s̄∗mns̄
∗
nm, IIΩ = Ω̄∗

mnΩ̄
∗
nm. (7.6)

Equation 7.6 can be solved analytically. The analytical solution for the positive root
reads [9]

N =


A3

3 +
(
P1 +

√
P2

)1/3
+ sign

(
P1 −

√
P2

) ∣∣P1 −
√
P2

∣∣1/3 ,P2 ≥ 0

A3

3 + 2
(
P 2
1 − P2

)1/6
cos

[
1
3 arccos

(
P1√

P 2
1 −P2

)]
, P2 < 0

(7.7)
where

P1 =

(
A3

27
+

(
A1A4

6
− 2

9
A2

2

)
IIS − 2

3
IIΩ

)
A3

P2 = P 2
1 −

(
A3

9
+

(
A1A4

3
+

2

9
A2

2

)
IIS +

2

3
IIΩ

)3
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The Reynolds stress tensor including only the first term in Eq. 7.4 reads (see Eq. 7.1)

v′iv
′
j = β1ks̄

∗
ij +

2

3
kδij = β1

k2

ε
s̄ij +

2

3
kδij = −νeff s̄ij +

2

3
kδij (7.8)

where

νeff = −0.5β1
k2

ε
(7.9)

is the effective viscosity and ε = Cµkω, see Eq. 6.3. Equation 7.8 corresponds to
the Boussinesq assumption with β1 = −2Cµ. The discretized momentum equation on
matrix form reads

AW = b (7.10)

where W is v̄1 or v̄2. The term including the effective viscosity, νeff , in Eq. 7.8 is
included in A which greatly improves the numerical stability of the CFD code.

8 The Neural Network (NN) model
Here I present how to use NN to improve the EARSM. More detail can be found in

Instead of computing β1, β2 and β4 from Eqs. 7.5 and 7.6, I will in the present
work make them functions of some input parameter(s) (to be determined) using Neural
Network (NN). The process can be depicted as:

1. Choose input parameter(s) involving e.g. the velocity gradient, the shear stress,
the dissipation, the wall distance which should all be non-dimensional.

2. The output (target) parameters are β1, β2, β4.

3. Train the NN model in fully-developed channel flow.

4. Use the NN model to compute β1, β2, β4 in the EARSM (k and ω predicted with
the k − ω model) in the pyCALC-RANS CFD code.

In fully-developed channel flow the EARSM (Eq. 7.4) reads:

a11 =
1

12

(
∂v̄∗1
∂y

)2

(β2 − 6β4), a22 =
1

12

(
∂v̄∗1
∂y

)2

(β2 + 6β4)

a33 = −2β2

12

(
∂v̄∗1
∂y

)2

, a12 =
β1

2

∂v̄∗1
∂y

,
∂v̄∗1
∂y

=
k

ε

∂v̄1
∂x2

(8.1)

From the relations above, I get the targets for the NN model

β1 =
2a12
∂v̄∗

1

∂y

, β2 =
6(a11 + a22)(

∂v̄∗
1

∂y

)2 , β4 =
a22 − a11(

∂v̄∗
1

∂y

)2 (8.2)

aij , k/ε ≡ (ωCµ)
−1 and ∂v̄1

∂x2
are computed from DNS data of channel flow. Note that

a33 is defined by aii = 0.
The output parameters of the NN model are β1, β2 and β4. What input parameters

should be used? The NN model should be applicable at difference Reynolds numbers
so it should be a good idea to choose input parameters which also are Reynolds number
independent. The NN model will be used in the CFD code and validated against DNS
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Figure 8.1: The Neural Network with two inputs variables, a(0)1 = y+ and a
(0)
2 = P+

and three output variables, a(3)1 = β1, a(3)2 = β2 and a
(3)
3 = β4. There are three

neurons and two hidden layers in this figure; in the simulations I use 50 neurons.

data in channel flow at Reτ = 2000 [14], Reτ = 5200 [15] Reτ = 10 000 [16] and
flat-plate boundary-layer flow Reτ = 5500 [17].

I choose the production term together with y+ as input parameters. I scale the two
input parameters using MinMaxScaler() so that they are in the range [0, 1]

I use the NN in Python’s pytorch. Figure 8.1 shows the NN model schematically.
The optimizer is set as

optimizer = torch.optim.SGD(neural net.parameters(), lr=l rate)

Since I use y+ as input variable, I must train the NN model at the largest Reynolds
number (which has the largest y+ value), i.e. channel flow at Reτ = 10 000. I exclude
data in the viscous sublayer (y+ ≤ 5) because the gradient of β2 and β4 (see Eq. 8.2)
are very large near the wall. I also exclude data near the center (y+ > 9 800) where
∂v̄∗

1

∂y is very small. The turbulence is negligible in both these regions. I train on 80%
of the data (approximately 800 randomly chosen data points) and test on (predict) the
remaining 20%.

8.1 The NN model incorporated in the CFD solver
I save the NN model developed in Section 8 to disk and then a load it into pyCALC-
RANS . I include the NN model as follows:

1. Load the NN model in module calc earsm.

2. Solve v̄1, v̄2 and P ′ equations. The Reynolds stresses v′21 , v′22 , v′1v
′
2 in the v̄1 and

v̄2 equations (see Eq. 1.1) are taken from the previous iteration.

3. Compute β1, β2, β4 using the NN model. Limits are set on both input and output
parameters corresponding to min and max values during the training process.

4. Compute the anisotropic Reynolds stresses (a11, a22, a12) using the β coeffi-
cients, see Eq. 8.1.

5. Compute the Reynolds stresses v′21 = ka11+
2
3k, v′22 = ka22+

2
3k, v′1v

′
2 = ka12.
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(a) Velocity. (b) Reynolds shear stresses.

(c) Reynolds normal stresses. (d) β1 coefficient.

Figure 8.2: The NN model incorporated in the CFD code. Reτ = 10 000. NN model
trained on DNS data. Dashed lines: DNS data [16]

(a) Velocity. (b) Reynolds shear stresses. (c) Turbulent kinetic energy.

Figure 8.3: Channel flow at Reτ = 10 000 using Wilcox k − ω model. DNS data [16]

6. Solve the k and ω equations. The Reynolds stresses are used in the production
term, see Eq. 6.2. In fully-developed channel flow v′21 and v′22 have no effect
since ∂v̄1/∂x1 = ∂v̄2/∂x2 = 0, but in flat-plate boundary layer flow they have
a small effect.

7. End of iteration. Repeat from Item 2 until convergence (1000s of iterations).

8.2 Channel flow with the NN model trained on k − ω and DNS
data

It was found in [1] than when the NN model is trained using DNS data I get poor results,
see Fig. 8.2. The reason is that the stress-strain relation and the turbulent kinetic energy
are not the same in DNS and k − ω predictions. Hence the target data are taken both
from DNS (v′21 and v′22 ) and a k− ω simulation ( ∂v̄1∂x2

, v′1v
′
2, k, ε = Cµkω). In this way

the strain-stress relation and the turbulent kinetic energy are the same in the training
process as in the CFD-NN predictions.

Instead of training the NN model on DNS data, I will train on data taken both from
DNS and the k − ω simulation shown in Fig. 8.3. The fact that this may be necessary
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(a) Velocity. CFD & NN. (b) CFD & NN

(c) CFD & NN. •: cell center.

Figure 8.4: CFD predictions with EARSM-NN model. The NN model is trained on
DNS and k − ω data. Channel flow, Reτ = 10 000. Dashed lines: DNS.

was noted in [18]. I will use the following data:

• Input: P k and y+ from k − ω prediction

• Target: β1, β2 and β4 computed from v′21 , v′22︸ ︷︷ ︸
DNS

and v′1v
′
2, k, ε︸ ︷︷ ︸
k−ω

This will ensure that the relation between the shear stress and the velocity gradient as
well as the turbulent kinetic energy are the same in the training process as in the CFD
simulation. Note that

kDNS = 0.5
(
v′21 DNS + v′22 DNS + v′23 DNS

)
is not equal to the turbulent kinetic energy, kk−ω , predicted by the k − ω model. The
spanwise normal stress, v′23 , predicted by the NN model will adapt in order to satisfy

kk−ω = 0.5
(
v′21 DNS + v′22 DNS + v′23 DNS

)
(8.3)

Hence, v′23 will be incorrectly predicted by the NN model (it even goes negative near
the wall). Thus, the proposed EARSM-NN model is applicable only in two-dimension
flows. In order to make the model applicable in three dimension, a new k−ω (or k−ε)
model must be developed which satisfies kDNS = kk−ω .

In [1] I show that the EARSM-NN gives good results also for channel flow at
Reτ = 2000 and Reτ = 2000 as well as flat-plate boundary layer. Description of the
Python script for creating the NN model as well as setup case and modify case
are found in Section 16.

In Section 15 I present the Python script for creating the EARSM-NN model and
in Section 16 I show how to make channel flow simulations using the EARSM-NN
model.
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9 Modules

9.1 bc outlet bc
Neumann outlet boundary conditions are set.

9.2 calc earsm
The EARSM (see Section 7) is implemented in this module. Note that the module is
empty in the main script, pyCALC-RANS.py, and that calc earsm.py resides in
the relevant subdirectories.

9.3 calck
Source terms in the k equation (Wilcox model) are computed, see Section 6. The user
can define additional source terms in modify k.

9.4 calcom
Source terms in the ω equation (Wilcox model) are computed, see Section 6. The user
can define additional source terms in modify om.

9.5 calcp
Coefficients in the p′ equation, see Section 4.6.

9.6 calcu
Source terms in the ū equation are computed. The user can define additional source
terms in modify u.

9.7 calcv
Source terms in the v̄ equation are computed. The user can define additional source
terms in modify v.

9.8 coeff
The coefficient aW , aE , aS , aN are computed. There are two different discretization
schemes: central differencing scheme (CDS) and the hybrid scheme (first-order upwind
and CDS).

9.9 compute face phi
Compute the face values of a variable.

9.10 conv
Compute the convection as a vector product v ·A at the west and south faces (stored
in arrays convw and convn. Note that they are defined as the volume flow going into
the control volume.
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9.11 correct u v p
After the presssure correction has been solved, the convections convw and convs
(which are defined at the control volume faces) and the velocities, u2d and v2d and
pressure, p2d are corrected so as to satisfy continuity.

9.12 fix omega
This routine may be used for fix ω in the wall-adjacent cell center according to Eq. 6.6
rather than as a wall-boundary condition (Eq. 6.5). Note that it is called just before the
solver is called. For fixing ω near a south boundary we use

aw2d[:,0]=0
ae2d[:,0]=0
as2d[:,0]=0
an2d[:,0]=0
al2d[:,0]=0
su2d[:,0]=om_bc_south

9.13 dphidx, dphidy
The derivative in x or y direction are computed, see Section 2.2.

9.14 init
Geometric quantities such as areas, volume, interpolation factors etc are computed.

9.15 modify k, modify om, modify u, modify v
The sources su2d and sp2d can be modified for the k, ω, ū and v̄ equations.

9.16 modify case.py
This file includes modify k, . . .modify omega and modify conv, modify init,
modify inlet, modify outlet, fix omega and modify vis.

9.17 modify init
The user can set initial fields. If restart=True, these fields are over-written with
the fields from the restart file.

9.18 print indata
Prints the indata set by the user.

9.19 read restart data
This module is called when restart=True. Initial fields from files

• u2d saved.npy, v2d saved.npy, p2d saved.npy, k2d saved.npy,
om2d saved.npy

are read from a previous simulation.
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9.20 save data
This module is called when save=True. The

• ū, v̄, p̄, k and ω fields

are stored in the files

• u2d saved.npy, v2d saved.npy, p2d saved.npy, k2d saved.npy,
om2d saved.npy.

9.21 save vtk
The results are stored in VTK format. It is called if vtk=True. You must then set the
name of the VTK file names, i.e. vtk file name.

9.22 setup case.py
In this module the user sets up the case (time step, turbulence model, turbulence con-
stants, type of boundary condition, solver, convergence criteria, etc)

9.23 solve 2d
This module can be used for all variables except pressure, p̄. With the coefficient
arrays aw2d, ae2d, as2d, ... a sparse matrix is created, A. The equation
system is solved using a sparse matrix Python solver, e.g. linalg.lgmres or
linalg.gmres.

9.24 vist kom
The turbulent viscosity is computed using the k − ω model, see Section 6

10 Lid-driven cavity at Re = 1000

To follow the execution of pyCALC-RANS , it is recommended to start reading at the
line the execution of the code starts here. To find where the solution procedure starts,
look for the line start of global iteration process. You can also look at the pyCALC-
RANS flowchart.

The lid-driven cavity is shown in Fig. 10.1 with the grid. The top wall is moving.
The boundary conditions are u = v = 0 an all boundaries (walls) except the top wall
for which Uwall = 1. The length of all side is one, i.e. L = 1 . The Reynolds number,
ReL = UwallL/ν = 1000.

The case is defined in modules setup case and modify case. They are lo-
cated in a directory with the name lid. Enter this directory.

The grid is created using the script generate-lid-grid.py. The number of
cells is set to ni = nj = 60. The grid is stretched by 5% from all four walls.

import numpy as np
import sys
ni=60
nj=ni

http://www.tfd.chalmers.se/~lada//postscript_files/html-ubuntu-rans/index.html
http://www.tfd.chalmers.se/~lada//postscript_files/html-ubuntu-rans/index.html
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yfac=1.05 # stretching
viscos=1/1000
dy=0.1
ymax=2
yc=np.zeros(nj+1)
yc[0]=0.
for j in range(1,int(nj/2)+1):

yc[j]=yc[j-1]+dy
dy=yfac*dy

ymax_scale=yc[int(nj/2)]

# cell faces
for j in range(1,int(nj/2)+1):
yc[j]=yc[j]/ymax_scale
yc[nj-j+1]=ymax-yc[j-1]

yc[int(nj/2)]=1

# make side=1
yc=yc/yc[-1]

# make it 2D
y2d=np.repeat(yc[None,:], repeats=ni+1, axis=0)

y2d=np.append(y2d,nj)
np.savetxt(’y2d.dat’, y2d)

# x grid
xc = np.linspace(0, xmax, ni+1)

# make it 2D
x2d=np.repeat(xc[:,None], repeats=nj+1, axis=1)
x2d_org=x2d
x2d=np.append(x2d,ni)

Uwall

Figure 10.1: Lid-driven cavity with grid. Top wall is moving.
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np.savetxt(’x2d.dat’, x2d)

10.1 setup case.py

This module consists of 10 sections.

10.1.1 Section 1

I choose the hybrid scheme for convection

scheme=’h’

10.1.2 Section 3

I will not initial conditions from a previous simulation (restart=False) and I also
save the new results to disk (save=True) which can be used as initial condition for
next simulation.

restart =False
save= True

10.1.3 Section 4

The viscosity is set.

viscos=1/1000

10.1.4 Section 6

The maximum number of global iterations is set to 500.
The AMG solver s chosen for the pressure correction and the convergence level in

the AMG solver is set to 5 · 10−2. Note that this is a relative limit, i.e. ratio of final to
initial L2 norm.

The ’lgmres’ sparse matrix solver in Python is set for ū and v̄. The maximum num-
ber of iterations is set to 50 and the convergence level to 10−6. The global convergence
limit, sormax, is set to 10−5 and the maximal number of gloabl iterations to 1000.

maxit=1000
sormax=1e-5
amg_relax=’default’
solver_vel=’lgmres’
nsweep_vel=50
convergence_limit_u=1e-5
convergence_limit_v=1e-5
convergence_limit_w=1e-5
convergence_limit_p=5e-4

The relative convergence limit in the Python solvers is defined as

|Ax− b|/|b| < γ (10.1)
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where γ is the convergence limit. The norm of, for example f , is computed as (L2
norm)

|f | =

[ ∑
all cells i

f2
i

]1/2

10.1.5 Section 7

The flow during the iterations and time steps is monitored in cell (i, j) = (10, 10).

imon=10
jmon=10

10.1.6 Section 8

I don’t want to store data on VTK format (if you do, you can visualize the flow with
the open-source post-processing tool ParaView). Hence

vtk=False

10.1.7 Section 9

The residual of the momentum equation and the continuity equation are normalized by
resnorm vel and resnorm p which are set to

uin=1
resnorm_p=uin*zmax*y2d[1,-1]
resnorm_vel=uin**2*zmax*y2d[1,-1]

10.1.8 Section 10

The boundary conditions are set here. All boundaries are defined as no-slip walls
(Dirichlet)

u_bc_south_type=’d’
u_bc_north_type=’d’
v_bc_south_type=’d’
v_bc_north_type=’d’

and the value for all variables is set to zero for all except the top (north) wall where
Uwall = 1, i.e.

u_bc_south=np.zeros((ni,nk))
u_bc_north=np.ones((ni,nk))
v_bc_south=np.zeros((ni,nk))
v_bc_north=np.zeros((ni,nk))

https://www.paraview.org/fluid-dynamics/
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10.2 modify case.py

Initial condition and additional boundary conditions – mostly implicit – are set in
this file. It includes a module which are called for every flow field variable, i.e.
modify_u, modify_v, modify_p, modify_k and modify_om. It includes
also modules for modifying initial boundary conditions (modify_init), convections
(modify_conv), inlet (modify_inlet) and outlet boundary conditions (modify_outlet).
There is also a module fix omega which is used for setting ω according to Eq. 6.6.
The only thing I add in modify case.py for this flow is to monitor how the u ve-
locity changes when the flow goes toward convergence.

10.2.1 modify u

I plot the values of u in six points for every iteration

global file1

if iter == 0:
print(’file1 opened’)
l1=[iter,u2d[ni-5,5],u2d[ni-5,10],u2d[ni-5,20],\

u2d[ni-5,30],u2d[ni-5,40],u2d[ni-5,50]]
np.savetxt(’u-iter-history.dat’, l1, newline=" ")
file1=open(’u-iter-history.dat’,’a’) #append

else:
print(’file1 printed’)
file1.write("\n")
l1=[iter,u2d[ni-5,5],u2d[ni-5,10],u2d[ni-5,20],\

u2d[ni-5,30],u2d[ni-5,40],u2d[ni-5,50]]
np.savetxt(file1, l1, newline=" ")

This monitoring is used as an extra check that the flow has converged, i.e. I want to
make sure that u has stopped changing during the solution process.

10.3 Run the code
The bash script run-python is used which reads

#!/bin/bash
# delete forst line
sed ’/setup_case()/d’ setup_case.py > temp_file
# add new first line plus global declarations
cat ../global temp_file modify_case.py \
../pyCALC-RANS.py > exec-pyCALC-RANS.py;
/usr/bin/time -a -o out ˜/anaconda3/bin/python -u exec-pyCALC-RANS.py > out

This script simply collects all Pythons files in one file and the global declarations
(which gives all modules access to the global variables) into the file exec-pyCALC-RANS.py
and then executes it. Now run the code with the command

run-python &
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If you’re using Windows the script work in an Ubuntu terminal window. However, of
you prefer to run the code in your Windows environment, you can simply run the exe-
cutable (which resides in every folder boundary-layer-laminar, channel-2000
. . . )

The input data is written to the file out. In this file you also find convergence
history etc. To check the convergence history type

grep ’max res’ out

The code also writes out maximum values of some variables (in order to detect if the
simulation is diverging). Check this by

grep umax out

If the Python sparse matrix solved does not converge, a warning is written. Check this
with

grep warn out

You can check that the Python sparse matrix reduces the residuals. Type

grep history out

You see three lines per time step, i.e. the residuals for ū, v̄ and p′ equation.
Plot the results using the script pl_uvw_lid.py.

11 Fully-developed channel flow at Reτ = 5200

You find setup case.py and modify case.py in a directory with the name
channel-5200 (or something similar). Go into this directory.

I generate a new grid. I use the same Python script as in Section 10 but I set one
cells, ni=1 in the x direction, xmax=1 and set the stretching factor in the y direction
to 1.15. The grid is created using the script generate-channel-grid.py.

11.1 setup case.py

11.1.1 Section 1

I choose the hybrid scheme for both velocities and k and ω

scheme=’h’
scheme_turb=’h’

11.1.2 Section 2

I choose the k − ω RANS model.

kom = True

11.1.3 Section 3

I don’t start from a previous solution.

restart = False
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11.1.4 Section 4

The viscosity is set.

viscos=1/5200

11.1.5 Section 8

The direct solver is chosen for all variables

solver_vel=’direct’
solver_turb=’direct’
solver_pp=’direct’

11.1.6 Section 9

For estimating scaling of the residuals, I set uin, i.s.

uin=20

11.1.7 Section 10

This is a fully developed channel flow for which v2 = ∂u/∂x = 0. Hence, I set
homogeneous Neumann boundary conditions for all variables in the x direction

u_bc_west_type=’n’
u_bc_east_type=’n’

v_bc_west_type=’n’
v_bc_east_type=’n’

k_bc_west_type=’n’
k_bc_east_type=’n’

om_bc_west_type=’n’
om_bc_east_type=’n’

The north and south boundaries are walls for which I set Dirichlet (no-slip)

u_bc_south_type=’d’
u_bc_north_type=’d’

v_bc_south_type=’d’
v_bc_north_type=’d’

k_bc_south_type=’d’
u_bc_north_type=’d’

om_bc_south_type=’d’
om_bc_north_type=’d’

The values are set to zero for ū, v̄ and k, i.e.
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u_bc_south=np.zeros(ni)
u_bc_north=np.zeros(ni)

v_bc_south=np.zeros(ni)
v_bc_north=np.zeros(ni)

k_bc_south=np.zeros(ni)
k_bc_north=np.zeros(ni)

For ω, I use Eq. 6.6

xwall_s=0.5*(x2d[0:-1,0]+x2d[1:,0])
ywall_s=0.5*(y2d[0:-1,0]+y2d[1:,0])
dist2_s=(yp2d[:,0]-ywall_s)**2+(xp2d[:,0]-xwall_s)**2
om_bc_south=6*viscos/0.075/dist2_s

xwall_n=0.5*(x2d[0:-1,-1]+x2d[1:,-1])
ywall_n=0.5*(y2d[0:-1,-1]+y2d[1:,-1])
dist2_n=(yp2d[:,-1]-ywall_n)**2+(xp2d[:,-1]-xwall_n)**2
om_bc_north=6*viscos/0.075/dist2_n

11.2 modify case.py

I set the driving volume force to one

su2d=su2d+vol

A force balance force the entire channel gives

L · 2h︸ ︷︷ ︸
volume

− L · τw︸ ︷︷ ︸
two wall shear stresses

= 0

where h and L denote half channel height and length of channel, respectively. I get
that the wall shear stress, τw, must be equal to one. Hence, I know that when the ū
momentum equation has converged, then τw = 1 at both walls. Let’s use that as a
check of convergence has been obtained.

tauw_south=viscos*np.sum(as_bound*u2d[:,0])/x2d[-1,0]
tauw_north=viscos*np.sum(an_bound*u2d[:,-1])/x2d[-1,0]

print(f"{’tau wall, south: ’} {tauw_south:.3f},\
{’ tau wall, north: ’} {tauw_north:.3f}")

Plot the results using the script pl_uvw-channel.py. In this script I save y, u, k,
ω and v′1v

′
2 in the file

y_u_k_om_uv_5200-RANS-code.txt

These data will be used for prescribing inlet b.c. in Section 12.
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12 Channel flow (inlet outlet) at Reτ = 5200

You find setup case.py and modify case.py in a directory with the name
channel-5200-inlet (or something similar). Go into this directory.

In this section I comment only on differences compared to the case in Section 11.
I generate a new grid. I use the same Python script as in Section 11 but I set 30

cells, ni=30 in the x direction and xmax=15.

12.1 setup case.py

12.1.1 Section 6

The lgmres solver is chosen

solver_vel=’lgmres’
solver_pp=’lgmres’
solver_turb=’lgmres’

nsweep_vel=50
nsweep_pp=50
nsweep_turb=50
convergence_limit_u=1e-6
convergence_limit_v=1e-6
convergence_limit_k=-1e-6
convergence_limit_om=-1e-6
convergence_limit_pp=5e-4

Note that absolute convergence criteria (i.e they are set negative) are used for k and
ω, i.e.

|Ax− b| < γ (12.1)

The reason is that it has been found difficult to set relative convergence criteria (espe-
cially for ω), possibly because of the large source terms which are used for defining the
relative convergence criteria, see Eq. 10.1.

12.1.2 Section 10

This is an inlet-outlet flow. Hence, I set Dirichlet b.c. at the inlet.

u_bc_west_type=’d’
v_bc_west_type=’d’
k_bc_west_type=’d’
om_bc_west_type=’d’

The b.c. at the east, south and north boundaries are the same as in Section 11. For ω, I
use Eq. 6.6

xwall_s=0.5*(x2d[0:-1,0]+x2d[1:,0])
ywall_s=0.5*(y2d[0:-1,0]+y2d[1:,0])
dist2_s=(yp2d[:,0]-ywall_s)**2+(xp2d[:,0]-xwall_s)**2
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om_bc_south=10*6*viscos/0.075/dist2_s

xwall_n=0.5*(x2d[0:-1,-1]+x2d[1:,-1])
ywall_n=0.5*(y2d[0:-1,-1]+y2d[1:,-1])
dist2_n=(yp2d[:,-1]-ywall_n)**2+(xp2d[:,-1]-xwall_n)**2
om_bc_north=10*6*viscos/0.075/dist2_n

Note that in this case I fix ω at the wall-adjacent cells whereas I in Section 11 set ω at
the wall.

12.2 modify case.py

12.2.1 modify init

Here I set initial b.c. I load the data from the results in Section 11. I interpolate the
data to the grid. Note that this is not really necessary since the grid is the same in this
case as in Section 11. But it allows us to modify the grid.

data=np.loadtxt(’y_u_k_om_uv_5200-RANS-code.txt’)

y_rans_in=data[:,0]
u_rans_in=data[:,1]
k_rans_in=data[:,2]
om_rans_in=data[:,3]
uv_rans_in=data[:,4]

y_rans=yp2d[0,:]

u_rans=np.interp(y_rans, y_rans_in, u_rans_in)
k_rans=np.interp(y_rans, y_rans_in, k_rans_in)
om_rans=np.interp(y_rans, y_rans_in, om_rans_in)
uv_rans=np.interp(y_rans, y_rans_in, uv_rans_in)

# set inlet field in entre domain
u3d=np.repeat(u_rans[None,:], repeats=ni, axis=0)
k3d=np.repeat(k_rans[None,:], repeats=ni, axis=0)
om3d=np.repeat(om_rans[None,:], repeats=ni, axis=0)

12.2.2 modify inlet

Here I set inlet b.c. I load the same data as in modify init. Then I assign the
data to the arrays which hold the b.c., i.e. u_bc_west=u_rans, k_bc_west and
om_bc_west.

data=np.loadtxt(’y_u_k_om_uv_5200-RANS-code.txt’)

y_rans_in=data[:,0]
u_rans_in=data[:,1]
k_rans_in=data[:,2]
om_rans_in=data[:,3]
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uv_rans_in=data[:,4]

y_rans=yp2d[0,:]

u_rans=np.interp(y_rans, y_rans_in, u_rans_in)
k_rans=np.interp(y_rans, y_rans_in, k_rans_in)
om_rans=np.interp(y_rans, y_rans_in,om_rans_in)

u_bc_west=u_rans
k_bc_west=k_rans
om_bc_west=om_rans

12.2.3 modify u

No volume source is used. The turbulent diffusion is added at the inlet

su2d[0,:]= su2d[0,:]+convw[0,:]*u_bc_west
sp2d[0,:]= sp2d[0,:]-convw[0,:]
vist=vis2d[0,:,]-viscos
su2d[0,:]=su2d[0,:]+vist*aw_bound*u_bc_west
sp2d[0,:]=sp2d[0,:]-vist*aw_bound

The viscous diffusion is added in module bc.

12.2.4 modify v

The turbulent diffusion is added at the inlet

su2d[0,:]= su2d[0,:]+convw[0,:]*v_bc_west
sp2d[0,:]= sp2d[0,:]-convw[0,:]
vist=vis2d[0,:,]-viscos
su2d[0,:]=su2d[0,:]+vist*aw_bound*v_bc_west
sp2d[0,:]=sp2d[0,:]-vist*aw_bound

The viscous diffusion is added in module bc.

12.2.5 modify k

The turbulent diffusion is added at the inlet

su2d[0,:]= su2d[0,:]+convw[0,:]*k_bc_west
sp2d[0,:]= sp2d[0,:]-convw[0,:]
vist=vis2d[0,:,]-viscos
su2d[0,:]=su2d[0,:]+vist*aw_bound*k_bc_west
sp2d[0,:]=sp2d[0,:]-vist*aw_bound

The viscous diffusion is added in module bc.



13. RANS of boundary layer flow using k − ω 36

12.2.6 modify om

The turbulent diffusion is added at the inlet

su2d[0,:]= su2d[0,:]+convw[0,:]*om_bc_west
sp2d[0,:]= sp2d[0,:]-convw[0,:]
vist=vis2d[0,:,]-viscos
su2d[0,:]=su2d[0,:]+vist*aw_bound*om_bc_west
sp2d[0,:]=sp2d[0,:]-vist*aw_bound

The viscous diffusion is added in module bc.

12.2.7 modify outlet

Outlet b.c. are set according to Section 5.2

# inlet
flow_in=np.sum(convw[0,:])
flow_out=np.sum(convw[-1,:])
area_out=np.sum(areaw[-1,:])

uinc=(flow_in-flow_out)/area_out
ares=areaw[-1,:]
convw[-1,:]=convw[-1,:]+uinc*ares

12.2.8 fix omega

Here I set ω at the first interior cell according to Eq. 6.6. I do that by setting all
coefficients to zero except aP which is set to one

aw2d[:,0]=0
ae2d[:,0]=0
as2d[:,0]=0
an2d[:,0]=0
ap2d[:,0]=1
su2d[:,0]=om_bc_south

om_bc_south was set in the boundary-condition part in setup_case.py.

13 RANS of boundary layer flow using k − ω

You find setup case.py and modify case.py in a directory with the name
boundary-layer-RANS-kom (or something similar). Go into this directory.

I generate a new grid. The first cell is set to ∆t = 7.83 · 10−4. I stretch the grid in
the y direction by 10% but limit the cell size to ∆ymax = 0.05. The number of cells is
set to nj=90. In the x direction, the first cells is set to ∆x = 0.03 and then I stretch
it by 0.5%. I set the number of cells to ni=300. In the z direction I set the number of
cells to two and the extent to one, i.e. the z.dat is modified to 1.0, 2. The grid is
created using the script generate-bound-layer-grid.py.
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13.1 setup case.py

13.1.1 Section 1

Hybrid discretization is set for all variables.

scheme=’h’ #hybrid
scheme_turb=’h’

13.1.2 Section 2

The k − ω RANS model is selected.

kom = True

13.1.3 Section 4

The viscosity is set.

viscos=3.57E-5

13.1.4 Section 5

I set under-relation factor of 0.5 for all variables except for p′

urfvis=0.5
urf_vel=0.5
urf_k=0.5
urf_omega=0.5
urf_p=1.0

13.1.5 Section 6

The lgmres solver is chosen for the velocities, the pyamg for p′ and gmres for k
and ω.

solver_vel=’lgmres’
solver_pp=’pyamg’
solver_turb=’gmres’

The convergence limit in the Python solvers is set to 10−6 for all variables except p′

for which the (relative) limit is set to 0.05

convergence_limit_u=1e-6
convergence_limit_v=1e-6
convergence_limit_k=-1e-6
convergence_limit_om=-1e-6
convergence_limit_pp=5e-2

Absolute convergence level is used for k and ω , see Eq. 12.1.

13.1.6 Section 9

The scaling velocity for the residuals is set to one

uin=1
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13.1.7 Section 10

I set Dirichlet at the inlet (west) and homogeneous at the outlet (east)

u_bc_west_type=’d’
u_bc_east_type=’n’

v_bc_west_type=’d’
v_bc_east_type=’n’

k_bc_west_type=’d’
k_bc_east_type=’n’

om_bc_west_type=’d’
om_bc_east_type=’n’

The values at the inlet are set as ū = 1, v̄ = 0 and ω = 1

u_bc_west=np.ones(nj)
v_bc_west=np.zeros(nj)
om_bc_west=np.ones(nj)

For the turbulent kinetic energy, I set k = 10−5 outside the boundary layer and k =
10−2 in the ten inner cells

k_bc_west=np.ones(nj)*1e-2
k_bc_west[10:]=1e-5

The north and south boundaries are walls for which I set Dirichlet (no-slip)

u_bc_south_type=’d’
u_bc_north_type=’d’

v_bc_south_type=’d’
v_bc_north_type=’d’

k_bc_south_type=’d’
u_bc_north_type=’d’

om_bc_south_type=’d’
om_bc_north_type=’d’

The values are set to zero for ū, v̄ and k, i.e.

u_bc_south=np.zeros(ni)
u_bc_north=np.zeros(ni)

v_bc_south=np.zeros(ni)
v_bc_north=np.zeros(ni)

k_bc_south=np.zeros(ni)
k_bc_north=np.zeros(ni)

For ω, I use Eq. 6.5
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Figure 14.1: Domain of channel with a hill

xwall_s=0.5*(x2d[0:-1,0]+x2d[1:,0])
ywall_s=0.5*(y2d[0:-1,0]+y2d[1:,0])
dist2_s=(yp2d[:,0]-ywall_s)**2+(xp2d[:,0]-xwall_s)**2
om_bc_south=10*6*viscos/0.075/dist2_s

xwall_n=0.5*(x2d[0:-1,-1]+x2d[1:,-1])
ywall_n=0.5*(y2d[0:-1,-1]+y2d[1:,-1])
dist2_n=(yp2d[:,-1]-ywall_n)**2+(xp2d[:,-1]-xwall_n)**2
om_bc_north=10*6*viscos/0.075/dist2_n

13.2 modify case.py

13.2.1 modify init

Initial condition: set ū, k and ω = from inlet boundary conditions..

# set inlet field in entre domain
u3d=np.repeat(u_bc_west[None,:,:], repeats=ni, axis=0)
k3d=np.repeat(k_bc_west[None,:,:], repeats=ni, axis=0)
om3d=np.repeat(om_bc_west[None,:,:], repeats=ni, axis=0)

vis3d=k3d/om3d+viscos

14 Channel with a hill
This flow is setup in the directory large-wave.

DNS of this flow can be found in Assignment 1 in the course MTF271 Turbulence
Modeling. The height of the hill is 0.28. The Reynolds number based on the bulk flow
velocity and channel height is Reb = ubH/ν ≃ 36 000.

https://www.tfd.chalmers.se/~lada/comp_turb_model/assignment_1/index.html
https://www.tfd.chalmers.se/~lada/comp_turb_model/assignment_1/index.html
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14.1 setup case.py

14.1.1 Section 1

Hybrid discretization is set for all variables.

scheme=’h’ #hybrid
scheme_turb=’h’

14.1.2 Section 2

The k − ω RANS model is selected.

kom = True

14.1.3 Section 4

The viscosity is set.

viscos=1/500

14.1.4 Section 5

I set under-relation factor of 0.5 for all variables except for p′

urfvis=0.5
urf_vel=0.5
urf_k=0.5
urf_omega=0.5
urf_p=1.0

14.1.5 Section 6

The lgmres solver is chosen for the velocities, the pyamg for p′ and gmres for k
and ω.

solver_vel=’lgmres’
solver_pp=’pyamg’
solver_turb=’lgmres’

The convergence limit in the Python solvers is set to 10−8 for ū and v̄ and −10−6 (i.e.
absolute) for k and ω and 5 · 10−6 for p′.

convergence_limit_u=1e-8
convergence_limit_v=1e-8
convergence_limit_k=-1e-6
convergence_limit_om=-1e-6
convergence_limit_pp=5e-6

The global convergence limit is set to 1 · 10−6 and the maximum number of itera-
tions is set to 10000.

sormax=1e-6
maxit=10000

Note that when the convergence limit of ū and v̄ is set to 1 · 10−6, the global
convergence is stuck at 2 · 10−5.
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14.1.6 Section 9

The scaling velocity for the residuals is set to one

uin=1

14.1.7 Section 10

I set Dirichlet at the inlet (west) and Neumann at the outlet (reast).

u_bc_west_type=’d’
u_bc_east_type=’n’

v_bc_west_type=’d’
v_bc_east_type=’n’

k_bc_west_type=’d’
k_bc_east_type=’n’

om_bc_west_type=’d’
om_bc_east_type=’n’

The south boundary is a wall (Dirichlet) and the north wall is a slip boundary (Neu-
mann)

u_bc_south_type=’d’
u_bc_north_type=’n’

v_bc_south_type=’d’
v_bc_north_type=’d’

k_bc_south_type=’d’
u_bc_north_type=’n’

om_bc_south_type=’d’
om_bc_north_type=’n’

The inlet profiles of ū, v̄, k and ω are set in modify case.

14.1.8 modify init

Inlet boundary condition from DNS (fully developed channel flow at Reτ = 500) are
used to set initial condition.

# set inlet field in entre domain
data = np.loadtxt(’yp-u-k-omega.dat’)
yin = data[:,0]
uin = data[:,1]
kin = data[:,2]
omin = data[:,3]
uin_interp=np.interp(yp2d[0,:], yin, uin)
kin_interp=np.interp(yp2d[0,:], yin, kin)
omin_interp=np.interp(yp2d[0,:], yin, omin)
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# set initial field in entire domain
y0=y2d[0,-1]-y2d[0,0]
for i in range(0,ni):

yi=y2d[i,-1]-y2d[i,0]
u2d[i,:]=uin_interp*y0/yi
k2d[i,:]=kin_interp
om2d[i,:]=omin_interp

vis2d=k2d/om2d+viscos

14.1.9 modify init

Load inlet data created with DNS.

# read inlet data. DNS data found in my eBook, Assignment 1 in the course MTF271 Turbulence Modeling
data = np.loadtxt(’yp-u-k-omega.dat’)
yin = data[:,0]
uin = data[:,1]
kin = data[:,2]
omin = data[:,3]
uin_interp=np.interp(yp2d[0,:], yin, uin)
kin_interp=np.interp(yp2d[0,:], yin, kin)
omin_interp=np.interp(yp2d[0,:], yin, omin)

# interpolate to the CFD grid

u_bc_west = uin_interp
k_bc_west = kin_interp
om_bc_west = omin_interp

15 An improved EARSM using Neural Network (EARSM-
NN)

The Neural Network (NN) model is created in the directory NN. Look at the Python
script NN.py. Go to line 148 (’The neural network modules: end’). There I load data
from a k − ω simulation and DNS data.

DNS_mean=np.loadtxt(’y_u_k_eps_uv_channel-10000-k-omega.txt’)
y_DNS=DNS_mean[:,0];
yplus_DNS= y_DNS/viscos
u_DNS=DNS_mean[:,1];
k_DNS=DNS_mean[:,2];
eps_DNS=DNS_mean[:,3]*viscos;
uv_DNS=DNS_mean[:,4];
dudy_DNS= np.gradient(u_DNS,yplus_DNS)
pk_DNS = -uv_DNS*dudy_DNS
tau_DNS=np.maximum(k_DNS/eps_DNS,6*(1/eps_DNS)**0.5)
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dudy_DNS_org = np.copy(dudy_DNS)

DNS_mean=np.genfromtxt("P10k.txt",comments="%")
y_DNS_org=DNS_mean[:,0];
uu_DNS=DNS_mean[:,3]**2;
vv_DNS=DNS_mean[:,4]**2;
ww_DNS=DNS_mean[:,5]**2;

The DNS grid has 1051 cells and the k− ω grid has 55. I interpolate the DNS data
to the k − ω grid

uu_DNS = np.interp(y_DNS, y_DNS_org, uu_DNS)
vv_DNS = np.interp(y_DNS, y_DNS_org, vv_DNS)
ww_DNS = np.interp(y_DNS, y_DNS_org, ww_DNS)

I exclude data points near the wall and near the center

index_choose=np.nonzero((yplus_DNS>5)&(yplus_DNS<9200))

The reason is that otherwise the NN training process does not converge because
the gradients of the β coefficients are very large near the wall and the velocity gradient
gets very small near the center.

Next, the β coefficients (the targets) are computed

# compute anisotropic Reynolds stresses
a11_DNS=uu_DNS/k_DNS-0.66666
a22_DNS=vv_DNS/k_DNS-0.66666
a33_DNS=ww_DNS/k_DNS-0.66666
a12_DNS=uv_DNS/k_DNS

# Array for storing b1, b2, b4
b1_DNS=2*a12_DNS/tau_DNS/dudy_DNS # b1
b2_DNS=6*(a11_DNS+a22_DNS)/tau_DNS**2/dudy_DNS**2 # b2
b4_DNS=(a22_DNS-a11_DNS)/tau_DNS**2/dudy_DNS**2 # b4

and are then put into to the output matrix y

c = np.array([b1_DNS,b2_DNS,b4_DNS])
# transpose the target vector to make it a column vector
y = c.transpose()

Then the input parameters are scaled, reshaped and put into the general influence
parameters matrix X, i.e.

pk_DNS_scaled = pk_DNS
# re-shape
pk_DNS_scaled = pk_DNS_scaled.reshape(-1,1)
yplus_DNS= yplus_DNS.reshape(-1,1)

# use standard scaler
scaler_pk = MinMaxScaler()
scaler_yplus = MinMaxScaler()
X=np.zeros((len(dudy_DNS),2))
X[:,0] = scaler_pk.fit_transform(pk_DNS_scaled)[:,0]
X[:,1] = scaler_yplus.fit_transform(yplus_DNS)[:,0]
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I set the learning rate and the number of epochs (i.e. iterations)

learning_rate = 0.01 # loss = 8.8e-5, max error = 0.025
my_batch_size = 1
epochs = 20000

Then the training process starts

############################ training starts here #########################

and ends

############################ training ends here #########################

In the next step, I test (i.e. predict) the β coefficients using the trained EARSM-NN
model

preds = neural_net(X_test_tensor)

#transform from tensor to numpy
c_NN = preds.detach().numpy()

b1=c_NN[:,0]
b2=c_NN[:,1]
b4=c_NN[:,2]

Finally, I compute the Reynolds stresses

#
# compute the anisotropic stresses and Reynolds stresses using b1, b2 and from the NN model
a_11 = tau_DNS_test**2*dudy_DNS_test**2/12*(b2-6*b4)
uu_NN = (a_11+0.6666)*k_DNS_test

a_22 = tau_DNS_test**2*dudy_DNS_test**2/12*(b2+6*b4)
vv_NN = (a_22+0.6666)*k_DNS_test

a_33 = -tau_DNS_test**2*dudy_DNS_test**2/6*b2
ww_NN = (a_33+0.6666)*k_DNS_test

a_12 = b1*tau_DNS_test*dudy_DNS_test/2
uv_NN = a_12*k_DNS_test

16 Fully-developed channel flow using the EARSM-NN
model

Here I setup a simulation of fully-developed channel flow the Reτ10 000. Go to the
directory directory channel-10000-earsm-NN.
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16.1 setup case.py

16.1.1 Section 2

The EARSM is chosen along with the underlying k − ω model

kom = True
earsm = True

16.1.2 Section 10

The boundary conditions are set for v′21 , v′22 and v′1v
′
2 are set. Although I don’t solve

any transport equation for these quantities I do take the gradient of them and hence I
must set boundary conditions.

# boundary conditions for uu
uu_bc_west=np.zeros(nj)
uu_bc_east=np.zeros(nj)
uu_bc_south=np.zeros(ni)
uu_bc_north=np.zeros(ni)

uu_bc_west_type=’n’
uu_bc_east_type=’n’
uu_bc_south_type=’d’
uu_bc_north_type=’d’

# boundary conditions for uv
uv_bc_west=np.zeros(nj)
uv_bc_east=np.zeros(nj)
uv_bc_south=np.zeros(ni)
uv_bc_north=np.zeros(ni)

uv_bc_west_type=’n’
uv_bc_east_type=’n’
uv_bc_south_type=’d’
uv_bc_north_type=’d’

# boundary conditions for vv
vv_bc_west=np.zeros(nj)
vv_bc_east=np.zeros(nj)
vv_bc_south=np.zeros(ni)
vv_bc_north=np.zeros(ni)

vv_bc_west_type=’n’
vv_bc_east_type=’n’
vv_bc_south_type=’d’
vv_bc_north_type=’d’

16.2 modify case.py

This file is very similar to that in the directory channel-5200/
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16.3 run-python

As I mentioned in Section 9.2, the module calc earsm in the main script, pyCALC-RANS.py,
is empty. You find one calc earsm module in the file calc earsm.py in this di-
rectory. It is inserted into the executable using a modified run-python which reads

#!/bin/bash
# delete first line
sed ’/setup_case()/d’ setup_case.py>temp_file
# rename empty calc_earsm
sed ’s/def calc_earsm/def calc_earsm_old/’ ../pyCALC-RANS.py >temp_file1

# add new first line plus global declarations and calc_earsm
cat ../global temp_file modify_case.py calc_earsm.py \
temp_file1>exec-pyCALC-RANS.py;
../../anaconda3/bin/python3.8 -u exec-pyCALC-RANS.py > out

In the bash script above, I rename the empty calc earsmmodule to calc earsm old
and then I add the local calc earsm into exec-pyCALC-RANS.py.

I start the simulations by – as usual – by typing

run-python

in the terminal. Then I plot the results by typing

python pl_uvw-channel
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A Variables in pyCALC-RANS

Nomenclature
ae bound: aE coefficient for diffusion for east boundary (without viscosity)

an bound: aN coefficient for diffusion for north boundary (without viscosity)

areas: south area

areasx: x component of south area of control volume

areasy: y component of south area of control volume

areaw: west area of control volume

areawx: x component of west area of control volume

areawy: y component of west area of control volume

as bound: aS coefficient for diffusion for south boundary (without viscosity)

aw2d,ae2d,as2d,an2d,ap2d: discretization coefficients, aW , aE , aS , aN , aP

aw bound: aW coefficient for diffusion for west boundary (without viscosity)

c omega 1: Cω1 coefficient in the k − ω model

c omega 2: Cω2 coefficient in the k − ω model

cmu: Cµ coefficient in the k − ε model, the k − ω model and CS coefficient in the
Smagorinsky model

convergence limit k: convergence limit in Python solver for k (max(limit,limit·
norm(su3d)); if negative, the residuals are reduced by abs(limit)

convergence limit p: convergence limit in Python solver for p̄ (max(limit,limit·
norm(su3d)); if negative: abs(limit))

convergence limit u: convergence limit in Python solver for k (max(limit,limit·
norm(su3d)); if negative, the residuals are reduced by abs(limit)

convergence limit v: convergence limit in Python solver for k (max(limit,limit·
norm(su3d)); if negative, the residuals are reduced by abs(limit)

convw,convs: convection through west and south

cyclic x: periodic boundary conditions in th x direction

earsm: the EARSM model is used

fx,fy: fx, fy , the interpolation function in i and j direction

gen: P k excluding the turbulent viscosity (used in the k, ε and ω equations)

imon,jmon: print time history of variables for this node

iter: current global iteration
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k2d: modeled turbulent kinetic energy, k

k bc east, k bc south, k bc west, k bc north: boundary values of k
at east, south, west, north boundary

k bc east type, k bc north type, k bc south type, k bc pest type:
type of b.c. for k (’d’=Dirichlet, ’n’=Neumann’)

kom: the Wilcox k − ω model is used

maxit: maximum number of global iterations (solving ū, v̄, w̄, p̄, . . . )

ni,nj: number of cell centers in i and j direction

nsweep kom: maximum number of iterations in the Python solver when solving the
k and ω equations in solver called in solve 2d

nsweep vel: maximum number of iterations in the Python solver when solving the
ū, v̄ and w equations in solver called in solve 2d

om2d: specific dissipation of turbulent kinetic energy, ω

om bc east, om bc north, om bc south, om bc west: boundary values
of ω at east, north, south, west boundary

om bc east type, om bc north type, om bc south type, om bc omest type:
type of b.c. for ω

p2d: pressure, p̄

p bc east, p bc north, p bc south, p bc west boundary values of p̄ at
east, north, south, west boundary

p bc east type, p bc north type, p bc south type, p bc pest type:
type of b.c. for p̄ (’d’=Dirichlet, ’n’=Neumann’)

pinn: PINN is used EARSM model is used [19] (folder channel-2000-half-channel-
PINN)

prand k: σk, turbulent Prandtl number in the k equation

prand omega: σω , turbulent Prandtl number in the ω equation

residual p: residual for the continuity equation

residual u: residual for the ū equation

residual v: residual for the v̄ equation

resnorm p: the residual of the continuity equation is normalised by this quantity

resnorm vel: the residuals of ū, v̄ and w̄ are normalised by this quantity

restart: a restart from a previous simulaton is made, see Section 9.19

save: the ū, v̄ . . . fields are saved to disk, see Section 9.20
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scheme: discretization scheme for the ū, v̄ and w̄ equation. ’c’=central, ’h’=hybrid,
’u’=upwind, see Section 9.8

scheme turb: discretization scheme for k, ε and ω. ’c’=central, ’h’=hybrid, ’u’=upwind,
see Section 9.8

solver turb: Python sparse matrix or pyAMG solver for k, ε and ω. solver turb=’pyamg’,
’gmres’, ’lgmres’, ’cgs’, ’cg’

solver vel: Python sparse matrix or pyAMG solver for ū, v̄ and w̄. solver vel=’pyamg’,
’gmres’, ’lgmres’, ’cgs’, ’cg’

sormax: convergence criteria in outer iteration loop

sp2d,su2d: discretization source terms, Sp, SU

u2d: ū velocity

u bc east, u bc north, u bc south, u bc west: boundary values of ū
at east, north, south, west boundary

u bc east type, u bc north type, u bc south type, u bc uest type:
type of b.c. for ū (’d’=Dirichlet, ’n’=Neumann’)

urfvis: under-relaxation factor for turbulent viscosity

uu2d: v′21 − 2k/3, anisotropic Reynolds normal stress (when earsm = True)

uu bc east, uu bc north, uu bc south, uu bc west: boundary values
of v′21 − 2k/3 at east, north, south, west boundary (when earsm = True)

uv2d: v′1v
′
2, anisotropic Reynolds shear stress (when earsm = True)

uv bc east, uv bc north, uv bc south, uv bc west: boundary values
of v′1v

′
2 at east, north, south, west boundary (when earsm = True)

v2d: v̄ velocity

v bc east, v bc north, v bc south, v bc west: boundary values of v̄
at east, north, south, west boundary

v bc east type, v bc north type, v bc south type, v bc vest type:
type of b.c. for v̄ (’d’=Dirichlet, ’n’=Neumann’)

vis2d: total viscosity, ν + νt

viscos: viscosity, ν. Note that ν = µ since ρ = 1.

vol: volume of a control volume

vtk: if TRUE, save results in VTK format

vv2d: v′22 − 2k/3, anisotropic Reynolds normal stress (when earsm = True)

vv bc east, vv bc north, vv bc south, vv bc west: boundary values
of v′22 − 2k/3 at east, north, south, west boundary (when earsm = True)
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ww2d: v′23 − 2k/3, anisotropic Reynolds normal stress (when earsm = True)

ww bc east, ww bc north, ww bc south, ww bc west: boundary values
of v′23 − 2k/3 at east, north, south, west boundary (when earsm = True)

x2d: the x coordinate of a corner of a control volume, see Fig. 2.3

xp2d: the x coordinate of the center of a control volume, see Fig. 2.3

y2d: the y coordinate of a corner of a control volume, see Fig. 2.3

yp2d: the y coordinate of the center a control volume, see Fig. 2.3

B Sparse matrix format in Python
pyCALC-RANS uses the sparse solvers available in Python. The coefficients aW , aE , aS , aN , aP , Su

must be converted to Python’s sparse matrix format. Hence, there are five diagonals.
The Python solvers linalg.lgmres, linalg.gmres, linalg.cgs, linalg.gs,

or the algebraic multigrid solver pyAMG [20] may be used for all variables.

B.1 2D grid, ni× nj = (3, 4)

j and N

i and E

0 1 2 3

4 5 6 7

8 9 10 11



C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
L0 : aP,0 −aN,0 0 0 −aE,0 0 0 0 −aW,0 0 0 0
L1 : −aS,1 aP,1 −aN,1 0 0 −aE,1 0 0 0 −aW,1 0 0
L2 : 0 −aS,2 aP,2 −aN,2 0 0 −aE,2 0 0 0 −aW,2 0
L3 : 0 0 −aS,3 aP,3 0 0 0 −aE,3 0 0 0 −aW,3

L4 : −aW,4 0 0 0 aP,4 −aN,4 0 0 −aE,4 0 0 0
L5 : 0 −aW,5 0 0 −aS,5 aP,5 −aN,5 0 0 −aE,5 0 0
L6 : 0 0 −aW,6 0 −aS,6 −aP,6 −aN,6 0 0 −aE,6 0
L7 : 0 0 0 −aW,7 0 0 −aS,7 −aP,7 0 0 0 −aE,7

L8 : −aE,8 0 0 0 −aW,8 0 0 0 aP,8 −aN,8 0 0
L9 : 0 −aW,9 0 0 0 −aW,9 0 0 −aS,9 aP,9 −aN,9 0

L10 : 0 0 −aW,10 0 0 0 −aW,10 0 0 −aS,10 aP,10 −aN,10

L11 : 0 0 0 −aW,11 0 0 0 −aW,11 0 0 −aS,11 aP,11


Matrix for 2D flow. ni× nj = (3, 4).
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B.2 2D grid, ni× nj = (3, 2)

j and N

i and E

0 1

2 3

4 5



C0 C1 C2 C3 C4 C5
L0 : aP,0 −aN,0 −aE,0 0 0 0
L1 : −aS,1 aP,1 0 −aE,1 0 0
L2 : −aW,2 −aS,2 aP,2 −aN,2 −aE,2 0
L3 : 0 −aW,3 −aS,3 aP,3 0 aE,3

L4 : 0 0 −aW,4 0 aP,4 −aN,4

L5 : 0 0 0 −aW,5 0 aP,5


Matrix for 2D flow. ni× nj = (3, 2).
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