pyCALC-LES: A Python Code for DNS, LES and Hybrid LES-RANS

Lars Davidson
Div. of Fluid Dynamics
Dept. of Mechanics and Maritime Sciences
Chalmers University of Technology
SE-412 96 Göteborg, Sweden

July 1, 2024

Abstract

This report gives some details on pyCALC-LES and how to use it. It is written in Python (3.8). The code solves the incompressible momentum equations, the continuity equation and transport equations for modeled turbulent quantities such as k, ε and ω. The density is assumed to be constant and equal to one, i.e. $\rho \equiv 1$. The transport equations are solved in 3D and the grid may be curvi-linear in the $x-y$ plane. In the z direction the grid is Cartesian but Δz may vary.

The code is suitable for DNS, LES or DES (hybrid LES-RANS). For LES, the Smagorinsky model and the WALE model are implemented. For DES, a $k-\omega$ DES model and a PANS $k-\varepsilon$ model are implemented. The code can also be used for steady RANS and the time-marching method is then used to reach steady flow.

pyCALC-LES is a finite volume code. It is fully vectorized (i.e. no for loops). The solution procedure is based on fractional step. Second-order central differencing is used in space and the Crank-Nicolson scheme in time. The discretized equations are solved with Python's sparse matrix solvers (currently linalg.lgmres or linalg.gmres are used). For the pressure Poisson equation, the pyAMG [1] has been found to be very efficient. For users who have an Nvidia graphics card, the entire code runs on the CPU (see Section 25). The CuPy library is used and this part was implemented in [2]. Using IDDES on a $2.3M$ mesh the speed-up is a factor of 70 on the GPU compared to the CPU, see Section 25.
Contents

1 Geometrical details of the grid 7
 1.1 Grid ... 7
 1.1.1 Nomenclature for the grid 7
 1.1.2 Area calculation of control volume faces 7
 1.1.3 Interpolation 10
 1.2 Gradient ... 10

2 Diffusion .. 11
 2.1 Unsteady diffusion 12
 2.1.1 Crank-Nicolson 13
 2.2 Convergence criteria 13
 2.3 2D Diffusion .. 14
 2.4 3D diffusion .. 15

3 Convection – diffusion 16
 3.1 Central Differencing scheme (CDS) 16
 3.2 First-order upwind scheme 17
 3.3 Hybrid scheme .. 18
 3.4 MUSCL ... 18
 3.5 Blended CDS and MUSCL 18
 3.6 Inlet boundary conditions using source term 19
 3.7 Wall boundary conditions using source term 20

4 The Fractional-step method 20
 4.1 Boundary condition for \bar{p} 21

5 Boundary Conditions ... 22
 5.1 Outlet velocity, small outlet 22
 5.2 Outlet velocity, large outlet 22
 5.3 Remaining variables 23

6 The Smagorinsky Model 23

7 The WALE model .. 24

8 The PANS Model .. 24

9 The PITM Model ... 25

10 The $k-\omega$ DES model 25

11 The $k-\varepsilon$ DES model 25

12 Inlet boundary conditions 26
 12.1 Synthesized turbulence 26
 12.2 Random angles 27
 12.3 Highest wave number 27
 12.4 Smallest wave number 27
 12.5 Divide the wave number range 27
12.6 von Kármán spectrum 28
12.7 Computing the fluctuations 28
12.8 Introducing time correlation 28

13 Procedure to generate anisotropic synthetic fluctuations

14 Flow Chart

15 Modules

15.1 bc_outlet_bc .. 31
15.2 calceps ... 31
15.3 calck_kom .. 31
15.4 calck .. 31
15.5 calcom ... 31
15.6 calcp .. 32
15.7 calcu .. 32
15.8 calcv .. 32
15.9 calew .. 32
15.10 coeff .. 32
15.11 compute_face_phi .. 32
15.12 compute_fk .. 32
15.13 compute_inlet_fluct 32
15.14 conv .. 32
15.15 correct_conv .. 32
15.16 fix_eps, fix_k, fix_omega 33
15.17 crank_nicol .. 33
15.18 dphidx, dphidy, dphidz 33
15.19 init .. 33
15.20 modify_eps, modify_k, modify_om, modify_u, modify_v, modify_w 33
15.21 modify_case.py .. 33
15.22 modify_init .. 33
15.23 print_indata .. 34
15.24 read_restart_data ... 34
15.25 save_data ... 34
15.26 save.file .. 34
15.27 save_time_aver_data 34
15.28 savevtk ... 34
15.29 setup_case.py ... 34
15.30 solve_amg .. 35
15.31 solve_amgx .. 35
15.32 solve_3d ... 35
15.33 solve_p ... 35
15.34 solve_px ... 35
15.35 solve_tdma .. 35
15.36 synt_fluct .. 35
15.37 time_stats .. 36
15.38 update .. 36
15.39 vist_kom .. 36
15.40 vist_pans ... 36
15.41 vist_smag ... 36
15.42 vist_wale .. 36

16 DNS of fully-developed channel flow at $Re_\tau = 500$
16.1 setup_case.py .. 37
 16.1.1 Section 1 ... 37
 16.1.2 Section 3 ... 38
 16.1.3 Section 4 ... 38
 16.1.4 Section 6 ... 38
 16.1.5 Section 7 ... 39
 16.1.6 Section 8 ... 39
 16.1.7 Section 9 ... 39
 16.1.8 Section 10 ... 39
16.2 modify_case.py .. 40
 16.2.1 modify_u .. 40
16.3 Run the code ... 40

17 Fully-developed channel flow at $Re_\tau = 5200$ using $k - \omega$ DES
17.1 setup_case.py .. 41
 17.1.1 Section 1 ... 41
 17.1.2 Section 2 ... 42
 17.1.3 Section 5 ... 42
 17.1.4 Section 6 ... 42
 17.1.5 Section 10 .. 42
17.2 modify_case.py .. 43

18 RANS of channel flow at $Re_\tau = 5200$ using $k - \omega$
18.1 setup_case.py .. 43
 18.1.1 Section 1 ... 43
 18.1.2 Section 2 ... 44
 18.1.3 Section 3 ... 44
 18.1.4 Section 8 ... 44
 18.1.5 Section 10 .. 44
18.2 modify_case.py .. 44

19 DNS of the flow over a wave

20 Synthetic turbulence at inlet: Channel flow at $Re_\tau = 395$
20.1 setup_case.py .. 45
 20.1.1 Section 2 ... 45
 20.1.2 Section 3 ... 46
 20.1.3 Section 4 ... 46
 20.1.4 Section 6 ... 46
 20.1.5 Section 10 .. 46
20.2 modify_case.py .. 45
 20.2.1 modify_init .. 46
 20.2.2 modify_inlet 47
 20.2.3 modify_u .. 48
 20.2.4 modify_w .. 48
 20.2.5 modify_w .. 48
 20.2.6 modify_outlet 48
21 Synthetic turbulence at inlet using commutation terms: Channel flow
 21.1 setup_case.py .. 49
 21.1.1 Section 2 .. 49
 21.1.2 Section 4 .. 49
 21.1.3 Section 10 .. 49
 21.2 modify_case.py .. 50
 21.2.1 modify_init 50
 21.2.2 modify_inlet 51
 21.2.3 modify_k ... 51
 21.2.4 modify_om 52
 21.2.5 fix_omega .. 52

22 RANS of boundary layer flow using $k-\omega$
 22.1 setup_case.py .. 53
 22.1.1 Section 1 .. 53
 22.1.2 Section 2 .. 53
 22.1.3 Section 4 .. 53
 22.1.4 Section 6 .. 53
 22.1.5 Section 8 .. 53
 22.1.6 Section 10 ... 53
 22.2 modify_case.py .. 54
 22.2.1 modify_init 54

23 RANS of hump flow using the AKN $k-\varepsilon$ model
 23.1 setup_case.py .. 55
 23.1.1 Section 2 .. 55
 23.1.2 Section 8 .. 55
 23.2 modify_case.py .. 55
 23.2.1 modify_inlet 55
 23.2.2 fix_eps .. 56

24 IDDES of hump flow using the $k-\varepsilon$ model
 24.1 setup_case.py .. 57
 24.1.1 Section 6 .. 57
 24.2 modify_case.py .. 57
 24.2.1 modify_inlet 57
 24.2.2 modify_fk 58
 24.2.3 modify_k ... 59

25 IDDES of hump flow running 100% on the GPU
 25.0.1 Section 0 .. 60
 25.0.2 Section 6 .. 61

26 Developing boundary layer

27 Workshop
 27.1 Getting started 62
 27.2 Channel flow, RANS 62
 27.2.1 New grid .. 63
 27.2.2 Boundary wall conditions on ω 63
27.2.3 $k - \varepsilon$ model ... 64
27.3 Boundary layer flow, RANS 64
27.4 Channel flow, inlet-outlet, $Re_T = 395$ 65
27.5 Channel flow, inlet-outlet with heat transfer, $Re_T = 395$ 67
 27.5.1 Adding buoyancy ... 67
27.6 RANS of channel flow at $Re_T = 5 \times 200$: $k - \omega$ and wall functions 68
27.7 Channel flow, inlet-outlet, $Re_T = 5 \times 200$ 69
 27.7.1 Neumann boundary condition on k 69
 27.7.2 No commutation terms 69
 27.7.3 No commutation terms in URANS region 69
27.8 Channel flow, inlet-outlet, $Re_T = 5 \times 200$, using wall functions 69
27.9 Channel flow, fully developed, $Re_T = 5 \times 200$ 69
 27.9.1 RANS-LES Interface .. 70
 27.9.2 Change turbulence model 70
 27.9.3 IDDES .. 70
28 Machine Learning (SVR) for improving wall functions 70
 28.1 Directory 1 .. 71
 28.2 Directory 2 .. 71
29 Machine Learning (Neural Network) for improving an EARS M 71
30 Machine Learning (KDTree) for improving wall functions 71

A Variables in pyCALC-LES ... 75

B Sparse matrix format in Python 81
 B.1 2D grid, $ni \times nj = (3, 4)$ 82
 B.2 2D grid, $ni \times nj = (3, 2)$ 83
 B.3 3D grid, $ni \times nj \times nk = (3, 2, 2)$, cyclic in x,i 84
 B.4 3D grid, $ni \times nj \times nk = (2, 2, 3)$, cyclic in z,k 85

C Using pyAMGx on GPU .. 85
1. Geometrical details of the grid

1.1 Grid

The grid \((x_{2d}, y_{2d})\) must be generated by the user. The grid spacing in the third direction is set by the 1D array \(z\) (control volume face). The nodes of the control volume \(x_{p2d}, y_{p2d}\) are placed at the center of the control volume. In any coordinate direction, let's say \(\xi\), there are \(n_i+1\) control volume faces, and \(n_i\) control volumes. Note that \((\xi, \eta, z)\) must form a right-hand coordinate system. The grid in the \(x\) \(-\) \(y\) plane may be curvilinear.

1.1.1 Nomenclature for the grid

Figure 1.1 shows a 1D grid. The first cell is number 0. Note that there are no ghost cells. This means that all Dirichlet boundary conditions must be prescribed using sources.

A schematic 2D control volume grid is shown in Fig. 1.2. Single capital letters define nodes [E(ast), W(est), N(orth), S(outh), H(igh) and L(ow)], and single small letters define faces of the control volumes. When a location can not be referred to by a single character, combination of letters are used. The order in which the characters appear is: first east-west \((i\) direction), then north-south \((j\) direction), and finally high-low \((k\) direction).

1.1.2 Area calculation of control volume faces

The \(x\) and \(y\) coordinates of the corners of the face in Fig. 1.3 are given by

\[
\begin{align*}
&x_{2d}(i, j), y_{2d}(i, j) \\
x_{2d}(i+1, j), y_{2d}(i+1, j) \\
x_{2d}(i, j+1), y_{2d}(i, j+1) \\
x_{2d}(i+1, j+1), y_{2d}(i+1, j+1)
\end{align*}
\]

The grid in the \(y\) \(-\) \(z\) direction (see Fig. 1.4), but may be non-equidistant. The \(z\) coordinates of the face and the cell center are given by the 1D arrays \(z(k)\) and \(zp(k)\), respectively.

The vectors \(\vec{a}, \vec{b}\) and \(\vec{c}\) for faces in Fig. 1.3 are set in a manner that the normal vectors point outwards. For the west face they are defined as...
Figure 1.2: Control volume. Top: \(x - y\) plane; bottom: \(y - z\) plane.
1.1. Grid

\(\vec{a} \): from corner \((i,j)\) to \((i,j+1)\)

\(\vec{b} \): from corner \((i,j)\) to \((i+1,j)\)

The Cartesian components of \(\vec{a} \) and \(\vec{b} \) are thus

\[
\begin{align*}
a_x &= x_{2d}(i, j+1) - x_{2d}(i, j) \\
a_y &= y_{2d}(i, j+1) - y_{2d}(i, j) \\
b_x &= x_{2d}(i+1, j) - x_{2d}(i, j) \\
b_y &= y_{2d}(i+1, j) - y_{2d}(i, j)
\end{align*}
\] (1.1)

Since the grid in the \(z \) direction is Cartesian, it is simple to compute the west and south areas of a control volume. The outwards-pointing vector areas reads

\[
\begin{align*}
A_{wx} &= -a_y \Delta z \\
A_{wy} &= a_x \Delta z \\
A_{sx} &= b_y \Delta z \\
A_{sy} &= -b_x \Delta z
\end{align*}
\]

which are stored in Python arrays \(\text{areawx}, \text{areawy}, \text{areasx} \) and \(\text{areasy} \).

The area of the control volume in the \(x - y \) plane is calculated as the sum of two triangles. The area of the two triangles, \(A_1, A_2 \), is calculated as the cross product.

\[
A_1 = \frac{1}{2} |\vec{a} \times \vec{b}|; \quad A_2 = \frac{1}{2} |\vec{c} \times \vec{d}|
\] (1.2)

The area for the low face is then obtained as

\[
A_z = A_1 + A_2
\] (1.3)

which is stored in the Python array \(\text{areaz} \).

The volume of the control volume is computed as \(A_z \Delta z \) which is stored in the Python array \(\text{vol} \).

Figure 1.3: Control volume in \(x - y \) plane. Calculation of areas and volume of cell \(i, j, k \).
1.2 Gradient

1.1.3 Interpolation

The nodes where all variables are stored are situated in the center of the control volume. When a variable is needed at a control volume face, linear interpolation is used. The value of the variable ϕ at the west face is

$$
\phi_w = f_x \phi_P + (1 - f_x) \phi_W
$$

where

$$
f_x = \frac{|\vec{P} - \vec{w}|}{|\vec{P} - \vec{w}| + |\vec{W} - \vec{w}|}
$$

where $|\vec{P} - \vec{w}|$ is the distance from P (the node) to w (the west face). In pyCALC-LES the interpolation factors (f_x, f_y) are stored in the Python array fx and fy. The interpolation factor in the z direction is stored in the Python array fz.

All geometrical quantities are computed in the module init.

1.2 Gradient

The derivatives of ϕ ($\partial \phi / \partial x_i$) at the cell center are in pyCALC-LES computed as follows. We apply Green’s formula to the control volume, i.e.

$$
\frac{\partial \Phi}{\partial x} = \frac{1}{V} \int_A \Phi n_x dA, \quad \frac{\partial \Phi}{\partial y} = \frac{1}{V} \int_A \Phi n_y dA, \quad \frac{\partial \Phi}{\partial z} = \frac{1}{V} \int_A \Phi n_z dA
$$

where A is the surface enclosing the volume V. For the x component, for example, we get

$$
\frac{\partial \Phi}{\partial x} = \frac{1}{V} (\Phi e A_{ex} - \Phi w A_{wx} + \Phi n A_{nx} - \Phi s A_{sx} + \Phi h A_{hx} - \Phi l A_{lx})
$$

where index e, w, n, s, h, l denotes east ($i + 1/2$), west ($i - 1/2$), north ($j + 1/2$), south ($j - 1/2$), high ($k + 1/2$) and low ($k - 1/2$).

The values at the west, south and low faces of a variable are stored in the Python arrays $u_{face_w}, u_{face_s}, u_{face_l}, v_{face_w}, w_{face}$, etc. They are computed in the Python module compute_face_phi.

The derivatives $\partial \Phi / \partial x, \partial \Phi / \partial y$ and $\partial \Phi / \partial z$, are computed in the Python modules dphidx, dphidy and dphidz, respectively.
2. Diffusion

We start by looking at 1D diffusion for a generic variable, \(\phi \), with diffusion coefficient \(\Gamma \)

\[
\frac{d}{dx} \left(\Gamma \frac{d\phi}{dx} \right) + S = 0.
\]

To discretize (i.e. to go from a continuous differential equation to an algebraic discrete equation) this equation is integrated over a control volume (C.V.), see Fig. 2.1.

\[
\int_{w}^{e} \left[\frac{d}{dx} \left(\Gamma \frac{d\phi}{dx} \right) + S \right] dx = \left(\Gamma \frac{d\phi}{dx} \right)_{e} - \left(\Gamma \frac{d\phi}{dx} \right)_{w} + \bar{S} \Delta x = 0 \tag{2.1}
\]

where (see Fig. 2.1):

- P: an arbitrary node
- E, W: its east and west neighbor node, respectively
- e, w: the control volume’s east and west face, respectively
- \(\bar{S} \): volume average of \(S \)

The variable \(\phi \) and the diffusion coefficient, \(\Gamma \), are stored at the nodes \(W, P \) and \(E \). Now we need the derivatives \(\frac{d\phi}{dx} \) at the faces \(w \) and \(e \). These are estimated from a straight line connecting the two adjacent nodes, i.e.

\[
\left(\frac{d\phi}{dx} \right)_{e} \approx \frac{\phi_{E} - \phi_{P}}{\delta x_{e}}, \quad \left(\frac{d\phi}{dx} \right)_{w} \approx \frac{\phi_{P} - \phi_{W}}{\delta x_{w}}. \tag{2.2}
\]

The diffusion coefficient, \(\Gamma \), is also needed at the faces. It is estimated by linear interpolation between the adjacent nodes. For the east face, for example, we obtain

\[
\Gamma_{w} = f_{x} \Gamma_{P} + (1 - f_{x}) \Gamma_{W}, \tag{2.3}
\]

Insertion of Eq. 2.2 into Eq. 2.1 gives

\[
a_{P} \phi_{P} = a_{E} \phi_{E} + a_{W} \phi_{W} + S \tag{2.4}
\]
2.1 Unsteady diffusion

We discretize the unsteady diffusion equation
\[\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) \]
over a 1D control volume (see Fig. 2.2). We integrate in space and time
\[\int_t^{t+\Delta t} \int_w^{e} \frac{\partial \phi}{\partial t} dx dt = \int_t^{t+\Delta t} \int_w^{e} \frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) dx dt \]

Left-hand side:
\[\int_w^{e} \left[\phi^{t+\Delta t} - \phi^t \right] dx = (\phi^E - \phi^o) \Delta x \]

Right-hand side:
\[\int_t^{t+\Delta t} \left[\left(\Gamma \frac{\partial \phi}{\partial x} \right)^e - \left(\Gamma \frac{\partial \phi}{\partial x} \right)^w \right] dt = \int_t^{t+\Delta t} \left[\Gamma_e \phi^E - \phi^P - \Gamma_w \phi^P - \phi^W \right] dt \]

At what time should \(\phi^W \), \(\phi^P \) and \(\phi^E \) be taken?
2.2. Convergence criteria

1. Fully implicit: take them at the new time step \(t + \Delta t \), i.e. \(\phi^1_W, \phi^1_P \) and \(\phi^1_E \) (first-order accurate).

2. Fully explicit: take them at the old time step \(t \), i.e. \(\phi^0_W, \phi^0_P \) and \(\phi^0_E \) (first-order accurate).

3. Use central differencing in time (Crank-Nicolson). Second-order accurate. Note that this is what we did in space when integrating the LHS.

2.1.1 Crank-Nicolson

For Crank-Nicolson the interpolation factor in time, \(\alpha \), is equal to 0.5. Below we express the time integration in a general way using \(\alpha \). When \(\alpha = 0 \), it corresponds to fully explicit and when \(\alpha = 1 \), it corresponds to fully implicit. We get

\[
\begin{align*}
 a_P \phi_P &= \alpha a_E \phi_E + \alpha a_W \phi_W \\
 &= (1 - \alpha)(a_E \phi^0_E + a_W \phi^0_W) + (a^0_P - (1 - \alpha)(a_E + a_W)) \phi^0_P \\
 a_E &= \Gamma_e \frac{\partial}{\partial x_e}, \quad a_W = \Gamma_w \frac{\partial}{\partial x_w}, \quad a^0_P = \frac{\Delta x}{\Delta t} \\
 a_P &= \alpha (a_E + a_W) + a^0_P
\end{align*}
\]

The Crank-Nicolson scheme (\(\alpha = 0.5 \)) is implicit and unconditionally stable. In practice, however, it is less stable than the fully implicit scheme. Crank-Nicolson in time can be compared with central differencing in space, even though it is much more stable.

2.2 Convergence criteria

Compute the residual for Eq. 2.4

\[
R = \sum_{\text{all cells}} |a_E \phi_E + a_W \phi_W + S_U - a_P \phi_P|
\]

In Python it corresponds to \(|Ax - b| \). Since we want Eq. 2.4 to be satisfied, the difference of the right-hand side and the left-hand side is a good measure of how well the equation is satisfied. The residual \(R \) is computed in the sparse-matrix solvers except for the continuity equation for which the Python command `np.linalg.norm` is employed. Note that \(R \) has the units of the integrated differential equation. For example, for the temperature \(R \) has the same dimension as heat transfer rate divided by density, \(\rho \), and specific heat, \(c_p \), i.e. temperature times volume per second [\(K m^3/s \)]. If \(R = 1 \), it means that the residual for the computation is 1. This does not tell us anything, since it is problem dependent. We can have a problem where the total heat transfer rate is 1000, and another where it is only 1. In the former case \(R = 1 \) means that the solutions can be considered converged, but in the latter case this is not true at all. We realize that we must normalize the residual to be able to judge whether the equation system has converged or not. The criterion for convergence is then

\[
\frac{R}{F} \leq \varepsilon
\]

where \(0.0001 < \varepsilon < 0.01 \), and \(F \) represents the total flow of \(\phi \).

Regardless if we solve the continuity equation, the Navier-Stokes equation or the temperature equation, the procedure is the same: \(F \) should represent the total flow of the dependent variable.
2.3 2D Diffusion

The two-dimensional diffusion equation for a generic variable \(\phi \) reads

\[
\frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\Gamma \frac{\partial \phi}{\partial y} \right) + S = 0.
\]

(2.6)

In the same way as we did for the 1D case, we integrate over our control volume, but now it’s in 2D (see Fig. 2.3), i.e.

\[
\int_{w}^{e} \int_{s}^{n} \left[\frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\Gamma \frac{\partial \phi}{\partial y} \right) + S \right] dxdy = 0.
\]

We start by the first term. The integration in \(x \) direction is carried out in exactly the same way as in 1D, i.e.

\[
\int_{w}^{e} \int_{s}^{n} \left[\frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) \right] dxdy = \int_{s}^{n} \left[\left(\frac{\partial \phi}{\partial x} \right)_{e} - \left(\frac{\partial \phi}{\partial x} \right)_{w} \right] dy
\]

\[
= \int_{s}^{n} \left(\Gamma_{c} \frac{\phi_{E} - \phi_{P}}{\delta x_{c}} - \Gamma_{w} \frac{\phi_{P} - \phi_{W}}{\delta x_{w}} \right) dy
\]

Now integrate in the \(y \) direction. We do this by estimating the integral

\[
\int_{s}^{n} f(y)dy = f_{P} \Delta y + O \left((\Delta y)^{2} \right)
\]
(i.e. \(f \) is taken at the mid-point \(P \)) which is second order accurate, since it is exact if \(f \) is a linear function. For our equation we get

\[
\int_s^{s'} \left(\frac{\Gamma_e}{\delta x_e} \frac{\phi_E - \phi_P}{\delta x_e} - \frac{\Gamma_w}{\delta x_w} \frac{\phi_P - \phi_W}{\delta x_w} \right) dy \\
= \left(\frac{\Gamma_e}{\delta x_e} \frac{\phi_E - \phi_P}{\delta x_e} - \frac{\Gamma_w}{\delta x_w} \frac{\phi_P - \phi_W}{\delta x_w} \right) \Delta y
\]

Doing the same for the diffusion term in the \(y \) direction in Eq. 2.6 gives

\[
\left(\frac{\Gamma_n}{\delta y_n} \frac{\phi_N - \phi_P}{\delta y_n} - \frac{\Gamma_s}{\delta y_s} \frac{\phi_P - \phi_S}{\delta y_s} \right) \Delta x + \Delta y = 0
\]

Rewriting it as an algebraic equation for \(\phi_P \), we get

\[
a_P \phi_P = a_E \phi_E + a_W \phi_W + a_N \phi_N + a_S \phi_S + S_U
\]

\[
a_E = \frac{\Gamma_e \Delta y}{\delta x_e}, \ a_W = \frac{\Gamma_w \Delta y}{\delta x_w}, \ a_N = \frac{\Gamma_n \Delta x}{\delta y_n}, \ a_S = \frac{\Gamma_s \Delta x}{\delta y_s}
\]

\[
S_U = \Delta x \Delta y, \ a_P = a_E + a_W + a_N + a_S - S_P.
\]

In this 2D equation we have introduced the general form of the source term, \(S = S_P \Phi + S_U \); this could also be done in the 1D equation (Eq. 2.4).

For more detail on diffusion, see http://www.tfd.chalmers.se/~lada/comp_fluid_dynamics/lecture_notes.html

2.4 3D diffusion

In pyCALC-LES the diffusion coefficients are computed using areas and volume, i.e.

\[
a_P \phi_P = a_E \phi_E + a_W \phi_W + a_N \phi_N + a_S \phi_S + a_H \phi_H + a_L \phi_L + S_U
\]

\[
a_E = \frac{\Gamma_w A_w^2}{V_w}, \ a_W = \frac{\Gamma_s A_s^2}{V_s}, \ a_N = \frac{\Gamma_h A_h^2}{V_h}, \ a_S = \frac{\Gamma_l A_l^2}{V_l}
\]

\[
a_P = a_E + a_W + a_N + a_S + a_H + a_L - S_P
\]

The east, north and high coefficients are computed from \(a_W, a_S \) and \(a_L \), respectively, as

\[
a_{E,i} = a_{W,i+1} \]
\[
a_{N,j} = a_{S,j+1} \]
\[
a_{H,k} = a_{L,k+1} \]
3 Convection – diffusion

The 1D convection-diffusion equation reads

$$\frac{d}{dx}(\overline{u}\phi) = \frac{d}{dx}\left(\Gamma \frac{d\phi}{dx}\right) + S$$

We discretize this equation in the same way as the diffusion equation. We start by integrating over the control volume (see Fig. 3.1).

$$\int_{w}^{e} \frac{d}{dx}(\overline{u}\phi) \ dx = \int_{w}^{e} \left[\frac{d}{dx}\left(\Gamma \frac{d\phi}{dx}\right) + S \right] \ dx.$$ \hspace{1cm} (3.1)

We start by the convective term (the left-hand side)

$$\int_{w}^{e} \frac{d}{dx}(\overline{u}\phi) \ dx = (\overline{u}\phi)_{e} - (\overline{u}\phi)_{w}.$$

We assume the velocity \overline{u} to be known, or, rather, obtained from the solution of the Navier-Stokes equation.

3.1 Central Differencing scheme (CDS)

How to estimate ϕ_{e} and ϕ_{w}? The most natural way is to use linear interpolation (central differencing); for the east face this gives

$$(\overline{u}\phi)_{w} = (\overline{u})_{w} \phi_{w}$$

where the convecting part, \overline{u}, is taken by central differencing, and the convected part, ϕ, is estimated with different differencing schemes. We start by using central differencing for ϕ so that

$$(\overline{u}\phi)_{w} = (\overline{u})_{w} \phi_{w}, \text{ where } \phi_{w} = f_{x}\phi_{P} + (1 - f_{x})\phi_{W}$$

where f_{x} is the interpolation function (see Eq. 2.3, p. 11), and for constant mesh spacing $f_{x} = 0.5$. Assuming constant equidistant mesh (i.e. $\delta x_{w} = \delta x_{e} = \Delta x$) so that $f_{x} = 0.5$, inserting the discretized diffusion and the convection terms into Eq. 3.1 we obtain

$$\frac{(\overline{u})_{e} \phi_{E} + \phi_{P}}{2} - \frac{(\overline{u})_{w} \phi_{P} + \phi_{W}}{2} =$$

$$= \frac{\Gamma_{e}(\phi_{E} - \phi_{P})}{\delta x_{e}} - \frac{\Gamma_{w}(\phi_{P} - \phi_{W})}{\delta x_{w}} + S\Delta x.$$
3.2 First-order upwind scheme

For turbulent quantities upwind schemes must usually be used in order stabilize the numerical procedure. Furthermore, the source terms in these equations are usually very large which means that an accurate estimation of the convection term is less critical.

In this scheme the face value is estimated as

\[\phi_w = \begin{cases}
\phi_W & \text{if } \bar{u}_w \geq 0 \\
\phi_P & \text{otherwise}
\end{cases} \]

- first-order accurate
- bounded

The large drawback with this scheme is that it is inaccurate.
3.3 Hybrid scheme

This scheme is a blend of the central differencing scheme and the first-order upwind scheme. We learned that the central scheme is accurate and stable for $|Pe| \leq 2$. In the Hybrid scheme, the central scheme is used for $|Pe| \leq 2$; otherwise the first-order upwind scheme is used. This scheme is only marginally better than the first-order upwind scheme, as normally $|Pe| > 2$. It should be considered as a first-order scheme.

3.4 MUSCL

MUSCL [3] is a second-order upwind bounded scheme. It uses two nodes upstream and one downstream, see Fig. 3.2. The coefficients $a_W, a_E, \ldots a_H$ are computed with first-order upwind. A correction term is then added to the source term. For the west face, e.g., it reads

\[C^+ = 0.5 + 0.5 \cdot \text{sign}(C_w) \]
\[C^- = 0.5 \cdot \text{sign}(C_w) - 0.5 \]
\[S^M_U = 0.5 \cdot C_w \cdot (C^+ \cdot \text{minmo}(u_P - u_W, u_W - u_{WW}) - C^- \cdot \text{minmo}(u_P - u_W, u_E - u_P)) \]

where C_w is the convective flux through the west face. The function minmo is defined as

\[\text{minmo}(a, b) = \text{sign}(a) \cdot \max(0, \min(|a|, b \cdot \text{sign}(a))) \]

3.5 Blended CDS and MUSCL

When using the central differencing scheme (CDS), numerical oscillations may appear in inviscid regions. If they are harmful, they can be avoided by using a blend between CDS and MUSCLE. The MUSCL scheme is first used. A blending parameter, $b = \text{blend}$, is set. If $b = 1$, we use full CDS. This corresponds to deferred CDS and is different from the standard CDS because here the left-hand side (i.e. $a_W, a_E, \ldots a_H$) is first-order upwind and the CDS is added on the right-hand side. Hence, deferred CDS ($b = 1$) is more dissipative than CDS.

The blending parameter, b, is first used for reducing the additional source term, S^M_U (see Eq. 3.2) when $b < 1$, i.e.

\[S^M_U = (1 - b) \cdot S^M_U \]

Second, it is used for adding the CDS scheme to the right-hand side and subtracting the first-order upwind scheme. For the west face the additional source term reads

\[S^{CDS}_U = b \cdot (a^c_W - a^u_W) \cdot (\alpha \cdot (u_W - u_P) + (1 - \alpha) \cdot ((u^o_W - u^o_P)) \]

where superscript c, u and o denote CDS, first-order upwind and previous time step, respectively. The parameter, α, is the time-discretization, see Eq. 2.5; it is 0.5 for Crank-Nicolson.
3.6 Inlet boundary conditions using source term

Since pyCALC-LES does not use any ghost cells or cell centers located at the boundaries, the boundary conditions must be prescribed through source terms. By default, there is no flux through the boundaries and hence Neumann boundary conditions are set by default. Here, we describe how to set Dirichlet boundary conditions.

Consider discretization in a cell, P, adjacent to an inlet, see Fig. 3.3. Consider only convection. For the \bar{u} equation at cell $i = 0$ we get

$$a_P \bar{u}_P = a_W \bar{u}_W + a_E \bar{u}_E + S_U$$

$$a_P = a_W + a_E - S_P, \quad a_W = C_w, \quad a_E = -0.5C_e$$

$$C_w = \bar{u}_W A_w$$

$$a_P = C_w - 0.5C_e$$

Note there’s no 0.5 in front of C_w since the west node is located at the inlet. Since there is no cell west of $i = 0$, Eq. 3.5 has to be implemented with additional source terms

$$a_W = 0$$

$$S_{U, add}^u = C_w \bar{u}_w$$

$$S_{P, add}^u = -C_w$$

For \bar{v} and w it reads

$$S_{U, add}^v = C_w \bar{v}_w$$

$$S_{P, add}^v = -C_w$$

$$S_{U, add}^w = C_w \bar{w}_w$$

$$S_{P, add}^w = -C_w$$

The additional term for the diffusion reads

$$S_{U, add, diff}^u = \frac{\nu_{tot} A_w}{\Delta x} \bar{u}_w$$

$$S_{U, add, diff}^v = \frac{\nu_{tot} A_w}{\Delta x} \bar{v}_w$$

$$S_{U, add, diff}^w = \frac{\nu_{tot} A_w}{\Delta x} \bar{w}_w$$

$$S_{P, add, diff} = -\frac{\nu_{tot} A_w}{\Delta x}$$
3.7 Wall boundary conditions using source term

where $S_{P,add,diff}$ is the same for \bar{u}, \bar{v} and \bar{w}. The viscous part of Eq. 3.8 is implemented in module bc. The turbulent part and the convective part (Eqs. 3.6 and 3.7) are implemented in modify_u, modify_v etc.

3.7 Wall boundary conditions using source term

We use exactly the same procedure as in Section 3.6. At walls, there is no convection and the velocity is zero. Hence we simply use Eq. 3.8 with $\bar{u} = \bar{v} = \bar{w} = 0$, i.e. (for west wall)

$$S_{P,add,diff} = -\nu A_w \frac{\Delta x}{\Delta x}$$

Note that we use ν instead of ν_{tot} since the turbulent viscosity is zero at the wall.

This boundary condition is implemented in module bc.

4 The Fractional-step method

modules: calcp, correct_conv

The numerical method based on an implicit, finite volume method with collocated grid arrangement, central differencing in space, and Crank-Nicolson ($\alpha = 0.5$) in time is briefly described below. An implicit, two-step time-advancement methods is used [4]. The Navier-Stokes equation for the \bar{u}_i velocity reads

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_j} (\bar{u}_i \bar{u}_j) = -\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}$$

(4.1)

The discretized momentum equations read

$$\bar{u}_i^{n+1/2} = \bar{v}_i^n + \Delta t H \left(\bar{v}_i^n, \bar{v}_i^{n+1/2} \right)$$

$$-\alpha \Delta t \frac{\partial p^{n+1/2}}{\partial x_i} - (1 - \alpha) \Delta t \frac{\partial p^n}{\partial x_i}$$

(4.2)

where H includes convective, viscous and SGS terms. In SIMPLE notation this equation reads

$$a_P \bar{v}_i^{n+1/2} = \sum_{nb} a_{nb} \bar{v}_{i,J}^{n+1/2} + S_U - \alpha \frac{\partial p^{n+1/2}}{\partial x_i} \Delta V$$

where S_U includes the explicit pressure gradient. The face velocities $\bar{v}_{f,i,J}^{n+1/2} = 0.5(\bar{v}_{i,J}^{n+1/2} + \bar{v}_{i,J-1}^{n+1/2})$ (note that J denotes node number and i is a tensor index) do not satisfy continuity. Create an intermediate velocity field by subtracting the implicit pressure gradient from Eq. 4.2, i.e.

$$\bar{v}_i^* = \bar{v}_i^n + \Delta t H \left(\bar{v}_i^n, \bar{v}_i^{n+1/2} \right) - (1 - \alpha) \Delta t \frac{\partial p^n}{\partial x_i}$$

$$\Rightarrow \bar{v}_i^* = \bar{v}_i^{n+1/2} + \alpha \Delta t \frac{\partial p^{n+1/2}}{\partial x_i}$$

(4.3)
4.1. Boundary condition for \bar{p}

Take the divergence of Eq. 4.3b and require that $\frac{\partial \bar{v}_{f,i}^{n+1/2}}{\partial x_i} = 0$ so that

$$\frac{\partial^2 \bar{p}^{n+1}}{\partial x_i \partial x_i} = \frac{1}{\Delta t \alpha} \frac{\partial \bar{v}_{f,i}^*}{\partial x_i}$$

(4.4)

This is a diffusion equation which is discretization in the same way as in Sections 2.3 and 2.4 (the diffusion coefficient Γ is set to $1/(\Delta t \alpha)$).

The Poisson equation for \bar{p}^{n+1} is solved with an efficient algebraic multigrid method, either on the CPU (pyAMg [1]) or on the GPU using pyAMGx [5]. The face velocities are corrected as

$$\bar{v}_{f,i}^{n+1} = \bar{v}_{f,i}^* - \alpha \Delta t \frac{\partial \bar{p}^{n+1}}{\partial x_i}$$

(4.5)

1. Solve the discretized filtered Navier-Stokes equation, Eq. 4.3, for \bar{v}_1, \bar{v}_2 and \bar{v}_3.
2. Create an intermediate velocity field \bar{v}_i^* from Eq. 4.3.
3. Use linear interpolation to obtain the intermediate velocity field, $\bar{v}_{f,i}$, at the face
4. The Poisson equation (Eq. 4.4) is solved with pyAMG or pyAMGx.
5. Compute the face velocities (which satisfy continuity) from the pressure and the intermediate face velocity from Eq. 4.5
6. Step 1 to 4 is performed till convergence (normally one iteration) is reached.
7. The turbulent viscosity is computed and transport equations for turbulent quantities are solved.
8. Next time step.

4.1 Boundary condition for \bar{p}

The Poisson equation for pressure reads (see Eq. 4.4)

$$\frac{\partial^2 \bar{p}}{\partial x_i \partial x_i} = \frac{1}{\Delta t \alpha} \frac{\partial \bar{v}_{f,i}^*}{\partial x_i}$$

Integration over the entire flow domain, V, using Gauss divergence law gives

$$\int_S \frac{\partial \bar{p}}{\partial x_i} n_i dS = \frac{1}{\Delta t \alpha} \int_S \bar{v}_{f,i}^* n_i dS$$

(4.6)

where S denotes the bounding surface of the flow domain and n_i is the unit normal vector of the surface. At the boundaries, the intermediate velocity field, $\bar{v}_{f,i}^*$, is equal to the physical velocity, i.e. $\bar{v}_{f,i}^* = \bar{v}_i$. Hence, the right side of Eq. 4.6 expresses the total mass flow out of the domain. This must – due to global continuity – be zero. A consistent boundary condition for the pressure is then

$$\frac{\partial \bar{p}}{\partial x_i} n_i = \frac{\partial \bar{p}}{\partial x_n} = 0$$

(4.7)

at all boundaries (x_n denotes the local direction normal to the boundary).
5. Boundary Conditions

<table>
<thead>
<tr>
<th></th>
<th>RANS</th>
<th>LES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>2D or 3D</td>
<td>always 3D</td>
</tr>
<tr>
<td>Time domain</td>
<td>steady or unsteady</td>
<td>always unsteady</td>
</tr>
<tr>
<td>Space discretization</td>
<td>2nd order upwind</td>
<td>central differencing</td>
</tr>
<tr>
<td>Time discretization</td>
<td>1st order</td>
<td>2nd order (e.g. C-N)</td>
</tr>
<tr>
<td>Turbulence model</td>
<td>more than two-equations</td>
<td>zero- or one-equation</td>
</tr>
</tbody>
</table>

Table 4.1: Differences between a finite volume RANS and LES code.

5.1 Outlet velocity, small outlet

For small outlets, the outlet velocity can be determined from global continuity. As the outlet is small a constant velocity over the whole outlet can be used. The outlet velocity is set as (see Fig. 5.1)

\[\bar{u}_{in}h_{in} = \bar{u}_{out}h_{out} \Rightarrow \bar{u}_{out} = \bar{u}_{in}h_{in}/h_{out} \]

5.2 Outlet velocity, large outlet

For large outlets the outlet velocity must be allowed to vary over the outlet. The proper boundary condition in this case is \(\partial \bar{u} / \partial x = 0 \). Hence it is important that the flow near the outlet is fully developed, so that this boundary condition corresponds to the flow conditions. The best way to ensure this is to locate the outlet boundary sufficiently far
5.3 Remaining variables

If we have a recirculation region in the domain (see Fig. 5.2), the outlet should be located sufficiently far downstream of this region so that \(\partial \dot{u}/\partial x \simeq 0 \).

The outlet boundary condition is implemented as follows (see Fig. 5.2)

1. Set \(\bar{u}_e = \bar{u}_w \) for all nodes (i.e. for \(j = 0 \) to 4, see Fig. 5.2);
2. In order to speed up convergence, enforce global continuity.

\[\text{Inlet volume flow:} \quad \dot{V}_{\text{in}} = \sum_{\text{inlet}} \bar{u}_{\text{in}} \Delta y \]
\[\text{Outlet volume flow:} \quad \dot{V}_{\text{out}} = \sum_{\text{outlet}} \bar{u}_{\text{out}} \Delta y \]
\[\text{Compute correction velocity:} \quad \bar{u}_{\text{corr}} = (\dot{V}_{\text{in}} - \dot{V}_{\text{out}})/(A_{\text{out}}), \text{ where } A_{\text{out}} = \sum_{\text{outlet}} \Delta y. \]
\[\text{Correct } \bar{u}_e \text{ so that global continuity (i.e. } \dot{V}_{\text{in}} = \dot{V}_{\text{out}}) \text{ is satisfied:} \quad \bar{u}_{e\text{new}} = \bar{u}_e + \bar{u}_{\text{corr}} \]

This boundary condition is implemented in module `modify_outlet`.

5.3 Remaining variables

Set \(\partial \Phi / \partial x = 0 \), and implement it through \(\Phi_{ni} = \Phi_{ni-1} \) each iteration. This is done in module `compute_face_phi` if `phi_bc_east_type = 'n'`.

6 The Smagorinsky Model

The simplest model is the Smagorinsky model [6]:

\[\tau_{ij} - \frac{1}{3} \delta_{ij} \tau_{kk} = -\nu_{\text{sgs}} \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) = -2\nu_{\text{sgs}} \bar{s}_{ij} \]
\[\nu_{\text{sgs}} = (C_S \Delta)^2 \sqrt{2\delta_{ij} \bar{s}_{ij}} \equiv (C_S \Delta)^2 \vert \bar{s} \vert \] (6.1)

and the filter-width is taken as the local grid size

\[\Delta = (\Delta V_{ijk})^{1/3} \] (6.2)

Near the wall, the SGS viscosity becomes quite large since the velocity gradient is very large at the wall. A convenient way to dampen the SGS viscosity near the wall is simply to use the RANS length scale as an upper limit, i.e.

\[\Delta = \min \left\{ (\Delta V_{ijk})^{1/3}, \kappa n \right\} \] (6.3)

where \(n \) is the distance to the nearest wall. \(C_S \) is set to 0.1 (in `pyCALC-LES` it is set by `cmu`).

![Figure 5.2: Outlet boundary condition. Large outlet.](image)
7 The WALE model

module: vist_wale

The WALE model by [7] reads

\[g_{ij} = \frac{\partial \bar{v}_i}{\partial x_j} \]

\[g_{2ij} = g_{ik} g_{kj} \]

\[\bar{s}_{ij} = \frac{1}{2} (g_{ij}^2 + g_{ji}^2) - \frac{1}{3} \delta_{ij} g_{kk}^2 \]

\[\nu_{sgs} = (C_m \Delta)^2 \frac{(g_{ij}^2 g_{ji}^2)^{5/2} + (g_{ij}^2 g_{ji}^2)^{5/4}}{(s_{ij} s_{ij})^{3/2} + (s_{ij} s_{ij})^{5/4}} \] (7.1)

with \(C_m = 0.325 \) which corresponds to \(C_s = 0.1 \).

8 The PANS Model

module: calck, calceps, vist_pans

The Reynolds number PANS model presented in [8, 9] reads

\[\frac{\partial k}{\partial t} + \frac{\partial (k \bar{u}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{ku}} \right) \frac{\partial k}{\partial x_j} \right] + \nu_t \sigma_{ku} k + \nu_t \sigma_{ku} k \frac{P_k}{k} - C_{\epsilon 1} \frac{P_k \epsilon}{k} - C_{\epsilon 1} \frac{\epsilon^2}{k} \]

\[\frac{\partial \epsilon}{\partial t} + \frac{\partial (\epsilon \bar{u}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{\epsilon u}} \right) \frac{\partial \epsilon}{\partial x_j} \right] + C_{\epsilon 1} \frac{P_k \epsilon}{k} - C_{\epsilon 1} \frac{\epsilon^2}{k} \]

\[\nu_t = C_{\mu} f_{k} \frac{k^2}{\epsilon}, \quad C_{\epsilon 2} = C_{\epsilon 1} + \frac{f_k}{f_{\epsilon}} (C_{\epsilon 2} f_2 - C_{\epsilon 1}) \]

\[\sigma_{ku} \equiv \sigma_{\epsilon u} \equiv \sigma_{\epsilon 2} \frac{k^2}{f_{\epsilon}}, \quad P_k = 2\nu_t \bar{s}_{ij} \bar{s}_{ij} \] (8.1)

\[f_2 = \left[1 - \exp \left(-\frac{y^*}{3.4} \right) \right]^2 \left\{ 1 - 0.3 \exp \left[-\left(\frac{R_t}{6.5} \right)^2 \right] \right\} \]

\[f_{\mu} = \left[1 - \exp \left(-\frac{y^*}{14} \right) \right]^2 \left\{ 1 + \frac{5}{R_t^{5/4}} \exp \left[-\left(\frac{R_t}{200} \right)^2 \right] \right\} \]

\[R_t = \frac{k^2}{\nu \epsilon}, \quad y^* = U_\epsilon y / \nu, \quad U_\epsilon = (\epsilon \nu)^{1/4} \]

The modifications introduced by the PANS modeling as compared to its parent RANS model are underlined. The model constants take the same values as in the AKN model [10], i.e.

\[C_{\epsilon 1} = 1.5, \quad C_{\epsilon 2} = 1.9, \quad \sigma_k = 1.4, \quad \sigma_\epsilon = 1.4, \quad C_{\mu} = 0.09 \] (8.2)

When the turbulent Prandtl numbers, \(\sigma_k \) and \(\sigma_\epsilon \) (Python variables prand_k and prand_\epsilon), are set to negative values, \(\sigma_{k,u} \) and \(\sigma_{\epsilon,u} \) are computed as in Eq. 8.1 using the absolute values of \(\sigma_k \) and \(\sigma_\epsilon \). When \(\sigma_k \) and \(\sigma_\epsilon \) are positive, the PITM model is used (see Section 9).

The function \(f_\epsilon \), the ratio of the modeled to the total dissipation, is set to one since the turbulent Reynolds number is high. \(f_k \) is computed as [11]

\[f_k = \max \left[f_{k,min}, \min \left(1, 1 - \frac{\psi - 1}{C_{\epsilon 2} - C_{\epsilon 1}} \right) \right] \] (8.3)

\[\psi = \max \left(1, \frac{k^{5/2}/\epsilon}{C_{DES} \Delta_{max}} \right), \quad \Delta_{max} = \max(\Delta x_1, \Delta x_2, \Delta x_3) \]
9. The PITM Model

which means that the interface is chosen automatically. The minimum \(f_{k,\text{min}} \) is stored in the Python variable \(f_{k,\text{min}} \).

At the wall-adjacent cells, \(\varepsilon \) is not solved but it is fixed as

\[
\varepsilon_P = \frac{2\nu k}{y^2}
\]

where subscript \(P \) denotes wall-adjacent cells and \(y \) is the distance between the cell center and the wall. This is done in module \texttt{fix_eps}.

9 The PITM Model

PITM is an acronym for Partially Integrated Transport Model [12, 13]. It is identical to the PANS model, except that \(f_k = 1 \) in the diffusion terms of the \(k \) and \(\varepsilon \) equations. Setting \texttt{pans=True} and positive values \(\sigma_k \) and \(\sigma_\varepsilon \) activates PITM.

10 The \(k-\omega \) DES model

modules: \texttt{calck}, \texttt{calcom}, \texttt{vist}_\texttt{kom}

The Wilcox \(k-\omega \) RANS turbulence model [14] modified for DES reads

\[
\frac{\partial k}{\partial t} + \frac{\partial \bar{v}_k k}{\partial x_i} = P^k - F_{\text{DES}} \frac{\omega_k}{k} \left[\frac{\partial}{\partial x_j} \left(\nu + \frac{\nu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right]
\]

\[
\frac{\partial \omega}{\partial t} + \frac{\partial \bar{v}_\omega \omega}{\partial x_i} = \frac{C_\omega}{k} \omega^2 P^k - C_\omega \omega + \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_\omega} \right) \frac{\partial \omega}{\partial x_j} \right]
\]

\[
\nu_t = \frac{k}{\omega}
\]

\[
F_{\text{DES}} = \max \left(\frac{k^{3/2}}{c_{\mu} \omega \Delta}, 1 \right), \quad \Delta = 0.67 \max(\Delta x_1, \Delta x_2, \Delta x_2)
\]

where \(c_\mu = 0.09, c_{\omega_1} = 5/9, c_{\omega_2} = 3/40, \sigma_k = 0.5 = \sigma_\omega = 2.0 \). The function \(F_{\text{DES}} \) is computed in the module \texttt{compute_f} and stored in the array \texttt{f3d}.

The wall boundary conditions are

\[
k_w = 0, \quad \omega_w = 10 \frac{6\nu}{C_\omega y^2}
\]

where \(y \) is the wall distance between the wall-adjacent cell center and the wall.

11 The \(k-\varepsilon \) DES model

module: \texttt{calck}, \texttt{calceps}, \texttt{vist}_\texttt{pans}

The underlying turbulence model is the AKN model which is used in the PANS model in Section 8 except that \(f_k = f_\varepsilon = 1 \). In this model, \(f_k \) is defined as \(F_{\text{DES}} \).

It is used for modifying the dissipation term in the \(k \) equation in the same was as in Section 10, i.e.

\[
F_{\text{DES}} \equiv f_k \max \left(\frac{k^{3/2}}{\varepsilon \Delta}, 1 \right), \quad \Delta = 0.67 \max(\Delta x_1, \Delta x_2, \Delta x_2)
\]
12. Inlet boundary conditions

The function \(F_{\text{DES}} \) is computed in the module `compute_fk` and stored in the array `fk3d`.

12 Inlet boundary conditions

In RANS it is sufficient to supply profiles of the mean quantities such as velocity and temperature plus the turbulent quantities (e.g. \(k \) and \(\varepsilon \)). However, in unsteady simulations (LES, URANS, DES . . .) the time history of the velocity and temperature need to be prescribed; the time history corresponds to turbulent, resolved fluctuations. In some flows it is critical to prescribe reasonable turbulent fluctuations, but in many flows it seems to be sufficient to prescribe constant (in time) profiles [15, 16].

There are different ways to create turbulent inlet boundary conditions. One way is to use a pre-cursor DNS or a well resolved LES of channel flow. This method is limited to fairly low Reynolds numbers and it is difficult (or impossible) to re-scale the DNS fluctuations to higher Reynolds numbers.

Another method based partly on synthesized fluctuations is the vortex method [17]. It is based on a superposition of coherent eddies where each eddy is described by a shape function that is localized in space. The eddies are generated randomly in the inflow plane and then convected through it. The method is able to reproduce first and second-order statistics as well as two-point correlations.

A third method is to take resolved fluctuations at a plane downstream of the inlet plane, re-scale them and use them as inlet fluctuations.

Below we present a method of generating synthesized inlet fluctuations.

12.1 Synthesized turbulence

The method described below was developed in [18, 19] for creating turbulence for generating noise. It was later further developed for inlet boundary conditions [20, 21, 22, 23].

A turbulent fluctuating velocity fluctuating field (whose average is zero) can be expressed using a Fourier series, see [24]. Let us re-write this formula as

\[
\begin{align*}
 a_n \cos(nx) + b_n \sin(nx) &= c_n \cos(\alpha_n) \cos(nx) + c_n \sin(\alpha_n) \sin(nx) = c_n \cos(nx - \alpha_n) \\
 c_n &= \left(a_n^2 + b_n^2 \right)^{1/2}, \quad \alpha_n = \arctan \left(\frac{b_n}{a_n} \right)
\end{align*}
\]

where \(a_n = c_n \cos(\alpha) \), \(b_n = c_n \sin(\alpha_n) \). The new coefficient, \(c_n \), and the phase angle, \(\alpha_n \), are related to \(a_n \) and \(b_n \) as

\[
\begin{align*}
 c_n &= \left(a_n^2 + b_n^2 \right)^{1/2}, \quad \alpha_n = \arctan \left(\frac{b_n}{a_n} \right)
\end{align*}
\]

A general form for a turbulent velocity field can thus be written as

\[
\begin{align*}
 \mathbf{v}'(\mathbf{x}) &= 2 \sum_{n=1}^{N} \hat{u}^n \cos(\kappa^n \cdot \mathbf{x} + \psi^n) \sigma^n
\end{align*}
\]

where \(\hat{u}^n \), \(\psi^n \) and \(\sigma^n \) are the amplitude, phase and direction of Fourier mode \(n \). The synthesized turbulence at one time step is generated as follows.
12.2 Random angles

The angles φ^n and θ^n determine the direction of the wavenumber vector κ, see Eq. 12.3 and Eq. 12.1; α^n denotes the direction of the velocity vector, v'. For more details, see [24].

12.3 Highest wave number

Define the highest wave number based on mesh resolution $\kappa_{\text{max}} = \frac{2\pi}{(2\Delta)}$ (see [24]), where Δ is the grid spacing. Often the smallest grid spacing near the wall is too small, and then a slightly larger values may be chosen. Here we don’t let it be smaller than $d_{\text{min,synt}}$ (which can be set to a fraction of dz).

12.4 Smallest wave number

Define the smallest wave number from $\kappa_1 = \kappa_e/p$, where $\kappa_e = \alpha 9\pi/(55L_t)$, $\alpha = 1.453$. The turbulent length scale, L_t, may be estimated in the same way as in RANS simulations, i.e. $L_t \propto \delta$ where δ denotes the inlet boundary layer thickness. In [21, 22, 23] it was found that $L_t \simeq 0.1\delta_{in}$ is suitable. Here we usually use $L_t \simeq 0.2\delta_{in}$.

Factor p should be larger than one to make the largest scales larger than those corresponding to κ_e. A value $p = 2$ is suitable.

12.5 Divide the wave number range

Divide the wavenumber space, $\kappa_{\text{max}} - \kappa_1$, into N modes, equally large, of size $\Delta \kappa$.

Figure 12.1: The wave-number vector, κ^n, and the velocity unit vector, σ^n, are orthogonal (in physical space) for each wave number n.

12.6 von Kármán spectrum

A modified von Kármán spectrum is chosen, see Eq. 12.4 and Fig. 12.2. The amplitude \hat{u}^n of each mode in Eq. 12.3 is then obtained from

$$\hat{u}^n = (E(\kappa))^{1/2}$$

$$E(\kappa) = c_E \frac{u_{rms}^2}{\kappa_e} \left[\frac{\kappa}{\kappa_e} \right]^{\frac{4}{3}} \left[1 + \left(\frac{\kappa}{\kappa_e} \right)^2 \right]^{-\frac{17}{6}} e^{-2(\kappa/\kappa_e)^2}$$

where

$$\kappa = (\kappa_i \kappa_i)^{1/2}, \quad \kappa_\eta = \varepsilon^{1/4} \nu^{3/4}$$

The coefficient c_E is obtained by integrating the energy spectrum over all wavenumbers to get the turbulent kinetic energy, i.e.

$$k = \int_0^\infty E(\kappa) d\kappa$$

which gives [25]

$$c_E = \frac{4}{\sqrt{\pi}} \frac{\Gamma(17/6)}{\Gamma(1/3)} \simeq 1.453$$

12.7 Computing the fluctuations

Having \hat{u}^n, κ^n, σ^n, and ψ^n, allows the expression in Eq. 12.3 to be computed, i.e.

$$v'_1 = 2 \sum_{n=1}^N \hat{u}^n \cos(\beta^n) \sigma_1$$

$$v'_2 = 2 \sum_{n=1}^N \hat{u}^n \cos(\beta^n) \sigma_2$$

$$v'_3 = 2 \sum_{n=1}^N \hat{u}^n \cos(\beta^n) \sigma_3$$

$$\beta^n = k_1^n x_1 + k_2^n x_2 + k_3^n x_3 + \psi^n$$

12.8 Introducing time correlation

A fluctuating velocity field is generated each time step as described above. They are independent of each other and their time correlation will thus be zero. This is nonphysical. To create correlation in time, new fluctuating velocity fields, V'_1, V'_2, V'_3, are computed based on an asymmetric time filter

$$\langle V'_1 \rangle_m = a \langle V'_1 \rangle_{m-1} + b \langle v'_1 \rangle_m$$

$$\langle V'_2 \rangle_m = a \langle V'_2 \rangle_{m-1} + b \langle v'_2 \rangle_m$$

$$\langle V'_3 \rangle_m = a \langle V'_3 \rangle_{m-1} + b \langle v'_3 \rangle_m$$

(12.9)
12.8. Introducing time correlation

Figure 12.2: Modified von Kármán spectrum

Figure 12.3: Auto correlation, $B(\tau) = \langle v'_1(t)v'_1(t-\tau) \rangle_t$ (averaged over time, t). \rightarrow : Eq. 12.12; \rightarrow : computed from synthetic data, $(V'_1)^m$, see Eq. 12.9.
where \(m \) denotes the time step number and
\[
a = \exp(-\Delta t/T_{int})
\]
(12.10)
where \(\Delta t \) and \(T_{int} \) denote the computational time step and the integral time scale, respectively. The integral time scale is here set at \(T_{ont} = L_{int}/u_T \). The second coefficient is taken as
\[
b = (1 - a^2)^{0.5}
\]
(12.11)
which ensures that \(\langle V'_1^2 \rangle = \langle v'_1^2 \rangle \) (\(\langle \cdot \rangle \) denotes averaging). The time correlation will be equal to
\[
\exp(-\hat{t}/T_{int})
\]
(12.12)
where \(\hat{t} \) is the time separation and thus Eq. 12.9 is a convenient way to prescribe the turbulent time scale of the fluctuations. For more detail, see Section 12.8. The inlet boundary conditions are prescribed as (we assume that the inlet is located at \(x_1 = 0 \) and that the mean velocity is constant in the spanwise direction, \(x_3 \))
\[
\begin{align*}
\bar{v}_1(0, x_2, x_3, t) &= V_{1, in}(x_2) + v'_{1, in}(x_2, x_3, t) \\
\bar{v}_2(0, x_2, x_3, t) &= V_{2, in}(x_2) + v'_{2, in}(x_2, x_3, t) \\
\bar{v}_3(0, x_2, x_3, t) &= V_{3, in}(x_2) + v'_{3, in}(x_2, x_3, t)
\end{align*}
\]
(12.13)
where \(v'_{1, in} = (V'_1)_m, v'_{2, in} = (V'_2)_m \) and \(v'_{3, in} = (V'_3)_m \) (see Eq. 12.9). The mean inlet profiles, \(V_{1, in}, V_{2, in}, V_{3, in} \), are either taken from experimental data, a RANS solution or from the law of the wall; for example, if \(V_{2, in} = V_{3, in} = 0 \) we can estimate \(V_{1, in} \) as [26]
\[
V_{1, in}^+ = \begin{cases}
 x_2^+ & x_2^+ \leq 5 \\
 -3.05 + 5 \ln(x_2^+) & 5 < x_2^+ < 30 \\
 \frac{1}{4} \ln(x_2^+) + B & x_2^+ \geq 30
\end{cases}
\]
(12.14)
where \(\kappa = 0.4 \) and \(B = 5.2 \).

The methodology is as follows:

1. A pre-cursor RANS simulation is made using a RANS model, see Section 18.

2. After having carried out the pre-cursor RANS simulation, the Reynolds stress tensor is computed using the EARSM model [28].

3. The Reynolds stress tensor is used as input for generating the anisotropic synthetic fluctuations. The integral length scale, \(L_{int} \), need to be prescribed; it can be set to \(0.1\delta < L_{int} < 0.3\delta \), where \(\delta \) denotes half-channel width.
4. Since the method of synthetic turbulence fluctuations assumes homogeneous turbulence, we can only use the Reynolds stress tensor in one point. We need to choose a relevant location for the Reynolds stress tensor. In a turbulent boundary layer, the Reynolds shear stress is by far the most important stress component. Hence, the Reynolds stress tensor is taken at the location where the magnitude of the turbulent shear stress is largest.

5. Finally, the synthetic fluctuations are scaled with \(\left(\frac{|u'|v'|}{|u'|v'|_{\text{max}}^\text{RANS}} \right)^{1/2} \), which is taken from the 1D RANS simulation. This is done in module modify inlet.

The only constant used when generating these synthetic simulations is the prescribed integral length scale.

14 Flow Chart

pyCALC-LES flowchart

15 Modules

15.1 bc_outlet_bc

Neumann outlet boundary conditions are set.

15.2 calceps

Source terms in the \(\varepsilon \) equation (AKN) are computed, see Section 8. When PANS is used, \(\text{pans=True} \), \(f_k \) is computed in module compute_fk. Otherwise it is set to one. The user can define additional source terms in modify_eps.

15.3 calck_kom

Source terms in the \(k \) equation (Wilcox model) are computed, see Section 10. When DES is used, \(C_{\text{DES}} \) is computed (it is stored in \(f_k3d \)). The user can define additional source terms in modify_k.

15.4 calck

Source terms in the \(k \) equation (AKN) are computed, see Section 8. The user can define additional source terms in modify_k.

15.5 calcom

Source terms in the \(\omega \) equation (Wilcox model) are computed, see Section 10. The user can define additional source terms in modify_om.
15.6 calcp

Coefficients in the \bar{p} equation (Eq. 4.4). It is a diffusion equation and hence the coefficients a_w, a_E, \ldots are computed in the same was as in Section 2.4 (with the diffusion coefficient Γ set to $1/(\alpha \Delta t)$).

15.7 calcu

Source terms in the \bar{u} equation are computed. The user can define additional source terms in modify.u.

15.8 calcv

Source terms in the \bar{v} equation are computed. The user can define additional source terms in modify.v.

15.9 calcw

Source terms in the \bar{w} equation are computed. The user can define additional source terms in modify.w.

15.10 coeff

The coefficient $a_W, a_E, a_S, a_N, a_L, a_H$ are computed. There are four different discretization schemes: central differencing scheme (CDS) first-order upwind, MUSCL and the hybrid scheme (first-order upwind and CDS)

15.11 compute_face_phi

Compute the face values of a variable.

15.12 compute_fk

Computes f_k (array $f3kd$) from Eq. 8.3. The user can modify $f3kd$ in modify_fk.

15.13 compute_inlet_fluct

Compute synthetic fluctuations (see Section 12.1)

15.14 conv

Compute the convection as a vector product $\mathbf{v} \cdot \mathbf{A}$ at the west, south and low faces (stored in arrays convw, convs and convl. Note that they are defined as the volume flow going into the control volume.

15.15 correct_conv

After the Poisson equation for pressure has been solved, the convections convw, convs and convl (which are defined at the control volume faces) are corrected so as to satisfy continuity, see Eq. 4.5.
15.16 **fix_eps, fix_k, fix_omega**

This routine may be used for set ε, k, and ω in the wall-adjacent cell center. For ω, for example, it may be set according to Eq. 10.2 rather than as a wall-boundary condition. Note that it is called just before the solver is called. For fixing ω near a south boundary we use

\begin{verbatim}
aw3d[:,0,:]=0
ae3d[:,0,:]=0
as3d[:,0,:]=0
an3d[:,0,:]=0
al3d[:,0,:]=0
ah3d[:,0,:]=0
ap3d[:,0,:]=1
su3d[:,0,:]=om_bc_south
\end{verbatim}

The discretized equation (Eq. 2.8) then reads

$$\omega_P = S_U$$

which gives $\omega_P = \text{om}_bc_south$ as intended.

15.17 **crank_nicol**

Modification of the coefficients a_W, a_E, \ldots due to time integration of the convective and diffusion made, see Section 2.1.1.

15.18 **dphidx, dphidy, dphidz**

The derivative in x_1, x_2 or x_3 direction are computed, see Section 1.2.

15.19 **init**

Geometric quantities such as areas, volume, interpolation factors etc are computed.

15.20 **modify_eps, modify_k, modify_om, modify_u, modify_v, modify_w**

The sources $su3d$ and $sp3d$ can be modified for the $\varepsilon, k, \bar{\omega}, \bar{u}$ and \bar{v} equations.

15.21 **modify_case.py**

This file includes $\text{modify}_eps, \text{modify}_k, \ldots \text{modify}_w$ and $\text{modify}_conv, \text{modify}_init, \text{modify}_inlet, \text{modify}_outlet, \text{fix}_eps, \text{fix}_k, \text{fix}_omega, \text{modify}_vis$ and modify_fk.

15.22 **modify_init**

The user can set initial fields. If `restart=True`, these fields are over-written with the fields from the restart file.
15.23 print_indata
Prints the indata set by the user.

15.24 read_restart_data
This module is called when restart=True. Initial fields from files
- u3d_saved.npy, v3d_saved.npy, w3d_saved.npy, p3d_saved.npy,
 k3d_saved.npy, eps3d_saved.npy, om3d_saved.npy
are read from a previous simulation.

15.25 save_data
This module is called when save=True. The
- \(\bar{u}, \bar{v}, \bar{w}, \bar{p}, k, \varepsilon, \omega, \nu_t + \nu, \bar{u}^2, \bar{w}^2 \) and \(\bar{u} \bar{v} \)
are stored in the files
- u3d_saved.npy, v3d_saved.npy, w3d_saved.npy, p3d_saved.npy,
 k3d_saved.npy, eps3d_saved.npy, om3d_saved.npy.

15.26 save.file
This is file, not a module. It is read every second time step. It should include an integer
- ‘0’ or ‘1’. If it’s ‘1’, the module save_data is called. The object is to be able to save
data during a long simulation,

15.27 save_time_aver_data
This module is called when every \(\text{itstep} \text{save time step} \) when \(\text{itstep} \geq \text{itstep}_\text{start} \).
Time-averaged data of the
- \(\bar{u}, \bar{v}, \bar{w}, \bar{p}, f_k, \varepsilon, \omega, \nu_t + \nu, \bar{u}^2, \bar{w}^2 \text{ and } \bar{u} \bar{v} \)
are stored in the files
- u_averaged, v_averaged, w_averaged, p_averaged, k_averaged,
 f_k_averaged, k_averaged, om_averaged, vis_averaged, eps_averaged,
 k3d_averaged, uu_stress, vv_stress, ww_stress, uv_stress
If save_average_z=True, the flow fields are averaged also in the z direction.

15.28 save_vtk
The results are stored in VTK format. It is called if vtk=True. You must then set the
name of the VTK file names, i.e. vtk_file_name. If vtk_movie is true, the results
are saved every \(\text{itstep} \text{save time step} \) may be viewed as a movie.

15.29 setup_case.py
In this module the user sets up the case (time step, turbulence model, turbulence con-
stants, type of boundary condition, solver, convergence criteria, etc)
15.30 solve_amg
An algebraic multigrid solver.

15.31 solve_amgx
An algebraic multigrid solver on the GPU. The sparse matrix (e.g. Eq. B.4) is uploaded every time this module is called.

15.32 solve_3d
This module can be used for all variables except pressure, \bar{p}. With the coefficient arrays $aw3d$, $ae3d$, $as3d$, ... a sparse matrix is created, A. The equation system is solved using the Python solver linalg.cgs, linalg.cg, linalg.gmres, linalg.qmr or linalg.lgmres.

15.33 solve_p
This module is used for the pressure, \bar{p}. With the coefficient arrays $aw3d$, $ae3d$, $as3d$, ... a sparse matrix is created, A_p. At the first time step and iteration, the multigrid hierarchy is constructed using $\text{pyamg.ruge stuben solver}$ (recall that the coefficient arrays $aw3d$, $ae3d$, $as3d$, ... do not change since they are defined by geometrical quantities). The equation system is solved using the pyAMG solver $A_p\.solve$. The user can choose relaxation method at each MG level with the variable amg_relax ('default','cg','gm','gmres','fgmres','cgne','cgnr','cr').

15.34 solve_px
An algebraic multigrid solver on the GPU for the pressure. The sparse matrix (e.g. Eq. B.4) is uploaded once at the first iteration at the first time step. Note that this option requires twice as much memory on the GPU compared to solve_amgx.

15.35 solve_tdma
This module can be used for all variables except pressure, \bar{p}. It solves the equations exactly in the y direction by treating the x and z directions explicitly. Hence, only the coefficient arrays $as3d$, $an3d$, $ap3d$ are used in the matrix solver. With theses three arrays, a sparse matrix is created, A. The equation system is solved using the Python solver linalg.sp.solve. This means that the equation is solved by TDMA (Tri-Diagonal-Matrix-Algorithm). It is a combination of exact solution in y direction (TDMA) combined with Jacobi iteration in the other two directions. This solver is efficient at high Reynolds numbers when the diffusion terms near the wall are very large. This solver is activated by setting $\text{solver_vel} = 'tdma'$ and $\text{solver_turb} = 'tdma'$. When the solver tdma is employed, the convergence limits are not used. Instead we rely on how many sweeps should be made (nsweep_vel,nsweep_keps and nsweep_kom).

15.36 synt_fluct
The synthetic fluctuations are computed and scaled with uv_rans, see Section 12.1
15.37 time_stats

Time-averaged quantities are created such as time-averaged velocities, pressure, resolved stresses etc. This module is called every itstep_stats time step when itstep \geq itstep_start.

15.38 update

At the end of each time step, all variables are updated, i.e. $u_3d_{\text{old}}=u_3d, v_3d_{\text{old}}=v_3d$, etc.

15.39 vist_kom

The turbulent viscosity is computed using the $k - \omega$ model, see Section 10.

15.40 vist_pans

The turbulent viscosity is computed using the AKN $k - \varepsilon$ model, see Section 8.

15.41 vist_smag

The turbulent viscosity is computed using the Smagorinsky model, see Section 6.

15.42 vist_wale

The turbulent viscosity is computed using the WALE model, see Section 7.

16 DNS of fully-developed channel flow at $Re_\tau = 500$

To follow the execution of pyCALC-LES, it is recommended to start reading at the line the execution of the code starts here. To find where the time stepping starts, look for the line start of time stepping. You can also kook at the pyCALC-LES flowchart.

The grid is created using the script generate-channel-grid.py. The number of cells is set to $ni = nj = 96$. The extent of the grid in x and y direction is 3.2 and 2 respectively. The grid is stretched by 9% from both walls.

```python
import numpy as np
ing sys
ni=96
nj=96
yfac=1.09 # stretching
ymax=2
xmax=3.2
viscos=1/500
dy=0.1
yc=xp.zeros(nj+1)
yc[0]=0.
for j in range(1,int(nj/2)+1):
yc[j]=yc[j-1]+dy
dy=yfac*dy
```
16.1. *setup_case.py*

```python
ymax_scale = yc[int(nj/2)]

# cell faces
    for j in range(1, int(nj/2)+1):
        yc[j] = yc[j] / ymax_scale
        yc[nj-j+1] = ymax - yc[j-1]

yc[int(nj/2)] = 1

# make it 2D
    y2d = xp.repeat(yc[None,:], repeats=ni+1, axis=0)

    y2d = xp.append(y2d, nj)
    xp.savetxt(‘y2d.dat’, y2d)

# x grid
    xc = xp.linspace(0, xmax, ni+1)

# make it 2D
    x2d = xp.repeat(xc[:,None], repeats=nj+1, axis=1)
    x2d_org = x2d
    x2d = xp.append(x2d, ni)
    xp.savetxt(‘x2d.dat’, x2d)
```

The grid in the z direction is read from file $z.dat$

```python
zmax, nk = xp.loadtxt(‘z.dat’)  
nk = int(nk)  
dz = zmax / nk
```

and the $z.dat$ file reads

```
1.6 96
```

The case is defined in modules *setup_case* and *modify_case*. They are located in a directory with the name *channel-500* (or something similar). Enter this directory.

16.1 *setup_case.py*

This module consists of 10 sections.

16.1.1 Section 1

We choose the central-differencing scheme for convection

```
scheme = ‘c’
```

We use Crank-Nicolson for time discretization of the convection terms and for pressure we use fully implicit

```
acrank = 1.0  # for pressure gradient  
acrank_conv = 0.5  # for convection-diffusion
```

The fully implicit discretization for the pressure gradient stabilizes the simulation and makes it possible to use only one global iteration.
16.1.2 Section 3

We take initial conditions from a previous simulation (\texttt{restart=True}) and we also save the new results to disk (\texttt{save=True}) which can be used as initial condition for next simulation.

\begin{verbatim}
restart = True
save = True
\end{verbatim}

The restart file used as initial condition may be created as in Section 20.

16.1.3 Section 4

The viscosity is set.

\begin{verbatim}
viscos = 1/500
\end{verbatim}

16.1.4 Section 6

The maximum number of global iterations is set to 5. We allow the solver to do only one iteration (\texttt{min_iter=1}).

The default relaxation method is chosen for the AMG solver for pressure and the convergence level in the AMG solver is set to $5 \cdot 10^{-4}$.

The ‘lgmres’ sparse matrix solver in Python is set for \bar{u}, \bar{v} and \bar{w}.

In the Python solver for the velocities, the maximum number of iterations is set to 50 and the convergence level to 10^{-5}.

\begin{verbatim}
maxit = 5
min_iter = 1
sormax = 1e-3
solver_vel = 'lgmres'
nsweep_vel = 50
convergence_limit_u = 1e-5
convergence_limit_v = 1e-5
convergence_limit_w = 1e-5
convergence_limit_p = 5e-4
\end{verbatim}

The convergence limit in the Python solvers is defined as

\begin{equation}
|Ax - b|/|b| < \gamma
\end{equation}

where γ is the convergence limit. The norm of, for example f, is computed as

\begin{equation}
|f| = \left[\sum_{\text{all cells} i} f_i^2 \right]^{1/2}
\end{equation}

If your computer has an Nvidia compatible graphics card, you may select to solve the pressure equation on the graphics card. You set

\begin{verbatim}
solver_p = 'pyamgx'
\end{verbatim}

If you want to solve also the velocity equations on the GPU, you set
16.1. setup_case.py

```python
solver_vel='pyamgx'
```

Note that you must then install CUDA, the AMGX library as well as `pyamgx`, see Section C. The `pyamgx` solver on GPU gives a speed-up of approximately a factor of ten when solving the pressure equation and an overall speed-up factor of approximately two.

16.1.5 Section 7

The flow during the iterations and time steps is monitored in cell \((i, j, k) = (10, 10, 10)\).

```python
imon=10
jmon=10
kmon=10
```

16.1.6 Section 8

We use 15000 time steps. Time-averaging starts after 7500 time steps. The time steps is set to \(0.5 \Delta x / U_{in}\), where \(U_{in}\) is an estimated bulk velocity. The instantaneous and time-averaged fields are saved to disk every 2000 time steps. When time-averaging, we use every 10\(^{th}\) time step.

```python
ntstep=15000
uin=20
dt=0.5*(x2d[1,0]-x2d[0,0])*xp.ones(ntstep)/uin
itstep_start=7500
itstep_save=2000
itstep_stats=10
```

We don’t want to store data on VTK format. Hence

```python
vtk=False
```

16.1.7 Section 9

The residual of the momentum equation and the continuity equation are normalized by `resnorm_vel` and `resnorm_p` which are set to

```python
resnorm_p=uin*zmax*y2d[1,-1]
resnorm_vel=uin**2*zmax*y2d[1,-1]
```

16.1.8 Section 10

The boundary conditions are set here. We have cyclic boundary conditions in \(x\) and \(z\) directions and hence

```python
cyclic_x = True
cyclic_z = True
```

The south and north boundaries we define as walls (Dirichlet)
16.2. *modify_case.py*

```python
u_bc_south_type='d'
u_bc_north_type='d'
v_bc_south_type='d'
v_bc_north_type='d'
w_bc_south_type='d'
w_bc_north_type='d'
```

and the value for all variables is set to zero

```python
u_bc_south=xp.zeros((ni,nk))
u_bc_north=xp.zeros((ni,nk))
v_bc_south=xp.zeros((ni,nk))
v_bc_north=xp.zeros((ni,nk))
w_bc_south=xp.zeros((ni,nk))
w_bc_north=xp.zeros((ni,nk))
```

Note that we don’t need to set and type boundary conditions for west, east and high/low boundaries since they are defined by the cyclic boundary conditions

16.2 *modify_case.py*

Initial condition and additional boundary conditions are set in this file. It includes a module which are called for every flowfield variable, i.e. `modify_u`, `modify_v`, `modify_w`, `modify_p`, `modify_k`, `modify_eps` and `modify_om`. It includes also modules for modifying initial boundary conditions (`modify_init`), convects (`modify_conv`), inlet (`modify_inlet`) and outlet boundary conditions (`modify_outlet`)

16.2.1 *modify_u*

The only boundary conditions we need to set is the prescribed driving pressure gradient in the \bar{u} equation.

```python
su3d= su3d+vol
```

16.3 *Run the code*

The bash script `run-python` is used which reads

```bash
#!/bin/bash
# delete first line
sed '/setup_case()/d' setup_case.py > temp_file
# add new first line plus global declarations
cat ../global-GPU temp_file modify_case.py ../synt_fluct-GPU.py ../pyCALC-LES-GPU.py -> temp_file1
# find setting of 'gpu'
'grep' gpu setup_case.py > gpu_value;
# remove leading white space
sed -i '[ 	]*' gpu_value;
# add value of 'gpu' at first line
cat gpu_value temp_file1 > exec-pyCALC-LES-GPU.py;
/usr/bin/time -a -o out ~/anaconda3/bin/python -u exec-pyCALC-LES-GPU.py > out
```
17. Fully-developed channel flow at \(Re_\tau = 5200 \) using \(k - \omega \) DES

You must change the last line if your Python installation is not in \(/\text{anaconda3/bin/}\). If you have not installed the Python module \texttt{pyamgx} (see Section \(C \)) you must comment line 11 in \texttt{pyCALC-LES}, i.e.

\[\#\text{import pyamgx} \]

This script simply collects all Python files in one file and the global declarations (which gives all modules access to the global variables) into the file \texttt{exec-pyCALC-LES-GPU.py} and then executes it. Now run the code with the command

\[./\text{run-python} \& \]

The input data is written to the file \texttt{out}. In this file you also find convergence history etc. To check the convergence history type

\[\text{grep 'max res' out} \]

The code also writes out maximum values of some variables (in order to detect if the simulation is diverging). Check this by

\[\text{grep umax out} \]

If the Python sparse matrix solved does not converge, a warning is written. Check this with

\[\text{grep warn out} \]

You can check that the Python sparse matrix reduces the residuals. Type

\[\text{grep history out} \]

You see three lines per time step, i.e. the residuals for \(\bar{u}, \bar{v} \) and \(\bar{w} \) equation.

Plot the results using the script \texttt{pl_uvw_DNS.py}

17. Fully-developed channel flow at \(Re_\tau = 5200 \) using \(k - \omega \) DES

You find \texttt{setup_case.py} and \texttt{modify_case.py} in a directory with the name \texttt{channel_5200-k-omega-DES} (or something similar). Go into this directory. The grid is generated with the script \texttt{generate-channel-grid.py}. It is stretched by 15\% in the \(y \) direction and the extent in the \(x \) direction is set to 3.14 with 32 cells. 32 cells are also used in the \(z \) direction with and extent of 1.6. The \texttt{z.dat} reads

\[1.6 \ 32 \]

Here we comment only on differences compared to the DNS flow in Section 16.

17.1 setup_case.py

17.1.1 Section 1

We choose the hybrid first-order upwind scheme for the \(k \) and \(\omega \) equations.

\[\text{scheme_turb='h'} \]

\[\text{acrank_conv_kom=1} \]
17.1.2 Section 2
The $k - \omega$ DES model is selected.

```python
kom_des = True
j10=0
```

The variable $j10$ is set to zero which means that the location LES-RANS interface is automatically computed (if we want to prescribe the j line of the interface, we set it to a negative value). The turbulence constants are set to

```python
cmu=0.09
_c_omega_1= 5./9.
c_omega_2=3./40.
prand_omega=2.0
prand_k=2.0
```

17.1.3 Section 5
The under-relaxation factor for turbulent viscosity is set to 0.5.

```python
urfvis=0.5
```

17.1.4 Section 6
The gmres solver is chosen for k and ω and the number of sweep is set to 50. Furthermore, relative convergence limits (negative values) are used on k and ω.

```python
solver_turb='gmres'
nsweep_kom=50
convergence_limit_k=-1e-3
convergence_limit_om=-1e-3
```

This means that the residuals of k and ω are reduced by $1e - 3$ in the sparse-matrix solvers.

17.1.5 Section 10
The wall-boundary conditions for k and ω are set as $k = 0$ and ω as below (see Eq. 10.2).

```python
# boundary conditions for k
k_bc_south=xp.zeros((ni,nk))
k_bc_north=xp.zeros((ni,nk))

k_bc_south_type='d'
k_bc_north_type='d'

# boundary conditions for omega
xwall_s=0.5*(x2d[0:-1,0]+x2d[1:,0])
ywall_s=0.5*(y2d[0:-1,0]+y2d[1:,0])
dist2_s=(yp2d[:,0]-ywall_s)**2+(xp2d[:,0]-xwall_s)**2
om_bc_south=6*viscos/c_omega_2/dist2_s
```
17.2. modify_case.py

```python
# make it 2D
om_bc_south=xp.repeat(om_bc_south[:,None], repeats=nk, axis=1)
xwall_n=0.5*(x2d[0:-1,-1]+x2d[1:,-1])
ywall_n=0.5*(y2d[0:-1,-1]+y2d[1:,-1])
dist2_n=(yp2d[:,-1]-ywall_n)**2+(xp2d[:,-1]-xwall_n)**2
om_bc_north=10*6*viscos/c_omega_2/dist2_n
# make it 2D
om_bc_north=xp.repeat(om_bc_north[:,None], repeats=nk, axis=1)
om_bc_south_type='d'
om_bc_north_type='d'
```

17.2 modify_case.py

No changes are made compared to Section 16. Note that no initial conditions are set here. The default ones are used which are set where all variables are initialized, i.e.

```python
u3d=xp.zeros((ni,nj,nk))
v3d=xp.zeros((ni,nj,nk))
w3d=xp.zeros((ni,nj,nk))
k3d=xp.ones((ni,nj,nk))*1
eps3d=xp.ones((ni,nj,nk))*1
om3d=xp.ones((ni,nj,nk))*1
```

18 RANS of channel flow at \(Re_\tau = 5200 \) using \(k - \omega \)

You find setup_case.py and modify_case.py in a directory with the name channel-5200-k-omega-RANS (or something similar). Go into this directory.

We generate a new grid. We take the same grid in the \(y \) direction as in Section 16, but in the \(x \) direction we set three cells, \(ni=3, \) and \(xmax=1 \) (this is the minimum number of cells we can use when cyclic_x=True). In the \(z \) direction we set domain size to one and use two cells; the \(z.dat \) is modified to 1, 2. The grid is created using the script generate-channel-grid.py.

Here we comment only on differences compared to the DES flow in Section 17.

18.1 setup_case.py

18.1.1 Section 1

Since we will simulate a time-marching flow towards steady conditions we choose the hybrid scheme for the velocities and set fully implicit time integration for the velocities, i.e.

```python
scheme='h'
acrank_conv=1
```
18.1.2 Section 2
We choose the \(k - \omega \) RANS model.

\[
\text{kom} = \text{True} \\
\text{kom_des} = \text{False}
\]

18.1.3 Section 3
We don’t start from a previous solution.

\[
\text{restart} = \text{False}
\]

18.1.4 Section 8
We increase the time step.

\[
dt = 4 \times (x2d[1,0] - x2d[0,0]) \times \text{xp.ones(ntstep)}/\text{uin}
\]

and we use 1000 and time average during the last 100 time steps

\[
\text{ntstep} = 1000 \\
\text{itstep_start} = \text{ntstep}-100
\]

18.1.5 Section 10
We do not use cyclic boundary conditions in the \(z \) direction.

\[
\text{cyclic_z} = \text{False}
\]

In the \(z \) direction we set Neumann boundary condition for all variables except \(\bar{\omega} \) (which is set to zero).

\[
\text{u_bc_low_type} = \text{’n’} \\
\text{u_bc_high_type} = \text{’n’} \\
\text{v_bc_low_type} = \text{’n’} \\
\text{v_bc_high_type} = \text{’n’} \\
\text{w_bc_low_type} = \text{’d’} \\
\text{w_bc_high_type} = \text{’d’} \\
\text{p_bc_low_type} = \text{’n’} \\
\text{p_bc_high_type} = \text{’n’} \\
\text{k_bc_low_type} = \text{’n’} \\
\text{k_bc_high_type} = \text{’n’} \\
\text{om_bc_low_type} = \text{’n’} \\
\text{om_bc_high_type} = \text{’n’}
\]

18.2 modify_case.py
No changes are made compared to Section 17.
19 DNS of the flow over a wave

Here I made DNS of the flow over a wave, see Fig. 19.1. The simulations were made on the GPU. The mesh has $350 \times 150 \times 300$ cells. The spanwise extent is 1.6. The upper boundary is a symmetry boundary. Inlet boundary conditions are taken from a precursor DNS of a half-channel which is setup in the directory `channel-550-DNS-600-150-300-half-channel/`. In order to save disk space I have stored only 10 data files (i.e. 10 time steps) in the directory `channel-550-DNS-600-150-300-half-channel/inlet-files`. To create more inlet data, simply restart the channel flow simulation.

The wave flow is setup in the directory `wave`.

20 Synthetic turbulence at inlet: Channel flow at $Re_\tau = 395$

Here we will simulate the flow in a channel at $Re_\tau = 395$. At the inlet, we prescribe mean flow velocity obtained from a 1D RANS simulation with the $k-\omega$ model, see Section 18. Synthetic fluctuations are superimposed on the mean flow.

Go into the directory `channel-395-inlet-ni96` (or something similar). To create the anisotropy, we need the eigenvalues and the eigenvectors of a Reynolds stress tensor which is taken from the EARSM model. The Reynolds stress tensor is taken at the cell where $|\nu_1' \nu_2'|$ is maximum. The eigenvectors and the eigenvalues are created with the script `compute_a_and_R-from-earsm.py`. This script generates two files, `R.dat` which includes the eigenvectors and `a.dat` which includes the eigenvalues.

Execute `compute_a_and_R-from-earsm.py` and update the files `a.dat` and `R.dat`. These two files are read in module `synt_fluct`. Finally, the synthetic fluctuations are scaled with the shear stress from the 1D RANS simulation.

Below, we highlight the differences compared to Section 17.

20.1 setup_case.py

20.1.1 Section 2

We choose the WALE turbulence model

```python
wale = True
```
20.1.2 Section 3
No restart.

```
restart = False
```

20.1.3 Section 4
Reynolds number $Re = 395$

```
viscos=1/395
```

20.1.4 Section 6
If you have an Nvidia graphic card, remove the line

```
solver_vel='gmres'
```
which means that the default solver pyamgx will be used (if gpu=True).

20.1.5 Section 10
We will use inlet-outlet boundary conditions. Hence, no cyclic boundary conditions in the x direction.

```
cyclic_x = False
```

We will use synthetic fluctuations at the inlet. We set the length scale of the synthetic fluctuations to $L_t = 0.2$ (see Section 12.4) and the number of modes (see Section 12.5) to 1200.

```
L_t_synt=0.2
nmodes_synt=1200
```

The Reynolds stress tensor of the generated time-averaged anisotropic fluctuations is equal to the prescribed Reynolds stress tensor, see Item 2 in Section 13. In this case, it gives a negative shear stress which is correct for the lower half of the channel. But for the upper half of the channel it should be positive. This is fixed by switching the sign of the synthetic fluctuation in the y direction. The variable j_{mirror_synt} tells pyCALC-LES where to switch sign. We want to switch sign for $j > nj/2$ and hence we set

```
j_{mirror_synt}=int(nj/2)
```

20.2 modify_case.py

20.2.1 modify_init
Here we set initial conditions. We use the 1D RANS data, see Section 18 (the y, u, k, ω and v_1', v_2' profiles are stored on disk in pl_uvw.py). We read \bar{u}

```
data=xp.loadtxt('y_u_k_om_uv_395.dat')
u_rans=data[:,1]
```

make it 2D
```
u_rans=xp.repeat(u_rans[:,None], repeats=nk, axis=1)
```

set inlet field in entire domain
```
u3d=xp.repeat(u_rans[None,:, :], repeats=ni, axis=0)
```
20.2. modify_case.py

20.2.2 modify_inlet

Inlet boundary conditions are set here. At the first time step, we read the 1D RANS solution for \bar{u} and v_1' v_2'

```python
if itstep == 0:
    y_u_k_om=xp.loadtxt('y_u_k_om_uv_395.dat')
    y_rans=y_u_k_om[:,0]
    u_rans=y_u_k_om[:,1]
# make it 2D
    u_rans=xp.repeat(u_rans[:,None], repeats=nk, axis=1)
    uv_rans=xp.abs(y_u_k_om[:,4])
```

A grid in the z direction is created and we call synt_fluct to generate the synthetic fluctuations, see Eq. 12.8.

```python
zp = xp.linspace(0, zmax, nk)
usynt,vsynt,wsynt=synt_fluct(nmodes_synt,itstep,L_t_synt,y_rans,zp,
    uv_rans,viscos,jmirror_synt)
```

We want to make sure that the average of the streamwise fluctuation is zero, i.e. $\langle u' \rangle = 0$. Hence we subtract its mean

```python
uinc=xp.sum(usynt*areaw[0,:,\ ])/(y2d[0,-1]-y2d[0,0])/zmax
usynt=usynt-uinc
```

Next, we set the initial fields of V'_2, V'_2 and V'_3 (see Eq. 12.13) and compute a and b (see Eqs. 12.10 and 12.11).

```python
usynt_inlet=usynt
vsynt_inlet=vsynt
wsynt_inlet=wsynt
```

For time step higher than zero, we call synt_fluct, correct u' and make the time filtering in Eq. 12.13

```python
usynt,vsynt,wsynt=synt_fluct(nmodes_synt,itstep,L_t_synt,y_rans,zp,
    uv_rans,viscos,jmirror_synt)
# correct usynt so that it is = 0 (easier to converge the p solver)
    uinc=xp.sum(usynt*areaw[0,:,\ ])/(y2d[0,-1]-y2d[0,0])/zmax
    usynt=usynt-uinc
    usynt_inlet=a_synt*usynt+inc+b_synt*usynt
    vsynt_inlet=a_synt*vsynt+inc+b_synt*vsynt
    wsynt_inlet=a_synt*wsynt+inc+b_synt*wsynt
```

Finally, we superimpose the synthetic fluctuations to the mean flow and store the inlet fields in $u_{bc\ _\ west}$, $v_{bc\ _\ west}$ and $w_{bc\ _\ west}$ which are returned as a result from the modify_inlet
20.2. modify_case.py

```python
u_bc_west=u_rans+usynt_inlet
v_bc_west=vsynt_inlet
w_bc_west=wsynt_inlet

20.2.3 modify_u

Add the inlet convective flow to source terms

```python
su3d[0,:,:]= su3d[0,:,:]+xp.maximum(convw[0,:,:],0)*u_bc_west
sp3d[0,:,:]= sp3d[0,:,:]-xp.maximum(convw[0,:,:],0)
vist=vis3d[0,:,:]-viscos
sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound
su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*u_bc_west
```

We take max of convw because large negative synthetic fluctuations sometimes make \( \bar{u} \) negative near the walls. Note that the viscous diffusive part is added in module bc.

20.2.4 modify_v

Same as in modify_u

```python
su3d[0,:,:]= su3d[0,:,:]+xp.maximum(convw[0,:,:],0)*v_bc_west
sp3d[0,:,:]= sp3d[0,:,:]-xp.maximum(convw[0,:,:],0)
vist=vis3d[0,:,:]-viscos
sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound
su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*v_bc_west
```

20.2.5 modify_w

Same as in modify_u

```python
su3d[0,:,:]= su3d[0,:,:]+xp.maximum(convw[0,:,:],0)*w_bc_west
sp3d[0,:,:]= sp3d[0,:,:]-xp.maximum(convw[0,:,:],0)
vist=vis3d[0,:,:]-viscos
sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound
su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*w_bc_west
```

20.2.6 modify_outlet

This outlet boundary condition is described in Section 5.2. First, compute inlet and outlet volume flow as well as the outlet area.

```python
inlet
flow_in=xp.sum(convw[0,:,:])
flow_out=xp.sum(convw[-1,:,:])
area_out=xp.sum(areaw[-1,:,:])
```

Next, compare global inflow and outflow, compute a corrective velocity, uinc and correct the convective fluxes so that global balance is satisfied.

```python
uinc=(flow_in-flow_out)/area_out
ares=areaw[-1,:,:]
convw[-1,:,:]=convw[-1,:,:]+uinc*ares
```
Note that Neumann boundary conditions are set for \( \overline{u}, \overline{v}, \ldots \) since

\[ \text{phi_bc_east_type='n'} \]

for all variables.

Run the code and plot the results with the script `plot_inlet`.

## 21 Synthetic turbulence at inlet using commutation terms: Channel flow

Here we will simulate the flow in a channel at \( Re_\tau = 5200 \). We use the \( k - \omega \) DES turbulence model. The grid in the \( y \) and \( z \) direction is used as in Section 17. The number of cells and extent in the \( x \) direction are 96 and 9 (constant grid spacing), respectively.

You find `setup_case.py` and `modify_case.py` in a directory with the name `channel-5200-k-omega-DES-inlet` (or something similar). Go into this directory.

Below, we highlight the differences compared to Section 20.

### 21.1 setup_case.py

#### 21.1.1 Section 2

We select the \( k - \omega \) DES model.

\[ \text{kom_des = True} \]

The interface is automatically computed

\[ j10 = 0 \]

#### 21.1.2 Section 4

The Reynolds number is set to 5200.

\[ \text{viscos=1/5200} \]

#### 21.1.3 Section 10

The boundary conditions for \( k \) and \( \omega \) at the walls are computed. They are then set in the wall-adjacent cells in `modify_case`

\[ k_{bc\_south}=xp.zeros((ni,nk)) \]
\[ k_{bc\_north}=xp.zeros((ni,nk)) \]
\[ k_{bc\_south\_type}=‘d’ \]
\[ k_{bc\_north\_type}=‘d’ \]

# boundary conditions for omega
\[ om_{bc\_south}=xp.zeros((ni,nk)) \]
\[ om_{bc\_north}=xp.zeros((ni,nk)) \]
21.2. modify_case.py

```python
xwall_s = 0.5 * (x2d[0:-1, 0] + x2d[1:, 0])
ywall_s = 0.5 * (y2d[0:-1, 0] + y2d[1:, 0])
dist2_s = (yp2d[:, 0] - ywall_s)**2 + (xp2d[:, 0] - xwall_s)**2
om_bc_south = 6 * viscos / 0.075 / dist2_s

make it 2D
om_bc_south = xp.repeat(om_bc_south[:, None], repeats=nk, axis=1)

xwall_n = 0.5 * (x2d[0:-1, -1] + x2d[1:, -1])
ywall_n = 0.5 * (y2d[0:-1, -1] + y2d[1:, -1])
dist2_n = (yp2d[:, -1] - ywall_n)**2 + (xp2d[:, -1] - xwall_n)**2
om_bc_north = 6 * viscos / 0.075 / dist2_n

make it 2D
om_bc_north = xp.repeat(om_bc_north[:, None], repeats=nk, axis=1)
```

21.2 modify_case.py

21.2.1 modify_init

Here we set initial conditions. We use the 1D RANS data, see Section 18. We read \( \bar{u} \), \( k \) and \( \omega \). \( k_{init} \) is set to 20% of the RANS value and \( \omega_{iniy} \) is set to \( \omega_{RANS} \).

```python
data = xp.loadtxt('y_u_k_om_uv_5200_nj96.txt')
u_rans = data[:, 1]
make it 2D
u_rans = xp.repeat(u_rans[:, None], repeats=nk, axis=1)

k_rans = data[:, 2]
make it 2D
k_rans = xp.repeat(k_rans[:, None], repeats=nk, axis=1)

om_rans = data[:, 3]
make it 2D
om_rans = xp.repeat(om_rans[:, None], repeats=nk, axis=1)

make it 3D
om_rans_3d = xp.repeat(om_rans[None, :, :], repeats=ni, axis=0)

set inlet field in entire domain
u3d = xp.repeat(u_rans[None, :, :], repeats=ni, axis=0)
k3d = 0.2 * xp.repeat(k_rans[None, :, :], repeats=ni, axis=0)
om3d = om_rans_3d
vis3d = k3d / om3d + viscos
```
21.2. modify_case.py

21.2.2 modify_inlet

Here we set inlet boundary conditions. At the first time step, we read mean inlet data from a 1D RANS solution

```python
if itstep == 0:
 y_u_k_om=xp.loadtxt('y_u_k_om_uv_5200_nj96.txt')
 y_rans=y_u_k_om[:,0]
 u_rans=y_u_k_om[:,1]
make it 2D
 u_rans=xp.repeat(u_rans[:,None], repeats=nk, axis=1)
 k_rans=y_u_k_om[:,2]
make it 2D
 k_rans=xp.repeat(k_rans[:,None], repeats=nk, axis=1)
 om_rans=y_u_k_om[:,3]
make it 2D
 om_rans=xp.repeat(om_rans[:,None], repeats=nk, axis=1)
 uv_rans=xp.abs(y_u_k_om[:,4])

store k and omega
 k_bc_west=k_rans
 om_bc_west=om_rans
```

21.2.3 modify_k

We need to add inlet boundary conditions.

```python
su3d[0,:,:]= su3d[0,:,:]+xp.maximum(convw[0,:,:],0)*k_bc_west
sp3d[0,:,:]= sp3d[0,:,:]-xp.maximum(convw[0,:,:],0)
vist=vis3d[0,:,:]-viscos
su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*k_bc_west
sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound

We prescribe RANS inlet conditions on k and ω. Hence, we must make sure that they are turned into values relevant to LES. This is done by adding commutation terms [30, 31]. It is implemented as:
```
    delt_i1=0.09**(-0.25)*k_bc_west**0.5/om_bc_west
    delt_i2=vol[0,:,:]**0.333333
    flux_k_RANS=xp.maximum(u_bc_west,0)*k3d[0,:,:]
    vis_smag=(0.1 * delt_i2)**2*gen[0,:,:]**0.5
    rk_smag=(vis_smag/delt_i2)**2
    flux_k_LES=u3d[0,:,:]*rk_smag
    delt_LES=delt_i2
    delt_RANS=delt_i1
    dx=x2d[1,0]-x2d[0,0]
    comm_term=(flux_k_LES-flux_k_RANS)/(delt_LES-delt_RANS)*(delt_i2-delt_i1)/dx
    sp3d[0,:,:]=sp3d[0,:,:]+xp.minimum(comm_term,0.)*vol[0,:,:]/k3d[0,:,:]
```
22. RANS of boundary layer flow using $k - \omega$

21.2.4 modify om

Inlet boundary conditions

\[
\begin{align*}
su3d[0,:,\cdot] &= su3d[0,:,\cdot] + xp.\text{maximum}(\text{convw}[0,:,\cdot],0) \times om_{bc_west} \\
sp3d[0,:,\cdot] &= sp3d[0,:,\cdot] - xp.\text{maximum}(\text{convw}[0,:,\cdot],0) \\
vist &= \text{vis3d}[0,:,\cdot] - \text{viscos} \\
su3d[0,:,\cdot] &= su3d[0,:,\cdot] + \text{vist} \times \text{aw_bound} \times om_{bc_west} \\
sp3d[0,:,\cdot] &= sp3d[0,:,\cdot] - \text{vist} \times \text{aw_bound}
\end{align*}
\]

and the commutation term

\[
\begin{align*}
\text{prod_extra} &= -om3d[0,:,\cdot] / k3d[0,:,\cdot] \times \text{comm_term} \\
su3d[0,:,\cdot] &= su3d[0,:,\cdot] + \text{xp.\maximum}(\text{prod_extra}, 0) \times \text{vol}[0,:,\cdot]
\end{align*}
\]

21.2.5 fix omega om

Boundary conditions for ω are set by fixing ω at the wall-adjacent cells.

\[
\begin{align*}
aw3d[:,0,:]=0 \\
ae3d[:,0,:]=0 \\
as3d[:,0,:]=0 \\
an3d[:,0,:]=0 \\
al3d[:,0,:]=0 \\
ah3d[:,0,:]=0 \\
ap_{\text{max}} &= \text{xp.\max}(ap3d) \\
ap3d[:,0,:]=ap_{\text{max}} \\
su3d[:,0,:]=ap_{\text{max}} \times om_{bc_south}
\end{align*}
\]

\[
\begin{align*}
aw3d[:,1,:]=0 \\
ae3d[:,1,:]=0 \\
as3d[:,1,:]=0 \\
an3d[:,1,:]=0 \\
al3d[:,1,:]=0 \\
ah3d[:,1,:]=0 \\
ap_{\text{max}} &= \text{xp.\max}(ap3d) \\
ap3d[:,1,:]=ap_{\text{max}} \\
su3d[:,1,:]=ap_{\text{max}} \times om_{bc_north}
\end{align*}
\]

22 RANS of boundary layer flow using $k - \omega$

(or something similar). Go into this directory.

We generate a new grid. The first cell is set to $\Delta t = 7.83 \times 10^{-4}$. We stretch the grid in the y direction by 10% but limit the cell size to $\Delta y_{\text{max}} = 0.05$. The number of cells is set to $nj=90$. In the x direction, the first cells is set to $\Delta x = 0.03$ and then we stretch it by 0.5%. We set the number of cells to $ni=300$. In the z direction we set the number of cells to two and the extent to one, i.e. the $z.dat$ is modified to 1.0, 2.

The grid is created using the script $\text{generate-bound-layer-grid.py}$.

Here we comment only on differences compared to the DES flow in Section 18.
22.1 setup_case.py

22.1.1 Section 1
Hybrid discretization is set for all variables.

scheme='h' #hybrid
scheme_turb='h'

22.1.2 Section 2
The $k - \omega$ RANS model is selected.

kom = True
kom_des = False

22.1.3 Section 4
The viscosity is set.

viscos=3.57E-5

22.1.4 Section 6
The lgmres solver is chosen for k and ω.

solver_turb='lgmres'
nsweep_kom=50
convergence_limit_k=-1e-5
convergence_limit_om=-1e-5

A tighter convergence criteria is need for this flow compared to channel flow, see Section 18.

22.1.5 Section 8
The number of time steps is set to 1000 and the results are time averaged the last 100 time steps (the solution will be steady). A rather large time step is chosen (we are not concerned about time accuracy since we time march to steady state).

ntstep=400
uin=1
dt=4*(x2d[1,0]-x2d[0,0])*xp.ones(ntstep)/uin
itstep_start=ntstep-10

22.1.6 Section 10
We do not use cyclic boundary conditions in the x and z directions.

cyclic_x = False
cyclic_z = False

At the north boundary we set Neumann boundary condition for all variables except \vec{v} (which is set to zero).
22.2. modify_case.py

```python
u_bc_north_type='n'
v_bc_north_type='d'
w_bc_north_type='n'
k_bc_north_type='n'
om_bc_north_type='n'
```

We use Neumann boundary condition in the \(z \) directions for all variables except \(\bar{w} \) (which is set to zero).

```python
u_bc_low_type='n'
u_bc_high_type='n'
v_bc_low_type='n'
v_bc_high_type='n'
w_bc_low_type='d'
w_bc_high_type='d'
k_bc_low_type='n'
k_bc_high_type='n'
om_bc_low_type='n'
om_bc_high_type='n'
```

Inlet boundary conditions are \(\bar{u} = 1 \) and \(\omega = 1 \). For the first 10 cells adjacent to the wall \(k = 0.01 \) and further out we set \(k = 10^{-5} \).

```python
u_bc_west=xp.ones((nj,nk))
k_bc_west=xp.ones((nj,nk))*1e-2
k_bc_west[10:,]=1e-10
om_bc_west=xp.ones((nj,nk))
```

The wall boundary condition of \(\omega \) is multiplied by a factor of 10

```python
om_bc_south=10*6*viscos/0.075/dist2_s
```

This – of course – increases the cell center value and makes it closer to the correct value in Eq. 10.2.

22.2 modify_case.py

22.2.1 modify_init

Initial condition: set \(\bar{u}, k \) and \(\omega \) = from inlet boundary conditions.

```python
# set inlet field in entire domain
u3d=xp.repeat(u_bc_west[None,:, :], repeats=ni, axis=0)
k3d=xp.repeat(k_bc_west[None,:, :], repeats=ni, axis=0)
om3d=xp.repeat(om_bc_west[None,:, :], repeats=ni, axis=0)
vis3d=k3d/om3d+viscos
```

Run the code and plot the results with `plot_inlet_bound.py`. Looking at the time histories of \(\bar{u} \), we find that we should maybe run more time steps to really reach steady state.

Now we will use these results as mean inlet boundary conditions in Section 24. Look at the script `create-inlet-rans-profiles.py`. Here we extract \(\bar{u}, \bar{v}, k, \omega \) and \(v_1 v_2 \) at cells \(ni-10 \). The data are stored in file `y_u_v_k_cm_uv_re-theta-2500.txt`.
23. RANS of hump flow using the AKN $k - \varepsilon$ model

The grid is shown in Fig. 23.1. This grid was used in [32].

The inlet boundary condition are taken from a 2D boundary layer. It could have been taken from the results in Section 22 if the extent of the streamwise domain were increased (the inlet momentum Reynolds number should be $Re_{\theta} = 6300$).

The flow is 2D, so we use only two cells in the z direction. The z.dat file reads

```
0.2 2
```

23.1 setup_case.py

23.1.1 Section 2

The AKN $k - \varepsilon$ model is used

```
keps=True
```

23.1.2 Section 8

```
ntstep=2000
uin=1
dt=0.001*xp.ones(ntstep)
itstep_start=ntstep-100
```

23.2 modify_case.py

23.2.1 modify_inlet

The inlet boundary conditions are taken and interpolated from a RANS boundary-layer simulation using the $k - \omega$ model.

```
if itstep == 0:
y_u_k_om=xp.loadtxt('y_u_v_k_om_uv_hump.dat')
y_rans_in=y_u_k_om[:,0]
u_rans_in=y_u_k_om[:,1]
v_rans_in=y_u_k_om[:,2]
k_rans_in=y_u_k_om[:,3]
```
om_rans_in=y_u_k_om[:,4]
uv_rans_in=y_u_k_om[:,5]
eps_rans_in=0.09*k_rans_in*om_rans_in

y_rans=yp2d[0,:]
u_rans=xp.interp(y_rans, y_rans_in, u_rans_in)
make it 2D
u_rans=xp.repeat(u_rans[:,None], repeats=nk, axis=1)
k_rans=xp.interp(y_rans, y_rans_in, k_rans_in)
make it 2D
k_rans=xp.repeat(k_rans[:,None], repeats=nk, axis=1)
eps_rans=xp.interp(y_rans, y_rans_in, eps_rans_in)
make it 2D
eps_rans=xp.repeat(eps_rans[:,None], repeats=nk, axis=1)

uv_rans=xp.interp(y_rans, y_rans_in, uv_rans_in)
k_bc_west=k_rans
eps_bc_west=eps_rans
u_bc_west=u_rans

23.2.2 fix eps

The values of ε are set for the wall-adjacent cells.

south wall
aw3d[:,:,0,:]=0
ae3d[:,:,0,:]=0
as3d[:,:,0,:]=0
an3d[:,:,0,:]=0
al3d[:,:,0,:]=0
ah3d[:,:,0,:]=0
ap_max=xp.max(ap3d)
ap3d[:,:,0,:]=ap_max
su3d[:,:,0,:]=ap_max*2*viscos*k3d[:,:,0,:]/dist3d[:,:,0,:]**2

Run the code. Check how much time it takes to solve each equation with the command

grep time out

The output on a Dell Alienware x17 R1 laptop is

time one iteration: 7.28e-01
time u: 1.35e-01
time v: 1.26e-01
time w: 1.26e-01
time p: 5.83e-02
time k: 1.39e-01
time eps: 1.34e-01
24. IDDES of hump flow using the $k-\varepsilon$ model

This setup was used for simulations presented in [32].

The same grid is used as in Section 23 except that the flow is now three dimensional. 32 cells are used in the z direction and the $z.dat$ file reads

0.2 32

The grid is shown in Fig. 23.1. It happens to give good results, but that’s probably fortuitous; in order to accurately resolve large-scale turbulence it should probably be refined upstream the hump and in the outlet region for $x > 2$. It is fairly easy to do this with a Python script. This has been done in [33].

The settings are very similar to those in Section 23 except that we now use central differencing and synthetic inlet fluctuations.

You find this case in the directory

hump-IDDES-ni-583-go4hybrid-mesh-STG-dt-0.002/

The results are presented in [32].

24.1 setup case.py

The velocities and k and ε are solved using lgmres

24.1.1 Section 6

```python
solver_vel='lgmres'
solver_turb='lgmres'
```

The default solver, pyamg, is used for the pressure.

I set minimum two global iterations

```python
min_iter=2
```

24.2 modify_case.py

24.2.1 modify inlet

Initial data are taken from the RANS simulation in Section 23.

```python
# start from RANS
name = '../hump-2D-RANS-AKN-go4hybrid-mesh-inlet-at-x-m2.1/
itstep, dummy1, dummy2 = xp.load(str(name) + 'itstep.npy')
u2d = xp.load(str(name) + 'u_averaged.npy') / itstep
v2d = xp.load(str(name) + 'v_averaged.npy') / itstep
p2d = xp.load(str(name) + 'p_averaged.npy') / itstep
k2d = xp.load(str(name) + 'k_averaged.npy') / itstep
eps2d = xp.load(str(name) + 'eps_averaged.npy') / itstep

vismax = xp.max(0.09 * k2d**2 / eps2d)
print('vismax', vismax / viscos)
```

change from RANS to LES
24.2. modify_case.py

k2d=0.4*k2d

vismax_les=xp.max(0.09*k2d**2/eps2d)
print('vismax_les',vismax_les/viscos)

make 2d to 3d
u3d=xp.repeat(u2d[:,:,None], repeats=nk, axis=2)
v3d=xp.repeat(v2d[:,:,None], repeats=nk, axis=2)
p3d=xp.repeat(p2d[:,:,None], repeats=nk, axis=2)
k3d=xp.repeat(k2d[:,:,None], repeats=nk, axis=2)
eps3d=xp.repeat(eps2d[:,:,None], repeats=nk, axis=2)
w3d=xp.zeros((ni,nj,nk))

24.2.2 modify_fk

The IDDES model is implemented here

global f_e_mean, f_b_mean, f_dt_mean

l_dist=0.15*dist3d
l_max=0.15*delta_max
dy=xp.diff(y2d[1:, :], axis=1)

make it 3d
dy=xp.repeat(dy[:,:,None], repeats=nk, axis=2)
l_temp=xp.maximum(l_dist,l_max)
l_temp=xp.maximum(l_temp,dy)
l_iddes=xp.minimum(l_temp,delta_max)

l_iddes=xp.minimum(xp.maximum(l_dist,l_max,dy),delta_max)
ueps=(eps3d*viscos)**0.25
ystar=ueps*dist3d/viscos
rt=k3d**2/eps3d/viscos
fdampf2=((1.-xp.exp(-ystar/3.1))**2)*(1.-0.3*xp.exp(-(rt/6.5)**2))
fmu=((1.-xp.exp(-ystar/14.))**2)*(1.+5./rt**0.75*xp.exp(-(rt/200.)**2))
fmu=xp.minimum(fmu,1.)
psi=xp.minimum(10, (fdampf2*fmu)**(-0.75))
l_c=psi*cdes*l_iddes # eq. 9

vist=vis3d-viscos
denom=kappa**2*dist3d**2*gen**0.5

r_dt=vist/denom # eq. 22
r_dl=viscos/denom # eq. 23

f_t=xp.tanh((c_t**2+r_dt)**3)
f_l=xp.tanh((c_l**2+r_dl)**10)
24.2. modify_case.py

\[
f_{e2} = 1 - \text{xp}.\text{maximum}(f_t, f_l) \quad \text{# eq. 19}
\]

\[
\alpha = 0.25 - \text{dist3d}/\text{delta_max}
\]

\[
f_{e1} = \text{xp}.\text{where}(\alpha <= 0, 2 \times \text{xp}.\exp(-9 \times \alpha^2), 2 \times \text{xp}.\exp(-11.09 \times \alpha^2), 1.)
\]

\[
f_b = \text{xp}.\text{minimum}(2 \times \text{xp}.\exp(-9 \times \alpha^2), 1.)
\]

\[
f_{dt} = 1 - \text{xp}.\tanh((8 \times r_{dt})^{**3})
\]

\[
f_e = \text{xp}.\text{maximum}(f_{e1} - 1, 0) \times \text{psi} \times f_{e2}
\]

\[
f_{d} = \text{xp}.\text{maximum}(1 - f_{dt}, f_b)
\]

\[
l_u = k3d**1.5/\text{eps3d}
\]

\[
l_{tilde} = f_d \times (1+f_e) \times l_u + (1-f_d) \times l_c
\]

\[
l_{tilde} = f_d \times l_u + (1-f_d) \times l_c
\]

\[
fk3d = l_u/l_{tilde}
\]

\[
fk3d = \text{xp}.\text{minimum}(fk3d, c_{eps2} / c_{eps_1}) \quad \text{# limie on psi}
\]

24.2.3 modify_k

A commutation term is added to the k equation.

```python
if iter == 0:
    # set running-averaged inlet values to zero
    if itstep == 0:
        u2prim_i0 = xp.zeros(nj)
        v2prim_i0 = xp.zeros(nj)
        w2prim_i0 = xp.zeros(nj)
        umean_i0 = xp.zeros(nj)

    # time average
    u2prim_i0 = u2prim_i0 + xp.mean(u3d[0, :, :])**2, axis=1
    v2prim_i0 = v2prim_i0 + xp.mean(v3d[0, :, :])**2, axis=1
    w2prim_i0 = w2prim_i0 + xp.mean(w3d[0, :, :])**2, axis=1
    umean_i0 = umean_i0 + xp.mean(u3d[0, :, :], axis=1)

    comm_term = xp.zeros((nj, nk))
    umean = umean_i0 / (itstep + 1)
    u2prim = u2prim_i0 / (itstep + 1) - umean**2
    v2prim = v2prim_i0 / (itstep + 1)
```
25. IDDES of hump flow running 100% on the GPU

```python
w2prim = w2prim_i0 / (itstep + 1)
k_tot = 0.5 * (u2prim + v2prim + w2prim) + xp.mean(k3d[0, :, :], axis=1)
# make it 2D
k_tot = xp.repeat(k_tot[:, None], repeats=nk, axis=1)
psi_small = fk3d[0, :, :]
term1 = xp.maximum((c_eps_2 - c_eps_1 * psi_small) / (c_eps_2 - c_eps_1), 1e-10)
fk2d_from_psi = term1 ** 0.333

dfk_dx = u3d[0, :, :] * (fk2d_from_psi - 1) / (x2d[1, 1] - x2d[0, 1])
# commutation term
comm_term_pans = k_tot * dfk_dx
comm_min_pans = xp.min(comm_term_pans)
pk_max = xp.max((vis3d - viscos) * gen)
u2prim_max = xp.max(u2prim)
v2prim_max = xp.max(v2prim)
w2prim_max = xp.max(w2prim)

print(f"\n{'comm_min_pans: '}{comm_min_pans:.2e}, {'pk_max: '}{pk_max:.2e}, {'u2prim_max: '}{u2prim_max:.2e}, {'v2prim_max: '}{v2prim_max:.2e}, {'w2prim_max: '}{w2prim_max:.2e}"
sp3d[0, :, :] = sp3d[0, :, :] + xp.minimum(comm_term_pans, 0) * vol[0, :, :] / k3d[0, :, :]
```

Run the code and look at the CPU time by typing `grep time out`

I get
```
time one iteration: 4.88e+01
time u: 1.00e+00
time v: 7.65e-01
time w: 6.35e-01
time p: 2.61e+01
time k: 8.17e+00
time eps: 8.07e+00
```

25 IDDES of hump flow running 100% on the GPU

Here I will re-do the simulations in Section 24 but here I will make all computations as the GPU. You must have an Nvidia graphics card on your computer. I use a Dell desktop with a graphics card GeForce RTX 3090. The CPU is i7-12700.

25.0.1 Section 0

First, I select the GPU
```
gpu = True
```
25.0.2 Section 6

When the GPU is used, the default solver is pyamgx for the velocities and turbulent quantities. For the pressure it is pyamgx_p. The default convergence limit is convergence_limit_gpu = 5e-5. I use the default settings.

When solver_p='pyamgx_p' it means the discretized matrix $a_W, \ldots A_H$ (see Section B.4) is computed only once. This option requires much memory. If you’re GPU does not have sufficient memory, you can set solver_p='pyamgx' and then the matrix is re-computed every global iteration/time step.

I find the elapsed by typing

grep time out

which gives

time one iteration: 6.96e-01
 time u: 1.08e-01
 time v: 1.90e-02
 time w: 1.86e-02
 time p: 1.52e-01
 time k: 1.62e-01
 time eps: 1.50e-01

Hence, it runs 70 times faster on the GPU than on the CPU.

26 Developing boundary layer

Here we simulate developing flow boundary layer flow along a flat plate at inlet Reynolds number based on the momentum thickness, $Re_\theta = U_{free}\theta/\nu = 2550$. The data presented below are averaged in z direction and time.

The inlet boundary-layer thickness is $\delta_{in} \sim 0.78$. The far-field mean velocity is one, i.e. $U_{free} = 1$, and the time step is 0.043. The mean inlet profiles are taken from a 2D RANS solution at $Re_\theta = 2500$. Synthetic fluctuations [34, 35] are superimposed to the RANS velocity profile.

The mesh has $700 \times 90 \times 64$ cells (x, y, z). The domain size is $87 \times 2.9 \times 1.6$. $\Delta x_{in}^+ = 110, \Delta z_{in}^+ = 31$ and $y_{in}^+ = 0.5$ for the center of the wall-adjacent cell. A stretching of 10% is used in the wall-normal direction but Δy is not allowed to be larger than 0.05.

You find the case in directory

```
boundary-layer-IDDES-ni-700-nk128-2zmax-synt-commut-with-fk-psi-eps-neumann
```

The settings in setup_case and modify_case are almost identical to those in Section 24. The main difference is that here I use Neumann inlet b.c. on z instead of adding a commutation term. This has a negligible influence on the predicted results. Another difference is that I run this flow on the GPU.

The time for one iteration is one second. When I run the simulation (using setup_case-CPU.py) it takes approximately 63 seconds for one iteration.

27 Workshop

In this section you will get familiar to use and modify the pyCALC-LES code. We start by doing some simple RANS simulations. Note that you should not use any for
27.1 Getting started

Loops because in Python they are very slow. An exception may be the grid generator and plotting scripts in which the CPU time is not an issue.

27.1 Getting started

Unpack the pyCALC-LES-course-202x.tgz (x=2, 3, ...). Go into the directory pyCALC-LES-course-202x.tgz.

First, you must make sure that you have installed the required Python packages. I recommend that you install Python in your home directory using Anaconda.

Run the Python script pyamgx_solve_random_matrix.py. This script will test if you have installed the required sparse-matrix solvers, the algebraic multigrid solver pyamg, and algebraic multigrid solver on the GPU pyamgx. Do the test by typing

```
python pyamgx_solve_random_matrix.py
```

If everything works you will see

```
*************** gmRES solver works
*************** pyAMG solver works
*************** pyAMGx solver works
```

Probably, neither pyamg nor pyamgx are installed on your system. On Ubuntu, I installed pyamg with the command

```
conda install -c anaconda pyamg
```

For installation of pyamgx, see Section C.

27.2 Channel flow, RANS

Go to the directory channel-5200-k-omega-RANS (or something similar). Here RANS simulations of fully-developed channel flow will be studied. Look at setup_case.py and modify_case.py; the input is briefly described in Section 18. Plot the results using the script pl_uvw_RANS.py. I’m using the Python interface ipython. So I would type

```
ipython
```

and then

```
run pl_uvw_RANS.py
```

If you like the vi editor – as I do – then you can from ipython edit the script using the command

```
!vim pl_uvw_RANS.py
```

Below I give some examples of how you can modify this flow. You may do all or only a few. The object is that you should get familiar with the code and do some fast simulations. Create a new directory (below the directory where pyCALC-LES resides). Copy all files from channel-5200-k-omega-RANS (or something similar) into this new directory.
27.2. Channel flow, RANS

27.2.1 New grid

The grid is generated using the script `generate-channel-grid.py`. 96 cells are used in the \(y \) direction with a stretching of 15%. It gives a \(y^+ \) value of approximately 0.5 for the wall-adjacent cell center. Modify the number of cell and/or the stretching and look at the influence. You execute the grid script by typing

\[
\text{python generate-channel-grid.py}
\]

Now a new grid is generated (it is written to \texttt{x2d.dat} and \texttt{y2d.dat}) which is read by \texttt{pyCALC-LES}. Set

\[
gpu=False
\]

in \texttt{setup-case.py} because for this flow with very cells the code run slower on the GPU than on the CPU. Now run \texttt{pyCALC-LES} by typing

\[
\text{run-python &}
\]

This is a bash script which simply puts the four Python scripts \texttt{setup_case.py}, \texttt{modify_case.py}, \texttt{../pyCALC-LES-GPU.py} and \texttt{../synt_flucy-GPU.py} (together with the declarations of global variables in file \texttt{../globals-GPU}) into one file called \texttt{exec-pyCALC-LES-GPU.py} and then runs this file. In Section 16.3, you find some useful information on how to extract convergence history etc from the output file out.

27.2.2 Boundary wall conditions on \(\omega \)

The wall boundary conditions on \(\omega \) are set in Section 10 in \texttt{setup_case.py} according to Eq. 10.2. This is not entirely correct, because it prescribes \(\omega \) at the wall, whereas it should be prescribed at the cell center. With the present boundary condition, the value of \(\omega \) at the cell center will be too small. Try to compensate this by increasing the value of \(\omega \) at the wall by a factor of \texttt{fact=10}.

When you edit the code you may do it in two ways. Either you edit \texttt{setup_case.py} and then execute the code with the \texttt{run-python} script. Or you edit the file \texttt{exec-pyCALC-LES-GPU.py} directly. If you do it with \texttt{ipython} you type

\[
\text{ipython}
\]

and then

\[
!\text{vim exec-pyCALC-LES-GPU.py}
\]

\[
\text{run exec-pyCALC-LES-GPU.py}
\]

You can insert breaks in the code by inserting the command \texttt{sys.exit()}. Now, do you get the correct value of \(\omega \) (according to Eq. 10.2) at the wall-adjacent cell center? Or is it still too small? If so, increase \texttt{fact}.

Another way is to prescribe \(\omega \) at the cell center using sources \(S_P \) and \(S_U \). In standard SIMPLE finite volume methods, this is usually done setting \(S_U \) and \(S_P \) to large values, i.e.

\[
S_P = -10^{10}, \quad S_U = 10^{10} \omega_{\text{wall}}
\]
27.3. Boundary layer flow, RANS

where ω_{wall} is the wall boundary condition. However, this option does not work in pyCALC-LES (the simulations diverge rapidly), probably because the advanced solvers do not tolerate the resulting large condition number of the solution matrix.

Instead, at the wall-adjacent cells, we simply set all coefficients, a_w, a_E, \ldots, a_H to zero, $a_P = 1$ and $S_u = \omega_{wall}$. You do this in the module fix_omega in file modify_case.py

def fix_omega():
 aw3d[:,0,:]=0
 ae3d[:,0,:]=0
 an3d[:,0,:]=0
 al3d[:,0,:]=0
 ah3d[:,0,:]=0
 ap3d[:,0,:]=1
 su3d[:,0,:]=om_bc_south

Setting $a_P = 1$ may not be optimal, since this value may be much larger/smaller than a_P at other cells. It’s probably better to set

$$a_{P,max} = \max(a_P)$$

where max is taken over all cells and $S_u = a_{P,max}\omega_{wall}$; this approach makes the condition number of the coefficient matrix smaller.

Note, that the procedure of setting the coefficients a_w, a_E, \ldots cannot be done in modify_om, since the a_P and S_U are modified in module crank_nicol after leaving modify_om. You must use the module fix_omega (in file modify_case.py) which is called just before the solver is called. Implement the boundary condition (i.e. setting ω_{wall} as the wall-adjacent cell value) and find out how large the effect is on the results.

27.2.3 $k - \epsilon$ model

Now simulate the same flow with the AKN $k - \epsilon$ model. You set $keps=True$ and $kom=False$. You need to set the wall boundary for ϵ according to Eq. 8.4. Do that in module fix_eps.

The default initial values are set in the main code for k and ϵ, i.e. $k = \epsilon = 1$.

Check the convergence by typing

grep ‘max resi’ out

Plot the results. They don’t look too good, do they? If you look at the time histories you see there are large oscillations. Decrease the time step (Section 8 in setup_case.py) by a factor of four and make a corresponding increase in number of time steps. Run again and you find it looks better.

How do the results compare with $k - \omega$ model? Try different grids. Is the $k - \epsilon$ more or less sensitive to the near-wall refinement than the $k - \omega$ model?

27.3 Boundary layer flow, RANS

Read Section 22 carefully. This is a developing boundary layer flow. At the inlet, $\bar{u} = 1$, $\bar{\omega} = 1$ and $k = 10^{-2}$ near the wall (first 10 cells) and $k = 10^{-10}$ in the
27.4 Channel flow, inlet-outlet, $Re_\tau = 395$

outer region. This flow case can be used for creating mean inlet profiles for the DES simulations in Section 24 (but you need to increase n_i). Neumann boundary conditions are used at the free (north) boundary for k and ω. Do some sensitivity checks.

- Is the flow sensitive to the inlet values of k and ω?
- Relative convergence criteria (i.e. negative values in Section 6 in setup_case.py) in the sparse-matrix solvers is used for all equations except pressure. You can verify this py typing

```bash
grep history out
```

What happens if you switch to absolute convergence criteria? (remove the minus signs). You’ll find that the predicted velocity profiles are not the same (they are worse).

When you check the convergence of the global residual by typing

```bash
grep 'grep resi' out
```

you find that the non-linear \bar{u} does not converge for time steps 6 to 9. This is somewhat surprising: you converge the linearized equations better, but the result is that the full, non-linear equations then do not converge. I assume the reason is that it does not pay-off to solve the linearized equations too hard when the non-linear equation system is far from converged.

- What happens if you set Dirichlet boundary at the free boundary (the $k-\omega$ model is known to be sensitive to free-stream values of ω)
- The ω_{wall} value is set to 10ω_{wall}. See Section 10 in setup_case.py What happens if you fix is to ω_{wall} in the center of the cell (as you did in Section 27.2.2).

27.4 Channel flow, inlet-outlet, $Re_\tau = 395$

Now we will – finally – do some LES. The setup of this flow is given in Section 20. Read this section carefully, look at the file out and plot the results. Now create a new directory and copy all files.

In order to make the simulations quicker, you can make the domain smaller and use shorter integration times. You can also choose to make simulations only in the lower half of the channel using a symmetry boundary condition at the upper (north) boundary. Note that by doing this we modify the physics, but the influence will probably be limited to the region near the upper boundary.

So, let’s change the domain and generate a new grid with extent $x = [0, 4]$ and $y = [0, 1]$ with $ni = 44$ and $nj = 40$. The generate-channel-grid.py mirrors the grid in the upper half; remove that part (since we want to create a grid only for the lower half). Modify the script generate-channel-grid.py accordingly.

Next, we need to change the boundary conditions at the upper (north) boundary from Dirichlet to Neumann (note that it should be changed for all variables except one). You do that in file setup_case.py in Section 10.

In the full channel (i.e. $y_{max} = 2$ in Section 20), the inlet shear stress profile created by the synthetic fluctuations is negative in the lower (south) half and positive in
27.4. Channel flow, inlet-outlet, $Re = 395$

the upper (north) half. We change the sign of the inlet shear stress in the upper half by switching the sign of v' in Eq. 12.8, see Section 20.1.5. In this case, we compute the flow only in the lower half of the channel and hence we set $j_{mirror_synt}=0$ (also in Section 10).

In file `modify_case.py` you should look for `modify_init` and `modify_inlet`. Here the variables $y_{_rans}$, $u_{_rans}$ and $uv_{_rans}$ are used. The length of the loaded vectors are that of the full channel. But now we must use only the values in the lower half of the channel, e.g.

$$
\begin{align*}
y_{_rans} &= y_{_u_k_om}[0:nj,0] \\
u_{_rans} &= y_{_u_k_om}[0:nj,1] \\
v_{_rans} &= y_{_u_k_om}[0:nj,4]
\end{align*}
$$

Finally, reduce the start of time integration and number of time steps to

```python
itstep_start = 2000
ntstep = 6000
```

Also, if you have managed to install `pyamgx`, you can solve set

```python
gpu = True
```

Now run the code. On my Dell Alienware x17 R1 laptop the simulation takes 4.4 minutes on the GPU. It takes twice that on the CPU. Plot the results (you’ll find that you must make some modifications of the plot script) and compare with the original results. The most critical quantities are the friction velocity and the resolved shear stress. The profiles of the resolved stresses are non-smooth because of too short a time averaging. Increase `ntstep` and `itstep_start` if you prefer smoother profiles.

Now investigate how sensitive the flow is to various parameters.

- The number of synthetic modes is set to $nmodes_{_synt}=1200$. What happens if you increase or decrease it? What about the CPU time?
- The SGS viscosity is plotted. You find that $\nu_{_sgs}/\nu \simeq 1$. We use the WALE model. What happens if you switch to DNS?
- The integral turbulent length scale of the synthetic fluctuations is set to $L_{t_synt}=0.2$. What happens if you increase/decrease it? Do you get the same effect as in [23]?
- Can you increase the time step? If so, you can reduce the integration time. Is the CPU time/time step the same for the larger time step (type `grep time` at the prompter)? Can you loosen the convergence criteria?
- The integral turbulent timescale of the synthetic fluctuations is set to L_{t}/u_{τ} (see `tturb=L_{t_synt} in modify_inlet`). Note that this value gives $a_{_synt}=0.994$ and $b_{_synt}=0.108$ (see file `out`) which correspond to a and b in Eqs. 12.10 and 12.11 (hence only a small contribution from the “new” fluctuation in the time filter, Eq. 12.9). What happens if you increase/decrease the integral timescale?
- The eigenvalues and the eigenvectors for the synthetic fluctuations are read in `module synt_fluct`. It reads the files `a_{_synt_inlet.dat}` and `R_{_synt_inlet.dat}`. The eigenvalues and the eigenvectors have been computed using a Reynolds stress tensor created with EARSM and a 1D RANS simulation. They were
computed using the script `compute_a_and_R_from_earsm.py`. Note that you may need to change the directions of the eigenvectors (see comments in the script). Try another Reynolds stress tensor (e.g. from DNS). This task is optional.

- Change any other parameters. For example, you can make more changes in the synthetic fluctuation generator (file `../synt_fluct.py`).

27.5 Channel flow, inlet-outlet with heat transfer, \(Re_\tau = 395 \)

Now we can add a new transport equation: a temperature equation. If you’re more interested in the \(k-\omega \) DES turbulence model, skip this section. You can make a LES simulation or if you want to faster simulation, then use RANS. In either way, copy the files in Section 27.4. For RANS, you skip the inlet fluctuations and you can reduce the number of cells to two in the \(z \) direction, and you can choose, e.g., the \(k-\omega \) model. Or you can even do laminar flow (don’t forget to reduce the Reynolds number).

When we add a new transport equation, it means that you have to make changes in the main code. i.e. `pyCALC-LES-GPU.py`. I suggest that you copy that file into a new name, e.g. `pyCALC-LES-heat.py`. Then you also need to change the `run-python` file.

Now you need to define many new variables in file `globals` such as `t_bc_east`, `t_bc_east_type`, `t_bc_north`, `t_bc_north_type`, `t_bc_south`, `t_bc_south_type`, `t_bc_west`, `t_bc_west_type`, `t_bc_high`, `t_bc_low`, `t_bc_high_type`, `t_bc_low_type`.

You need to initialize temperature (search for the string `u3d=xp.ones((ni,nj,nk))*1e-20` in `pyCALC-LES-heat.py`)

\[
t3d=xp.ones((ni,nj,nk))*1e-20
\]

Then you need to create a new routine for temperature, `calcT`. You need to call `coeff, bc ...`. You can, for example, copy the lines used for `v3d` (search for the string `calcv` in `pyCALC-LES-heat.py`). You need to define a viscous Prandtl number (`prandtis` is a turbulent one). You can add one parameter (e.g. `prand_visct` in the call to `coeff`; don’t forget to add `prand_visct` to the file `global`).

You must also create a `modify_t` in file `modify_case.py`.

Now, set boundary conditions and try it out! (it will most likely not work right away). I suggest that you use \(T = 0 \) at the inlet. Then set some Dirichlet b.c. at the wall. Next, you may set some internal heat source in, for example, the cells \((i,j,:)=(5,10,:))\). You do this with the command in `modify_t`

\[
su3d[5,10,:]= su3d[5,10,:]+ss*vol[5,10,:]
\]

where \(ss \) is the source per unit volume.

27.5.1 Adding buoyancy

Maybe you want to add buoyancy. We choose the vertical direction as \(y \). That means that we should add the buoyancy term to the \(\vec{v} \) momentum equation which reads

\[
g\beta(T - T_{ref})
\]

(27.1)
27.6 RANS of channel flow at \(Re_\tau = 5200 \): \(k - \omega \) and wall functions

Here we will implement wall functions and make RANS simulations of fully developed channel flow. Copy all files used in Section 18. When wall functions are used we place the wall-adjacent cell centers in the log-region, i.e. approximately at \(30 \leq y^+ \leq 200 \). So we start by generating a new grid using `generate-channel-grid.py`. Set \(nj=50 \) and make all \(\Delta y \) equal. You can achieve this by setting the stretching factor to one, i.e. \(yfac=1 \). The wall boundary conditions for \(\bar{u}, k \) and \(\varepsilon \) are given in Section 11.14.1 in [24]. They can be summarized as

- \(\bar{u} \): set the wall shear stress as \(\tau_w = \rho u_\tau^2 \) (recall that \(\rho = 1 \)). The log-law reads
 \[
 \frac{\bar{u}}{u_\tau} = \frac{1}{\kappa} \ln \left(\frac{Eu_\tau y}{\nu} \right)
 \]
 where \(E = 0 \) and \(\kappa = 0.41 \).

- \(k \): set \(k \) at the wall-adjacent cells as \(k_p = C_\mu^{-1/2} u_\tau^2 \)

- \(\omega \): set \(\omega \) at the wall-adjacent cells as \(\omega_p = C_\mu^{-1/2} u_\tau / (\kappa y_{wall}) \), see Eq. 3.27 in [36]

Here are some tips.

- The wall force (wall shear stress times area), \(\tau_w A_s \), should always be in the opposite direction to the local \(\bar{u} \) velocity. Hence, include the sign when you add the wall shear stress, i.e. \(\tau_w A_s \text{sign}(\bar{u}) \) to `su3d`. Since the wall boundary condition is implemented as a force, there should be no diffusion from the wall via `as3d` and `an3d`. Hence, set Neumann boundary conditions for \(\bar{u} \).

- When setting the wall-adjacent \(\omega \) according to the expression above, use the module `fix_omega` in file `modify_case.py`.

- The expression for \(u_\tau \) in the log-law (Eq. 27.2) is implicit. Hence, compute \(u_\tau \) from the log-law in an iterative way (you could make 3–5 iterations using \(u_\tau \) from the previous global iteration as initial value).

- Print \(u_\tau \) at every time step; it is a good check to see if it’s correctly computed. It should go to one (it takes at least 1000 time steps).

- Finally, when you plot the results using `pl_uvw.py`. The friction velocity is here computed as
 \[
 u_\tau = \left(\frac{\nu}{\nu} \frac{\partial \bar{u}}{\partial y}_{wall} \right)^{1/2}
 \]
 Now you should compute is from the wall functions (you can compute it from \(k \))
27.7 Channel flow, inlet-outlet, $Re_\tau = 5200$

In Section 21 you find a case of inlet-outlet DES flow. Copy these files into a new directory. If you want to make the simulations quicker, you can make the same modifications as in Section 27.4 (i.e. half-channel and shortewer domain).

27.7.1 Neumann boundary condition on k

The discretized commutation term in the k equation is in effect a negative convection term [30]. Hence, we should get the same results if we omit the commutation term in the k equation and change the inlet Dirichlet boundary condition on k to Neumann (cf Figs. 6 and 9 in [30]). Make the changes, run the code and compare the results with those in Section 21.

27.7.2 No commutation terms

- What happens if you keep Dirichlet inlet boundary conditions on k and ω and omit the commutation terms?
- What happens if omit the commutation terms and use Neumann inlet boundary conditions on both k and ω?

27.7.3 No commutation terms in URANS region

As discussed in [30], the commutation terms should maybe not be used in the URANS region. First, find out where the switch between URANS and LES occurs. Then, make a simulation where you use the commutation terms only in the LES region. Run the code. How do the results compare with those in Section 27.7?

27.8 Channel flow, inlet-outlet, $Re_\tau = 5200$, using wall functions

Implement wall functions in the same way as Section 27.6. Copy all files from Section 27.7. Modify the grid, setup_case and modify_case in the same way as in Section 27.6.

If you would do turbulent, atmospheric boundary layer, you would use a similar wall functions but instead of the friction velocity we use roughness length, see, e.g., Eq. 14 in [37]

27.9 Channel flow, fully developed, $Re_\tau = 5200$

Now we’ll replace the inlet-outlet boundary conditions with cyclic boundary conditions. This will be the same flow as in Section 17 but now we compute the flow only in the lower (south) half of the channel. Copy the files from Section 27.7. In Section 10 in setup_case.py, set

```
cyclic_x = True
```

This means that the results from 27.7 will be used as initial conditions stored in files u3d_saved.npy, v3d_saved.npy, ...om3d_saved.npy. You don’t need to change ubc_west_type, ubc_east_type...om_bc_east_type.

We must have reasonably good initial condition. A good way it to use the results in Section 27.7 as initial condition. Hence, simply set
28. Machine Learning (SVR) for improving wall functions

```
restart = True
```

in Section 3 in `setup_case.py`.

Remove all initial, inlet and outlet conditions in `modify_case.py`. Then add the driving pressure gradient source term in `modify_u`.

```
su3d = su3d + vol
```

Run the code. It may take some time for the flow to get fully developed. When you plot the results, check how large \(u_T \) is (or \(\tau_w \)). It should be equal to one (because \(\tau_w \) must balance the pressure gradient, see Section “Force balance, channel flow” in [24]). If it is 5% too small or too large, run the code again (i.e. run another `ntstep` time step). How do the results compare with those in Section 17?

27.9.1 RANS-LES Interface

Check where the RANS-LES interface is located (it is stored in variable `fk3d` which is computed in module `compute_fk`). The interface is defined as the location where `fk3d` gets larger than one.

1. Investigate the sensitivity to the location of the interface by forcing it to a certain cell layer of constant \(j_{l0} \). This is done by setting the \(j_{l0} \) to a negative value, i.e. `xp.abs(jl0) = jl0`.

2. The LES length scale is \(\Delta \), see Eq. 10.1. Replace \(\Delta \) by the IDDES length scale, \(\Delta_{dw} \), see Section 24 or Eq. 8 in [31]. Note that you must not use any `for` loops. Run the code and compare with the results obtained in Section 27.9.

27.9.2 Change turbulence model

Up to now, you have used the standard Wilcox \(k-\varepsilon \) model. Now switch to the \(k-\omega \) model used in [31].

27.9.3 IDDES

In Section 27.9.2 you make a DES simulation. Now you should make an IDDES simulation. In \(k-\varepsilon \) DES, \(f_k \) is using Eq. 11.1. In IDDES, \(f_k \) is computed as in Section 24.2.2. Include this code in `modify_case.py` in module `modify_fk`.

28 Machine Learning (SVR) for improving wall functions

Here we will use Machine Learning (ML) for improving wall functions. Start by reading my report [38].

The codes in two directories are used.
28.1 Directory 1

The name of the directory is
\texttt{channel-5200-IDDES-96-86-96-ML-aver-xz-database-3cells-15000-timesteps}.
Here IDDES is used to make fully-developed channel flow at $Re = 5200$, see Section 2 & 3 in [38]. Files with time series of independent samples at nine cells are created in module \texttt{modify_u}.

Next, \texttt{svr} is used to create a ML wall-function model in file
\texttt{svr-C-10-eps-0.001-low-re-yplus-inst-first-uplus-output-cell-1-9-local-300-samples.py}

It creates three files (which is the ML model):

- \texttt{model-low-re-svr-C-10-eps-0.001-yplus-inst-uplus-output-first-cell-1-9-local-cells-300-samples.bin}
- \texttt{model-low-ustar-svr-C-10-eps-0.001-yplus-inst-uplus-output-first-cell-1-9-local-cell_scaler-yplus-300-samples.bin}
- \texttt{min-max-model-low-re-svr-C-10-eps-0.001-yplus-inst-uplus-output-first-cell-1-9-local-cells-locall-300-samples.txt}

28.2 Directory 2

The name of the directory is
\texttt{channel-16000-IDDES-wall-functions-nj92-ML-dy-from-database-ni-96-svr-C-10-eps-0.001-low-re-IDDES-yplus-inst-uplus-output-cell-1-9-300-samples}

Here, the wall function ML model is used to predict fully-developed channel flow at $Re = 16000$. The ML model created in Section 28.1 is loaded in module \texttt{fix_k}.

The friction velocity, u_τ, is predicted with the ML wall-function model. It is then used to set $k = C_{\mu}^{-1/2} u_\tau^2$ in the wall-adjacent modes. The friction velocity is also used

- in module \texttt{fix_eps}: set $\varepsilon = \frac{u_\tau^3}{\kappa u_\tau}$ in the wall-adjacent modes
- in module \texttt{modify_u}: set $\tau_w = u_\tau^2$ at the wall in the wall-adjacent modes

29 Machine Learning (Neural Network) for improving an EARSM

Here you will do an assignment in my MTF271 Turbulence modeling course. You will use Neural Network (NN). The NN part is the second part of Assignment 1, i.e. Assignment 1b which you find at Assignment 1b. You find guidance on the Assignment in Section P.2 in my eBook.

30 Machine Learning (KDTree) for improving wall functions

Here we will use Python’s \texttt{KDTree} which essentially is a look-up table. We will use channel flow at $Re = 5200$ as target data and make simulations at $Re = 16000$. The output data should be u_τ (or, rather, τ_w). You can use any target variable (which
also will act as an output variable). If we generate data from mean flow, we can do it when processing time-averaged CFD data. Hence we may use the plotting routine pluvw.py in Section 28.1. I choose to create mean data of y^+, u^+/τ, \bar{u}/\bar{v}, $\partial \bar{u}/\partial y (\nu/U^+_b)\,$, C_f and $\partial \bar{p}/\partial x (\nu/U^+_b)$ as

```python
xx = -10*np.ones(nj)  # dummy value
ubulk= np.sum(u*np.diff(y2d[:,0,:]))/max(y2d[:,0,:])
dudy = np.gradient(u,y)*viscos/ubulk**2
dpdx = -1*np.ones(nj)
dudx = np.zeros(nj)
Cf = ustar**2/ubulk**2/0.5*np.ones(nj)
p_plus = viscos*dpdx/ubulk**3
np.savetxt('x-mean-yplus-uplus-ustar-dudy-Cf-pplus-dudx-channel-5200.txt', np.c_[xx*np.ones(nj),yplus,u,ustar*np.ones(nj),dudy,Cf,p_plus,dudx])
```

In module fix_k I load all target data (note that I load instantaneous data; I explain the reason for this below)

```python
folder=
'../channel-5200-IDDES-96-96-96-ML-aver-xz-database-3cells-15000-timesteps/
data_10 = xp.loadtxt(str(folder)+'yplus-uplus-ustar-many-dudy-and-Cf-inst.txt')
yplus_target = data_10[:,0]
uplus_1target = data_10[:,1]
ustar_target = data_10[:,2]
dudy_target = data_10[:,3]
Cf_target = data_10[:,4]
pplus_target = data_10[:,5]
```

I choose to use only y^+ and U^+. I scale them and insert them into X as

```python
uplus_target = uplus_target.reshape(-1,1)
yplus_target = yplus_target.reshape(-1,1)
# use MinMax scaler
scaler_yplus = MinMaxScaler()
scaler_uplus = MinMaxScaler()
X=xp.zeros((len(yplus_target),2))
if gpu:
yplus_np_target = xp.asnumpy(yplus_target)
uplus_np_target = xp.asnumpy(uplus_target)
re_np_target = xp.asnumpy(re_target)
Cf_np_target = xp.asnumpy(Cf_target)
X_np = xp.asnumpy(X)
else:
yplus_np_target = yplus_target
uplus_np_target = uplus_target
re_np_target = re_target
Cf_np_target = Cf_target
X_np = X
```
30. Machine Learning (KDTree) for improving wall functions

Then I create the input data, y^+ and U^+ from the flow field in the wall-adjacent cells as

X_{np}[:,0] = scaler_uplus.fit_transform(uplus_{np_target})[:,0]
X_{np}[:,1] = scaler_yplus.fit_transform(yplus_{np_target})[:,0]

take old ustar from k=cmu**(-0.5)*ustar**2
ustar=cmu**0.25*k3d[:,0,:]**0.5
j_wall = 0 # 1st cell
u2d_wall=u3d[:,j_wall,:] # first cell
yplus_south = ustar*dy/viscos
uplus_south = u2d_wall/ustar

I limit the input data to min/max of target data as in Section 5.1 in [38]. Then the CFD data are scaled an put in the x matrix

yplus = yplus_south.reshape(-1,1)
uplus = uplus_south.reshape(-1,1)
x=xp.zeros((len(yplus),2))
x[:,0] = scaler_uplus.transform(uplus)[:,0]
x[:,1] = scaler_yplus.transform(yplus)[:,0]

Finally the look-up table is used

find two nearest neighbors for every wall-adjacent cell at distance ds
ds, inds = tree.query(x, 2)

average over the two neighbours using 1/ds as weight
yplus_kdtree = (yplus_{np_target}[inds[:,0],0]/ds[:,0]+\
yplus_{np_target}[inds[:,1],0]/ds[:,1])/xp.sum(1/ds,axis=1)

reshape is as a 2D array
yplus_predict = xp.reshape(yplus_kdtree,(ni,nk))
ustar=yplus_predict*viscos/dy

Note that u_τ may be computed either form y^+ or U^+, i.e. $u_\tau = y^+\nu/\Delta y$ and $u_\tau = \bar{u}_p/U^+$, respectively. Using the mean (i.e. time-averaged) target data and using $u_\tau = y^+\nu/\Delta y$ gives very large u_τ already at the second time step (first iteration) and then at the second iteration it gives negative velocities in 256 wall-adjacent cells. If I instead compute y^+ from U^+ it works. This problem occurs only for periodic, fully-developed channel flow. It is probably because strong coupling between “inlet” (i.e. west or low x) and “outlet” (i.e. east or high x). For all other flows it works best to take u_τ from y^+. Also, it works well for periodic, fully-developed channel flow when I used instantaneous target data instead (which I load above in module fix_k) of mean target data.

Instantaneous target data are created in exactly the same way as mean target data; the only difference is that the np.savetxt statement in the beginning of this section is placed in modify_case.py. My Python code reads
if itstep % 100 == 0 and iter == 0:
 i = 10
 k = 10
 jj = xp.arange(2, 30)
 jj = jj[::2]
 if count_saved == 0:
 xp.savetxt('yplus-uplus-ustar-many-dudy-and-Cf-inst.txt', xp.c_
 [yplus2d[i,jj], u3d[i,jj,k]/abs(ustar[i]), ustar[i]*xp.ones(L), dudy[jj], Cf[i]*xp.ones(L), p_plus[i]*xp.ones(L)])
 else:
 f = open('yplus-uplus-ustar-many-dudy-and-Cf-inst.txt','ab')
 xp.savetxt(f,
 xp.c_[yplus2d[i0,jj], u3d[i0,jj,k]/abs(ustar[i0]), ustar[i0]*xp.ones(L), dudy[jj], Cf[i0]*xp.ones(L), p_plus[i0]*xp.ones(L)])

I save the data every 100 time step in order to create independent time samples. I usually use approximately 200 data sets.
A. Variables in pyCALC-LES

Nomenclature

acrank: time integration scheme for pressure (1: fully implicit)
acrank_conv: time integration scheme for convection and diffusion in \(\bar{u}, \bar{v} \) and \(\bar{w} \) equations (1: fully implicit)
acrank_conv_keps: time integration scheme for convection and diffusion in \(k \) and \(\varepsilon \) equations (1: fully implicit)
acrank_conv_kom: time integration scheme for convection and diffusion in \(k \) and \(\omega \) equations (1: fully implicit)
ae_bound: \(\alpha_E \) coefficient for diffusion for east boundary (without viscosity)
amg_cycle: type of cycle in the pyAMG solver for the pressure equation (‘V’, ‘W’, ‘F’, ‘AMLI’)
amg_cycle_phi: type of cycle in the pyAMG solver for all equations except the pressure equation (‘V’, ‘W’, ‘F’, ‘AMLI’)
an_bound: \(\alpha_N \) coefficient for diffusion for north boundary (without viscosity)
apo3d: \(\alpha_P \), see Eq. 2.5
areas: south area
areax: \(x \) component of south area of control volume
areasy: \(y \) component of south area of control volume
areaw: west area of control volume
areawx: \(x \) component of west area of control volume
areawy: \(y \) component of west area of control volume
areaz: high and low area of control volume
as_bound: \(\alpha_S \) coefficient for diffusion for south boundary (without viscosity)
aw3d, ae3d, as3d, an3d, al3d, ah3d, ap3d: discretization coefficients, \(\alpha_W, \alpha_E, \alpha_S, \alpha_N, \alpha_L, \alpha_H, \alpha_P \)
aw_bound: \(\alpha_W \) coefficient for diffusion for west boundary (without viscosity)
az_bound: \(\alpha_H \) and \(\alpha_L \) coefficient for diffusion for high and low boundary (without viscosity)
A. Variables in pyCALC-LES

blend: blending between central differencing (CDS) and MUSCL. blend=1 is full CDS, see Section 3.5

c_eps_1: C_ε_1 coefficient in the $k-\varepsilon$ model

c_eps_2: C_ε_2 coefficient in the $k-\varepsilon$ model

c_omega_1: C_ω_1 coefficient in the $k-\omega$ model

c_omega_2: C_ω_2 coefficient in the $k-\omega$ model

cmu: C_μ coefficient in the $k-\varepsilon$, $k-\omega$ model and C_S coefficient in the Smagorinsky model

convergence_limit_eps, convergence_limit_k, convergence_limit_om:
convergence limit in Python solver for ε, k, ω (max(limit,limit·norm(su3d))); if negative the residuals are reduced by abs(limit), see Section 17.1.4

convergence_limit_gpu: convergence limit for all equations in pyamgx when the GPU is used. Default is $5E-5$, i.e. the residual is reduced by five orders of magnitude

convergence_limit_om, convergence_limit_k, convergence_limit_om:
convergence limit in Python solver for ε, k, ω (max(limit,limit·norm(su3d))); if negative, the residuals are reduced by abs(limit), see Section 17.1.4

convergence_limit_p: convergence limit in Python solver for ρ (relative limit); when the pyamgx solver is used for any variable, this variable is used as the convergence criterium

convergence_limit_u: convergence limit in Python solver for \bar{u} (max(limit,limit·norm(su3d))); if negative the residuals are reduced by abs(limit), see Section 17.1.4

convergence_limit_v: convergence limit in Python solver for \bar{v} (max(limit,limit·norm(su3d))); if negative the residuals are reduced by abs(limit), see Section 17.1.4

convergence_limit_w: convergence limit in Python solver for \bar{w} (max(limit,limit·norm(su3d))); if negative the residuals are reduced by abs(limit), see Section 17.1.4

convw, convs, convl: convection through west, south and low face

cyclic_x: cyclic boundary conditions in x direction

cyclic_z: cyclic boundary conditions in z direction

delta_max: max($\Delta x, \Delta y, \Delta z$)

dist3d: smallest distance to south or north wall

dmin_synt: the length defining the maximum wavenumber in the synthetic fluctuations, see Section 12.3

dpdx_old, dpdy_old, dpdz_old: pressure derivatives, $\partial p/\partial x$, $\partial p/\partial y$, $\partial p/\partial z$ at old time step

dt: time step
A. Variables in pyCALC-LES

dz3d: grid spacing in the z direction (3D array)
dz: grid spacing in the z direction (1D array)
eps3d: modeled dissipation of turbulent kinetic energy, ε
eps3d_mean: time-averaged dissipation of turbulent kinetic energy, $\langle \varepsilon \rangle$

eps_bc_east, eps_bc_north, eps_bc_south, eps_bc_west, eps_bc_high, eps_bc_low: boundary values of ε at east, north, south, west and high/low boundary. Default: 0

eps_bc_east_type, eps_bc_north_type, eps_bc_south_type, eps_bc_west_type: see below
eps_bc_high_type, eps_bc_low_type: type of b.c. for ε ('d'=Dirichlet, 'n'=Neumann' or '2'=\(\partial^2\varepsilon/\partial n^2 = 0\)). Default: Neumann

fk3d: f_k, used in PANS and as F_{DEs} in $k-\omega$ DES
fk3d_mean: time-averaged f_k, $\langle f_k \rangle$

fkmin_limit: minimum f_k in PANS and PITM, see Eq. 8.3
fx, fy, fz: f_x, f_y, f_z, the interpolation function in i, j and k direction

gen: P^k excluding the turbulent viscosity (used in the k, ε and ω equations)

imon, jmon, kmon: print time history of variables for this node

iter: current global iteration

itstep: current time step

itstep_save: instantaneous and time-averaged field are saved on disk every itstep_save time step

itstep_start: time averaging starts

itstep_stats: time averaging is done every itstep_stats time step

itstep_stats_counter: counter for how many samples are used for time averaging

jl0: when $jl0 < 0$, the LES-RANS interface in the $k-\omega$ DES model is fixed at cell np.abs(jl0)

jmirror_synt: the sign of the u synthetic are changed for nodes $j \geq j\text{mirror}$ (in module synt_fluct)

k3d: modeled turbulent kinetic energy, k

k3d_mean: time-averaged modeled turbulent kinetic energy, $\langle k \rangle$

k_bc_east, k_bc_south, k_bc_west, k_bc_north, k_bc_high, k_bc_low: boundary values of k at east, south, west, north, and high/low boundary. Default: 0
A. Variables in pyCALC-LES

\[k_{\text{bc_east_type}}, k_{\text{bc_north_type}}, k_{\text{bc_south_type}}, k_{\text{bc_west_type}}: \]
see below

\[k_{\text{bc_high_type}}, k_{\text{bc_low_type}}: \] type of b.c. for \(k \) (‘d’=Dirichlet, ‘n’=Neumann’ or ‘2’=\(\partial^2 k/\partial n^2 = 0 \)). Default: Dirichlet

\[\text{keps}: \] the AKN \(k - \varepsilon \) model is used (RANS)

\[\text{kom}: \] the Wilcox \(k - \omega \) model is used (RANS)

\[\text{kom_des}: \] the DES Wilcox \(k - \omega \) model is used

\[\text{L_synt}: \] length scale of the synthetic fluctuations, see Eq. 12.4

\[\text{maxit}: \] maximum number of global iterations (solving \(\bar{u}, \bar{v}, \bar{w}, \bar{p}, \ldots \))

\[\text{ni, nj, nk}: \] number of cell centers in i, j and k direction

\[\text{nmodes_synt}: \] number of modes when generating synthetic fluctuations

\[\text{norm_order}: \] order of norm when computing residual for \(\bar{u}, \bar{v}, \bar{w}, k, \varepsilon \) and \(\omega \). Default: 2

\[\text{nsweep_keps}: \] maximum number of iterations in the Python solver when solving the \(k \) and \(\varepsilon \) equations in solver called in solve_3d

\[\text{nsweep_kom}: \] maximum number of iterations in the Python solver when solving the \(k \) and \(\omega \) equations in solver called in solve_3d

\[\text{nsweep_vel}: \] maximum number of iterations in the Python solver when solving the \(\bar{u}, \bar{v} \) and \(\bar{w} \) equations in solver called in solve_3d

\[\text{ntstep}: \] number of time steps

\[\text{om3d}: \] specific dissipation of turbulent kinetic energy, \(\omega \)

\[\text{om3d_mean}: \] time-averaged modeled specific dissipation of turbulent kinetic energy, \(\langle \omega \rangle \)

\[\text{om_bc_east, om_bc_north, om_bc_south, om_bc_west, om_bc_high, om_bc_low}: \]
boundary values of \(\omega \) at east, north, south, west and high/low boundary. Default: 0

\[\text{om_bc_east_type, om_bc_north_type, om_bc_south_type, om_bc_west_type}: \]
see below

\[\text{om_bc_high_type, om_bc_low_type}: \] type of b.c. for \(\omega \) (‘d’=Dirichlet, ‘n’=Neumann’ or ‘2’=\(\partial^2 \omega/\partial n^2 = 0 \)). Default: Dirichlet

\[\text{p3d}: \] pressure, \(\bar{p} \)

\[\text{p3d_mean}: \] time-averaged pressure, \(\langle \bar{p} \rangle \)

\[\text{p_bc_east, p_bc_north, p_bc_south, p_bc_west, p_bc_high, p_bc_low}: \]
boundary values of \(\bar{p} \) at east, north, south, west, and high/low boundary. Default: 0
A. Variables in pyCALC-LES

$p_{bc\text{east_type}}$, $p_{bc\text{north_type}}$, $p_{bc\text{south_type}}$, $p_{bc\text{west_type}}$: see below

$p_{bc\text{high_type}}$, $p_{bc\text{low_type}}$: type of b.c. for $\bar{\rho}$ (‘d’=Dirichlet, ’n’=Neumann’ or ’2’=$\partial^2 p/\partial n^2 = 0$). Default: Neumann

p_{pans}: PANS (based on $k-\varepsilon$) or PITM is used. PANS is used when prand_k and prand_eps are positive, otherwise PITM

prand_eps: σ_ε, turbulent Prandtl number in the ε equation

prand_k: σ_k, turbulent Prandtl number in the k equation

prand_omega: σ_ω, turbulent Prandtl number in the ω equation

residual_p: residual for the continuity equation

residual_u: residual for the \bar{u} equation

residual_v: residual for the \bar{v} equation

residual_w: residual for the \bar{w} equation

resnorm_p: the residual of the continuity equation is normalised by this quantity

restart: a restart from a previous simulation is made, see Section 15.24

save: the \bar{u}, \bar{v}...fields are saved to disk, see Section 15.25

save_average_z: when averaging flow variables in time, average also in z direction. Default: True

scheme: discretization scheme for the \bar{u}, \bar{v} and \bar{w} equation. ’c’=central, ’h’=hybrid, ’u’=upwind or ’m’=MUSCL, see Section 15.10

scheme_turb: discretization scheme for k, ε and ω. ’c’=central, ’h’=hybrid, ’u’=upwind, see Section 15.10

smag: the Smagorinsky model is used

solver_p: pyAMG solver for $\bar{\rho}$. $\text{solver_p}=$’pyamgx’ means that the $\bar{\rho}$ equation is solved on the GPU. The coefficient matrix, A (see Eqs.B.4 – B.4), is uploaded to the GPU every iteration; $\text{solver_p}=$’pyamgx_p’ means that the matrix, A, is uploaded only once. This option is faster but requires twice as much GPU memory.

solver_turb: Python sparse matrix or pyAMG solver for k, ε and ω. $\text{solver_turb}=$’pyamg’, ’pyamgx’ (solved on the GPU), ’gmres’, ’lgmres’, ’cgmr’, ’cgne’, ’fgmres’, ’bicgstab’

solver_vel: Python sparse matrix or pyAMG solver for \bar{u}, \bar{v} and \bar{w}. $\text{solver_vel}=$’pyamg’, ’pyamgx’ (GPU), ’gmres’, ’lgmres’, ’cgmr’, ’cgne’, ’fgmres’, ’bicgstab’

sormax: convergence criteria in outer iteration loop

sp3d, su3d: discretization source terms, S_p, S_U
A. Variables in *pyCALC-LES*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_{3d}</td>
<td>\bar{u} velocity</td>
</tr>
<tr>
<td>$u_{3d\text{mean}}$</td>
<td>time-averaged \bar{u} velocity, $\langle \bar{u} \rangle$</td>
</tr>
<tr>
<td>$u_{bc\text{east}}, u_{bc\text{north}}, u_{bc\text{south}}, u_{bc\text{west}}, u_{bc\text{high}}, u_{bc\text{low}}$</td>
<td>boundary values of \bar{u} at east, north, south, west, and high/low boundary. Default: 0</td>
</tr>
<tr>
<td>$u_{bc\text{east_type}}, u_{bc\text{north_type}}, u_{bc\text{south_type}}, u_{bc\text{west_type}}$</td>
<td>see below</td>
</tr>
<tr>
<td>$u_{bc\text{high_type}}, u_{bc\text{high_low}}$</td>
<td>type of b.c. for \bar{u} (‘d’=Dirichlet, ‘n’=Neumann’ or ‘2’=$\partial^2 u/\partial n^2 = 0$). Default: Dirichlet</td>
</tr>
<tr>
<td>$u_{3d\text{stress}}$</td>
<td>time-averaged resolved stress, $\langle v'_{1}^2 \rangle$</td>
</tr>
<tr>
<td>$u_{3d\text{mean}}$</td>
<td>time-averaged \bar{v} velocity, $\langle \bar{v} \rangle$</td>
</tr>
<tr>
<td>v_{3d}</td>
<td>\bar{v} velocity</td>
</tr>
<tr>
<td>$v_{3d\text{mean}}$</td>
<td>time-averaged \bar{v} velocity, $\langle \bar{v} \rangle$</td>
</tr>
<tr>
<td>$v_{bc\text{east}}, v_{bc\text{north}}, v_{bc\text{south}}, v_{bc\text{west}}, v_{bc\text{east}}, v_{bc\text{high}}, v_{bc\text{low}}$</td>
<td>boundary values of \bar{v} at east, north, south, west and high/low boundary. Default: 0</td>
</tr>
<tr>
<td>$v_{bc\text{east_type}}, v_{bc\text{north_type}}, v_{bc\text{south_type}}, v_{bc\text{west_type}}$</td>
<td>see below</td>
</tr>
<tr>
<td>$v_{bc\text{high_type}}, v_{bc\text{high_low}}$</td>
<td>type of b.c. for \bar{v} (‘d’=Dirichlet, ‘n’=Neumann’ or ‘2’=$\partial^2 v/\partial n^2 = 0$). Default: Dirichlet</td>
</tr>
<tr>
<td>vis_{3d}</td>
<td>total viscosity, $\nu + \nu_t$</td>
</tr>
<tr>
<td>$vis_{3d\text{mean}}$</td>
<td>time-averaged total viscosity, $\langle \nu_t + \nu \rangle$</td>
</tr>
<tr>
<td>$viscos$</td>
<td>viscosity, ν. Note that $\nu = \mu$ since $\rho = 1$.</td>
</tr>
<tr>
<td>vol</td>
<td>volume of a control volume</td>
</tr>
<tr>
<td>$v_{3d\text{inlet}}$</td>
<td>synthetic inlet fluctuation in the x direction, $(V'_1)_m$, see 12.9</td>
</tr>
<tr>
<td>$v_{3d\text{stress}}$</td>
<td>time-averaged resolved stress, $\langle v'{1}^2 v'{2} \rangle$</td>
</tr>
<tr>
<td>w_{3d}</td>
<td>\bar{w} velocity</td>
</tr>
<tr>
<td>$w_{3d\text{mean}}$</td>
<td>time-averaged \bar{w} velocity, $\langle \bar{w} \rangle$</td>
</tr>
</tbody>
</table>
B. Sparse matrix format in Python

\[\text{w}_{bc, \text{east}}, \text{w}_{bc, \text{north}}, \text{w}_{bc, \text{south}}, \text{w}_{bc, \text{west}}, \text{w}_{bc, \text{low}}, \text{w}_{bc, \text{high}}: \]
boundary values of \(\bar{w} \) at east, north, south, west, and high/low boundary. Default: 0

\[\text{w}_{bc, \text{east_type}}, \text{w}_{bc, \text{north_type}}, \text{w}_{bc, \text{south_type}}, \text{w}_{bc, \text{west_type}}: \]
see below

\[\text{w}_{bc, \text{high_type}}, \text{w}_{bc, \text{low_type}}: \text{type of b.c. for } \bar{w} \text{ ('d'=Dirichlet, 'n'=Neumann' or '2'=\(\partial^2 \bar{w}/\partial n^2 = 0 \)). Default: Dirichlet} \]

\[\text{wale}: \text{the WALE model is used} \]

\[\text{wsynt_inlet}: \text{synthetic inlet fluctuation in the } z \text{ direction}, \langle \nu'_3 \rangle_m, \text{see 12.9} \]

\[\text{ww3d_stress}: \text{time-averaged resolved stress}, \langle \nu'^2_3 \rangle \]

\[\text{x2d}: \text{the } x \text{ coordinate of a corner of a control volume, see Fig. 1.3} \]

\[\text{xp2d}: \text{the } x \text{ coordinate of the center of a control volume, see Fig. 1.3} \]

\[\text{y2d}: \text{the } y \text{ coordinate of a corner of a control volume, see Fig. 1.3} \]

\[\text{yp2d}: \text{the } y \text{ coordinate of the center a control volume, see Fig. 1.3} \]

\[\text{z}: \text{the } z \text{ coordinate of the face of a control volume, see Fig. 1.4} \]

\[\text{zmax}: \text{extent of the computational domain in the } z \text{ direction} \]

\[\text{zp}: \text{the } z \text{ coordinate of the center of a control volume, see Fig. 1.4} \]

B. Sparse matrix format in Python

\text{pyCALC-LES} \text{ uses the sparse solvers available in Python. The coefficients } a_W, a_E, a_S, a_N, a_L, a_H, a_P, S_u \text{ must be converted to Python’s sparse matrix format. Hence, there are seven diagonals.}

When cyclic boundary conditions are used (cyclic_x and/or cyclic_z), there will be two additional diagonals for each cyclic boundary condition. This means that the cyclic boundary conditions are treated implicitly.

The Python solvers \text{linalg.lgmres, linalg.gmres, linalg.cgnr, linalg.fgmres, linalg.bicgstab} or the algebraic multigrid solver \text{pyAMG} [1] may be used for all variables. For the pressure, \text{pyAMG} is always used.

Below, the full coefficient matrix, \(A \), is shown for a couple of cases with and without cyclic boundary conditions..
B.1 2D grid, $ni \times nj = (3, 4)$

The coefficients due to cyclic boundary conditions are colored in blue.

![Matrix for 2D flow](image)

Figure B.1: Matrix for 2D flow. $ni \times nj = (3, 4)$. Cyclic in x.
B.2 2D grid, \(n_i \times n_j = (3, 2) \)

![Matrix](image)

The coefficients due to cyclic boundary conditions are colored in blue.

Figure B.2: Matrix, \(A \), for 2D flow. \(n_i \times n_j = (3, 2) \). Cyclic in \(x \).
B.3 3D grid, \(n_i \times n_j \times n_k = (3, 2, 2) \), cyclic in \(x, i \)

\[
\begin{pmatrix}
C_0 & C_1 & C_2 & C_3 & C_4 & C_5 & C_6 & C_7 & C_8 & C_9 & C_{10} & C_{11} \\
L_0 : & a_{P,0} & -a_{H,0} & -a_{N,0} & 0 & -a_{E,0} & 0 & 0 & 0 & -a_{W,0} & 0 & 0 & 0 \\
L_1 : & -a_{L,1} & a_{P,1} & 0 & -a_{N,1} & 0 & -a_{E,1} & 0 & 0 & 0 & -a_{W,1} & 0 & 0 \\
L_2 : & -a_{S,2} & 0 & a_{P,2} & -a_{H,2} & 0 & 0 & -a_{E,2} & 0 & 0 & 0 & -a_{W,2} & 0 \\
L_3 : & 0 & -a_{S,3} & -a_{L,3} & a_{P,3} & 0 & 0 & 0 & -a_{E,3} & 0 & 0 & 0 & -a_{W,3} \\
L_4 : & -a_{W,4} & 0 & 0 & 0 & a_{P,4} & -a_{H,4} & -a_{N,4} & 0 & -a_{E,4} & 0 & 0 & 0 \\
L_5 : & 0 & -a_{W,5} & 0 & 0 & -a_{L,5} & a_{P,5} & 0 & 0 & 0 & -a_{E,5} & 0 & 0 \\
L_6 : & 0 & 0 & -a_{W,6} & 0 & -a_{S,6} & 0 & a_{P,6} & -a_{H,6} & 0 & 0 & -a_{E,6} & 0 \\
L_7 : & 0 & 0 & 0 & -a_{W,7} & 0 & -a_{S,7} & -a_{L,7} & a_{P,7} & 0 & 0 & 0 & -a_{E,7} \\
L_8 : & -a_{E,8} & 0 & 0 & 0 & -a_{W,8} & 0 & 0 & 0 & a_{P,8} & -a_{H,8} & -a_{N,8} & 0 \\
L_9 : & 0 & -a_{E,9} & 0 & 0 & 0 & -a_{W,9} & 0 & 0 & -a_{L,9} & a_{P,9} & 0 & -a_{N,9} \\
L_{10} : & 0 & 0 & -a_{E,10} & 0 & 0 & 0 & -a_{W,10} & 0 & -a_{S,10} & 0 & a_{P,10} & -a_{H,10} \\
L_{11} : & 0 & 0 & 0 & -a_{E,11} & 0 & 0 & -a_{W,11} & 0 & -a_{S,11} & -a_{L,11} & a_{P,11}
\end{pmatrix}
\]

(B.3)

Figure B.3: Matrix, \(A \), for 3D flow. \(n_i \times n_j \times n_k = (3, 2, 2) \). Cyclic in \(x \). The coefficients due to cyclic boundary conditions are colored in blue.
B.4 3D grid, \(n_i \times n_j \times n_k = (2, 2, 3) \), cyclic in \(z,k \)

\[
\begin{pmatrix}
 C_0 & C_1 & C_2 & C_3 & C_4 & C_5 & C_6 & C_7 & C_8 & C_9 & C_{10} & C_{11} \\
 L_0 : & a_{P,0} & -a_{H,0} & -a_{L,0} & -a_{N,0} & 0 & 0 & -a_{E,0} & 0 & 0 & 0 & 0 \\
 L_1 : & -a_{L,1} & a_{P,1} & a_{H,1} & 0 & -a_{N,1} & 0 & 0 & -a_{E,1} & 0 & 0 & 0 \\
 L_2 : & -a_{H,2} & -a_{L,2} & a_{P,2} & 0 & 0 & -a_{N,2} & 0 & 0 & -a_{E,2} & 0 & 0 \\
 L_3 : & -a_{S,3} & 0 & 0 & a_{P,3} & a_{H,3} & -a_{L,3} & 0 & 0 & 0 & -a_{E,3} & 0 \\
 L_4 : & 0 & a_{S,4} & 0 & -a_{L,4} & a_{P,4} & -a_{H,4} & 0 & 0 & 0 & 0 & -a_{E,4} \\
 L_5 : & 0 & 0 & -a_{S,5} & -a_{H,5} & -a_{L,5} & a_{P,5} & 0 & 0 & 0 & 0 & 0 \\
 L_6 : & -a_{W,6} & 0 & 0 & 0 & 0 & 0 & a_{P,6} & -a_{H,6} & -a_{L,6} & -a_{N,6} & 0 \\
 L_7 : & 0 & -a_{W,7} & 0 & 0 & 0 & 0 & -a_{H,7} & a_{P,7} & -a_{L,7} & 0 & -a_{N,7} \\
 L_8 : & 0 & 0 & -a_{W,8} & 0 & 0 & 0 & -a_{H,8} & -a_{L,8} & a_{P,8} & 0 & 0 \\
 L_9 : & 0 & 0 & 0 & -a_{W,9} & 0 & 0 & -a_{S,9} & 0 & 0 & a_{P,9} & -a_{H,9} \\
 L_{10} : & 0 & 0 & 0 & 0 & -a_{W,10} & 0 & 0 & -a_{S,10} & 0 & -a_{L,10} & a_{P,10} \\
 L_{11} : & 0 & 0 & 0 & 0 & 0 & -a_{W,11} & 0 & 0 & -a_{S,11} & -a_{H,11} & -a_{L,11} \\
\end{pmatrix}
\]

(B.4)

Figure B.4: Matrix, \(A \), for 3D flow. \(n_i \times n_j \times n_k = (2, 2, 3) \). Cyclic in and \(z \). The coefficients due to cyclic boundary conditions are colored in blue.

C Using pyAMGx on GPU

If you don’t do the installation described below, you must de-activate pyAMGx by commenting the line which imports pyAMGx at the top of pyCALC-LES-GPU.py, i.e.

```python
# import pyamgx
```

pyAMGx is a Python interface to the NVIDIA AMGX library. pyAMGx can be used to construct complex solvers and preconditioners to solve sparse linear systems on the GPU. pyAMGx has been tested only on Linux, though it should be possible to install on Windows as well.

Your computer must have a (compatible) nVidea graphics card. You can check which graphics card you have with the Linux command

```
lspci
```

Look for the line starting with \(\text{USB controller} \).

Start by getting the nVidia CUDA toolkit. In Ubuntu, type

```
sudo apt install nvidia-cuda-toolkit
```
You may also have to install drivers with the command

```
sudo ubuntu-drivers autoinstall
```

After installation you can check the installation

```
nvcc -version
```

You need to install the AMGX library. Instructions are found at [here](http://example.com).

When installing AMGX, I encountered a couple of problems:

- I had to install `gcc-9` and `g++-9` as

 1. `sudo apt install gcc-9`
 2. `sudo apt install g++-9`

- I don’t have MPI. Hence, I must use the command `cmake -D CMAKE_NO_MPI="TRUE" ..`

- When running `cmake ..` I had to change the file `.examples/CMakeLists.txt`. I replaced the line

  ```
  include_directories("${CMAKE_CURRENT_SOURCE_DIR}/../include" "${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES}")
  ```

 by

  ```
  include_directories("../include" "/usr/lib/cuda/")
  ```

On Ubuntu, I had to download and install Nvidia drivers. I did that by using Ubuntu’s [Software updater](http://example.com). Then I chose Settings/Additional Drivers/ and ticked ’Using NVIDIA driver metapackage ...’.

Now download pyAMGx and install it. You find instructions [here](http://example.com).

On my Ubuntu 23.4, I had to set

```
export C_INCLUDE_PATH=$AMGX_DIR/include:$C_INCLUDE_PATH
export LD_LIBRARY_PATH=$AMGX_DIR/build:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=$C_INCLUDE_PATH
export LIBRARY_PATH=$LD_LIBRARY_PATH
```

before installing pyamgx

To select the `pyamgx` solver in `pyCALC-LES`, set

```
solver_p='pyamgx_p'
solver_vel='pyamgx'
solver_turb='pyamgx'
```

in `setup_case`.
C. Using pyAMGx on GPU

References

C. Using pyAMGx on GPU

C. Using pyAMGx on GPU

