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Abstract

This thesis contributes to studies on the assessment of building ventilation performance and
the development of turbulence models accounting for Low-Reynolds-number (LRN) effects
and buoyant convection with heat transfer.

Assessments of building ventilation performance are discussed with respect to indoor air
distribution and passive contaminant dispersion. Different concepts and methods for analyzing
and assessing ventilation flow systems are addressed and re-examined. Several new ventila-
tion scales have been developed, including the local purging effectiveness, the expected con-
taminant dispersion index and the local specific contaminant-accumulating index. Approaches
for numerically exploring these scales are presented. The purging flow rate is re-formulated in
several expressions different from its original and previous descriptions. Some scales defined
from this quantity are discussed. Using stochastic theory in conjunction with the compartmen-
tal method, a Markov chain model is proposed to determine the transfer probability needed to
compute the regional purging flow rate. This model contains extra and useful information that
is not included in previous deterministic analyses. The new scales and methods are expected
to be applicable for diagnosing problems and optimizing designs of ventilation systems.

The development of turbulence models based on the eddy viscosity concept is considered.
For simulating turbulent recirculating flows, a comparison is made of the two-equation k-&
model, k-@ model and k-7 model. It is found that both the k-@w model and the k-7 model have
relatively poor performance. Modifications are made for the k-@ model in which the model
constants are re-established and the turbulent transport term in the @-equation is re-modelled.
On the basis of these modifications, a new LRN k-@model is developed in which the damping
functions are re-devised and the near-wall asymptotic behaviour is emphasized. The mecha-
nism for simulating transition is preserved in the modified model. The LRN formulation is
further extended for analyzing buoyant-driven flows in enclosures at moderate Rayleigh num-
bers. The model behaviour accounting for transition onset in the boundary layer along the ver-
tical side wall is discussed, and some remarks are made for the LRN formulation. The new
LRN model shows promising improvements in the predictions.

Large eddy simulation (LES) is implemented for turbulent convection flows with heat
transfer. A modified subgrid-scale (SGS) buoyancy model is proposed, where the buoyant ef-
fect is explicitly accommodated in the SGS eddy viscosity/diffusivity formulation. The modi-
fication enables the model to avoid entailing no-real solutions for simulating thermal convec-
tion flows such as occurs in the original buoyancy model. Furthermore, the proposed model is
able to account for some energy backscatter for flows with positive and significant thermal
stratification. Comparisons and evaluations are made of several SGS models when applied to
statistically stratified and unstratified buoyant flows. The performance of the SGS models is
analyzed for natural convection boundary layer flows at moderate Rayleigh numbers, where
laminar, transitional and fully developed turbulent flow features subsequently arise in the
boundary layer. The behaviour of SGS models in accounting for energy backscatter is argued
to be an essential ingredient for predicting natural transitional boundary layer flows. The fail-
ure and success of SGS models for handling this type of flow are analyzed and discussed.

Keywords

Building ventilation, ventilation performance assessment, purging flow rate, transfer probabil-
ity, stochastic Markov chain model, ventilation flow, turbulence modelling, two-equation
models, LRN k-@ model, turbulent buoyant convection, transition regime, large eddy simula-
tion, SGS modelling, modified SGS buoyancy model, energy backscatter
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Nomenclature

C contaminant concentration, also model coefficient in SGS models
G model coefficient in SGS models

C(c0) concentration at steady state

C(r) transient concentration at time ¢

<C> room-averaged concentration

Cr wall friction coefficient

c turbulence model constant with various subscripts
cp specific heat at constant pressure

D diffusivity in general form

E constant in the wall function (4.23), £ =9.0
S, ) transition probability from state i to state j

f damping function with various subscripts

G buoyant source term in the k-equation

g gravitational vector, 8= 0,—-g,0)

H height of computational domain

h height of step for backward-facing step flow

I initial state space

k turbulence kinetic energy

L; turbulent length scale

n number of compartments divided in a space

Ny net production of k per unit dissipation term
Ny net production of @per unit dissipation term
Nu Nusselt number, Nu = —(JI/dx) HIAT

p pressure

P pressure fluctuation

P; transfer probability from location i to location j
Pr molecular Prandtl number, v/

Pr., o turbulent (or SGS) Prandtl number

0 supply air flow rate

q contaminant release rate or heat flux

R, residual turnover flow rate for region p

Ra Rayleigh number, Pr (gBATH*/V)

Re Reynolds number

Re; Reynolds number based on friction velocity, u, for channel flow
R, turbulent Reynolds number

S state space

Se source term in the concentration equation

S source term in the thermal energy equation

T temperature

T’ temperature fluctuation

U, purging flow rate for region p

u velocity vector

ur velocity scale for buoyant flow, ur = (g,B’ATH)”2
u; velocity components in the x; directions

Ur friction velocity

u,v',w velocity fluctuations in x, y, z directions, respectively
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Subscripts
b

e

1

in

O

p
rms

sgs
w

Other symbols

>

QV°INL

turbulent velocity scale

volume of the flow system

turnover flow rate for region p

notation for the station visited by a passive tracking particle
Cartesian space coordinates

location of transition onset

thermal diffusivity

turbulent (or SGS) thermal diffusivity
thermal expansion coefficient

width of grid filter

width of test filter

temperature difference

Kronecker delta

variation of local mean air age
dissipation rate of k

von Kdrman constant

dynamic molecular viscosity

turbulent (or SGS) viscosity

kinematic viscosity, 1/ p

turbulent (or SGS) kinematic viscosity, /0
density of fluid

turbulence model constants

turbulent time scale or local mean air age
nominal time constant, V/Q

specific dissipation rate of k

similarity variable, (3.63)

buoyancy

exhaust

interior state

inlet

outlet

location/region or state p
root-mean-square
supply or shear

subgrid scale

wall

nabla operator
averaging over time and/or space
filtered variable on grid filtering level

filtered variable on test filtering level
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Chapter 1

Introduction

Fluid flow and heat transfer are ubiquitous phenomena in nature and in engineering applica-
tions. Examples are air circulation and radiative heat transfer in the atmosphere, water eddies
and fronts in oceans, blood flow in human bodies, combustion in engines of automobiles and
aircraft, and heating and ventilation in buildings. The fluid motion in most cases does not hold
a well-structured behaviour in terms of laminar flow. The flow will instead evolve further and
eventually exhibit a chaotic type of motion known as turbulence. The reason that turbulence is
so prevalent in fluids of low viscosity is that steady laminar flows tend to become unstable at
high Reynolds numbers or Rayleigh numbers. Instability to small disturbances is an initial
step in the process whereby a laminar flow becomes turbulent through transition.

Along with a turbulent thermal flow, convective heat transfer is naturally not separable
from chaotic motion features therein. By contrast, it is closely correlated with random fluctua-
tions of fluids in space and time and is embodied in physical transport processes of turbu-
lence. Many turbulent flows of engineering interest are non-isothermal and are therefore ac-
companied by heat transfer; examples are chemical reacting flows in combustion chambers,
flows in solar energy collectors and air flows in ventilated rooms. As heat transfer occurs in a
turbulent flow, it always emerges as a chaotic turbulent type, where the temperature field, like
the velocity and the pressure fields, is characterized by rapid and random fluctuations. Rey-
nolds (1874) might have been the first to point out that, in turbulent flows, there must exist an
intimate relation between the local shearing stress and the local heat flux since both depend
upon the same basic mechanism. This has consequently opened the way for more than a cen-
tury of modelling turbulent flows with heat transfer.

Experimental measurements have commonly been used and have contributed tremendously
to the development of turbulence research, while theoretical analyses have greatly enhanced
our understanding on turbulence mechanisms. Classical turbulence theories were generally set
up through analytical deductive approaches in the work of several pioneering researchers,
such as O. Reynolds, L. Prandtl, Th. von Kdrman, G. Taylor and A. Kolmogorov. Their con-
tributions have formed the cornerstone of modern turbulence theories.

During the last decades, the rapid development in digital computers has brought about an-
other technique as an up-to-date tool for exploring turbulent flow and heat transfer, that is,
computational fluid dynamics (CFD). CFD deals with the numerical solution of fluid dynamic
equations. It is used for basic studies of fluid dynamics, for engineering designs of complex
flow configurations, for basic and applied research into the nature and properties of turbulence
and for extrapolation into parameter regimes that are relatively inaccessible or very costly to
study experimentally (Boris, 1989). Applying direct numerical simulation (DNS) to the dy-
namic equations for a full resolution ranging from the smallest to the largest scales in a fluid
motion, CFD has so far been able to give solutions only for turbulent flows at low Reynolds
numbers owing to the prohibitive requirements for computer power. Alternative approaches
have thus been developed in which the small scales or the fluctuating motions are ruled out so
that the fluid dynamic equations represent only the evolution of large scales or the mean field.
As a consequence, very few non-trivial predictions can be made on the resultant unclosed
equation system. The equations for the nth order correlation contain unknowns in terms of the
(n+1)th order and so on, ad infinitum. This in turn gives the so-called closure problem. 1t is
important in numerical simulations of turbulent flow and heat transfer to model these un-



knowns on a certain level of order so that the equation system can be closed and is numeri-
cally solvable.

CFD has been widely applied to various engineering flow problems. A field in which CFD
is becoming increasingly active for system design, optimization and diagnosis is heating and
ventilation in buildings. One of the basic objectives of ventilation is to control and remove
pollutants and/or excess heat to achieve the desirable indoor air quality and thermal environ-
ment. CFD has been proven to be an efficient approach for analyzing indoor air flow, heat
transfer and contaminant dispersion processes. Particularly, it has often been employed to ex-
plore ventilation efficiency and effectiveness to indicate whether the air motion in a room is
well organized.

The air motion in a ventilated room is generally of an incompressible, non-isothermal and
turbulent type. Nonetheless, indoor air flow possesses some specific features stemming from
practical requirements on building ventilation. In many cases, ventilation flows are character-
ized by low-Reynolds-number (LRN) turbulence with mixing and recirculating air motion.
Such general and specific flow characteristics must be well accounted for in turbulence
modelling in order to make reliable system analyses by means of numerical simulations.

This work contributes to the numerical simulation and modelling of incompressible turbu-
lent flows with or without heat transfer, especially of flows in ventilated rooms. With the aid
of numerical simulation, some new scales for assessing ventilation flow systems have been
proposed. Stochastic theory, together with numerical methods, has been used to analyze pas-
sive scalar transport in ventilation flow or equivalent internal flow systems. When solving
engineering flow problems, particularly ventilation flows, two-equation turbulence models
remain the most frequently used. One part of this work has thus been directed towards a de-
velopment based on two-equation models which are capable of dealing with low-Reynolds-
number turbulent recirculating flows and turbulent buoyant flows with convective heat trans-
fer. To further examine and evaluate more advanced turbulence models, large eddy simulation
(LES) has been implemented and formed a part of the modelling work. This has been aimed
primarily at evaluations of subgrid-scale (SGS) models for handling turbulent buoyant flows.

Since, as mentioned above, the application is especially emphasized for building ventila-
tion, a general description of indoor airflow characteristics is first given in Chapter 2, whereaf-
ter some new development and methods on the assessment of ventilation flow systems are
presented. Chapter 3 discusses the modelling of turbulent flow and heat transfer, including
analyses of the behaviour of LRN two-equation models and some SGS models in LES. The
methodology used in numerical simulations, including numerical methods and boundary
conditions, is addressed in Chapter 4. General findings and new development have also been
included in these chapters. In Chapter 5, conclusions are derived from this study, and the pa-
pers on which this thesis is based are briefly reviewed in a short summary.



Chapter 2

On the Assessment of Ventilation Flow Systems

The flow pattern in a ventilated room is created in accordance with practical purposes that
may vary largely for different ventilation applications. Bearing this in mind, it is then recog-
nized that the flow field varies from case to case owing to various requirements on ventilation.
Basically, ventilation means the exchange of contaminated and/or over-heated/cooled indoor
air with make-up fresh air. In practice, the role of ventilation in the creation of a healthy and
comfortable indoor environment involves a number of other aspects, e.g., room geometry,
outdoor climate and indoor heat and/or contaminant sources and sinks. Using either experi-
mental methods or CFD techniques, all these and other factors must be considered in studies
of flow behaviours and heat and mass transfer processes in ventilated spaces. To set up a
background, we start with a brief description of general requirements on building ventilation.

2.1 General Requirements on Ventilation

In general, the objective of building ventilation is, with as low an energy cost as possible, to
create an indoor air quality and thermal condition more suitable for people and processes than
what naturally occurs in the unventilated building. The value of ventilation thus lies in how
well basic needs are fulfilled, such as an indoor environment that does not endanger health
and is comfortable and promotes productivity. General requirements for advanced ventilation
can thus be summarized as: to create a healthy indoor air quality and a comfortable indoor
thermal condition with as low as possible energy consumption.

2.1.1 Indoor Air Quality

The basic objective of a ventilation system is to achieve acceptable indoor air quality. This
concerns the effectiveness of a system in removing/diluting contaminants and smell and in-
volves the properties of contaminant sources. Studies on the so-called sick-building syndrome
(SBS) have been very extensive in recent years, see e.g. Sundell (1994) for details. A sick-
building causes occupants to complain of illness symptoms such as headache, fatigue, and irri-
tation to skin, eyes, mucous membranes or airways.

It is admitted that there are close connections between building ventilation and SBS symp-
toms. Inadequate ventilation is a common denominator in buildings with SBS problems
(NIOSH, 1987; Turnner and Binnie, 1990). It has been argued that the prevalence of SBS
symptoms is related to ventilation air flow rate, type of ventilation system and room air mo-
tion. The distribution of room contaminants is ordinarily a function of source properties and
ventilation. Contaminants in a room are transported either passively or dynamically. This
makes it possible to study contaminant dispersion by means of CFD techniques. For passive
contaminants, the scalar mass transport equation coupled with the equations governing the air
motion can be numerically solved to reveal pollutant distributions, see e.g. Gan et al. (1991)
and Peng and Davidson (1998c). For particulate contaminants that are dynamically transported
with air motion, particle deposition and dispersion can be studied by a stochastic treatment of
the particle-turbulence interaction in which the trajectories of particles of representative sizes
can be tracked and computed in numerical simulations, see e.g. Lu and Howarth (1995) and
Riffat et al. (1995). Other advanced methods are also applicable for this purpose, e.g., using a
probability density function (PDF) evolution equation to determine the PDFs of the particle
velocities and positions (Lockwood and Papadopoulos, 1989).



2.1.2 Thermal Comfort

Thermal comfort is another important aspect closely related to building ventilation. It con-
cerns the thermal sensation of the occupants in ventilated rooms. A number of indices have
been introduced to quantitatively describe the thermal environmental conditions and are used
in guidelines for design and evaluation of thermal comfort. Fanger and co-workers (Fanger,
1982; Fanger et al., 1988) proposed a set of empirical and comprehensive thermal sensation
indices, including the predicted mean vote (PMV), the predicted percentage of dissatisfied
(PPD) and the percentage of dissatisfied due to local draught (PD).

These indices are related to indoor air velocity, air temperature, air humidity, turbulence
intensity, mean radiant temperature and the human body’s conditions of clothing and activity.
Thermal comfort is thus essentially influenced by indoor air flow and heat transfer processes.
It can be achieved by many different combinations of the above variables, which will create an
optimal thermal environment for occupants. Using empirically formulated expressions, local
thermal sensation indices are predictable, as they are incorporated into numerical simulations
for indoor air flow and heat transfer in ventilated rooms, see e.g. Kaizuka and Iwamoto (1987)
and Gan (1994).

2.1.3 Energy Consumption

Energy consumption concerns the energy cost effectiveness and efficiency in buildings with
heating, ventilation and air-conditioning systems. The computation of thermal loads, i.e.
heating load and cooling load, is related to convective heat transfer over the building enclo-
sures, radiative heat transfer between enclosure surfaces with temperature differences, and
conductive heat transfer through enclosures. All these heat transfer processes can in principle
be modelled and predicted by means of numerical simulations.

Convective heat transfer is regarded as one of the most important processes, where heat is
exchanged through air-to-wall and air-to-air convection. The determination of a wall convec-
tive heat transfer coefficient relies essentially on the air flow pattern created by a ventilation
system. An erroneous determination of this coefficient will lead to significant inaccuracy in
calculated thermal loads, see Bauman et al. (1983). Convective heat transfer over a cold win-
dow, for example, may differ from that along an infinite flat plate (Peng and Peterson, 1995).
Conductive heat transfer is related to a changeable outdoor climate, usually entailing heat gain
in summer and heat loss in winter. Its determination thus depends on outdoor climate data and
requires a long time period of transient simulation to perform an extensive analysis. In tradi-
tional designs, thermal loads are often calculated by assuming a uniform indoor air tempera-
ture. With numerical simulations, local indoor air temperatures can be used to improve com-
putations of heating and cooling loads (Chen, 1988). Radiative heat transfer within buildings
occurs between wall surfaces with a temperature difference, as well as through fenestration
areas owing to solar radiation, see e.g. Chen (1988) and Li (1992). The heat sources in a room,
e.g. heating radiators and cooled ceiling air-conditioning devices, often entail radiative heat
transfer and thus affect the ventilation flow pattern.

In general, indoor air quality, thermal comfort and energy consumption form the basic dis-
ciplines in ventilation system designs. They are therefore the virtual starting points for assess-
ing system performance. These three aspects can be explored in detail with the aid of numeri-
cal simulations. In ventilation practice, CFD has come to be a powerful technique and is used
to investigate system performance, diagnose system problems and improve system designs.
The development of CFD as a reliable alternative and complement to conventional experimen-
tal measurements is thus of practical importance in building research to realize basic require-
ments on building ventilation.



2.2 Features of Ventilation Flow

To achieve an acceptable indoor environment with low energy consumption, the principal task
of building ventilation is to control mass and heat transfer processes through well-organized
air movements. With only the ventilation device, such control is achieved through air supply
and exhaust by alteration of the supply air flow rate and air temperature and the location and
shape of supply and exhaust openings. This is however insufficient to control room transport
phenomena that may also be significantly affected by other factors, including the arrangement
of indoor heat and/or contaminant sources and obstacles, the type and geometry of room en-
closures and so on. Building ventilation is thus far more complicated than a supply-and-
exhaust flow system.

Ventilation flow is often internal air motion arising in enclosures. Most ventilation flows
encountered in practice are of an incompressible, non-isothermal type with significant heat
transfer. Usually, ventilation is used to decrease occupants’ exposure to pollutants by supply-
ing fresh air to contaminated spaces. The contaminant is diluted through efficient mixture
with local or global recirculating and mixing air motion, whereupon turbulence is generated.
Therefore, ventilation flow is often turbulent flow. Further, to avoid draft risk caused by low
air temperatures and high air velocities and turbulent fluctuations, air motion in the occupied
zone must be controlled so that it is characterized by low-velocity and low-Reynolds-number
turbulence. Moreover, boundary layer flows often occur along solid wall surfaces. As non-
adiabatic walls are exposed to a colder or warmer outdoor climate, the boundary layer flow is
then of a natural convection type induced by buoyancy, owing to a temperature difference
between the wall surface and ambient indoor air.

In addition to these generally viewed flow features, ventilation flow exhibits other flow be-
haviours in different regions of a ventilated space (Peng, 1994). Typical flow characteristics
include wakes and vortex shedding behind obstacles, potential flows near exhaust openings,
thermal jets or plumes arising above heat sources, and laminar and transitional flows in near-
wall boundary layers and in regions far from walls due to dampened turbulence with thermal
stratification. These and other flow phenomena are associated with the ventilation system
used: they may appear when using one system, and may not with another.

According to the approach of withdrawing air from a space, ventilation systems are classi-
fied into two types: local ventilation and general ventilation. The former, which is widely
used in industrial ventilation, exhausts air and contaminants from a limited region where pol-
lution sources are located. Some local equipment is thus used, such as a laboratory fume hood,
glove box and canopy hood etc. (Heinsohn, 1991). With the latter type, the air is extracted
from the entire space and replaced with make-up fresh air. General ventilation of different
types is the main consideration in this work.

According to the approach of supplying air to a space, general ventilation is further classi-
fied into natural ventilation, mixing ventilation and displacement ventilation. Natural ventila-
tion does not rely on any mechanical system. Instead, room air motion is created by indoor
and outdoor temperature or pressure differences through infiltration and exfiltration. Mixing
and displacement ventilation systems are the most used types, which rely on mechanically
driven systems built with fans, ducts, filters and air diffusers etc.. These two systems are
briefly described here.

2.2.1 Mixing Ventilation

In mixing ventilation, fresh air is supplied at a high momentum to induce overall recirculation
and promote sufficient mixture of contaminants and fresh air. It thus aims at diluting the con-
tamination level down to an acceptable level. To avoid sensible air draught in the occupied



zone, the supply opening (usually a slot) is often installed at ceiling level. The inflow is in
most cases a wall jet. As the initial momentum is large enough (often, it is), the wall jet is then
able to reach the opposite wall and consequently becomes an impinging jet.

Although the wall jet is generally characterized by fully developed turbulence, the air mo-
tion in the occupied zone is often characterized by low velocities induced as a result of jet en-
trainment and air recirculation. Nielsen (1989) showed that the maximum velocity in the oc-
cupied zone is linearly proportional to supply air flow rate for isothermal mixing ventilation
flows. If the ventilation air flow rate is lower than four air changes per hour (ACH), however,
this proportionality no longer holds and the velocity decays more sharply. Using relatively
small supply air flow rates (< 3 ACH), Sandberg et al. (1991) measured near-wall velocity
distributions in a room with mixing ventilation. An interesting finding is that the conventional
log-law of walls, widely used as a wall function for velocity in indoor air flow simulations, is
altered.

Ventilation flow is in most cases non-isothermal. As the wall function for velocity differs
from the conventional one, there is reason to worry about predictions of near-wall convective
heat transfer. Furthermore, the wall function for temperature that remains in common use is
empirically derived from experimental data for pipe flow. For natural convection boundary
layers, where the flow is dominated by buoyancy, this wall function, as well as that for veloc-
ity, should not be expected to perform well. In a measurement on natural convection boundary
layer flows along a cold window with simulated floor heating, Peng and Peterson (1995)
showed that the convective heat transfer coefficient over the window surface even possesses a
behaviour different from that along an infinite, heated/cooled vertical flat plate.

2.2.2 Displacement Ventilation
In displacement ventilation, cooled fresh air is supplied at floor level with a low momentum.
Upward buoyant convection created by indoor heat sources carries contaminants into the up-
per zone, where recirculation and mixture occur and contaminated air and/or excess heat are
exhausted. This system thus aims at directly delivering fresh air into the occupied zone with-
out inducing (or with insignificant) mixture with contaminants. The buoyancy thus becomes
the virtual origin of air motion. The mechanism of inducing buoyancy relies on the behaviour
of both air supply and heat sources. To investigation the performance of this system, special
attention must be paid to air supply, buoyant convection, and their interaction (Peng, 1998c).
A comprehensive description of this ventilation system can be found in, e.g., Nielsen
(1993) and Mundt (1996). Since the air is supplied at a low velocity and at a temperature of
usually 2-4 °C lower than the mean room air temperature, the inflow forms a gravity current
due to buoyancy and spreads over the floor surface. Heat sources (e.g. people, lamps and
computers etc.), on the other hand, create upward thermal plumes, entraining surrounding
ambient air and rising to the upper zone. The flow is thus characterized by stable thermal
stratification with nearly linear vertical temperature distribution in the room. Nevertheless,
recirculating and mixing air motions often occur locally, owing to the entrainment of thermal
plumes and the downwards natural convection along non-adiabatic cold wall surfaces. Fur-
thermore, the plumes created by heat sources may entail local turbulence damping in the verti-
cal direction and trigger locally anisotropic turbulence. In the lower zone, weak turbulence
often tends to be relaminarized. In numerical simulations, displacement ventilation flows are
generally more difficult to handle than mixing ventilation flows. Davidson (1989) showed that
a low-Reynolds-number (LRN) turbulence k-& model often fails to give a turbulent solution
when it is applied to this type of flow. Instead, an unrealistic laminar solution is recovered in
the whole flow domain without predicting any turbulent transport, as it actually should.



2.2.3 General Problems in Modelling Ventilation Flows

Numerical simulation has been applied to ventilation flows for more than twenty years. A
brief historical review can be found in, e.g., Peng (1994). The current status and potential ca-
pabilities and limitations of using CFD for analyzing indoor air flows were discussed by, e.g.,
IMechE (1991), Jones and Whittle (1992), Peng (1994) and Chow (1996). Among the existing
turbulence models, two-equation type closures, particularly the conventional k-£€ model
(Launder and Spalding, 1974) and its variants, have been the most used approach in numerical
simulations of indoor air flow and heat transfer. Due to the complex flow characteristics in a
ventilated space, three principal and problematic aspects must be well accounted for when car-
rying out numerical simulations with a two-equation model to achieve reliable predictions.

e Using the conventional wall functions might be an inappropriate approach for near-wall
treatment, particularly when the flow is not fully developed turbulence (e.g. with low
supply air flow rate) and when the flow is characterized by separation and affected by
thermal buoyancy force.

e Using turbulence models without incorporating LRN formulation, for example the stan-
dard high-Reynolds-number k-¢ turbulence model, might be one of the main sources of
error in predictions since most ventilation flows are characterized by LRN turbulence.

¢ Using LRN turbulence models that cannot accommodate well near-wall turbulence be-
haviour associated with buoyancy effects and laminar-turbulence transition might result
in predictions deviating far from reality in air-to-wall convective heat transfer and in
computed mean flow field.

The first aspect has attracted some attention and attempts have been made to develop new
wall functions from analyses of natural convection boundary layer flows along vertical flat
plates, see e.g. Yuan et al. (1993) and Peng and Peterson (1994). The applicability of such
wall functions is however questionable in regions near horizontal walls. The second aspect is
a consequence of the first since the wall-function method is often used together with a high-
Reynolds-number (or the standard) turbulence model to serve as a bridge between the near-
wall viscous sublayer and the outer layer where turbulence is fully developed. On the other
hand, as stated above, low-Reynolds-number turbulent flows and even laminar flows not only
occur in near-wall regions, but can also exist in regions far away from walls in a ventilated
room. A high-Re turbulence model will apparently mislead the simulation when handling such
flows. Furthermore, local relaminarization and transitional phenomena in particular require
appropriate modelling that is able to account for flows that develop from laminar to turbu-
lence through transition, which often occurs in natural convection boundary layers along non-
adiabatic wall surfaces. The third aspect concerns LRN modelling for buoyancy-driven (or
significantly affected) ventilation flows where thermal stratification is of importance for tur-
bulence generation or destruction.

These general problems thus call for advanced turbulence models that are capable of han-
dling ventilation flows of different types, different flow features existing in one flow, particu-
larly for flows with low-Reynolds-number turbulence and with heat transfer, and flows in
which laminar, transitional and turbulent phenomena co-exist. This has motivated the devo-
tion of a large part of this work to the development and investigation of LRN-type models and
of advanced modelling methodology based on large eddy simulations. In addition, it is worth
mentioning that turbulence modelling for indoor air flows needs also to consider non-isotropic
effects caused by thermal plumes arising in stratified surroundings, which have been often en-
countered in rooms with displacement ventilation, see e.g. Davidson (1990).



2.3 Assessment of Ventilation Performance
As a flow system is set up, some relevant measures are needed to quantify heat and mass
transfer processes occurring in the system for engineering purposes, such as diagnosing sys-
tem problems and optimizing system designs. With a ventilation system aiming at improving
indoor environment, such a measure is often devised to indicate the efficiency of delivering
make-up (filtered, heated or cooled) fresh air and the effectiveness of removing contaminants
and/or excess heating/cooling load. It is usually termed as a scale for assessing ventilation per-
formance. For ventilation flows, nearly all the flow quantities can have individual effects on
the assessment of the indoor environment. These may include mean air velocity, temperature,
pressure, air humidity, turbulence quantities, heat transfer coefficient, contaminant concentra-
tion and so on. When applied to an assessment of ventilation performance, such a large cate-
gory would be a tiring list for practical use. In principle, numerical simulation is indeed able
to provide detailed figures for a number of individual quantities, but they are often not stan-
dardized or constructed as independent scales for ventilation performance assessment.
Processes arising in some specific zones/regions are usually more interesting than in the
whole ventilated space. A typical example is the occupied zone since ventilation is essentially
used for the comfort of the occupants. When analyzing risk of exposure to contaminants, the
breathing zone of the occupant is another specific region. This suggests that zonal or local
scales are more relevant than global ones. Using only globally-averaged simple scales, for ex-
ample the mean room concentration and the turnover time of contaminants, is obviously not
enough to assess a ventilation flow system. Moreover, owing to complex ventilation flow
phenomena, a simple global scale could fail to explore and indicate the effect of some local,
substantial mass/heat transfer processes. When exploring local/zonal scales, it may be noted
that the characteristics of mean flow resulting from the action of turbulence is often empha-
sized more than the turbulent motions themselves. This is particularly true when the scales are
constructed by means of the mean flow field to quantify ventilation performance in supplying
fresh air and removing contaminants.

2.3.1 Basic Aspects of Assessing Ventilation Performance
Scales used to assess a ventilation flow system can be classified into the following three
groups (Peng et al., 1997a):

a) Ventilation air diffusing efficiency. This includes scales that evaluate ventilation per-
formance by indicating how efficiently fresh air has been supplied and delivered to a
space;

b) Ventilation effectiveness. This includes scales that evaluate ventilation performance by
indicating how effectively passive contaminants in a space can be removed or diluted by
ventilating air flows;

c) Specific ventilation effectiveness. This includes scales that evaluate the ability of venti-
lating air to remove or dilute contaminants for a specific application.

A number of scales have been proposed to accommodate these aspects. Comprehensive re-
views on different scales have been given by e.g. Skéret (1984), Etheridge and Sandberg
(1996). In the construction of these scales, two basic quantities have often been used, i.e., the
contaminant concentration, C, and the local mean age of air, 7. The concentration is a well-
known quantity that indicates the amount of contaminants residing in a unit volume of air. Its
distribution in an air flow follows the mass transport equation, given by



aa—f+V-(uC):V-(DVC)+SC 2.1

The local mean age of air statistically expresses the mean time it takes for air to reach an arbi-
trary point after entering a system. It represents the freshness of the air at the location. It is a
passive scalar quantity and is governed by a transport equation (Spalding, 1972),

V-(ut)=V-(DV7)+1 (2.2)

This parameter can be used to passively track the air flow. Other important scales include the
purging flow rate, the contribution ratio of supply openings and the residence time distribution
(RTD), see e.g. Peng et al. (1997a). The origin of some ventilation scales can be found in
chemical engineering where analyses of mixture are essential for chemical reactors, see e.g.
Danckwerts (1952), Levenspiel (1962), Zvirin and Shinnar (1976), Nauman (1981) and Robin-
son and Tester (1986).

Three methods have been commonly used to quantitatively determine ventilation scales, in-
cluding the experimental method, the compartmental/zonal method and the numerical method.
In experiments, passive tracer measurements have usually been employed to characterize and
track air flow patterns. With the compartmental or zonal method, a flow system is divided into a
number of compartments/zones. Using mass and/or energy conservation, this method can be ef-
fectively used to analyze passive mass and heat transfer in various zones. The compartmental
method is usually applied with the aid of measurements or numerical calculations to determine
interchanging flow rates between different zones. Stochastic theory can also be used and incor-
porated into this method to explore the regional purging flow rate and other useful ventilation
scales, see Peng and Davidson (1997b).

The numerical method has gained increasing attention in analyses of ventilation performance.
This approach appears to be the most efficient one and is able to provide detailed figures of air
flow and contaminant distributions. Liddament (1992) concluded that the prediction from nu-
merical methods has enabled the concepts of ventilation efficiency and contaminant removal ef-
fectiveness to be applied at the design stage, while the value of the experimental method has
been restricted to evaluation and diagnostic studies on existing structures. With the aid of nu-
merical simulation, effort has been made in this work to develop new ventilation scales (Peng et
al., 1997a), which are expected to be applicable in ventilation practice.

2.3.2 New Scales for Assessing Ventilation Flow Systems

As numerical simulation is used to explore ventilation scales, the new scale must be calcula-
ble either through indirect manipulation with predictable transport quantities or through direct
solutions of a transport equation for this scale itself. It should be noted that the new scales
were devised for ventilation applications, but they may also be applicable for other equivalent
flow systems when the same or a similar assessment is required.

Local Purging Effectiveness of Inlet

This scale is proposed for assessing flow systems with multiple inlets, where the contribution
from an individual supply opening needs to be distinguished. The openings are denoted s1, 52,
..s 8P, ..., sm. For an arbitrary opening, say sp, its contribution to an arbitrary location within
this system can be analyzed by the variation in local mean air age, 07, induced by supplying
different aged air through sp. A detailed procedure for obtaining 6t was described in Peng et



al. (1997a). Denoting 7, as the local age with old air supplied through sp (e.g. 7y, = 7, = V/Q)
and T, as the local age with fresh air supplied (7, = 0), the local purging effectiveness of
supply opening sp, Ay, is defined as

ﬁ — (Told - Tnew)

Told Told

Ay,= (2.3)

At an arbitrary point, the decrease in local mean air age, i.e. 0T = (Tyy — Tpen), indicates the ca-
pability of the system to purge the old air by supplying fresh air through inlet sp. This age
variation can readily be computed by using the following equation

V- [u(d1)]= V- [DV(97)] (2.4)

The boundary condition for the inlet considered, say sp, is 07y, = 7, and is zero for all the other
inlets. At the inlet, sp, the local purging effectiveness is thus equal to unity and is zero at other
inlets. A large A, means a large capability of a supply opening, sp, to deliver fresh air to a lo-
cation for purging or diluting the contaminant there. This scale is measurable in tracer ex-
periments by varying the tracer concentration at the inlet considered.

Expected Contaminant Dispersion Index

This scale is proposed for “what if” purposes in ventilation applications. In practice, without
knowing the strength of a passive contaminant source, one is often eager to know what the pos-
sible contaminant distribution will be if this source is located at some specific locations. In other
words, a source-independent index is needed for quantifying ventilation flows to forecast the
dispersion of passive contaminants produced at specific locations. The local Expected Contami-
nant Dispersion Index (ECDI) is also derived from the age variation analysis, and is defined as

(TCZ - T('l)
T2

ECDI = 2.5)

where 7, is the local age calculated by specifying an age, 7,, at the specific location and zero age
at the supply opening; 7. is the local age calculated by specifying zero age at both the specific
location and the supply opening.

Local Specific Contaminant-Accumulating Index

This scale can be used as a bridge index between the general scale and the specific scale. It is
able to reflect how a set-up ventilation air flow and a specific contaminant source interact on
each other. An index, termed the local age-integrated exposure, 7, is first defined as

y=[Cr (2.6)

This index expresses the local accumulation or dose of contaminants at an arbitrary position
over a time equal to the local mean age of the air passing this position. By comparing this in-
dex with a value specified for limiting the time-integrated exposure, a scale can be obtained
for evaluating the capacity of an air flow to dilute/remove the contaminant. A small value of ¥
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implies either that a small amount of contaminants has been dispersed to the position in ques-
tion or that the air flow has been quickly supplied to this position, or both. A transport equa-
tion for ycan be readily derived (Peng et al., 1997a) as

V. (uy)=V-(DVy)=2D[VT-VC(T)|+S.T 2.7)

where C(7) is the concentration at the time equal to the local mean age of the air, 7. Note that the
local age-integrated exposure is a measurable index. In practice, the accumulation at steady
state is of more importance and interest. Equation (2.6) therefore becomes Y= C(c)7, and the
corresponding transport equation takes the following form

V-(uy)=V-(DVY)-2D[VT - VC(c0)]+ C(c0) + 8. T 2.8)

This equation can be solved by coupling with Equations (2.1) and (2.2) at steady state. The
boundary condition of yat the inlet is zero.

The mean nominal time-integrated exposure is then used to normalize ¥, leading to the lo-
cal specific contaminant-accumulating index, o, 1i.e.,

o= 1og(L] (2.9)

7,<C>

A negative « indicates a small amount of contaminant accumulation and thus a large contami-
nant-diluting capability at the location considered. For complete mixing, & is zero, which forms
the basic scale of this quantity. When the steady-state concentration is used for yin (2.6), Equa-
tion (2.9) can be rewritten as

azlog[ Ee j (2.10)

8[7 8ap

where €. is the contaminant-removal effectiveness, €. = C./<C>, €, is the local air change index,
& = T/7,, and g, 1s the local air quality index, &, = C./C,. Equation (2.10) shows that ¢ refers
to both the delivering of fresh air to a location and the removal of contaminants from this loca-
tion. The use of the new scales has been demonstrated by Peng et al. (1997a).

2.4 On the Purging Flow Rate

The purging flow rate describes the nature of the purging process in a flow system. It was origi-
nally proposed by Zvirin and Shinnar (1976) for analyzing two-phase flow systems and was used
to distinguish between well-purged and stagnant regions. This concept is defined for the local
continuum motion in a flow system. A small purging flow rate for a region means that this re-
gion is weakly connected with the rest of the system. Such a region is stagnant. The purging flow
rate expresses the net fraction of the total flow through the system that passes one location in the
system on its way to the outlets. In other words, it represents the net flow rate at which the pas-
sive contaminant at this location is flushed towards the exhaust opening. This concept is origi-
nally defined through a pulse or step tracer experiment. When a pulse tracer (m,,) is released at
an arbitrary location p, the purging flow rate, U), is expressed as
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U,=—"="— (2.11)
[comar
0
With a step tracer release (g,), U, is defined as
9y
U,= (2.12)
" Cy(>)

It is emphasized here that the purging flow rate is a quantity for a sub-region in a flow system.
Addressing U, for a point will make this concept misleading and useless, since a flow rate at a
point is zero. It is thus termed in this work the regional purging flow rate. So far, there is no
available means proposed in experiments to measure this quantity. Numerical and compart-
mental methods have often been used to determine it, see e.g. Sandberg (1984) and Davidson
and Olsson (1987).

2.4.1 Mathematical Derivations of the Purging Flow Rate

The original definition in (2.11) or (2.12) has commonly been used in theoretical determination
of the purging flow rate. Although these definitions originate from imaginary tracer experi-
ments, it seems impossible to measure the purging flow rate through experiments. The problem
is that this quantity is associated with the volume (rather than the point) of the source-bearing lo-
cation. The concentration used in (2.11) or (2.12) would be pointless in measurements for a vol-
ume containing the tracer source. If the concentration is measured at the tracer-release point, on
the other hand, the resultant purging flow rate becomes pointless for representing a volume
around the measured point.

Instead of relying on the original expressions in (2.11) and (2.12), the purging flow rate is re-
formulated here by means of a straightforward description. This new formulation is obtained by
using the turnover flow rate, which is the total local flow rate passing through the region consid-
ered. The turnover flow rate for region p, W, includes two parts: the net flow rate at which the
air leaving p flows towards the outlet, i.e. U,; and the remaining flow rate (termed here the re-
sidual turnover flow rate), R,,, at which the air may recirculate and rejoin p after leaving it. The
regional purging flow rate can then be simply expressed as

U =W, -R, (2.13)

From Equation (2.13), one always has U, < W,,. This formulation shows that the purging flow
rate for a flow system as a whole is therefore the total supply or exhaust air flow rate through the
inlet or outlet.

General Mathematical Expressions

In compartmental analyses, the flow space is divided into n parts and each has a volume, oV, (p
=1, 2, ..., n). With a step tracer experiment, at time ¢ = 0, a passive contaminant is continuously
released at a rate g, at location r (0 < r < n). The released passive contaminant follows the air
flow, undergoing diffusion and convection. A fraction of contaminants, P,,, is brought into an
arbitrary location p (p = 1, 2, ..., n), with p as a receiver. The total amount of contaminants ever
reaching location p after time 7, from all contaminant sources in the system, is then
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Lm,=Y|P,[q.ad (2.14)

r fy,

where P, is termed the transfer probability. It reflects the transport ability possessed by the flow
and represents the fraction of passive contaminants transported from the source-bearing location,
r, to an arbitrary location p; f,, is the time when the first fraction of contaminants emerges at lo-
cation p after its release at r. As t — oo, according to the mass conservation principle, the total
amount of contaminants ever reaching p after its release, Xm, (as t — oo), must be balanced by
an amount of contaminants, M, carried in the net air flow passing through p and flushing out of
the system, to eventually make the concentration at p steady. Thus, in general,

M,=Ym, ast— oo (2.15)

The net flow rate needed to hold the contaminant at location p and to carry it towards the outlet
is the purging flow rate, U,. At time ¢ after release, M,, can be written as

M,=U,[C,(0) dt (2.16)

to

where 1, is the time at which the first fraction of contaminants appears at location p, C,() is the
mean transient concentration at location p and C,(#) = 0 for ¢ < fy. Substituting Equations (2.14)
and (2.16) into Equation (2.15) yields

Y7, g,
U, = lim——"*—— (2.17)
[,

With a pulse release, Equation (2.15) can also be used to give an expression for U, yielding

Y.(P,m)
U,, -_r

- (2.18)
[e @ ar

where m, is the amount of contaminant released at location r by a short burst.
With a constant release rate for each source, i.e. g, = constant at any time for all r (r < n),
Equation (2.17) can be rewritten in terms of a steady mean concentration, Cp(co), as

Y (Pna)

U,= (2.19)

Cp(°)
Particularly, when a single passive contaminant source is located at p, then P,, = 1. Equations
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(2.18) and (2.19) then take the same forms as the original definitions in (2.11) and (2.12), re-
spectively. The mass conservation principle, expressed in Equation (2.15), thus forms the physi-
cal basis for deducing U,. This enables us to formulate U, through various tracer experiments.

Expressions Derived from Two Tracer Experiments

Step-up Tracer Release at the Inlet. For a situation with continuous tracer release, after a steady
state is reached, the amount of purged passive contaminants from an arbitrary location p, M,
over a time period of Af can be written as

M,=U,Cp(=)At (2.20)

With a step-up release at the inlet, the passive contaminant is released at time ¢ = 0 at a constant
rate g,. The transfer probability from the inlet to an arbitrary interior location p is Pg,. The total
amount of contaminant ever reaching p over a time period of At, at a steady state, is then Xm, =
Py, g; At. This amount is balanced by M,, in Equation (2.20). This gives

Pqu
U,=—2%4 (2.21)
" Cy(0)

A continuous release at the inlet will eventually give a uniform concentration in the whole sys-
tem as ¢ — oo. This concentration equals the concentration at the inlet, i.e. Cy(c0) = g/Q for all
locations. Equation (2.21) thus becomes

U,=P,,0Q (2.22)

Equation (2.22) provides a convenient method for obtaining U, in terms of the transfer probabil-
ity from the inlet to an arbitrary interior region without requiring the transfer probabilities be-
tween different interior locations. This expression indicates that the purging flow rate also repre-
sents the net flow rate at which the fresh air is supplied to a location p.

Overall Step-up Tracer Release. In an overall step-up release within a flow system, the passive
contaminant is released at each region. The release rate, dg, (p = 1, 2, ..., n), is the amount of
contaminant released per unit time and unit volume. When i #j (i, j = 1, 2, ..., n), dg; need not be
equal to &g;. In an arbitrary region p, the total amount of contaminant during a time period of Az
includes two parts: the amount released from the source in this region and the total amount dur-
ing At from other sources in the rest of the system. This gives

Ym, :Z(P,-,,(Sq,.At O0V)=Atl6q,6V,+ Z (P,6q,6V))] (2.23)

i=1 i=1(i#p)
This amount is equal to M, in Equation (2.20). Consequently, one gets

6qp6Vp+ Z (Pil76q,'6Vi)

U, = i=1(izp) (2.24)
3 C, ()
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When continuous release occurs in only a few regions, Equation (2.24) turns out to be Equation
(2.19). If the source distribution is spatially homogeneous, i.e. dg; = constant everywhere, the lo-
cal mean age of air, 7;, can then be expressed in terms of d¢g; and Ci(e0), i.e. T; = Ci()/dg;. Intro-
ducing this relation into Equation (2.24) gives

6Vp+ Z (Pip6vi)

U, = i=I(i%p) _ Vo (2.25)
Tp TP

where V/, is the volume swept by the purging flow on its way from the supply opening to region
p- The same equation was derived by Sandberg (1984) by means of matrix analyses. This equa-
tion shows that the regional purging flow rate is related to the volume of the region.

Some Scales Defined in Terms of the Purging Flow Rate

Several useful scales can be defined by using the purging flow rate to quantify ventilation per-
formance. A back-mixing index or probability, f,, is defined in terms of R, and W, see (2.13),
giving

By=pr =1t (2.26)

The back-mixing index indicates the probability that the air will rejoin p after leaving it. This
index, therefore, reflects the degree of air recirculation for region p. It is thus applicable for
evaluating the air mixing degree. The equivalent regional Peclet number, Pe,, for region p can
be expressed as

2v U, 2v
Pe, =———L="" (- 2.27
T W (Sv,,( B, (2.27)

Pe,, can be used as an indication of the uniformity of mixing. It can also be used to represent
the segregation between the flow in the region considered and the ideal plug flow. Some other
U,-related scales were also discussed in Peng and Davidson (1997b).

2.4.2 A Markov Chain Model for Transfer Probabilities

To compute the regional purging flow rate, the key is to determine the transfer probabilities be-
tween different regions within a system. Equation (2.22) appears to be the most convenient ex-
pression, where only the transfer probability from the inlet to the interior region in question is
needed. Sandberg (1984) used matrix analyses to find the transfer probabilities between different
interior regions, without including the transfer probabilities from the inlet to the interior regions
and those from the interior regions to the outlet. These parameters are important estimators to
indicate the contribution of the inlet and the outlet and are particularly useful when using multi-
inlet/outlet flow systems. A stochastic analysis was carried out by Peng and Davidson (1997b),
in which a Markov chain model was developed to determine the transfer probabilities. This
model is used in combination with the compartmental method to calculate the desired transfer
probabilities mentioned above.
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Transition Probability

Stochastic theory can be found in, e.g., textbooks by Feller (1971), Cinlar (1975) and Chiang
(1980). It has been used in chemical engineering for many years, mainly in analyses of mixture
and residence time distributions in chemical reactors, see e.g. Krambeck ef al. (1967).

The flow is tracked by an imaginary fluid element (or a passive particle) within a flow field
that is divided into a number of regions. The flow field is assumed to be steady and divided into
n regions with interconnecting flows. The flow system has one inlet and multiple outlets (the
multi-inlet system will be analyzed later). The interior regions are numbered continuously from
1 to n. Let the inlet be denoted by the letter s and the outlets numbered asn + 1, n+2, ..., n+e,
where e is the total number of the outlets. The inlet and outlets are treated as special regions with
zero volume (i.e. OVy = 0Vypy = ... = OVue = 0, and V = 6V + 6V, + ... + OV,). Each region
(including the inlet and outlets) represents a state of the particle. A state space S is then formed,
and

S={s, 1,2, ...,n,n+l, n+2, ..., n+e} (2.28)

S consists of two sub-spaces: the interior states (including the inlet and interior regions) form .Sy,
and the outlet states (recurrent states) form Sp,i.e. S =85;0U S0 (S;< S and Sp < 9).

When the particle is released at a state p (p € S) in the beginning of the tracking, its initial
state is denoted by Xy = p. Let I(p) = P{Xo = p, A p € S}. A set for the initial states is then
formed

I ={Is), 1), ..., I(n+e)} (2.29)

With one particle, XI(i) = 1. To reveal the contribution of the inflow to different interior regions,
the particle is released at the inlet, i.e. I(s) = P{Xo = s}. After entering the room, the particle fol-
lows the air flow and visits a set of regions before leaving through an outlet. Each visit to a re-
gion is counted as a station X;, where i denotes the number of stations the particle has ever vis-
ited since its release at initial state I(s). The station X; = k, when k > n + 1, means that the particle
leaves the system. The sequence {X;; i =0, 1, 2, ...} is thus a discrete space and a stochastic
process. Its trajectories give a complete picture of the particle's movement in terms of the flow
regions it visits. Since all the possible states in the system are covered by the state space S, and
the flow pattern is assumed to be steady, the state for the particle's current station X; is affected
only by its state at the last station, X;.;. This is thus a typical Markov process. Its present state
alone is therefore all that is needed to forecast its future, see Krambeck et al. (1967) and Feller
(1971). The statistical sequence of a Markov process is governed entirely by the probabilities of
transition from one state to another. In the parlance of statistics, for i > 0,

AXi=plXo, Xi, ooy Xia}=fAXi=plXia} (VpeS) (2.30)

Furthermore, it is assumed that the particle's movement is a Markov chain with stationary tran-
sition probabilities. Then for all i > 0,

fUs )= fAXi=plXu=j}=fAXi=plXo=j} (V], peS) (2.31)

where f{j, p) is the transition probability from state j to state p. With all members in the state
space, S, the transition probabilities between any two states form the entries of a matrix. This is

16



here called the F matrix, giving

S(sy ) fG D . f(s, n+e)
po| SG9 S0D e SOt 03
f(n+e, s) f(n+e,s) ... f(n+e, n+e)

The transition probability, f{(j, p), expresses the probability for a particle to leave a state j and
immediately enter another state p. In other words, it indicates the fraction of air flow at state j
tending to leave and to be transferred, by one step, to state p (j, p € S). The F matrix can be
partitioned into four submatrices, i.e.,

D H
F = (2.33)
o 2

Submatrix D is a block with (n + 1) X (n + 1) elements that represent the transition probabilities
between interior states (including the inlet). Submatrix H is a block with (n + 1) X e elements
that represent the transition probabilities from interior states to outlet states. Submatrix O is a
zero block with e X (n + 1) elements that represent the transition probabilities from outlet states
to interior states. E is a unit matrix with e X e elements that represent the transition probabilities
from outlet states to outlet states.

Special attention must be paid to the diagonal entries of F. Without exception, f(p, p) = 1 (V
p € So) for submatrix E; and the probability fip, p) (p € Sy) is usually O for submatrix D. If there
is any by-passing flow which flows back to the same state without experiencing any other states
in Sy, then f(p, p) # 0, and this is the fraction of the by-passing flow. For ventilation flows, this
situation seldom occurs. An alternative way to deal with the by-passing flow is to extend the
state space by assigning additional states for by-passing regions.

Transfer Probability
A new matrix, A, can be derived from matrix D, whose entries, a(j, p), are the mean number of
visits of the particle to a region p with a last state j (V j, p € S))

A =(E,-D)" (2.34)

where E), is the unit matrix with the same dimension as the D matrix. Let B be another probabil-
ity matrix with the same dimension as A. Its non-diagonal entries b(j, p) (V j, p € Srand j # p)
express the probability of the particle to ever reach state p when its last state is j. This probability
is thus the transfer probability from state j to state p, i.e. b(j, p) = Pj, (V j, p € S;and j # p). The
diagonal elements, b(p, p) for all p € S}, represent the probability that the particle ever returns to
p after it leaves. Assuming that no upstream diffusion occurs at the inlet (i.e. b(s,s) = 0), then, for
any states j and p, j, p € S, we have

b(p, p)=1-

2.35
a(p, p) (235
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b(j. p) = % (#p) (2.36)

For a ventilation flow, b(p, p) (Vp € S)) is the fraction of air ever returning to region p after first
leaving this region and before being exhausted through the outlet. It is thus the back-mixing
probability, f3,, defined in Equation (2.26), i.e. B, = b(p, p). A large b(p, p) means a high degree
of recirculation and back-mixing for region p.

It is interesting to point out that it can be shown that the result derived from the deterministic
method (Sandberg, 1984) is a special case of the present model, when the particle is initially re-
leased from an interior region, see Peng and Davidson (1997b). The present Markov chain
model is thus a generalized one.

The contribution of an outlet to the interior regions is represented by the transfer probability
from an interior region j (j € S;) to an outlet k (k € Sy), that is, the probability b(j, k). This can
be calculated with matrices H and A, i.e.,

b(s, n+1) b(s,n+2) ... b(s, n+e)
b1, n+1) b, n+2) ... b(l, n+

0:(:1) (7:1): (’:16)=A-H (237)
b(n, n+1) b(n, n+2) ... b(n, n+e)

The elements of each row in the B, matrix indicate the fractions of the air in a region exhausted
by various outlets. The sum of these elements should therefore be unity.

Equations (2.34)-(2.37) provide a method to compute the desired transfer probabilities: from
the inlet to the interior regions; from one interior region to another; and from the interior regions
to an outlet. These transfer probabilities can be used to calculate the regional purging flow rate,
to analyze the effects of the inlet and outlet on the interior region considered, and to explore the
connection between various interior regions. The back-mixing probability furthermore provides
a new index to explore the flow behaviour in the interior regions.

Flow Systems with Multiple Inlets
When air is supplied into a space through multiple inlets, the Markov chain model can be used
to calculate the transfer probabilities from each inlet to any interior regions. With all the inlet
states included in the state space S, the initial state for the particle tracking needs to be changed
from one inlet to another in order to account for the individual effect of each inlet. However, the
transition probability between any two interior regions remains unchanged for a set-up flow pat-
tern. By changing only the transition probabilities from the inlet to the interior regions in the F
matrix, the calculation can be carried out in the same way as for a system with only one inlet.
With Equations (2.34)-(2.37), the transfer probabilities between any two states (the inlet, the
outlet and the interior region) can be obtained. Note that the transition probability between any
two inlets is always zero.

With multiple inlets, all the inlets contribute to the purging flow rate for the region consid-
ered. Using (2.22), the regional purging flow rate for a region p can be determined by

U,=b(s1, p)Q,+b(s2, p)Q,+ ... +b(sm, p)Q,, (2.38)

where s1, s2, ..., sm denote the inlets, and Qyi, Qgp, ..., Qs are their corresponding supply air
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flow rates. Each term in Equation (2.38) represents the individual contribution of each inlet. A
similar evaluation can be made for the outlets. In addition, it should be pointed out that Equation
(2.25) can directly be used to calculate the regional purging flow rate for systems with multiple
inlets, since no transfer probabilities related to inlets are involved in this equation.

T
= |
|
(5)37 \ i
) - (6)
i
/e L
| |
| |
| = |
| = |
| @) ! i
1 (1) <,_:’7 (3) ‘ = 4)
0 I 3 7 5 e 8

¢) Numerically calculated interchanging flow rates between regions (m’/h)
Figure 2.1 An example used for demonstrating the use of the Markov chain model.
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Figures 2.1 a), b) and c) show a two-dimensional configuration for a room with mixing venti-
lation, where the air is supplied through one inlet under the ceiling and exhausted from two
openings above the floor. The room is divided into six interior sub-regions. This flow system is
used to demonstrate the calculation of the regional purging flow rate using the Markov chain
model.

The interchanging flow rates between different sub-regions given in Figure 2.1 c) were calcu-
lated from a numerical simulation which gave the flow field as shown in Figure 2.1 b). The in-
terchanging flow rates are then used to obtain the transition probabilities, which in turn form the
F matrix as follows

D H
F=

o &)
0 0 0 0 0 1.0 0 | 0 0
0 0 0128 0 0 0031 0 | 0841 0
0 0624 0 0 0 0201 0175 | 0 0
0 0 0670 0 0009 0 0321 | 0 0 | 239

| o 0 0 0756 0 0 0 | 0 0244

0 0064 0089 0 0 0 0847 | 0 0
0 0 0 0045 0828 0127 0 | 0 0
0 0 0 0 0 0 0 | 1 0
0 0 0 0 0 0 0 | 0 1

By using (2.34) and (2.36), the transfer probabilities from the supply opening to an interior re-
gion p, Py, can be determined, and the regional purging flow rate is consequently computed
from (2.22). The back-mixing index, f,, i.e. b(p, p), can be calculated with Equation (2.35).
Some regional ventilation scales computed with the Markov chain model are shown in Table 2.1
for the present case, see also Peng and Davidson (1997b). The purging flow rate for region 5 is
the same as the supply flow rate since the entire supply air is first delivered to this region.

Table 1 Calculated regional ventilation scales for the case in Figure 2.1.

Scales Region1 Region2 Region3 Region4 Region5 Region 6
Py, 0.65 0.68 0.67 0.86 1.00 0.89
U, (m’/h) 281 294 289 372 432 385
B, 0.13 0.35 0.45 0.44 0.32 0.51
Pe, 14.4 9.8 7.1 9.3 5.7 4.1
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Chapter 3

Modelling of Turbulent Flow and Heat Transfer

As a fluid motion is said to be of a turbulent type, the flow is regarded as being highly ran-
dom, unsteady, diffusive, dissipative and three-dimensional (Tennekes and Lumley, 1978). In
essence, turbulence is not a property of fluids, but of continuum fluid flows. It is thus gov-
erned by the equations of fluid mechanics. Since these equations are non-linear, and different
flow problems possess individual features caused by various initial and boundary conditions,
no general, well-behaved solution to these governing equations is known. For flow problems
of engineering interest, the solution to these non-linear differential equations has often been
obtained with the use of numerical methods.

In numerical simulation, only motions of scales larger than the mesh size can be resolved.
Turbulent flows are associated with a multitude of scales in time and space. The dynamics of
eddies in turbulence is characterized by an energy cascade from large to small eddies and, fi-
nally, through the action of viscosity, into heat. This suggests that the lower bound to the
length scale in turbulence is set by the influence of viscosity, i.e., the dissipative scales. The
upper bound is determined by the geometric size of the flow domain. In turbulent ventilation
flows, for example, the smallest length scale may be of an order of 0.1 mm, while the largest
scale is the dimension of the ventilated room which is usually several meters.

Direct numerical solution (i.e. DNS) to the non-linear differential governing equations ap-
pears to be an available approach, which allows full resolution down to the smallest scales and
is free of modelling approximations. Note that the span of length scales grows with the mac-
roscale Reynolds number, Re, to a power of 3/4. This means that the number of grid points re-
quired for a DNS in three dimensions is of the order of Re”®. With an increasing Reynolds
number in the range of engineering applications, direct computation for turbulent flow thus
requires a prohibitively increasing computer power. Although this approach is able to provide
details on turbulent structure at low Reynolds numbers for validating and improving turbu-
lence models, it is not yet ready as a tool for solving practical flow problems. Comprehensive
discussion on DNS can be found in several review articles by, e.g., Rogallo and Moin (1984),
Reynolds (1989) and Schumann (1991).

Attempts made to avoid full resolutions of the span of length scales as in DNS bring in
another approach, that is, large eddy simulation (LES). The basic philosophy in LES is then
naturally to filter out the small scales so as to make a relatively coarse mesh usable for the
numerical resolution of the large scales. The small-scale motion, on the other hand, is pre-
sumed to be more homogeneous and universal in nature and thus more amenable and requir-
ing of fewer adjustments for successful modelling. To distinguish small-scale and large-scale
eddies, a filtering process is carried out on the governing equations. The consequence of the
filtering operation is that the small-scale eddies are removed and the equations become gov-
erning equations only for the evolution of large-scale motions. Nonetheless, the effect of unre-
solved small scales on resolved large scales remains, which needs to be accounted for by a
model.

LES is similar to DNS in that it provides three-dimensional, time-dependent solutions of
the Navier-Stokes equations. The large scales are, in principle, required to contain kinetic en-
ergy as much as possible in order for the small scales to obey inertial subrange dynamics.
Thus, LES still requires fairly fine meshes. In many engineering applications, it is of interest
to detect mean flow properties rather than detailed fluctuating motions. Even with DNS and
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LES, the most meaningful and practical result usually lies in the mean field and is obtained by
time-averaging the instantaneous quantities. Use of statistical approaches is thus another de-
sirable alternative in which the Reynolds-averaged Navier-Stokes (RANS) equations, which
describe the evolution of the mean quantities, are solved. In RANS approaches, all stochastic
turbulent fluctuations are averaged out through a time-averaging process. This averaging
process, however, introduces unknown correlations. To close the equation system, these un-
knowns, as in LES, must be modelled.

To shed light on the unknown correlations resulting from the Reynolds-averaging ap-
proach, we start with a brief description of the basic governing equations.

3.1 Basic Equations
The equations of motion for a continuum fluid express the conservation of mass, of momen-
tum and of energy. For incompressible flows, these equations can be written as, respectively,

ou
i 3.1
o (3.1
du, a(lxt,-lxtj) 1oP 0

iyt o 4 7 (2VS. . 3.2
a e, pan ax WM 2
ar owT) o ar

el =—|la=—I|+S 3.3
a &@[“an+ : e

where f; is the external force, e.g., the buoyancy force, S, is a source term in the energy equa-
tion, and the strain rate tensor, Sj;, is expressed as

1( Ou, Ou,
== =t 4
& 2@@+@j G4

These equations serve as a basis for attacking mean flow problems as well as for analyzing
turbulence into harmonic components. In the LES approach, these equations are viewed as
governing the fluid motions from the smallest to the largest eddies to enable a space-
smoothing or filtering process applicable to rule out the subgrid scales. This will be further
addressed in Section 3.6. In RANS approaches, the turbulent motion is regarded as consisting
of the sum of a mean part and a fluctuating part. Reynolds decomposition is introduced into
the time-averaging process, and the instantaneous variables are then separated as

y=y+y’ (3.5

where Y’ is the fluctuating part of a quantity and ¥ is the mean part. The time-averaged
quantity is defined as

1t
= [RZE (3.6)

V=
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where (; — fp) is the averaging time. Using Reynolds decomposition and time-averaging for
Equations (3.1)-(3.3), the continuity equation (3.1) takes the same form, but instead for the
mean velocities. Hereafter, the overbar indicating time-averaging is dropped, unless otherwise
stated. The Reynolds-averaged Navier-Stokes equations become

I Owu) _ 1dp, 9

2vS. —u.'u,’ ) 3.7
a o pox o CTHMOT G-D

and, similarly, the thermal energy equation reads

o dwn o o
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The resultant turbulent Reynolds stresses and heat fluxes, —u,'u;" and —u;'T", represent the

transport of momentum and heat due to fluctuating motions. Consequently, nine unknown
correlations in total are introduced into the equation system. The exact equations for these cor-
relations can be derived from the dynamic equations for the fluctuating quantities. The exact

equations for —u,'u;’ read
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The different terms on the right-hand side in Equation (3.9) successively express production
due to mean shear, production due to buoyancy, pressure-strain redistribution, viscous dissi-
pation and turbulent and viscous diffusion.

The exact transport equations for the turbulent heat fluxes, —u;'T", take the form of

ou,'T' du,'T’ — T  —— o, — p'dTl’
3t +Mk an :—(l/li Mj gj‘l‘uj ng]+ﬁgiT2+;gi—
- o (3.10)
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In analogy to Equation (3.9), the right-hand side in this equation includes, respectively, mean-
field production term, buoyancy production term, pressure-temperature gradient correlation
term, viscous destruction term and diffusive transport term.

New unknown correlations of various kinds arise in (3.9) and (3.10). A further derivation
of transport equations for all these unknowns is possible and would include additional, higher-
order correlations and so on in an expanding hierarchy, see e.g. Chou (1940). This conse-
quently leads to a closure problem. To obtain a closed set of equations, it is necessary to ter-
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minate the hierarchy at some particular level by modelling the unknown correlations. Models
at the second-order level using Equations (3.9) and (3.10) are often termed second-moment
closures or Reynolds stress models, on which work has been carried out by, e.g., Rotta (1951),
Lumley (1970), Hanjalic and Launder (1972, 1976), Rodi (1976), Launder and Shima (1989),
Hallbick et al. (1990), Shih et al. (1994) and Wallin and Johanson (1996). Comprehensive
reviews can be referred to the work by, e.g., Launder and Spalding (1972), Launder et al.
(1975), Rodi (1980), Launder (1989), Speziale (1991), Groth (1991), Hanjalic (1994) and
Launder (1995).

3.2 Eddy Viscosity/Diffusivity Concept

The task of turbulence modelling is, in short, to make a mathematically well-behaved and
physically well-posed equation system for solving turbulent flow problems. Comprehensive
discussion on some general aspects for a closure to fulfil, for example, coordinate invariance,
material frame indifference, realizability and near-wall asymptotic behaviour can be found in,
e.g., Schumann (1977), Lumley (1978), Speziale (1989) and Hallbick et al. (1995).

As the modelling directly formulates the turbulent Reynolds stresses and heat fluxes in
terms of known mean flow properties, the eddy viscosity/diffusivity concept has been used for
a wide class of turbulence models in practical use. In analogy to the viscous stresses in lami-
nar flows, Boussinesq (1877) suggested that the turbulent stresses are proportional to the
mean velocity gradients. This approximation reads

 Ou,
fij:_ui,uj':vt[%jw_;]_%kay 3.11)
Jj i

where V; is the eddy viscosity, and k is the turbulent kinetic energy, defined as k = u,'u,’,

which is nestled in an additional term to give the model a correct trace. This term is often ab-
sorbed in the pressure-gradient term in numerical computations. In a similar way, the turbulent
heat fluxes can be formulated through the eddy diffusivity concept, i.e.,

ar v, dar
h=—u'T=0—=—"— 3.12
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where ¢ is the eddy diffusivity. In writing Equations (3.11) and (3.12), the ratio of the eddy
viscosity and diffusivity has been used to define the turbulent Prandtl number, o; = Pr; = vi/ o,
whose value is often assumed to be a constant in eddy-viscosity-based models.

Based on the eddy viscosity/diffusivity concept, the modelling now turns out to be a task of
finding V; or oy Unlike the molecular viscosity, the turbulent eddy viscosity is a property of
the flow, but not of the fluid. It is thus a function of time and space. Moreover, one may note
that the eddy viscosity is essentially an isotropic quantity, that is, it is equal in all directions.
Argued with dimensional analyses, the eddy viscosity can be constructed to be a product of
turbulent velocity scale (V;) and length scale (L)), i.e., v, o< V; L,. Depending on how these
scales are prescribed, several types of eddy-viscosity-based turbulence closures have been de-
veloped and used in engineering practice.

The simplest type is the zero-equation models, where the eddy viscosity is either assumed
to be a constant (Prandtl, 1942) or is directly related to the local mean velocity gradient and
the flow geometry. For example, using the famous mixing length hypothesis (Prandtl, 1925),
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one may write the eddy viscosity in a generalized form as

12
ou. u; \u.
=/ || —4+—2L|— 3.13

where /,, is the mixing length whose distribution over the flow field is prescribed by means of
empirical formulations, see e.g. Rodi (1980).

In one-equation models, the turbulent velocity scale is described by V, o< Jk . This yields
v, =c,JkL, (3.14)

where ¢, is a model constant. A transport equation for the turbulent kinetic energy, k, is then
required. This can be derived by contracting indices in Equation (3.9) and dividing the result
by two, giving
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On the right-hand side of (3.15), the terms are, respectively, shear production (), buoyancy
production (G), viscous dissipation (€), turbulent diffusion (D;) and viscous diffusion (D,).
The unknown correlations in this equation are further modelled in terms of v, and L, so that
the remaining work to close the equation system is left only to formulating the turbulent
length scale. In most one-equation models, L, is determined by trial-and-error, empirical rela-
tions. As in zero-equation models using Prandtl’s mixing length hypothesis, the prescription
of the length scale has proven to be a difficult matter in both physics and numerics, particu-
larly for complex flows with complex geometries. Reviews on these models can be found in,
e.g., Rodi (1980), Markatos (1987) and Nallasamy (1987). In addition, a three-equation model
(the k-&-v** model) should be mentioned, which has recently been proposed by Durbin (1995)
and applied to jet-impingement heat transfer (Behnia ez al., 1996) with reasonable predictions
reported.

3.3 Two-Equation Model

Among the eddy-viscosity-based models, the two-equation models have had the most applica-
tions in engineering. The eddy viscosity/diffusivity in two-equation models is prescribed with
two turbulent scales having their respective transport equations. After using the eddy viscos-
ity/diffusivity approximations, (3.11) and (3.12), in Equation (3.15), two more terms (D, and
€) in the exact k-equation must be further modelled. Keeping the k-equation appears a natural
choice to formulate Vv; or @, since the square root of k is proportional to the turbulent velocity
scale. The turbulent diffusion is usually modelled in analogy to its viscous counterpart. The
modelled k-equation then takes the form

Ky, Koy M ,nghj—s+ai|:(v+ Vf)i} (3.16)
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In view of the eddy viscosity formulation in Equation (3.14), a straightforward approach to
close the equation system is to derive an additional transport equation for the length scale it-
self, L,. The viscous dissipation rate, €, in Equation (3.16) can be further expressed in terms of
k and L, through a dimensional analysis which gives € o< k’*/L,. This in turn yields the k-L,
model (cf. Mellor and Herring, 1973).

In other two-equation models, it is often not an equation for L, itself, but rather an equation
for the combination of k and L,. If such a combination that complements k is denoted as Z, the
modelled Z-equation can be written in a general form, in analogy to (3.16), as

oz oz 7 8u VA 0 V. dZ
—+u —[ ng —c,.Bs; j] Zz;g+—{(v+ ’)—}+SZ (3.17)
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where the source term, S,, depends on the specific choice of Z. There have been various com-
binations in forming the Z-equation. Among others, we mention here the k-€ model (cf. Laun-
der and Spalding, 1972), the k-w model (cf. Wilcox, 1988) and the k-7 model (cf. Speziale et
al., 1992). These three types of models have been used and compared in numerical simula-
tions for turbulent ventilation flows (Peng et al., 1996b). It was found that the k-7 model and
the k- model in high-Re forms, in conjunction with wall functions, gave relatively poor per-
formance for the flows considered.

Of all the existing two-equation models, the k-€ model remains the most used in engineer-

ing applications. By its definition in homogeneous turbulence, & =vdu,'/dx, du,'/dx; , the ex-

act equation for € can be derived as
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On the right-hand side of (3.18), the first three terms are denoted as the production ( £,) due
to mean strain field (the first two) and vortex stretching (the last one). The fourth term is a
buoyant production (G,), the fifth is a viscous destruction term (Il;) and the remaining two
terms are the turbulent transport (D;e) and the viscous transport (D), respectively. Referring
to Equation (3.17), the modelled &-equation is written as

Je Jde € ou, e 0 v, ot
54‘”/.5]:2( U &x ngﬁgj /] 827+§j|:(v+— —j:| (319)

The eddy viscosity in the k-€ model reads

v,=c,k/ (3.20)
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The model constants in the conventional k-€ model for isothermal flows (cg, = 0) are specified
as (cf. Launder and Spalding, 1972)

¢, =009, 6,=10, 6,=13, 6,=09, c, =144, c, =192 (3.21)

The exact equations for other possible choices of the Z quantity, for example the turbulent
time scale 7 and its reciprocal ®, can be readily obtained through their respective expressions
in terms of k and €. For the quantity @, which is termed the specific dissipation rate by Wilcox
(1988), its exact equation can be derived from the relation of @ o< &/k. This suggests

Dw _1De o Dk (3.22)
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where D/ Dt = 9/t +u, d/dx, . The exact w-equation is then written as
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where the terms on the right-hand side are, respectively, the production ( ), the destruction
(I1y), the turbulent diffusion (D,4) and the viscous diffusion (D,,y).

Using the relation of 7 o« k/€ and the exact equations for k£ and ¢, i.e. (3.15) and (3.18), the
exact transport equation for 7 can be derived from the following relation

2
KZED_]C_T_& (3.24)
Dt kDt k Dt

Equations (3.22) and (3.24) provide clues for modelling the resultant exact scale-determining
equation (e.g., for w or 7). Referring to the corresponding terms in the k-€ model, various
terms in the exact transport equation for @ or 7 can be expressed in terms of the primary
transport quantities. Rather than using such a transformation in a recently proposed k-@
model, Wilcox (1988, 1993) modelled the w-equation by directly placing it in the form of the
Z-equation. Setting the source term in (3.17) to zero, the modelled w-equation in Wilcox’s k-
® model reads

ow 0 ® ou, d v, do
54_ U 8_xj = ;(Cwlrij gj_ cwgﬁgjhj]_ Cw2w2 +&Tj|:(v + e )$:| (3.25)

@

The eddy viscosity in the k-@ model is formulated as
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v, =c, K/ (3.26)

The dissipation rate, €, in the modelled k-equation (3.16) can be represented in terms of k£ and
. Combining the relations in (3.20) and (3.26) gives € = ¢; kw. The model coefficients, for
isothermal flows, are parameterized as (cf. Wilcox, 1988)

¢, =10, 6, =20, 6, =20, ¢, =0.09, ¢,, =5/9, c,, =0.075 (3.27)

As noted by Hallbick et al. (1995), the above different types of two-equation models are
rather similar in character, since transformations between these models show that the model-
ling of the production and destruction terms are completely equivalent. Nonetheless, there ex-
ist a number of variants for each type of these models. These variants, together with various
specifications for the model constants, may lead to considerable differences in predictions. To
be distinguished from their variants, the high-Re models are often termed the standard ones.

Of all the existing models, none can be used with universal validity when dealing with dif-
ferent flow problems. The models described above were originally constructed for fully de-
veloped turbulence. In principle, they are thus only applicable for high-Reynolds-number tur-
bulent flows. For low-Reynolds-number turbulent flows, e.g., in near-wall regions where vis-
cous effects play a significant role in turbulent energy dissipation and diffusion, a standard
high-Re model often fails to correctly simulate the turbulence behaviour. This thus prompts
the development of LRN variants of the standard models.

In addition, one may note that the approximation for the Reynolds stresses in Equation
(3.11) virtually claims that the normal Reynolds stresses are all equal. This is in substantial
contradiction with experiments for flow, e.g., in a non-circular duct. To remedy this and other
drawbacks existing in the standard models, other variants of the high-Re number models have
also been developed, including the non-linear (or anisotropic) variants by, e.g., Speziale
(1987), Park and Sung (1995), Craft et al. (1995) and Huang and Rajagopal (1996), and the
variants derived from the Renormalization group (RNG) analysis by, e.g., Yakhot and Orszag
(1986), Yokhot et al. (1992) and Karniadakis et al. (1993).

3.4 LRN Two-Equation Model

A high-Reynolds-number model can not, in general, be integrated over the whole flow domain
for wall-bounded turbulent flows. This is particularly true when applied to flows in ventilated
rooms. As described in Section 2.2, a ventilation flow is usually characterized by low-
Reynolds-number turbulence not only in near-wall regions but also in regions far away from
walls. In near-wall regions, Shih and Lumley (1993) showed that all energetic large eddies re-
duce to dissipative Kolmogorov eddies and, consequently, all the near-wall flow properties,
such as the friction velocity and the mean strain rate, are characterized by Kolmogorov mi-
croscales. Viscous modifications to high-Re models are thus necessary to make the models
have an appropriate response to flows in which the effect of molecular viscosity becomes
comparable to that of the eddy viscosity.

Nonetheless, when used in conjunction with wall functions, high-Re models have indeed
reached remarkable success in solving engineering flow problems. Without integrating the
model to the wall surface, the wall-function method helps to patch the core region of the flow
to the wall region. The origin of the wall functions is related to the local equilibrium and uni-
form shear stress assumptions and the so-called log-law of the wall. As a consequence, their
use for complex flows becomes physically questionable, e.g., for flows with separation. It was
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mentioned in Section 2.2 that the near-wall velocity profile measured in a ventilated room
with a low supply air flow rate differs from the conventional log-law of the wall. This pro-
vides evidence that the use of this approach may be inappropriate in turbulent boundary layers
at low Reynolds numbers. Incorporating the wall functions into boundary conditions in nu-
merical simulations, the drawbacks nestled in this approach will give incorrect expressions at
near-wall grid points where wall functions are used. Consequently, the prediction for the
whole flow domain may be contaminated. Various aspects of the invalidity of the wall-
function approach have been addressed briefly or in detail in previous work by, e.g., Patel et
al. (1984), Chen and Patel (1988) and So et al. (1991).

To find alternatives by which the drawbacks of using the wall-function method can be
eliminated, different modelling approaches have been developed to account for near-wall tur-
bulence behaviour. Such models can be directly integrated towards the wall surface and are
able to simulate near-wall viscous effects. Near-wall modelling methods include, for example,
using an anisotropic eddy viscosity formulation (Speziale and Abid, 1995); introducing an
additional transport equation into the two-equation closure (i.e. the three-equation model) and
using this transport quantity to re-formulate the eddy viscosity (Durbin, 1991); or implement-
ing a two-layer model (Launder, 1986; Chen and Patel, 1988). The most popular approach at
present is to modify the model coefficients in high-Re- models through LRN formulation, i.e.
the damping functions, so that viscous effects can be appropriately reflected in the turbulent
transport equations as being integrated towards a wall.

3.4.1 General Considerations for LRN Formulation
The main objective in LRN formulation for a high-Re model is to devise proper damping
functions to re-model various terms in the turbulent transport equations so that they are able to
respond reasonably in physics to near-wall turbulence properties. The basic principle in LRN
formulation is to reduce near-wall eddy viscosity in a proper way so as to make viscous effects
increasingly dominant over, or comparable to, the eddy viscosity as the model is integrated
towards the wall surface. This can be achieved through adjustments in the near-wall turbulent
kinetic energy and the dissipation rate by, e.g., damping or reinforcing their respective pro-
duction and dissipation or destruction. The amenable terms are often the production and de-
struction terms in turbulent transport equations. Damping functions, however, should not be
used for those un-modelled exact terms in the modelled transport equations, e.g., the dissipa-
tion term in the k-equation for the k-€ model.

To reduce the near-wall eddy viscosity, V,, it is usually re-formulated by multiplying a
function f,, whose limit is unity as the flow becomes fully developed turbulence. In the k-£ and
the k- models, it reads, respectively,

2
v,=c . kL (3.28)
and
A (3.29)

Theoretically, it is possible to use only one function f,, to render the model reasonable near-
wall performance. For example, a sophisticated f,, can be devised to ensure that the eddy vis-
cosity would behave in near-wall regions as it does in a non-linear two-equation model that
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has well-behaved near-wall performance. Instead of using only f,, however, complementary
damping functions are often employed to maintain overall reasonable model behaviour. These
functions, in general, should be able to manage a near-wall reduction in k£ and/or an increment
in € or @ in order to eventually reduce Vv, and give appropriate model behaviour. To better rep-
resent the near-wall turbulence characteristics, some models employ extra terms or wall-
reflection terms in the turbulent transport equations. For example, an extra term,

D =-2v(dk/dy)?, is added on the right-hand side of the k-equation in some k-£ models and,

correspondingly, an additional term, E, is employed in the &-equation (cf. Patel et al., 1984).
Here, the &-equation in the LRN k-€ models is put in a general form, as follows

Je oe d v, Je
E‘*”;gj— (slfl ”8 —c..Bg; ,j Corfo — +gj[(v+6—8)gj}+@ (3.30)

Referring to its exact form, i.e. Equation (3.23), the LRN w-equation can also be written in a
general form as

(3.31)

In the k- model, since the dissipation term in the k-equation is transformed from the dissipa-
tion term, €, through an empirical model constant ¢, as € = ¢, k@, it is thus amenable in LRN
formulation by using a damping function, f;. In addition, the buoyancy production term has
been modelled in line with the eddy diffusivity concept, a damping function can also be used
to adjust the near-wall behaviour of this term in the k-equation. The same can be done in the
equations for € and @ through model coefficients cg, and cqe. The k-equation in an LRN k-@
model is written as

Jk ok du, d
ALl — f.Bg,h, — ckﬁkw+8[

} (3.32)

o, X,

In some models, damping functions are also used to re-model the turbulent diffusion terms
through the model coefficients o; and o, or oy, see e.g. Kawamura and Kawashiba (1997).
The formulation for fy, fs, fi, fi and f; is usually devised as continuous functions of some
dimensionless variables that are proportional to (1/V) to represent increasing viscous effects as
a wall approaches. These variables include, e.g., y" =u,y/v, R, = Jky/v, R, = (ve)* /v and

the turbulent Reynolds number, R;, defined by

2

R = L or R = L (3.33)

1% v

The methodology used to determine damping functions is somewhat ad hoc. Theoretically, the
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division between the exact and the modelled terms is the damping function for the correspond-
ing modelled term. One way is then to use existing DNS data for, e.g., channel flows (Kim et
al., 1987) and boundary layer flows (Spalart, 1988) to make term-by-term comparisons, see
e.g. Mansour et al. (1988), Rodi and Mansour (1993) and Nagano and Shimada (1995). The
resultant LRN model as a whole must be carefully calibrated and validated using available ex-
perimental and DNS data to ensure reasonable model performance not only in near-wall re-
gions but also in regions where turbulence is fully developed.

There are several basic laws to regulate the determination of damping functions. First, a
damping function should not break the general requirements in turbulence modelling, as men-
tioned in the beginning of Section 3.2. Second, for fully developed turbulent flows, the parent
model on which LRN formulation is based should have reasonable behaviour and be able to
produce acceptable predictions. Third, the effect of a damping function should usually be mo-
notonically disappeared (return to unity) when approaching regions away from a wall where
turbulence is fully developed. The LRN model should then, in this case, return to its high-Re
parent version. It is thus important to estimate the range of the influence of the viscous
damping. This is often evaluated by following van Driest (1956), who suggested that near-

wall turbulence is damped by a factor of [1—exp(—y+ /A)]. Moreover, the LRN formulated

model should be able to reasonably reproduce the log-law in the wall-layer for equilibrium
boundary layers where @ = €. This is the basic requirement for an LRN model when it is used
as an alternative to the wall-function method in near-wall regions. Finally, but being fre-
quently addressed, the damping function should ensure correct near-wall asymptotic behav-
iour for each damped term and for the model as a whole.

3.4.2 Near-Wall Asymptotic Analyses

A correct near-wall asymptotic behaviour includes two aspects: the primary turbulent quanti-
ties, such as the turbulent kinetic energy, the dissipation rate, Reynolds stresses and heat
fluxes, behave correctly in the vicinity of walls; the modelled terms in the turbulent transport
equations have asymptotic properties identical with their exact counterparts. To make near-
wall asymptotic analyses, a Taylor series expansion for the turbulent fluctuations is used

u'=ay+a,y +- (3.34a)
V'=byy? +byy 4 (3.34b)
w'=cy+c,y +- (3.34c)
p'=dy+dy+d,y +- (3.34d)
T'=ey+e,y +- (3.34e)

where y is the normal distance to a wall. Using these in the definitions of k and € gives k o< y*
and € < yo. Similarly, the asymptotic behaviour, as y — 0, for @ and R, can be expressed as,
respectively,

wcxiz, and R, o y* (3.39)
y
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Inserting Equations (3.34a)-(3.34e) into the near-wall simplification of each term in the exact
transport equations for k, € and @ and taking the leading part in the expansion, the following
asymptotic relations (as y — 0) are obtained

Py, Gy’ D, <y’ D, ="

©.<y, Goocy, I, <y’ D, <y’ D, o<y’

1 84 2 4 (3'36)
Poo<y s, o<y, D,o<y”, D, oy

P 3 T
ulvlocy ’M’T’OCy ’vlTlocy

3 2
>

w'T o<y~

In deriving the asymptotic expression for the turbulent diffusion term (D;) for k, the pressure
diffusion part has been neglected, since the DNS result indicates that this part is much less
than the triple-velocity diffusion part near a wall, see Mansour et al. (1988) and Speziale et al.
(1992). In addition, it is noted that both the buoyancy production terms in the k and € equa-
tions, G and G, have different respective asymptotic behaviours in cases of near a vertical
wall and near a horizontal wall, because these terms are conducted by gravity only in the ver-
tical direction. The relation given in Equation (3.36) is for the horizontal wall case. Near ver-
tical walls, one should have G o< x* and G o< xo, where x represents the normal distance to a
vertical wall, see also Peng and Davidson (1997d).

In the vicinity of a wall, the modelled turbulent quantity is required to have asymptotic be-
haviour consistent with its exact counterpart. To ensure this for the Reynolds stresses, the
eddy viscosity must be V; o< y3 (cf. Equations (3.11) and (3.36)). The damping function, f,,
should then behave as f,, o< 1/y in both Equations (3.28) and (3.29). Comparing the near-wall
behaviours between the exact and its modelled term, the near-wall asymptotic requirement on
each damping function can readily be figured out. For LRN k-& models, one should have f; o<
yo, Jre< y2; and for LRN k-@ models, f; o< yo, fi o< yo and f; o< y2. Note that f, in the LRN k-@
model is used to model the (II/k)-part of I, in (3.23) (cf. Equation (3.31)). Damping func-
tion f, in the k-equation should be f, o y° near a horizontal wall and fg o< y~! near a vertical
wall.

Although asymptotic behaviour has been emphasized in some previous work on LRN
model development, many existing models do not exploit these properties (cf. Patel ez al.,
1984). Savill (1995) recently reported that the correct wall-limiting behaviour for — u’v' can be
credited in predicting low-Reynolds-number transitional regions of boundary layer flows. Satis-
fying f,, o< 1/y in an LRN model appears to be a favoured aspect.

3.4.3 Wilcox’s LRN k- Model

There have been a number of LRN variants for different types of two-equation models. Repre-
sentative examples include the LRN k-€ model by Jones and Launder (1972, 1973), the LRN
k- model by Wilcox (1994) and the LRN k-7 model by Speziale et al. (1992). It would entail
a great deal of work to get a full picture for all the existing LRN models: there might be some
dozens of different LRN variants constructed since 1970s. Some other LRN models often re-
ferred to in studies include the Launder-Sharma model (1974), the Lam-Bremhorst model
(1981), the Chien model (1982), the Myong-Kasagi model (1988), the Nagano-Tagawa model
(1990), the Lai-So model (1990), the Yang-Shih model (1993), the Rodi-Mansour model
(1993) and the Abe-Kondoh-Nagano model (1994). Patel et al. (1984) reviewed eight differ-
ent models by scrutinising them with experimental data for flat-plate boundary layer and pipe
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flows. More recently, Hrenya et al. (1995) extended this comparison to some later LRN mod-
els after Patel ef al.’s review work and evaluated ten different versions in predicting turbulent
pipe flow.

For later use, Wilcox’s LRN k-@w model (Wilcox, 1994) is briefly described here. Based on
its high-Re version (Wilcox, 1988), this model was originally developed for simulating transi-
tion for forced convection boundary layer flows, and thus ¢, = f, = 0 in Equations (3.31) and
(3.32). Setting f> = 1 and E, = 0, Wilcox proposed the following damping functions

0.025+R /6
=T R/6 (337
5/18+(R, /8)"
fi= (R, 4) (3.38)
1+(R /8)
01+R /27 .
= = 3.39
Y I+R /7277 Ju ( )

Similar to those in the high-Reynolds-number version, the model constants are given by

¢, =10, 6,=20, ¢,=20,¢, =009, ¢, =5/9, c,, =1075 (3.40)

One of the positive features of this model is that the damping functions are related only to R,,
without using other wall proximity dependent quantities (e.g. y*, Ry and R etc.). Savill (1995)
found that such an R-dependence feature is desired for LRN models in predicting transitional
boundary layer flows. In addition, the wall-distance free damping functions make it numerically
convenient for simulating flows with complex geometries.

The mechanism of simulating transitional flows with this model was analyzed using a Bla-
sius transformation (Wilcox, 1994). It was argued that, starting from the laminar stage, the net
production of k per unit dissipation term (£/€ — 1) must be amplified earlier than that of w
(@ o/I1,— 1) to ensure the onset of transition. Consequently, as R; — 0, this requires

CoriCufy < Can (3.41)

Second, the net production of k should initiate its amplification at the minimum critical Rey-
nolds number at which Tollmien-Schlichting waves begin forming in the Blasius boundary
layer. This is to ensure a reasonable prediction for the location of the transition onset. To sat-
isfy this condition, as R, — 0, it must be

e fi /(e f) =1 (3.42)

Finally, to have a correct asymptotic behaviour for k, an analysis on the near-wall balance
between the dissipation term and the viscous diffusion term in the k-equation indicates that, as
y—0,

. f/Cpy —1/3 (3.43)
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The above three conditions have been satisfied in Wilcox’s LRN model through adjustments
in the model constants and the damping functions. Wilcox used a so-called numerical rough-
ness strip to trigger transition at the desired location and reported reasonable simulations for a
series of transitional isothermal boundary layer flows. It should be noted that the damping
function f,, in this model does not have correct wall-limiting behaviour, yielding incorrectly
u'viecy* asy — 0.

3.5 Modifications to the k- Model

Using the high-Reynolds-number (standard) k-@ model and its LRN variant, reasonable pre-
dictions have been reported by, e.g., Liu and Zheng (1994) and Patel and Yoon (1995). How-
ever, when they are applied to ventilation or other equivalent flows, it was found that the
model fails to give reasonable results (Peng et al., 1996¢c, 1997c). Modifications have thus
been made to improve the model performance.

3.5.1 The Modified High-Re k-® Model

As with other high-Reynolds-number two-equation models not using wall functions, the stan-
dard k- model recovers a lower near-wall peak in the turbulent kinetic energy in boundary
layers as compared with experiments data. This drawback remains when the standard k-@
model is applied to complex flows, e.g., backward-facing step flows, which is a flow phe-
nomenon that often occurs in rooms with mixing ventilation. It was found that the near-wall
eddy viscosity is considerably under-estimated by this model. As a result, the reattachment lo-
cation is overpredicted, leading to inaccurate predictions. Modifications to this model thus
aim at finding an appropriate way to enhance the eddy viscosity and meanwhile to properly
maintain near-wall viscous effects as required in LRN models. This has been achieved by
modifying the turbulent transport equation and re-establishing the model constants.

The Modified w-Equation

In a comparison with the exact @-equation, (3.23), it may be noted that an exact viscous cross-
diffusion term has been neglected in the modelled w-equation, (3.25), where the exact turbu-
lent diffusion, as a whole, has been modelled in a single second-order diffusive term. It is
noted that, close to a wall, the gradients of k and @ are of opposite sign. A cross-diffusion
term thus turns out to be negative in the vicinity of a wall. Its inclusion in the @-equation can
then be expected to suppress the near-wall @ level and consequently to enhance the eddy vis-
cosity, as desired. Inspired by this near-wall property of a cross-diffusion term, the turbulent
diffusion is then modelled in terms of a second-order diffusion and a cross diffusion, in anal-
ogy to its viscous counterparts in the exact @-equation. Retaining the viscous cross-diffusion
term in the modelled @w-equation, however, will introduce an unrealizable problem into the
near-wall @ solution, unless a damping function, f, is employed as in (3.31). Without using f,
this unrealizability can be easily shown to be true by the near-wall balance between the vis-
cous diffusion and viscous dissipation terms, i.e.,

d’w  2v ok dw )
el AR =0 3.44
Y oy’* i k dy dy Cor® (.49

Note that, in the vicinity of the wall, k o< y>** for the high-Reynolds-number k-® model (Peng
et al., 1996c¢). Introducing this asymptotic relation into (3.44) will lead to a negative @ as the
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wall is approached. The viscous cross-diffusion term in the modified model, therefore, must

be dropped as in Wilcox’s model. In its high-Re form, the modified w-equation for isothermal
flows then reads

AL N ) (P N B A PO 7L R/ (3.45)
ot j&xj Y o o ox; o, OX; ® k ox; ox; '

The addition of the turbulent cross-diffusion term can also be derived from a model transfor-
mation using the k-& model. By inserting the modelled k£ and € equations into the right-hand
side of (3.22), an equivalent turbulent cross-diffusion term can be recovered in the resultant
w-equation.

This turbulent cross-diffusion term was also employed in the k-@ model for solving free
shear flows, but was used only in the regions away from the wall to eliminate the model sen-
sitivity to the freestream value of @ (cf. Wilcox, 1993). By contrast, this term in the present
modified model is generalized for the whole flow domain. Moreover, it is well known that the
k-€ model overpredicts the near-wall turbulent length scale for wall-bounded flows in the
presence of an adverse pressure gradient. A so-called Yap-correction has often been employed
to remedy this problem. With Wilcox’s k- model, it has been argued that the resultant &-
equation transformed from the k-@ model (by exploiting (3.22)) contains a term that plays a
role similar to the Yap-correction. The k-@ model thus performs better than the k-€ model
without using any correction in this case. In this modified model, a similar term can be recov-
ered only if the related model constants are established in a relation as (Peng et al., 1997¢)

1 1
¢, <| —+— (3.46)
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Figure 3.1 Comparison of turbulent length scales predicted by different LRN models.

Figure 3.1 shows a comparison of the turbulent length scales near the reattachment location
predicted by different LRN models for a backward-facing step flow with an expansion ratio of
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ER = 6. The modified model indeed preserves a Yap-correction-like function as well as in
Wilcox’s model, giving a smaller turbulent length scale at the reattachment location than the
LRN k-€ model does.

The Modified Model Constants
Bearing in mind the under-estimation in the eddy viscosity, one may note that a straightfor-
ward remedy is to suppress the specific dissipation rate by reducing its production. This can
be achieved by adjusting the model constant, ¢, for the production term in the w-equation.
However, the model constant should not be randomly changed in order to retain a reasonable
model performance for some fundamental turbulent flows that have been frequently used in
model calibration, for which theoretical solutions are known or well-documented experimen-
tal data are available.

For a local equilibrium boundary layer, the model should be able to recover the law of the
wall (log-law) in the wall-layer, where the Reynolds shear stress is constant and equal to u’.
The balance between the production and dissipation of k requires

2

Jeuer === ”k (3.47)

Experiments indicate that u;*/k =~ 0.3. This thus suggests

¢, =0.09 (3.48)

Further, from the simplified w-equation in the local equilibrium boundary layer, one gets

o ZCor_ (3.49)

In addition, for a decaying isotropic turbulence, experiments found that turbulence decays
with time to a power of about —(1 ~ 1.25). Through the k and @ equations, this can be argued
in a relation of

= 1125 (3.50)

Ccoz

As indicated by Wilcox (1988), setting ¢, = 1 possesses the generality of using other values

for this model coefficient. It can be shown that varying this constant will alter @ by only a
factor of ¢, in the wall-layer; the kinetic energy and the eddy viscosity will remain unchanged
only if Equation (3.48) holds.

On the basis of the aforementioned arguments, and having been calibrated and optimized
further in numerical experiments for typical ventilation flows, the model constants in the
modified model have been re-established. Under the conditions of (3.46), (3.48), (3.49) and
(3.50), they are given as

¢, =10, 0,=08, o,=135 ¢, =009, c, =042, c,,=0075 ¢, =135  (3.51)
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3.5.2 The Modified LRN k-® Model

There is evidence that the k-@ model is more computationally robust than the standard k-€
model for the integration of turbulent flow to a solid boundary (Speziale et al., 1992). Wilcox
(1988) thus proposed integrating this model directly to the wall surface without using wall
functions as a bridge. This is termed the extended-to-wall method for a high-Reynolds-number
model. However, both the Wilcox and the modified models yield solutions for k that are as-
ymptotically inconsistent in the vicinity of a wall. Along with this drawback, the near-wall k
peak is considerably underpredicted for, e.g., channel flows. Using Wilcox’s LRN model
(Wilcox, 1994) as described in Section 3.4.3, this problem is remedied. However, it was found
that this LRN model retains poor performance for typical ventilation flows. A new LRN k-@
model has thus been developed, see Peng et al. (1997¢).

Since the above modified high-Re version appears to have reasonable behaviour for simu-
lating recirculating ventilation flows (Peng et al., 1996b, c), it is thus used as the parent model
for further LRN modifications. This suggests that the modified LRN model should return to
the modified high-Re version for fully developed turbulent flows. The turbulent transport
equations and the model constants are therefore virtually the same as in the modified high-Re
model. Instead of using the form as in (3.31), the modified LRN @-equation for isothermal
flows has the following form, similar to its high-Re parent version

[0} ou. d
= Co i ;[TU 371] _Cw2f2w2 +$|:(V+
j

J

8_co o

Ly 20 v, dk dw
o ' ox,

vV, 00
—)— —+—— (352
Gw)o'?xj}-l_cw k ox; ox; (3-52)

Note that the near-wall asymptotic behaviour for f; in (3.52) is different from that in Equation
(3.31), where the dissipation term was separated into two parts. To retain a correct asymptotic
solution for @, f, should be f, o< y0 as y — 0, if the related dissipation term in (3.52) is
damped. The k-equation in the modified LRN model takes the same form as Equation (3.32),
setting f, = 0 for isothermal flows.

In developing the near-wall viscous modifications, effort has been made to preserve two
merits as in Wilcox’s LRN model (Wilcox, 1994). First, the mechanism of simulating transi-
tion, as described in section 3.4.3 in Wilcox’s model, has been retained in the modifications.
Second, the damping functions have been devised to be dependent only on the turbulent Rey-
nolds number (R;) without using any other wall proximity dependence. Furthermore, the in-
consistent asymptotic behaviour nestled in Wilcox’s LRN model for the near-wall Reynolds
shear stress has been corrected.

Referring to the near-wall asymptotic analysis presented in Section 3.4.2 and validated in
numerical experiments, the following damping functions have been proposed

R\ 0.001 R\
f, =0.025+ {1 = exp[—(ﬁj }} x {0.975 "R exp[—( 200 H } (3.53)

R
fi=1- O.722exp[—(ﬁj } (3.54)

R 12
fi=1+ 4.3exp{—(ﬁj } (3.55)

37




The dissipation term in Equation (3.52) is kept in its high-Re form by setting f, = 1. As R, —
0, Equation (3.53) yields f, ~ (1/R™ + ...), which complies with the correct asymptotic condi-
tion of f,, ~ y_l. Furthermore, as R, — 0, it gives

Vi~ (k/O)R™" ~ L (3.56)

where L, ~ k"*/® is the turbulent length scale, and i is the Kolmogorov velocity scale in terms
of v, kand o, i.e. u; ~ (Vkw)". Equation (3.56) thus suggests that the near-wall eddy viscosity is
determined by the small-scale eddies. The turbulent length scale, L,, is proportional to y® in the
near-wall region and decreases towards the wall surface. As L, approaches the Kolmogorov
length scale, 1, ~ (v3 /ka))”4 ~ L, R,_m, the eddy viscosity is reduced to the same order as the
molecular viscosity. This is consistent with the analysis of Kolmogorov behaviour in near-wall
turbulence by Shih and Lumley (1993).

The modified model has been applied to channel flows, backward-facing step flows and
typical ventilation flows. In comparison with Wilcox’s LRN model, the prediction is generally
improved with the present modifications, see Peng et al. (1997c). Figure 3.2 shows some re-
sults for a channel flow at Re; = 395 in comparing with the DNS data by Kim et al. (1987).
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Figure 3.2 Comparison of predictions for a channel flow at Re; = 395.
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Figure 3.3 Comparison of predictions for a backward-facing step flow.

In Figure 3.3, the two models are further compared for predicting a flow over a backward-
facing step with a small expansion ratio of ER = 1.2 at a Reynolds number of Re = 5100 based
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on the step height, 4. The result is normalized with the maximum inlet velocity, Uy, and is
compared with the DNS data by Le and Moin (1994). In general, the prediction was improved
with the present modifications as compared with the original model.

3.5.3 Analyses of Model Behaviour for Turbulent Buoyant Flows

Turbulent buoyant flows often occur in building ventilation, where generation and transport of
turbulence rely significantly on the thermal stratification. It would be desirable to extend the
application of the modified LRN k-@ model to natural convection flows. In many ways, the natu-
ral convection flow in an enclosed cavity is similar to the ventilation flow in a room with non-
adiabatic outer walls. Moreover, the cavity flow is regarded as a fundamental type for buoyant
turbulence research. This type of flow has thus been commonly applied to model validations in
which turbulent buoyant influences need to be accounted for.

For buoyant cavity flows at moderate Rayleigh numbers, Ra, turbulence is fully developed
only in some regions along the vertical walls (the upper part along the heated wall and the lower
part along the cooled wall), and it decays away from the walls. This thus requires the turbulence
models used in computations to be able to appropriately capture the turbulence evolution starting
from laminar flow in order to obtain reliable predictions for convective heat transfer. The transi-
tion from laminar to turbulence causes an increase in air-to-wall convective heat transfer along
the vertical wall. The strong interaction between the thermal and hydrodynamic instabilities re-
quires a particular effort to describe the non-linear growth of disturbances that lead the flow
from laminar to turbulence.

In general, the inclusion of LRN modifications in the k-€ model improves the prediction of
wall heat transfer for buoyant cavity flows, as stated by Heindel et al. (1994). However, some
problems have also been reported in a comparison using the results from a workshop conducted
by Henkes and Hoogendoorn (1995). Among others, the solution was found to be grid-
dependent when using the k-€ model: the transition onset along the non-adiabatic vertical walls
is delayed with refining grid. Note that both Wilcox’s and the modified LRN k-@ models pre-
serve a mechanism for simulating transition in isothermal boundary layer flows. It is thus desired
to investigate their performance for flows in which turbulence is promoted from laminar with
both the thermal and the hydrodynamic instabilities, e.g., for cavity flows.

As with the LRN k-€ models, however, the predictions given by both LRN k- models were
disappointing — the transition regime along the vertical wall was delayed as the grid was suc-
cessively refined (Peng and Davidson, 1997d). When the grid is sufficiently refined, both
models return a laminar solution in the whole cavity. Since the transition-simulation mecha-
nism in the LRN k-@ models originally gained its credit with forced convection boundary
layer flows, this mechanism needs to be re-examined for natural convection boundary layer
flows in which buoyancy plays a significant role.

Analysis of Transition Regime in Natural Convection Boundary Layer
Along a non-adiabatic vertical wall, e.g. the hot wall of an enclosure with two differentially
heated side walls, the natural convection boundary layer flow at a moderate Rayleigh number
usually undergoes three stages: the laminar flow near the lower left corner and the subsequent
transitional and turbulent flows. The transition onset can be observed through the convective
heat transfer along the wall surface, in which a sudden jump occurs.

In comparison with an isothermal transitional boundary layer flow, which is dominated by
shear or by pressure gradient, a buoyancy-driven boundary layer flow possesses one further tur-
bulence evolution mechanism owing to the thermal stratification. This is reflected by the buoy-
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ant production term (G = g;Bu;'T") in the transport equation for the turbulent kinetic energy.

The transition arising in a natural convection boundary layer flow thus depends on both the flow
deformation and the buoyancy.

In essence, the transitional flow is of a low-Reynolds/Rayleigh-number type. It is well known
that the physical transition mechanism itself is not tractable with a Reynolds-averaging model,
since all the spectra effects are lost in the time-averaging process, and the RANS approach is ca-
pable of distinguishing only the magnitude and an average frequency of perturbations that fall in
a specific range of frequencies inducing instability. Therefore, the RANS method cannot predict
the development of instability and natural transition from a purely laminar flow. Nonetheless,
under appropriate conditions, statistical models are able to reproduce the transition to some ex-
tent, particularly for the transition onset. One example is the by-pass transition triggered by the
diffusion of free-stream turbulence into the flow, for which a moderate degree of success with
some LRN two-equation models has been reported (cf. Savill, 1995). For internal flows, e.g. the
buoyant flow in a confined cavity at a moderate Rayleigh number, a statistical model usually re-
quires some initial background turbulence in the prediction to represent the turbulence evolution
through transition in the boundary layer along the vertical walls. The background turbulence
should be sufficiently weak not to influence laminar-like mean flow properties, but not so weak
as to be amplified when the flow deformation and buoyancy are imposed, see Hanjalic et al.
(1993).

With the RANS approach, the model implicitly assumes that the free-stream-turbulence or
the background turbulence leads to a build-up of weakly correlated turbulence activity in the ini-
tial pseudo-laminar stage, and transition is triggered once the local production of turbulence en-
ergy sufficiently exceeds the local dissipation. For natural convection in a cavity, the turbulence
is often very weak (or is a kind of turbulescence according to Hanjalic et al. (1993)). This turbu-
lence tends to be stabilized in the boundary layer along the horizontal wall and in the core region
of the cavity with stable thermal stratification. If such a stabilization deters this turbulescence
from an appropriate further evolution, the amplification of the local production of turbulence en-
ergy represented in a two-equation model will either be slowed down or stopped and, conse-
quently, the predicted transition onset is delayed or no transition can even be produced at all.
The buoyant production term in the k-equation is often very small, but the role played by this
term in the pseudo-laminar stage may be significant in the amplification of turbulence energy,
see Peng and Davidson (1997d). This term is often negative with stable thermal stratification
and is comparable to or larger than the shear production term in the outer region away from the
wall. It thus tends to absorb turbulence energy from the boundary layer and destroy the sustain-
ing of turbulence there. In view of the prediction of transition onset, an analysis of the behaviour
of the LRN k-@ model is given below.

For buoyant flows, the equations for k and @ in the LRN model are rewritten in the following
forms

ko ok o 9
§+Mjgj=TUTj+G—Ckfkk(0+gj|:(V o, or :| (357)
and

w O] ou, d v, Jdw

54_ J ax k ( a)lfl if 8 +C G] w2w2 +7j|:(v O'w gj:|+Ew (358)
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If the G term is modelled with the standard gradient diffusion hypothesis, SGDH (i.e. Equation
(3.12)), or the generalize gradient diffusion hypothesis, GGDH (cf. Ince and Launder, 1989), this
term can be written in a general form

Ju BT] (3.59)

G= gjﬁl/tj,T’:V[F(w,a—x,a—x
J J

where F is a function of @, and the gradients of mean velocities and temperature.

For an incompressible, two-dimensional natural convection boundary layer flow along a ver-
tical heated wall, in analogy to Wilcox's analyses (Wilcox, 1994), the net production per unit
dissipation term for k and w, N; and N, can be written as, respectively,

2
N, = ulu (a"/a") L (3.60)
. fi o w’
2
N [Cm fl(av;ax) ve. w_Fz }_1 3.61)
w?2

To ensure transition occurring from laminar to turbulence, kK must be amplified earlier than @. It
is necessary to have N; > N, > 0. Consequently, as R, — 0, this requires

2
( ! _cwlflJ(av/aJCj J{ ! —Cﬂj£2>o (3.62)
c. fi Con @ ofi Con )@

For forced convection boundary layer flows, F' = 0. Equation (3.62) is satisfied as expressed in
(3.41) by both LRN k-® models.

For natural convection boundary layer flows, the condition in (3.41) is no longer sufficient
because the heat flux vector contributes to the net productions. It was argued that the model
constant ¢, imposes insignificant effects on predictions, and this constant can be set to zero
(Peng and Davidson, 1997d). The amplification of k in the boundary layer, as transition occurs,
depends on both the normalized production due to shear, N, = Cn[(v/dx)/ co]2 with Cyi = cyfu
[cifi, and the normalized production due to buoyancy, Ny, = CyiF/ i

Two uncertain points consequently arise. First, the addition of the buoyancy term in the k-
equation could not ensure that k is amplified before @, particularly as F < 0 with stable thermal
stratification where dT/dy > 0. Second, because the buoyancy term interferes with the net pro-
duction of turbulence kinetic energy, Ny, it cannot guarantee that k starts to grow at the critical
Ra number where the secondary instability occurs, e.g., Ra., = 2 X 10°* for 2D cavity flows as
given by DNS (Paolucci and Chenoweth, 1989). This is essential to accurately predict the loca-
tion of transition onset.

According to Henkes (1990), the quantities H, AT = (T, =T, and ur = (gﬁATH)”2 are ap-
propriate scalings for y, T and v, respectively. Here, H is the height of the vertical wall, 7}, is the
temperature on the wall surface and 7. is a reference temperature (e.g. the surface temperature
on the cold wall, T, for a cavity flow). Further, a similarity variable, {, is defined as
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N

ur
- 3.63
¢ (4v2Hyj * (3.63)

Note that x is the direction normal to the vertical wall, and y is the streamwise direction along

the wall. Using this similarity variable and the above scalings, v and T are written in terms of &,
giving

v=u,V({) (3.64)
T = ATO) (3.65)

By means of the asymptotic solution of @, @ o< 1/x” as x — 0, @ can be expressed as

5 \1/2
| ur
w_(4Hyj Q) (3.66)

The SGDH approach expressed in Equation (3.12), which gives F = — (gf/o;) (dT/dy), is used to

model the buoyancy term G. Setting ¢, = 0 and using (3.63)-(3.66) in Equations (3.60) and
(3.61) yield, respectively,

Ni= ﬂ[z(&jl/z (ljl/z (%j + [LJ(MH -1 (3.67)
et Pr H Q0 o, o’
_ C,ufucwlfl Ra v y 2 aV/aC ?

A dramatic amplification in k (starts as N, changes its sign to positive) indicates the onset of
transition, whereafter the amplification of @ controls the width of transition. Note that the turbu-
lence energy starts to grow as the first term in (3.67) reaches unity. Somewhere after this point,
the eddy viscosity sharply increases, and the transition from laminar to turbulence occurs. At the
onset position of transition, this suggests

Ra 12 y 12
/II(EJ (E),, +A,=a, (@,>1) (3.69)

where

5 = 2y (awacj A, = Culs (/ﬁ@/aC) (3.70)

¢t Q - o, Q

In Equations (3.69) and (3.70), A, and A, are functions of the similarity variable, {. As the tran-
sition occurs at a location (height) y,- in the natural convection boundary layer along a vertical
wall, the first part on the right-hand side in Equation (3.67) should reach its maximum value, o,
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at a certain location of ¢ from the wall surface. The location of transition onset can then be esti-
mated by solving Equation (3.69) for (y/H),,. This gives

P o, — A ’

r 0 2

=2 g 3.71
Y (Raj( A j ( )

Note that 0 = (Nis + Nip)max 1S the maximum total production of k per unit dissipation term as
transition occurs. Equation (3.71) shows that the height of transition onset along a vertical
heated wall decreases with increasing Rayleigh number. This means that the transition onset
moves toward the leading edge of the wall with increasing Ra. For flows in a square cavity,
Henkes (1990) used Chien's LRN k-€ model (Chien, 1982) to numerically reveal the dependence
of y, on Ra. It was shown that y, tends to be zero as the Rayleigh number was up to 10"
Moreover, Equation (3.71) suggests that an appropriate prediction of y;- depends on the model
behaviour in simulating A4;, A, and @ as the flow approaches the transitional state from laminar.
Usually, A, reaches its maximum value somewhere near the velocity peak across the boundary
layer, whereas A, is normally much smaller than unity owing to a large near-wall @, i.e. | A | <<
1 < ap. The location of the transition onset then relies mainly on the predicted ratio of (a/A,), as
shown in (3.71).

For a laminar natural convection boundary layer flow along a vertical flat plate, A, is a simi-
larity parameter whose streamwise dependence vanishes. Assuming there exists a near-wall
streamwise-independent maximum value for 4, next to the transition regime in the upstream
laminar stage, whereas |/12| is usually much smaller than o4, a condition for the total normal-
ized production, 4, to trigger transition at the desired location (y,/H) is then

Ray,\"
o= (Nis+ Niv) px = (Eﬁ] A, (3.72)

At a certain Rayleigh number and Prandtl number, Equation (3.72) appears to be a necessary
condition for a two-equation LRN model to correctly predict the onset location of the transition
in a natural convection boundary layer flow along a vertical heated/cooled wall.

Extended LRN Modification for Turbulent Buoyant Flows

There is evidence that the aforementioned grid-dependence of the transition onset prediction is
related to the thermal production source. This can be verified in numerical simulations by drop-
ping the buoyancy production term, G, in the k-equation. Indeed, it was found that this exclusion
can rid the model of the grid-dependent behaviour for predicting the transition regime along the
vertical side walls of a cavity, but the convective heat transfer is largely overpredicted in com-
parison with experiments. Moreover, the turbulence energy in the core region is not sufficiently
damped as desired. This implies that a simple exclusion of G is not preferable.

The shear production is an important origin of inducing transition in the boundary layer along
the vertical wall. On the other hand, the thermal production in the outer region of the boundary
layer (and in the core region of the cavity) may also either enhance or dampen turbulence owing
to unstable or stable thermal stratification. With stable thermal stratification, if turbulence in the
outer region of the boundary layer and in the core regions is over-dampened (through G), the
amplification of the shear production in the near-wall region of the boundary layer becomes
slower by diffusion of turbulence energy to compensate for the stabilization in the neighboring
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outer region. This in turn will delay the transition onset. If this energy diffusion makes a negative
value of (N, — 1) be maintained for a sufficiently long distance along the vertical wall, turbu-
lence will hardly grow because the laminar boundary layer near the horizontal adiabatic wall will
reinforce the compensation as the flow approaches the cavity corner. The model will eventually
give a laminar solution, returning zero kinetic energy to the whole flow field.

To remove this undesired model behaviour associated with thermal stratification, measures
must be taken to control the performance of the buoyancy source term, G. A practical approach
is to use a damping function that is able to appropriately deter this term from absorbing too
much energy powered by the near-wall shear production. Furthermore, the method of using a
damping function for G is supported by an analysis of asymptotic behaviour near the vertical
wall: using the SGDH approach, Equation (3.12), gives rise to an incorrect asymptotic behaviour
for the modelled G. As discussed previously, the exact buoyancy source term is proportional to
x° near a vertical wall, whereas the modelled G term has a relation of G « x> for the modified
model and of G o< x* for Wilcox’s model. Note that the GGDH approach renders also incorrect
asymptotic behaviour near a vertical wall.

Since the SGDH has the greatest popularity in practical applications for its simplicity, this
approach is employed for the modified model, and a damping function, f,, has been devised,
which meets f, o< 1/x as x — 0. Note that the use of a damping function will render incorrect as-
ymptotic behaviour for G near a horizontal wall, but this is of no significant consequence since
the flow along the vertical walls is dominant in an overall fashion for flow induced by
heated/cooled vertical walls. The role played by the damping function is twofold: to render cor-
rect near-wall asymptotic behaviour for G in the boundary layer along the vertical wall; and to
avoid delayed prediction for the transition onset as analyzed above. This function is devised as

fo = oo ) I 2%) 679

The buoyancy source term in the k-equation is thus modelled as

v, oT

— 1
G=—gpfe =56y (3.74)
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Figure 3.4 Predictions for a cavity flow, distributions for v, T and k are plotted at the mid-height
section (y = H/2). The symbol is the experimental data, and the solid line is the prediction.

The modified model was validated by applying it to a turbulent buoyant flow in a confined
rectangular cavity with an aspect ratio of 5 at Ra =5 X 10'°. The undesirable grid-dependent per-
formance of the model has been eliminated, and reasonable predictions are obtained, see Peng
and Davidson (1997d). Figure 3.4 shows a comparison of some results with the experimental
data in this case. These results were computed by the modified model with 160 x 160 meshes,
and were validated to be grid-independent.

It should be pointed out that the above analysis is also expected to be applicable for LRN k-&
models, as well as for the LRN k-@ model, by transforming the &equation into an @-equation.
Using the relation in (3.22), the general form of the LRN &equation in (3.30) (let E;=0 and €=
¢ kw) can be transformed into an LRN @-equation. This gives

0w o o u,
E_H’tj a_xj - ;|:(Cslfl _1)Tij gj_(cﬁg _fg)ﬁgjhj:|_(szf2 _l)ckw2

c 2y X2 2, vk oo 1 10 d| ok
ok c,)ox; | k o, ) ox; \o, o, )kox | "o

Equation (3.75) is nearly identical with Equation (3.31) except for the additional diffusion term.
The damping function, f,, originates from the k-equation, and the other damping functions and
model constants in this equation are the same as those in the general LRN &-equation (3.30).
With respect to the transition regime in a natural convection boundary layer along a vertical
wall, a similar analysis can be performed as described above for the LRN k-@ model. For an in-

compressible boundary layer, the net production per unit dissipation term for @ in (3.75), N, ,

(3.75)

can be written as

e Cufu o 9v/ox 2 CVF
Nw— (ngfg_l)ck |:(Cgl-f1 1)( P )+(C€g fg)w2:| 1 (3.76)
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To ensure that k is amplified earlier than @ so that the laminar-turbulence transition occurs, it
can be similarly argued that it must be Ny > N > 0. This thus suggests, as R, — 0,

[L_(cglfl —lﬂ (av/axf +[L_(MH£>0 (3.77)

fi (cafi—1 w Lo \cafi-1)|@’

Equation (3.77) forms, in theory, a necessary condition for enabling an LRN k-€ model to be
applicable for transition onset predictions. As stated previously, the dissipation term in the k-
equation for a k-€ LRN model concerns the exact definition for €. It is thus not associated with a
damping function, i.e. f; = 1, as is done in most LRN -& models. For isothermal flows (F' =0), a
condition can be derived from Equation (3.77) with which related damping functions should be
satisfied when the LRN model is applied to simulating transition. This gives, as R, — 0,

Cafi<cCufs (3.78)

For an LRN k-£ model that sets f; = 1 and uses damping function f,, referring to the conventional
model constants in Equation (3.21) and the asymptotic analysis of f> o< y?, it is difficult to satisfy
this condition. As Wilcox (1993) pointed out, such models will then have an undesirable effect
on predictions for both the onset of and the width of the transition region.

For natural convection boundary layer flows (F # 0), performing an analysis similar to that as
was carried out with the LRN k-w model, a relation such as that in (3.71) can be obtained to
evaluate the location of the transition onset along a vertical wall. However, the functions, A, and
A», are different from those in (3.70).

3.6 Large Eddy Simulation

Since the 1970s, large eddy simulation has been extensively studied and increasingly applied.
LES is a technique intermediate between DNS and RANS approaches. Unlike in DNS, which
aims at full resolution of various scales in turbulence, only the contribution of the large, en-
ergy-bearing structures to momentum and energy transfer is resolved in LES, and the motion
of the smallest scales is modelled. Since the small scales tend to be more isotropic and univer-
sal in nature, their modelling is expected to be more amenable to success and to require fewer
adjustments when applied to different flows than models in the RANS approach. LES is often
viewed as more conceptually suitable for complex flows, while the RANS approach may fail
to handle, e.g., the flow in which large-scale eddy structures dominate the turbulent transport
and when unsteady processes such as vortex shedding and bistable behaviour prevail and dy-
namic loading is of importance (Rodi, 1996).

3.6.1 Subgrid-Scale Modelling

Different from the RANS approach, where the turbulent fluctuations are ruled out by a time-
averaging process during which all the spectra effects are lost, LES simulates turbulent flows
by accounting for the motion of eddies in sizes down to the inertial subrange (Leonard, 1974),
i.e. for the scales with wavelengths of, typically, about the grid mesh size. In order to define
the large-scale variables that are separated out from the subgrid-scale (SGS) components, the
instantaneous fluid motion is regarded as a superimposed outcome of the large-scale and
small-scale motions. It is thus written as
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P (3.79)

where f is the filtered, resolvable variable, and f”is its SGS component. The filtered variable
is defined as

F&) = [ FE)GE, %) (3.80)

where D is the entire domain and G is a filter function.

Applying the filtering process to Equations (3.1)-(3.3), the resultant equations turn out to
be the governing equations for the evolution of the energy-bearing, large-scale fluid motions,
and they are written as, respectively,

9 _ (3.81)

ou, dww) 1dp 9 . - O, _
A IO B 0 oS- T g BT T8, 3.82
a o, pan Tar, O T TEPT 0 582

J

T ou.T T\ oh, _

or 2D _ 0 [T M g (3.83)
ot o o, | ox; ) o,

The local deformation tensor of the filtered field, Eij , 1s expressed as

— 1 du u,

S =] "4+ 3.84
b2 (o'bcj ox, J (559

Owing to the non-linear terms, the filtered out small-scale eddies feed back their effects on the
large-scale motion through subgrid-scale stresses and heat fluxes in the filtered governing
equations, i.e. 7; and h;. These SGS terms are unknowns that must be modelled, and read, re-
spectively,

T, =uu; —Uu, (3.85)
and
h,=u,T—u,T (3.86)

In adopting the filtering operation, the following important properties have been used (cf.
Germano, 1992)

, f#£0and ff'#0 (3.87)

I
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These properties decompose the resultant SGS terms in a manner different from the time-
averaging turbulent stresses/heat fluxes using the Reynolds decomposition in the RANS ap-
proach. As a result, the SGS stresses can be expanded as (Leonard, 1974)

Ty =W, —u i +uu, +uu +u'u)’ (3.88)
—
A C R.

where the first term is the Leonard stresses, which are resolvable, the second is the cross term
and the third is the SGS Reynolds stresses. Similarly, the SGS heat fluxes can be decomposed
as

h =uT-u, T Ju T (3.89)
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In an analogous way, we denote here the three terms in (3.89), respectively, as the Leonard
heat fluxes, SGS cross heat fluxes and SGS Reynolds heat fluxes. In some earlier SGS mod-
elling work, the Leonard term and the cross term were neglected, see e.g. Lilly (1967) and
Deardorff (1970). The SGS modelling is then simply subjected to the Reynolds terms in
Equations (3.88) and (3.89). Similar to the second-moment closures in the RANS approach,
the transport equations for the Reynolds SGS stresses and heat fluxes can be derived. Models
on this level are the second-moment SGS closures, see Deardorff (1973) and Horiuti (1987).

Some SGS Models

Leonard (1974) showed that the Leonard term in (3.88) is not generally negligible and actually
plays an important role in producing the correct spectral distribution. Moreover, in some a
priori tests of LES models using the DNS data base, it was revealed that the cross term also
makes significant contributions, see e.g. Clark et al. (1979), Bardina et al. (1980) and Piomelli
et al. (1988). Based on the assumption that the interaction between resolved and SGS eddies
takes place between the smallest resolved eddies and the largest SGS ones, i.e., the scale
similarity hypothesis, Bardina et al. (1980) proposed the scale-similarity model. The SGS
component is approximated by the difference between the filtered and twice-filtered corre-
sponding components. The terms in (3.88), C;; and R;;, are thus modelled as follows

C, ~u(u; —u;)+(uw; —u)u;, and R, ~ (w, —u;)(u; —u;) (3.90)
With the scale-similarity model, the SGS stresses are then computed as
T, = A, +Cy(um, -, ) (3.91)

where C; is a model constant. When applied in LES, it was found that this model does not
dissipate sufficient energy; rather, it possesses a desirable performance of describing energy
backscatter from subgrid scales to large scales. To improve the behaviour with insufficient en-
ergy dissipation for this model, the dissipative Smagorinsky model is linearly combined into
the above scale-similarity model. This leads to the so-called mixed model (Bardina et al.,
1980), giving
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1 = 1
T, —gfkk&.j =-2v,8; +L; _ngjiﬁu (3.92)
where
Ly =2, +C,(uu, —um) (3.93)

In the mixed model, the Leonard stresses can be explicitly computed in terms of the filtered
field. The scale-similarity component in (3.92) functions mainly for energy backscatter. Fur-
ther improvement to this model was made by Speziale (1985), who showed that the model
constant Cy must be unity to ensure Galilean invariance, i.e., Cy = 1.

Instead of using the above decomposition, it seems preferable to model 7; as a whole with-
out splitting it into parts. As in the RANS approach, most SGS models employ an eddy vis-
cosity assumption to model the SGS stress tensor. An alignment is assumed between the ani-
sotropic part, 7;;°, of this tensor and the local resolved large-scale strain rate tensor, i.e.,

‘=T, —%rkka,.j =-2v.S. (3.94)

ij ij 1=

Once again, the SGS modelling becomes a task of formulating the SGS eddy viscosity in this
case. By means of dimensional analyses, it is argued that v, o< Vig Le,, Where Vg and Ly, are,
respectively, the SGS turbulent velocity and length scales. The length scale can usually be re-
lated to the filter width, A, since the most active of the unresolved scales are those closest to
the filtering cutoff. Different SGS eddy viscosity based models therefore have their variations
mainly in the prescription of V,,. One of the approaches to determine Vi, is to bridge this
scale to the SGS turbulent kinetic energy, kg, as Vigs o< (ksgs)” 2. An additional transport equa-
tion for kg, is then used to close the equation system. This type of model is the one-equation
SGS model or the SGS kinetic energy model, see e.g. Schumann (1975), Yoshizawa and Ho-
riuti (1985), Wong (1992), Ghosal et al. (1995) and Davidson (1997b). On the basis of the
eddy viscosity/diffusivity concept, other SGS models have also been developed. Detailed re-
views can be found in articles by, e.g., Yoshizawa (1987), Piomelli (1993), and Lesieur and
Meétais (1996).

The most widely used eddy viscosity model is the Smagorinsky model (1963). The origin of
this model is based on a production-dissipation equilibrium hypothesis for the small scales.
The small eddies have shorter time scales than the large, energy-bearing eddies. It is thus as-
sumed that they adjust more rapidly than the large scales to perturbations, and recover to
equilibrium nearly instantaneously (Piomelli and Chasnov, 1995). With this equilibrium as-
sumption, the SGS eddy viscosity in the Smagorinsky model is derived as

v, =CA |5 (3.95)

where the magnitude of the local strain rate tensor is defined by |S|= 1/25_’,.]5,/. ,and Cis a
model constant or, alternatively, C, = JC is the Smagorinsky constant.
It has been argued that the Smagorinsky constant is an ad hoc one, which varies with dif-

ferent flow problems. Lilly (1967) derived C; = 0.17 from homogeneous isotropic turbulence
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with cutoff in the inertial subrange. Deardorff (1970) used C; = 0.094 in his LES for channel
flows. Mason and Callen (1986) found that too large a Cy; would cause the resolved-scale mo-
tions to be damped out, and its critical value depends on the mesh resolution. This constant is
thus regarded as a measure of numerical resolution, and values of Cj less than about 0.2 corre-
spond to inadequate resolution. Some historical reviews of this model can be found in Sma-
gorinsky (1993).

Ferziger (1977) proposed a vorticity model based on the eddy viscosity concept. In this
model, the magnitude of the strain rate tensor in the Smagorinsky model, i.e. (3.95), is re-
placed by that of the rotation tensor,

_ 1 du du
r,j—a(gj g] (3.96)

l

No significant difference in LES has been detected between the vorticity model and the Sma-
gorinsky model, however.

SGS Modelling for Turbulent Buoyant Flows
In nearly all the modelling work on turbulent flows with heat transfer, the turbulent heat-flux
model has often been constructed in analogy to that for the turbulent stresses. As the velocity
correlations find their ways to be approximated in terms of the resolved flow field, the veloc-
ity-temperature correlations are then cast into analogous approximations. Based on this con-
sideration, several SGS models for handling turbulent thermal flows can thus be derived.

If the scale-similarity hypothesis is applied to the SGS heat fluxes in the decomposition
(3.89), one should have

C; ~7j(T—T)+(LTj—7J.)T, and R; ~(ﬁj—ﬁj)(T—T) (3.97)
A scale-similarity model for the SGS heat fluxes may then be written as
h=A,+Cy(wT-T) (3.98)

where the Leonard heat fluxes can be explicitly computed from the resolved field, and Cj is a

model constant. Furthermore, combined with an SGS eddy diffusivity model, a mixed model
can be constructed in a way similar to Equation (3.92), giving

a ., e = ==
hy=—o, 5+ A+ Cy(aT-T) (3.99)
J

where o; is the SGS eddy diffusivity. Using the Galilean group of transformations, as was
done by Speziale (1985), it can be shown that the model constant, C},, must be unity to ensure
Galilean invariance for the model, i.e., C; = 1.

Without making any decomposition on the SGS heat fluxes, 4, the eddy diffusivity concept
is often employed to model this quantity as a whole. Similar to the SGS stresses in the Sma-
gorinsky model, the SGS heat fluxes are modelled in alignment with the local resolved tem-
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perature gradients (cf. Moin et al., 1991; Cabot and Moin, 1993)

or v, dT
ho=—a, 2= Vi O
’ ok, Pr, ox;

(3.100)

where Pr; is the SGS turbulent Prandtl number. A broad range of values has been proposed in
the literature for the SGS Prandtl number, Pr,, ranging from 0.25 to 0.85 (cf. Ciofalo, 1993).
The SGS eddy diffusivity is written as

a, =CA |§|:£A2 1S (3.101)
Pr

t

This formulation, together with the Smagorinsky model for the SGS eddy viscosity in (3.95),
has been widely used in LES for turbulent flows with heat transfer. In this case, the influence
of the buoyancy has been implicitly imposed on the SGS eddy viscosity/diffusivity. For turbu-
lent buoyant flows, one may note that the SGS turbulent production, Py, includes two parts:

the SGS shear production, PSZS , and the SGS buoyancy production, PS;. SGS models directly

accounting for buoyancy effects on the eddy viscosity can be derived from the assumption of
production-dissipation equilibrium for subgrid scales, i.e.,

P, =(P +Pl)=e, (3.102)

58S 58S ) = Csgs
The total SGS turbulent production caused by shear and buoyancy reads
P, =-1,S;+gph (3.103)

The SGS dissipation is the viscous dissipation rate for the SGS kinetic energy. With a dimen-
sional argument, one has

v, =CPaA%e VP (3.104)

Depending on how the SGS stresses and heat fluxes in (3.103) are represented in an eddy vis-
cosity/diffusivity based model, one can derive different formulations for the SGS eddy vis-
cosity from the equilibrium assumption in (3.102). In general, this can be written as

1/3

v, =CPAP (=1, +¢,Bn)) (3.105)

Eidson (1985) proposed an SGS buoyancy model where the approximations in (3.94) and
(3.100) were used. Inserting (3.94) and (3.100) into Equation (3.105) and solving the equation
for v;, one then readily gets

_ 12
_ or
—cxlgp 8B s 3.106
vr [l | P}" ax ZJJ ( )

! J
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The SGS eddy diffusivity in the Eidson model is given by

12 _ 1/2
or C — aT
[lSl zgf: o 52j] :ﬁ&@sf—%gé%] (3.107)

i ' i

This SGS buoyancy model makes the eddy viscosity/diffusivity enhanced for flows with un-
stable thermal stratification. In large eddy simulations for Rayleigh-Bénard convection flows,
Eidson proposed using C = 0.0441 and Pr, = 0.4. Further, v; and ¢, have to be constrained to

be zero when |S |° < (%%52 j) to avoid giving rise to no-real solutions. Other SGS models
LR

for handling turbulent buoyant flows were also developed by, e.g., Schumann (1991), Wong
and Lilly (1994) and Canuto et al. (1997).

Note that in both the Smagorinsky model and the Eidson buoyancy model the SGS eddy
viscosity and diffusivity are constrained to hold non-negative values. The behaviour of energy
transfer inherent in the model is thus always directed from resolved large scales to subgrid
scales, without any backscatter. These models are therefore regarded as being absolutely dis-
sipative.

Cabot (1992) used the Smagorinsky model and the Eidson buoyancy model as base models
in constructing corresponding dynamic SGS models and applied them to buoyancy-driven
channel flows. The simulation showed that the dynamic Eidson model generally gave better
results than the dynamic Smagorinsky model, but may entail locally no-real solutions. To pre-
serve the buoyancy-related term in the SGS eddy viscosity/diffusivity formulation and to

overcome the problem associated with no-real solutions occurring when |S |* < (gﬁ IS, j)

modified SGS model has been proposed (Peng and Davidson, 1997e, 1998a).
The modified model is essentially a combination of the Smagorinsky model and the Eidson
model. The eddy viscosity is rewritten in a general form as

v,=CAN (3.108)

t

where N denotes the reciprocal of SGS time scaling, 1/7,, and takes different forms for the
Smagorinsky model and the Eidson buoyancy model, represented here by N, and N, , re-

spectively, see (3.95) and (3.106). The proposed combined model is then constructed as

v,=CAN, = _op e cp L ISP - gﬁaT (3.109)
N o Pr, ox,

s

and, similarly, the SGS eddy diffusivity is expressed as

a =CAN =S L 5P —ﬁa—T(SQj (3.110)
Pr.|S| Pr, ox,

t

It is interesting to note that the modified model allows negative values for v, (and o) as

IS|° < (fif ng 0, ) only if the total viscosity (V; +V) is positive, to avoid causing numerical in-
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stability in computations. This modified model is thus capable of accounting for some energy
backscatter for buoyant flows with positive and significant thermal stratification. For isother-
mal turbulent flows, this model becomes identical to the conventional Smagorinsky model.
The modified model thus works for both isothermal and non-isothermal turbulent flows.

3.6.2 Dynamic SGS Approach

In deriving the above models from the SGS eddy viscosity/diffusivity hypothesis, it may be
noted that several drawbacks exist in these models. These include: a) the model constant is ad
hoc for different flows; b) the SGS viscosity/diffusivity does not vanish for laminar flows; c)
the model does not have correct near-wall asymptotic behaviour; d) the Smagorinsky model
and the Eidson buoyancy model are absolutely dissipative: they cannot represent any energy
backscatter that is important in LES for, e.g., transitional flows. To remedy these and other
problems (cf. Moin et al., 1991), Germano et al. (1991) developed a dynamic procedure by
which the model coefficient is dynamically computed as a function of time and space, elimi-
nating the above problems.

The basic principle of the dynamic procedure is to use flow properties at the smallest re-
solved scales to formulate the model coefficients on the subgrid-scale level by assuming scale
similarity. The dynamic procedure relies on a large eddy simulation of an SGS base model,
such as the Smagorinsky model, on the grid filtering level. The computed result is then fil-

tered again by a test filter that has a width, A, larger than the width of the grid filter, A, e.g.

A=2A. The test filtering operation is performed to obtain the flow characteristics of the
smallest resolved scales. If such a double filtering process is applied to the Navier-Stokes
equations, the resultant stress tensor on the test filtering level is

—

Y, =i,

12

‘ (3.111)

J

<

[
<

<

Similarly, for the energy equation, the heat fluxes on the test filtering level are written as

—_—~

H.=ujT—

J

NN

(3.112)

=R

The stress tensor and the heat fluxes on the test filtering level are modelled in analogy to their
counterparts on the grid filtering level. Using the SGS eddy viscosity based models, similar to
Equations (3.94) and (3.100), one can write

~ - )=

Y, =205, +=Y,5,, V,=CAN (3.113)

and

Hj:—&rﬂ, & =CXN (3.114)
ox

In Equations (3.113) and (3.114), it should be noted that the model coefficients, C and C,,
have been regarded as being independent of, and thus extracted from, the filtering operation
on the assumption that these coefficients are very slowly varying functions of space (cf. Moin
and Jimenéz, 1993). The Germano identities (Germano et al., 1991) suggest
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Note that L, = ﬁ—bzt,b:tj and E; = L_tjf —517_: can be explicitly computed form the resolved
large-scale variables. Substituting (3.94) and (3.113) into (3.115) yields

L, —%50.% =-2CM,;, M,=RXy, - A&7, (3.117)
where
Y,=NS,, n,=NS, (3.118)

Similarly, inserting (3.100) and (3.114) into Equation (3.116) gives

E =-CQ,, Q,=~X¢,-A¢, (3.119)
where
~ T _aT
=N E =N 3.120
i ij 5’ ij ( )

It may be noted that (3.117) represents an equation system with five independent entries for
one unknown C; (3.119) gives three independent equations for the coefficient C,. They are

thus overdetermined. Germano et al. (1991) proposed contracting (3.117) with §,.j to obtain C.

Moin et al. (1991) used an analogous contraction with % for (3.119) to determine C,. The re-

sultant coefficient, however, is found to be ill-conditioned because the denominator in the ex-
pression for the coefficient could vanish or become small enough to induce numerical insta-
bility. Instead, Lilly (1992) suggested applying least-squares analyses to minimize the differ-
ence between the modelled and exact stresses. This approach is equivalent to contracting
(3.117) and (3.119) with M;; and Q;, respectively, giving

| LM,
C= _EM v (3.121)
and
E.O.
C =- JQ/ (3.122)
0,0,
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This approach, in contrast to Germano et al.’s contraction, has the merit of having the de-
nominators in (3.121) and (3.122) be positive definitely, and thus holds the possibility of re-
turning locally well-behaved model coefficients. The dynamic approach can in the same man-
ner be applied to other SGS models, e.g., the mixed model, see Zang et al. (1993).

Incorporated into the dynamic procedure, the SGS model renders correct asymptotic behav-
iour near solid boundaries and returns zero SGS eddy viscosity/diffusivity for laminar flows,
as it should. Moreover, the model coefficients can be positive or negative. A negative coeffi-
cient entails a locally negative SGS eddy viscosity/diffusivity, which implies an energy
backscatter from subgrid scales to resolved large scales. This is a desirable feature for an SGS
model.

Nonetheless, significant problems also arise when using the above dynamic model. First,
the model in (3.121) and (3.122) may still be ill-conditioned with a frequently small enough
denominator (compared with the numerator), e.g. for channel flows, to make locally deter-
mined model coefficient ill-behaved (Cabot and Moin, 1993). It was found that, once the
model coefficient becomes locally negative, its auto-correlation time becomes so large that it
remains negative for an excessively long period during which a divergence of the total energy
can be triggered (Ghosal et al., 1995). Moreover, the scale-invariance assumption for the
model coefficient is not mathematically self-consistent since this assumption wipes out the
time and spatially dependent features from a filtering operation. A priori tests revealed that the
model coefficient actually varies strongly in space and contains a significant fraction of nega-
tive values (cf. Piomelli and Liu, 1995).

Several remedies have been developed to treat these deficiencies. Germano et al. (1991)
proposed using the assumption in which coefficient C is a function only of time and the inho-
mogeneous direction. The numerator and the denominator are then averaged over the homo-
geneous direction. This suggests

1 <L.M_ >
=—— V" (3.123)
2<M;M; >
and
<EQ, >
C __<EQ9~> (3.124)
<Q,0,>

where < - > denotes a spatial averaging over the homogeneous direction. Temporal averaging
(Akselvoll and Moin, 1993) and local space-averaging over the test filter cell (Zang et al.,
1993) were also used in computations. Moreover, a so-called clipping method has often been
used to avoid numerical instability attributed to negative eddy viscosity. This method con-
strains the total viscosity to be non-negative and thus allows a small amount of energy
backscatter.

Other alternative dynamic formulations for C and C; have also been developed. Moin and
Jimenéz (1993) proposed using two coefficients for 7; and Y, respectively, and determining
them by means of the least-square formulation, as proposed by Lilly (1992). To remove the
mathematical inconsistency associated with the scale-invariance assumption for the model co-
efficient, Ghosal et al. (1995) used a global variational approach to account for the spatial
variation of C in the filtering process. This consequently leads to an integral equation for C
that can be iteratively solved at a relatively high computational cost. Piomelli and Liu (1995)
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proposed a localized dynamic model in which C is retained within the test filtering operation
and is approximated by its value from the previous time step. Meneveau et al. (1996) devel-
oped an approach in which the error associated with the Germano identity is minimized along
particle trajectories rather than over directions of statistically homogeneity. Meneveau and
Lund (1996) examined several approaches to account for scale-dependent coefficients associ-
ated with the dynamic procedure through a priori tests for isotropic turbulence. No entirely
satisfactory option was suggested in their studies. Other versions of dynamic models have also
been developed to allow a self-consistent determination of the model coefficient, see e.g. Liu
et al. (1994) and Davidson (1997b).

SGS Turbulent Prandtl Number, Pr,

When using the Eidson buoyancy model or the modified buoyancy model in the dynamic pro-
cedure, the SGS turbulent Prandtl number, Pr; = C/C,;, needs to be determined in computa-
tions. Moin et al. (1991) estimated Pr; in a homogeneous shear flow using the DNS data.
Equations (3.123) and (3.124) were used with spatial average over the entire domain, and Pr;
depends solely on time. They found that Pr, tends to reach relatively constant values after a
long period of time, which approximately fall in a range of Pr, = 0.4 — 0.6. In LES for
Rayleigh-Bénard convection flows conducted by Eidson (1985) where the dynamic procedure
was not used, the SGS turbulent Prandtl number was optimized as Pr; = 0.4. Cabot (1992)
used this standard constant value in the dynamic Eidson buoyancy model for simulating
buoyancy-driven channel flows. It was found that the resultant prediction is better than those
given by the dynamic Smagorinsky model and by the dynamic buoyancy model in which Pr; is
locally computed with an iterative Newton’s method. Furthermore, it was found that an itera-
tive determination of Pr; doubles the computational cost in the SGS model and occasionally
entails non-real or multiple solutions when using the Eidson buoyancy model (Cabot, 1992;
Wong and Lilly, 1994).

To avoid using a computationally costly iterative scheme for determining Pr;, Peng and
Davidson (1997e) proposed using an approximated approach. It has been argued that the
model coefficients are fairly slowly varying functions of time because of the temporal filtering
introduced implicitly by the spatial filtering (Piomelli and Liu, 1995). The SGS Prandtl num-
ber, Pr;, at the present time step can then be approximately estimated with the ratio between C
and C; at the previous time step. This suggests

(n—1)
C
Pr'=|— 3.125
(€] 3.125)

t

Using both a constant Pr; (= 0.4), and the approximation in (3.125), Peng and Davidson
(1997e, 1998a) compared several SGS models for a Rayleigh-Bénard thermal convection flow
at Ra = 3.8 x 10° with Pr = 1.0. Figure 3.5 shows some results from this prediction using the
dynamic modified buoyancy model. The results have been normalized using the temperature
difference of AT between the top and the bottom wall surfaces and the velocity scale

U, = +/gBATH , where H is the height of the fluid layer. The symbol < - > in Figure 3.5 de-

notes the averaging over time and the homogeneous directions, i.e., the longitudinal (x) and
the spanwise (z) directions. The two specifications for Pr, entail little difference in the result.
The dynamic Smagorinsky model and buoyancy model were also used in the comparison, see
Peng and Davidson (1998a). The predictions given by all these models were very similar for
this thermal convection flow.
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Figure 3.5 Predictions with the dynamic modified buoyancy model for the Rayleigh-Bénard
thermal convection at Ra = 3.8 x 10 (Pr=1.0).

Note that model coefficients C and C; may vary with different grid resolutions for the same
flow, since they contain information extrapolated from the smallest resolved scales whose
cutoff depends on the test filter and is thus related to the mesh size. On the other hand, in LES
for several different buoyant flows considered in this work, it was noticed that the value of the
statistically averaged SGS Prandtl number, Pr; = C/C,, appears to be relatively stable, although
C and C,; vary with different grid resolutions and flows. Usually, Pr; has a value between 0.3-
0.6, except in near-wall regions where Pr; may rise to 0.8-1.0.

Other buoyancy-induced flows considered in this work include the flow in a confined rec-
tangular cavity with an aspect ratio of 5 and the flow created between two differentially
heated, infinite vertical walls. For the buoyant cavity flow at a moderate Rayleigh number, e.g.
Ra =5 x 10", as described in Section 3.5.3, boundary layers are triggered along the heated
and cooled vertical side walls, undergoing subsequently laminar, transitional and fully devel-
oped turbulent stages. It was found that the dynamic model, based on either the Smagorinsky
model or the modified buoyancy model, fails to reasonably capture the flow structure (Peng
and Davidson, 1998b). It has been argued that the prediction for the transition onset in the
boundary layer relies strongly on the account of energy backscatter taken by the SGS model

58



used. The Smagorinsky model is absolutely dissipative. It thus cannot represent any energy
backscatter. When applied to buoyant cavity flows characterized by weak turbulence and
transitional phenomenon, the Smagorinsky model dampens the turbulence in the large scales
and tends to give the solution some laminar-like features, see Peng and Davidson (1998b).
Unlike the two-equation models in the RANS approach, the Smagorinsky model will never
produce a pure laminar solution for the flow, since, as stated previously, this model returns
unrealistic SGS eddy viscosities for laminar flows.

With a dynamic model, the representation of energy backscatter is associated with the grid
resolution used in LES, since the filter width is specified with the mesh size. A coarse grid
resolution will increase the amount of energy backscatter simulated by the model. A correct
estimation of energy backscatter (its magnitude and its active location) is an essential ingredi-
ent for a dynamic model to predict low-Reynolds/Rayleigh-number transitional flows. For the
buoyant cavity flow mentioned above, there exists a certain difficulty in appropriately ac-
counting at the same time for both the thin boundary layer flow along the vertical walls and
the remainder of this flow. Because of the difficulty in the grid resolution required for an ap-
propriate representation of energy backscatter as well as the limitation inherent in the dynamic
model itself, the magnitude of energy backscatter may be incorrectly simulated in the bound-
ary layer along the vertical walls. For example, the clipping approach employed to constrain
the total viscosity for numerical stability may lead to an under-estimated prediction of energy
backscatter. An insufficient grid resolution, on the other hand, will result in an over-
estimation, which will consequently reinforce the large-scale turbulent diffusion, giving an
over-predicted thickness of the boundary layer, whereas the streamwise velocities are under-
estimated overall, see Peng and Davidson (1998b).

Since the grid resolution substantially affects the representation of energy occurrence be-
tween large scales and subgrid scales by an SGS model, a refined grid is desired in LES for
flows with a low turbulence level and physical energy backscatter features. Using a fine grid
with the Smagorinsky model may decrease the inaccuracy in energy forward scatter repre-
sented by the model. On the other hand, a fine grid will decrease the load of energy backscat-
ter carried by a dynamic model. In this case, most energy backscatter can be left to occur in
resolved-scale motions.

For handling buoyant cavity flows at moderate Rayleigh numbers, further studies to inves-
tigate the flow structure and dynamic behaviour of the SGS model are desirable to improve
the prediction.

For the flow created between two differentially heated, infinite vertical walls, i.e. an infi-
nite cavity, at Ra = 5.4 x 10° with Pr = 0.71, a comparison was also made between different
SGS models (Peng and Davidson, 1998b). Owing to the flow configuration, the fully devel-
oped mean flow is essentially of a one-dimensional type along the vertical direction without
thermal stratification. The dynamic model, based on either the Smagorinsky model or the
modified buoyancy model, produces improved or similar predictions as compared with the
Smagorinsky model. Slight improvements can be found in the predictions for, e.g., the mean
streamwise velocity and some turbulent quantities including the spanwise fluctuations and the
vertical heat fluxes, see Peng and Davidson (1998b). Owing to the statistically non-stratified
flow feature, the variation between the statistically averaged forms of the dynamic Smagorin-
sky model and the dynamic modified buoyancy model lies only in the correlation of non-linear
terms with respect to time averaging. This variation was verified to be of no significant conse-
quence in the prediction for this flow. The results given by both dynamic models are thus very
similar, and only a slight improvement was observed when using the dynamic modified buoy-
ancy model, see Peng and Davidson (1998b).
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Chapter 4

Simulation Methodology

To realize a numerical simulation for turbulent flow and heat transfer, three aspects must gen-
erally be well accounted for. These include a well-behaved turbulence model, mathematically
well-posed numerical methods and physically well-consistent boundary conditions. Chapter 3
presented and discussed the modelling of turbulent flow and heat transfer. All the models are
constructed with a set of non-linear differential equations, which must be solved by using nu-
merical methods together with specific boundary conditions for different flow problems.

Solution efficiency and accuracy are closely related to numerical methods. Boundary
specification, in addition, is a necessary auxiliary condition to solve the governing equations
for a flow problem, which ensures that the solution exists and is unique. It should neither be
overprescribed nor underprescribed, see Fletcher (1991). Moreover, solution accuracy can also
be significantly influenced by boundary specifications. Inappropriately specified boundary
conditions may lead to a solution deviating largely from reality. In principle, boundary condi-
tions should be specified to be identical with those in practice. In this chapter, numerical
methods and boundary conditions used in this work are summarized.

4.1 Numerical Methods

When using two-equation turbulence models, all the computations in this work were per-
formed on the basis of a computer code, CALC-BFC. This code uses collocated grid and
Cartesian velocity components and is applicable for three-dimensional complex geometries.
Details on various numerical aspects employed in this code have been documented by David-
son and Farhanieh (1992). In large eddy simulations, collocated grid has also been employed,
but the solution procedure is somewhat different, which is described in Section 4.1.2.

4.1.1 Numerical Procedure in RANS Approach

The computation is based on the solution of the partial differential equations governing the
flow and convective heat transfer. The finite volume method is used to transform these non-
linear differential equations into algebraic relations which link the values of the independent
variables at the nodes of the computational grid. For convenience, the governing equations are
re-cast in a general form

¢ , Ipug) _ 9 [r 9_¢J+S¢ 4.1)

o ox.  ox | ’ox,
where ¢ is the independent variable to be solved, I'y is its corresponding effective viscos-
ity/diffusivity and $? is a source term, which may include the buoyancy term, the production
and dissipation terms, the cross diffusion term and so on.

Discrete Representation

The discretization of Equation (4.1) is made over a collocated grid, as shown in Figure 4.1.
All the variables are stored in the centre of the control volume. Integrating Equation (4.1) over
the control volume, &V, and a time interval Az, one gets
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where ¢ % is the value at the previous time step, U is the convecting velocity vector, A is the
face-area vector and m is the number of the faces of the hexahedron control volume. To com-
pute the convective and diffusive fluxes through the volume faces, some formulations must be
used to estimate the face values of independent variables from those at the neighbouring grid
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Figure 4.1 A control volume in a collocated grid.

Several numerical schemes for discretizing the convective term have been incorporated
into the code. These include a hybrid upwind/central differencing scheme, a second-order
bounded van Leer scheme (van Leer, 1974) and a third-order QUICK scheme (Leonard, 1979)
that has been employed in this work. The diffusion term and source terms are discretized us-
ing the second-order central differencing scheme (Patankar, 1980). By means of these numeri-
cal schemes, the non-linear differential equations are then cast into a set of algebraic relations
for all the grid nodes. At an arbitrary node P in the numerical domain, the discrete algebraic
equation can be written as

appp, = Zanb¢z1b +b (4.3)

where nb denotes neighbouring nodes of P, and

oV
a,=Y a,+ ”A—t — 8,08V (4.4)
b= sﬁav#’Ait"ngo 4.5)

Note that the source term, S¢, has been linearlized as S? = Sc¢ + SP¢¢P, and Sp¢ < 0 to increase
the diagonal dominance for the resultant coefficient matrix (Patankar, 1980). For the momen-
tum equations, the pressure gradient term is combined in the source term, b.
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There is no obvious equation for obtaining pressure. Instead, the pressure field is indirectly
specified through the continuity equation. When a correct pressure field is used for the mo-
mentum equations, the resulting velocity field then satisfies the continuity equation. As all the
independent variables are stored at the centre of the control volumes, using the second-order
central differencing scheme, the pressure gradient term is then discretized with the pressure
difference between two alternate nodes, instead of between two adjacent ones. The same dis-
cretized form also arises for the velocity gradient in the continuity equation. Consequently,
such numerical representations may lead to an unrealistic, so-called checkerboard pattern, see
Patankar (1980). One remedy is to use a staggered grid where the velocity components are lo-
cated on the faces of the control volume, and the scalar quantities, such as the pressure and
temperature, are arranged at the centre.

Nonetheless, with a collocated grid, the above problem can be overcome by using a Rhie-
Chow interpolation approach (Rhie and Chow, 1984). Since, in the discretized momentum
equations, this causes problems in representing the pressure gradient by the pressure differ-
ence between two alternate nodes, this representation should then be smoothed out to avoid
un-physical oscillations in the pressure and velocity fields. This can be achieved by reformu-
lating the linear interpolation for the velocities on the volume faces. The face velocity is first
interpolated linearly using its two neighbouring node velocities from which the troublesome,
pressure-related term is subtracted. Referring to Figure 4.1, to obtain, e.g., the face velocity,
u,, in the x-direction, the node velocities used in the linear interpolation are written as

up'=u, —II,(6p), u,'=u, —II,(p) (4.6)

where IT(dp) = —(dp/dx)(6Vla,) denotes the subtracted, pressure gradient-related term at nodes
P and W. Let f, be the interpolation factor, f, = |Ww|/|WP)| (see Figure 4.1). The subtraction in
these node velocities is then compensated for by adding a similar term to the face velocity.
This suggests

u, = fup +(= fou, =[f.I1,(8p)+ (- f)II,,(8p)]+11,(8p) (4.7)

where IT,,(dp) is the compensated pressure-related term for the volume face w. In this term,
the pressure gradient can be represented by the pressure difference between two adjacent
nodes on each side of the face considered, i.e., P and W. The possible non-physical oscillation
can thus be ruled out.

Solution Algorithms

The velocity-pressure coupling is handled by the SIMPLEC algorithm (van Doormaal and
Raithby, 1984), which is a variant of the SIMPLE method (Patankar, 1980). The standing
point in the SIMPLE type algorithms is to use an equation for pressure correction that origi-
nates from the continuity equation. A pressure field is first guessed to solve the momentum
equations. The pressure correction and velocity correction are then calculated and used to im-
prove the solutions of the pressure and velocity fields, respectively. This procedure is itera-
tively implemented until a converged solution is obtained.

In general, the number of the nodes defined over the computational domain is the same as
the number of the discrete algebraic equations to be solved. These equations are cast into a
nominally linear form, although the original differential equations are non-linear and inter-
linked. The non-linear terms call for an iterative solution procedure and preserve the real in-
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trinsic coupling existing between the governing equations. The solver used for the transport
equations is the Tri-diagonal Matrix Algorithm (TDMA) (Patankar, 1980), and the pressure
correction equation is solved with the Strongly Implicit Procedure (SIP) (Stone, 1968).

Under-relaxation is employed to promote solution stability and convergent rate. Using a
factor, 7, which is less than unity, the under-relaxation is then carried out as

Lo =Ya,, +b+(1-y)L¢ 4.8
. Y a.9, ( 7)y¢ (4.8)

where ¢, is the value from the previous iteration.

For steady-state flow problems in this work, a false time step, Atz., has also sometimes
been used for under-relaxation. The under-relaxation in this case is expressed as

(aP + P vap =Y a,9., +b+( A”fv ]¢Z 4.9)

At false false

The smaller the false time step taken, the stronger is the resulting under-relaxation.

Estimation of Grid-Independent Solution

Numerical accuracy in computations is an important aspect, particularly for validations of tur-
bulence modelling. The assessment of numerical accuracy is closely related to the numerical
methods used. These include the order of accuracy of the truncation error introduced by indi-
vidual terms in the governing equations, the grid resolution and the terminating criteria for it-
erative calculations. Furthermore, eventually, the solution must be validated by using reliable
experimental and/or DNS data. It is well known that higher order numerical schemes are more
accurate than lower order schemes, e.g. than the first-order upwind scheme that introduces in-
herent artificial viscosity (diffusivity). The turbulent transport is typically switched off above a
component turbulent grid Reynolds (Péclet) number of 2 when using the hybrid scheme, or
about 6 for the exponential scheme, because the physical diffusion is replaced by the inherent
artificial numerical diffusion (cf. Leonard and Drummond, 1995). The simulation thus be-
comes insensitive to the turbulence model. High order schemes are preferable to enhance nu-
merical accuracy. By its nature, the artificial numerical diffusion is grid-dependent. The grid
therefore needs to be refined until the artificial diffusion is negligible with respect to physical
diffusion.

To validate the performance of a turbulence model, grid-independent (or grid-convergent)
solutions are required to ensure that the result is not contaminated by numerical diffusion.
This is often done through successively refining the grid. If the result is successively con-
verged to a solution with respect to refining grids, the solution is regarded as being grid-
independent. The assessment of grid-independence can be analyzed with error estimations
based on methods such as the Richardson extrapolation (namely, the 4 extrapolation). The
discrete solution, F, is assumed to have a series representation, in the grid spacing £, as

F=F +ah+a,h’ +ah’+- (4.10)

where F, is the exact solution to the problem considered. If F; and F, are two separate discrete
solutions on two grids with spacing 4, (fine grid) and A, (coarse grid), for a second-order ap-
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proximation (a; = 0), one has

Jhoh

Fe=h r? =1

@.11)

where higher order terms have been dropped, and r is the grid refinement ratio, r = hy/h,.
Equation (4.11) can be generalized to pth-order approximations (Roache, 1994) as

JF-F

rf —1

F ~F, (4.12)

The correction part (the last term) in (4.11) or (4.12) appears to be an error estimator of the
fine grid solution, F;. Expressing this estimator as a relative factor for F; gives

F, — F
E~—° , and e = 2—!
r’ -1 K

(4.13)

Instead of using E, e has been commonly employed as an error estimator in grid refinement
studies, which is also used in this work, see e.g. Peng et al. (1997c). This error estimator
should be assessed together with some indication that shows that the calculations are asymp-
totically reaching a unique solution with refining grids. On the basis of the Richardson ex-
trapolation, Roache (1994) proposed the use of a Grid Convergence Index (GCI) for uniform
reporting of grid-convergent solutions.

4.1.2 Numerical Procedure in LES

In large eddy simulations of this work, the finite volume method was used to discretize the
governing equations on a collocated grid. A detailed description of the numerical methods
used in the LES code has been given by Davidson (1996, 1997a). The main features of the
solution procedure are briefly summarized here.

The central differencing scheme is used to discretize the convection, diffusion, stresses and
buoyancy source terms, and the second-order Crank-Nicholson scheme is employed for tem-
poral discretization. An implicit, fractional-step method (cf. Kim and Moin, 1985) is imple-
mented to solve the equation system. The filtered Navier-Stokes equations (3.82) are discre-
tized as

n+l n
I/_li”+1 = I/_li" +AtLu (Duc”’ Ducn+1)_laAtgﬁ _l(l_a)Ataﬁ (414)
’ ' P o, p ox,

l L

where L, (D ", D ”“) represents the discrete terms on the right-hand side in (3.82) except

for the pressure gradient term, D, . denotes the central differencing approximation applied to
these terms, and o = 0.5 for the second-order Crank-Nicholson scheme. In a similar way, the
filtered energy equation (3.83) is represented in its discrete form by

T =T"+ML,(D,", D,,"") (4.15)

First, Equation (4.14) is solved with a symmetric Gauss-Seidel method. To reinforce the ve-
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locity-pressure coupling, an approach similar to the Rhie-Chow interpolation in the RANS
computation is employed. An intermediate velocity field, i, , is computed by subtracting the

implicit part of the pressure gradient from Equation (4.14), giving
—* —n+l

l n+l
. =, +—06Ataﬁ
P ox,

L

(4.16)

Note that the intermediate velocities do not satisfy the continuity equation. A divergence is

made for (4.16), where the velocity field at the volume faces, ﬁif”” , 1s required to satisfy con-

tinuity, i.e., 807,.}’“ / dx; = 0. This divergence leads to a Poisson equation for the pressure, giv-

ing

2—n+l o

oI _ P My 4.17)
ox,ox, oAt o,

In equation (4.17), the velocity divergence is calculated using the intermediate velocities at the
control volume faces obtained through linear interpolation from neighbouring intermediate
nodal velocities. This equation is solved with a multigrid method (Emvin, 1997). The resul-
tant pressure field, together with the intermediate velocities, is then employed to obtain the
velocity field which satisfies the continuity. This is done by using

n+l
w,""=u,’ —laAt P (4.18)
ox
P f

i

The resulting face velocities, ﬁif””
The energy equation (4.15) is then solved. The SGS eddy viscosity and diffusivity are subse-
quently computed.

Starting with an initial field, which in this work is either computed by two-equation turbu-
lence models or generated with small, random perturbations in near-wall regions, the above
solution procedure is iteratively carried out within one time step until convergence is reached,
and then runs to the next time step. Both the pointwise and linewise symmetric Gauss-Seidel
relaxation methods have been applied for solving the momentum equations and the energy
equation. For the cavity flow problem (Peng and Davidson, 1998b), it was found that the CFL
number usually needs to be restricted below 0.5 to retain numerical stability. Parallelization
computations were carried out for this flow in a 64-processor ORIGIN 2000 Sillicon Graphics
machine. The LES code was paralleled by Zacharov (Zacharov, European Supercomputer
Team, Sillicon Graphics Inc., private communication, 1997). Four processors were used. It
was assessed that the computation is faster than using a single processor by a factor of about 3
for simulating the confined cavity flow considered.

The box filter is used to distinguish the small scales from the turbulent motions. The width

of the grid filter, A, is the same as the mesh size, and the width of the test filter is twice A, i.e.,
A=2A, which is the optimal choice proposed by Germano et al. (1991) in LES for turbulent
channel flows. The filtering operation at the test level is carried out by integrating the vari-
ables over the test cell with the linear variation assumption and the trapezoidal rule (Zang et

, are then used to compute the mass fluxes at cell faces.
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al., 1993). Referring to Figure 4.2, the test filtering for ¢ at node (i, j, k) is then a volume-
averaging process, yielding

1,—

§(¢i+1/2,j+1/2,k+1/2 + ¢i—l/2,j+l/2,k+l/2 + ¢f+1/2,j—l/2,k+1/2 + ¢i—1/2,j—1/2,k+1/2

a‘,j,k =
(4.19)

+ ¢i+1/2,j+1/2,k—1/2 + ¢i—1/2,j+1/2,k—1/2 + ¢i+1/2,j—1/2,k—1/2 + ¢i—1/2,j—1/2,k—1/2)

The value at the location at which it is not defined is computed by using linear interpolation.

(-1,, k) ),k (i+1, j, k)

A

O mmm e P - -

Figure 4.2 Sketch for the filtering volumes at grid (volume enclosed by solid line) and test
(enclosed by dashed line) levels.

4.2 Boundary Conditions

Several different boundaries were encountered in this work, including inflow, outflow, solid
wall and homogeneous boundaries. Each has its own specifications, which are summarized in
this section.

Inflow Conditions. These have been used in the computation of ventilation flows with two-
equation turbulence models. The velocities, temperature and turbulent transport quantities
over the inlet boundary are usually prescribed, either from the experimental data or from pre-
calculated distributions for, e.g., channel flows. In cases of lack of information on the turbu-
lent quantities, they have been specified as

3 . 32 kin
k= (Tu,u, V. e, =k g, a),.”:Cw£ (4.20)

in in~"in
in L
in

where Tu;, is the turbulent intensity at inlet, C,, is a constant (C,, = 1/0.09) and L;, is specified
as a fraction of the inlet size.

Outflow Conditions. Neumann conditions have often been set for the flow variables at outlet
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boundaries, giving

9% _
~=0 4.21)

where n is the direction normal to the outflow boundary. Moreover, to ensure a global mass

conservation and enhance the convergence procedure, the velocity is required to satisfy the
following condition along the boundaries of the computation domain €2,

$pU-nd2=0 (4.22)
0

Wall Conditions. In the computation with high-Reynolds-number two-equation turbulence
models, wall functions have been employed. The wall function for the velocity is obtained
from the log-law of the wall. It reads

u, N
u= ?ln(Ey ) (4.23)

The wall functions for the turbulent transport quantities can be derived by assuming a local
equilibrium for turbulence in the logarithmic layer of boundary layer flows. For the k-€ model,
these are

k=—7= e=—+ (4.24)

The wall function for the temperature is an empirical expression, giving

T -T A
T = pMTCp( n ) _ Pl’[(i-l‘PJ (4.26)
q u

T

where

prY\" P
P= 9.24[(4] - 1] {1 + 0.28exp[—0.007(—rﬂ} (4.27)
Pr, Pr,

These wall functions are applicable for a range of y* € (30, 100) near the wall. For adiabatic
walls, Equation (4.21) is employed for the temperature. Constant temperatures are set for iso-
thermal walls according to experiments.
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When using the LRN two-equation models, as well as in large eddy simulations, no-slip
condition is used for the velocities on the wall boundaries, where the turbulent kinetic energy
is set to zero. With the LRN k-€ model, several alternatives have been used to specify the dis-
sipation rate, &, at the wall. For example, its first derivative can be assumed to be zero in the
direction normal to the wall (Lam and Bremhorst, 1981). A relation can also be derived from
the balance of k in the viscous sublayer, where the viscous diffusion is equal to the dissipation
of k. At the closest near-wall node, € is then given by (cf. Patel et al., 1984)

2’k
ayz

E=V

(4.28)

Using a Taylor series expansion for k' with respect to y, Equation (4.28) can be alternatively
approximated for € at the wall as (cf. To and Humphrey, 1986)

12 \2
€, =v(a];y ) (4.29)

With the k- model, the balance between the viscous diffusion and the dissipation terms in
the turbulent transport equations holds true in the viscous sublayer (cf. Wilcox, 1988). This
yields an exact asymptotic solution for @, as y — 0, giving

0=—"7 (4.30)

When using the LRN k-@ model or its high-Re version with the so-called extended-to-wall
method, (4.29) has been used at the nodes closest to the wall boundaries.

The boundary condition for the pressure in LES was specified with the Neumann condition
at the wall. This gives dp/dy=0.

Homogeneous Conditions. Flows that are statistically homogeneous in one or more directions
are often encountered in large eddy simulations. This has been handled with periodic bound-
ary conditions in the homogeneous direction by specifying

Po=0y1s Oy=9, 4.31)

where 0 and N denote the computational boundary nodes in the homogeneous direction, with
nodes 1 and (N—1) as their interior neighbouring nodes, respectively. Special attention should
be paid to the computational domain, which must be large enough to contain all unstable
modes when using homogeneous conditions.

Besides the above boundaries, symmetric boundaries were also employed when solving
flow problems that are symmetric around one or more boundaries. In this case, only a half or
one-fourth of the computational domain is used in order to save computational resources. The
no-flux condition, which has the same mathematical description as (4.21), was used for such
boundaries.
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Chapter 5

Summary

Numerical simulation of indoor air flow and heat transfer has been increasingly used in re-
search and development of building technology. CFD techniques are able, and have been
widely used, to investigate various aspects of the indoor environment and building energy
consumption. Along with experimental measurements, numerical simulation has proven to be
an efficient tool in diagnosing system problems, optimizing system designs and improving
system efficiency. To promote and widen its applications in building ventilation, numerical
simulation must be further developed and improved towards a higher degree of reliability and
accuracy. On the one hand, the development should follow the general, mainstream research
in fluid mechanics and numerical methods; on the other hand, extensive studies are required
to improve various aspects of CFD specifically adapted to building ventilation. The work in
this thesis has contributed to combined research concerned with the assessment of ventilation
flow systems and modelling of turbulent flow and heat transfer.

Carrying out numerical simulations for a flow system is always based on some specific
purposes, such as revealing flow and heat transfer characteristics, diagnosing system prob-
lems, optimizing system designs and so on. Such specific purposes must be founded on a se-
ries of assessments for the system considered. Consequently, some measures are required to
serve as scales or indices to evaluate system performance. In building ventilation, various
scales have been invented to assess ventilation efficiency and effectiveness, to quantify indoor
air quality and energy consumption and to indicate the indoor thermal environment. The first
part of this work is devoted to the development of new scales and methods for assessing the
performance of ventilation flow systems. In developing these scales and methods, numerical
simulation has been considered as an applicable and efficient tool for exploring them in venti-
lation practice.

The analysis of ventilation scales depends on the transport phenomena created by a venti-
lation system. When CFD is used to quantify these scales, characteristics of indoor air motion
and heat transfer must be appropriately incorporated, which involves a number of different
disciplines. Main aspects include the modelling of turbulent flow and heat transfer, numerical
methods and boundary conditions.

Ventilation flow has, locally or globally, its own specific flow features, such as being char-
acterized by low-Reynolds-number turbulence, by mixing and recirculating air motions, by
thermal stratification and so on. These must be well accounted for in a turbulence model. The
second part of this work was directed toward the modelling of turbulent flow and heat trans-
fer, which was considered mainly on the basis of two-equation models and on SGS models in
large eddy simulation.

Some fundamental turbulent flows were used to calibrate and improve the models. These
fundamental flows were carefully chosen such that they, alone or together, form the main flow
features in a typical ventilated space. In other words, they have been taken from complex flow
phenomena that may co-exist in one typical ventilation flow to form relatively simple flow
configurations for which the influence of various physical processes can be isolated and stud-
ied in detail. Fundamental flow configurations used in this work include three types.

® Channel flow. This type is one of the most fundamental flows in calibrating turbulence
models. It has been used to validate the model performance in predicting near-wall tur-
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bulence features.

® Backward-facing step flow. This type of flow is characterized by recirculation, separa-
tion and reattachment. With a large expansion ratio, it is equivalent to the flow created
in rooms by a mixing ventilation system.

® Buoyancy-driven flows in a cavity and a channel. Such flows are often characterized by
coherent structures and heat transfer. The buoyant flow in a confined cavity at a moder-
ate Rayleigh number is thermally stratified, with transitional boundary layers along the
vertical walls. These flows are typical flow phenomena arising in many non-isothermal
ventilation applications, e.g., when the building enclosures adjacent to the outdoors are
not adiabatic, when heat sources exist and when cooled or warmed air is supplied. A
typical example is the flow triggered in rooms by a displacement ventilation system.

Since the modelling background is set up with some fundamental turbulent flows that com-
monly exist in engineering applications, it by no means constrains the potential relevance of
the model to other engineering flows. On the other hand, it would be an exaggeration to claim
that one study could improve all aspects of modelling complex ventilation flows. The path
toward achieving reliable modelling of indoor air flows has no end. One of the highest expec-
tations for this work is that it will draw more attention from ventilation researchers and engi-
neers to studies of ventilation flow mechanisms, about which our understanding at present is
far less than what is needed to model flow behaviours in a ventilated room.

5.1 Conclusions

This work includes two main aspects: performance assessment of ventilation flow systems
and modelling and simulation of turbulent flow and heat transfer. In the first part, both com-
partmental and numerical methods were used in combination with imaginary tracer experi-
ments to develop some new scales and to analyze ventilation flow systems. Stochastic theory
was used to quantify some ventilation scales. In the second part, both two-equation turbulence
modelling and subgrid-scale modelling were presented and discussed. From this work, the
following conclusions are derived.

e Local/zonal scales should be used to achieve a reliable assessment of ventilation per-
formance rather than placing reliance only on global indices. Several new local ventila-
tion scales have been proposed. These include the local purging effectiveness and the
expected contaminant dispersion index, which are derived from analyses of air age
variation, as well as the local specific contaminant-accumulating index based on a new
concept termed the local age-integrated exposure to contaminants. These local scales
can be explored with numerical simulation coupled with the equation for local mean air
age and/or with their own transport equations as derived in this work. Some of these
scales can also be measured in experiments. Their use has been demonstrated. These
scales are expected to be useful in practice for diagnosing system problems and improv-
ing systems designs.

¢ One of the important concepts for quantifying ventilation efficiency, i.e., the purging
flow rate, was comprehensively discussed and re-formulated. This concept has been
embodied in several different mathematical expressions that are more accessible and
have a better-posed physical basis than in the original definition. Some ventilation indi-
ces related to this concept were defined and reviewed.

¢ On the basis of stochastic analyses for a flow system divided into multiple compart-
ments, a Markov chain model was proposed for determining transfer probabilities that
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are needed to calculate the purging flow rate. This model is the general and extended
formulation of a previous deterministic method and is able to give additional informa-
tion that the deterministic method does not include.

A comparison of different types of two-equation turbulence models was made, which
showed that the k-7 model and k-® model used in their high-Re forms exhibit relatively
poor performance for simulating typical ventilation flows. Modifications were made on
the basis of Wilcox’s high-Re k-® model. These modifications were shown to be rea-
sonable and able to improve predictions over the original model for ventilation flows.
An LRN variant of the k-@ model was developed and extended to buoyancy-driven tur-
bulent flows where thermal stratification and the transitional boundary layer regime ex-
ist. The proposed LRN k-@ model produces reasonable simulations for both isothermal
and buoyancy-driven turbulent flows.

For buoyant flows at moderate Rayleigh numbers, the transition regime in the boundary
layer along a vertical wall was analyzed using the modified LRN k-@ model. It was
found that the buoyant production for the turbulent kinetic energy plays a significant
role in the prediction of transition onset. For cavity flow with stable thermal stratifica-
tion, this term is a destruction term for turbulence, which tends to absorb energy from
the near-wall boundary layer and consequently delay the transition onset. The model be-
haviour required for handling such flows was discussed and analyzed. The grid-
dependence of the model can be eliminated as desired by damping the buoyant source
term for k. The result can be used to adjust LRN formulation for two-equation turbu-
lence models.

Large eddy simulation was performed for turbulent convection flows with heat transfer.
A modified buoyancy SGS model was proposed to explicitly accommodate the effect of
buoyancy on the SGS eddy viscosity/diffusivity and to avoid giving rise to no-real solu-
tions entailed by the original buoyancy model. The proposed SGS model is able to ac-
count for some energy backscatter for flows with thermal stratification. For isothermal
flows, this modified model returns to the Smagorinsky model. The dynamic modified
buoyancy model has shown reasonable performance.

In general, the dynamic SGS model performs better than the Smagorinsky model in
which the dynamic procedure is not incorporated. Nonetheless, it was found that the dy-
namic SGS model gives unreasonable performance for predicting the buoyant cavity
flow at a moderate Rayleigh number. The failure and success of using SGS models are
discussed in dealing with such type of flows. The main problem is argued to lie in the
difficulties of the grid resolution, as well as in the constraint inherent in the SGS model
itself, for which the energy backscatter cannot be correctly represented. Further studies
are desired to improve the dynamic behaviour of SGS models in LES for the thermally
stratified buoyant flows in which transitional boundary layers exist.

5.2 Summary of Papers

This work was initiated as a program combining studies on computational fluid dynamics and
its applications and development in building ventilation. It was originally considered that nu-
merical simulation would be efficient to explore the effect of local, detailed air/contaminant
convection and diffusion on ventilation efficiency. Such an exploration, however, appeared to
be purely a task of applying CFD to ventilation flow simulations. On the other hand, it was
noticed that the concept of ventilation efficiency used until now has been too general when
employed to quantify various aspects of ventilation performance. The study then became in-
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stead an attempt to re-examine and develop some new concepts and approaches for the as-
sessment of ventilation flow systems. This led to the work included in Paper 1 and Paper 2.

With respect to turbulence modelling, this was aimed at developing turbulence models that
should be applicable on an intermediate level for predicting ventilation flows and should be
acceptable in practice for ventilation engineers and researchers. More advanced models were
previously used in ventilation engineering, such as second-moment closures and LES, but
their applications have seemingly not yet found wide acceptance for various reasons. The
study thus started with two-equation models of different types that have been used frequently
in recent studies. A comparison was first made in Paper 3 of the k-€ model, the k- model and
the k-7 model. No significant dismerits against the conventional k-€ model were found in the
comparison. However, the preference was to develop an LRN model for predicting ventilation
flows characterized by low-Reynolds-number turbulence and local laminar and transitional
flow phenomena.

It was noticed that an LRN k-£ model usually fails to retain turbulent transport in numerical
simulations for flows created by a displacement ventilation system, returning an unrealistic
laminar solution. Wilcox’s LRN k-@ model was originally developed for simulating transi-
tional boundary layer flows. This model as a whole gave relatively poor performance for typi-
cal recirculating ventilation flows, but its model feature was expected to be exploitable.
Modifications were thus first made on the high-Re k- model (report not included here). On
the basis of this modified form, an LRN k- model was developed in Paper 4, where the es-
tablishment of the modified high-Re version can be traced. In Paper 5, the behaviour of the
modified LRN model was further analyzed for natural convection flows with heat transfer.

Motivated by the sophisticated flow structure and the undesirable performance of some
LRN two-equation models for turbulent buoyant cavity flows at moderate Rayleigh numbers,
the development of more advanced modelling approach was considered. LES was thus im-
plemented, where an SGS buoyancy model was proposed. The performance of several SGS
models was investigated for handling turbulent thermal convection flows. These were reported
in Paper 6 and Paper 7.

To close this summary, a short review is given of each paper in the sections below.

Paper 1

The assessment of ventilation performance is discussed in view of room air distribution and
passive contaminant dispersion. Different concepts and methods for analyzing and assessing
ventilation flow systems are addressed and re-examined. Several new ventilation scales are
developed. The local purging effectiveness is able to distinguish the individual contribution of
each supply opening to an arbitrary region in a ventilated space with multiple inlets. The ex-
pected contaminant dispersion index can be used to forecast passive contaminant transport
emitted from specific locations with unknown source strengths. These two scales can be de-
rived from air age variation analysis that obeys a transport equation. The local specific con-
taminant-accumulating index is proposed to evaluate the tolerance of a set-up ventilation flow
to specific contaminant sources. This index is based on a new concept termed the local age-
integrated exposure whose governing equation can be derived from the mass transport equa-
tion. These new scales are expected to be applicable for diagnosing problems and improving
designs of ventilation systems.

Paper 2
This paper deals with the description and determination of the purging flow rate, U,,, for venti-
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lation systems or equivalent flow systems. The regional purging flow rate and its use are dis-
cussed and proposed. By using the mass conservation principle in conjunction with the com-
partmental method, U), is embodied in various mathematical expressions in terms of the trans-

fer probability. Some U,-related parameters are described. Using stochastic analyses, a

Markov chain model is proposed for determining the transfer probability and exploring sev-
eral useful ventilation indices that are not included in the previous deterministic method. Nu-
merical simulation is used to calculate the interchanging flow rates between various regions.
The application of these proposals is demonstrated, and they appear to be promising for ana-
lyzing and assessing ventilation performance.

Paper 3

To investigate the performance of turbulence models in numerical simulations of recirculating
ventilation flows, comparisons are made of three types of two-equation models, including the
k-€, the k- and the k-7 models. A modified high-Re k-@ model is introduced and imple-
mented. All the models are applied with the wall-function method. When using the k-@
models, an extended-to-wall method is also employed without using wall functions as a
bridge. Two typical recirculating flows are calculated: the separated flow behind a backward-
facing step with a large expansion ratio relevant to room ventilation and the wall-jet-induced
flow in a two-dimensional ventilation enclosure. The predictions are compared with experi-
mental data. The performance of the models is discussed. It is found that the original k-@
model and the k-7 model give relatively poor predictions for the flows considered. The modi-
fied k- model is shown to be an attractive alternative to the k-€ model.

Paper 4

A modified form of Wilcox's low-Reynolds-number (LRN) k- model (Wilcox, 1994) is pro-
posed for predicting turbulent recirculating flows. The turbulent diffusion for the specific dis-
sipation rate, m, is modelled with two parts: a second-order diffusion term and a first-order
cross-diffusion term. The model constants are re-evaluated. The damping functions are re-
devised, which reproduces correct near-wall asymptotic behaviours and retains the mechanism
of describing transition as in the original model. The new model is applied to channel flow,
backward-facing step flow with a large expansion ratio (H/h = 6) and recirculating flow in a
ventilation enclosure. The predictions are considerably improved. The effects of the modifi-
cation are discussed.

Paper 5

The computation of turbulent buoyant convection flows with thermal stratification was consid-
ered using the low-Reynolds-number (LRN) k-@ model. When applying the k-€ model to buoy-
ancy-driven cavity flows induced by differentially heated side walls, a commonly encountered
problem at moderate Rayleigh numbers (Ra = 10" ~ 10'%) is that the model is not able to give
grid-independent predictions for the transition regime along the vertical walls. It was found that
the buoyant source term for the turbulence energy, Gy, exhibits strong grid sensitivity, as this
term is modelled with the Standard Gradient Diffusion Hypothesis (SGDH). In the pseudo-
laminar stage, this term tends to absorb energy from the near-wall boundary layer and delays the
transition onset. By introducing a damping function into this term, the grid dependence of the
model is eliminated, and the modelled Gy renders correct asymptotic behaviour near the vertical
walls. The mechanism held in the k-@ model for predicting natural transition onset is analyzed.
The present approach is simple for practical use and able to give reasonable predictions.
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Paper 6

Dynamic subgrid-scale (SGS) modelling in LES for engineering flows usually uses Smagorin-
sky's eddy viscosity model as a basis, where the subgrid scaling is constructed by assuming a lo-
cal equilibrium between the subgrid turbulent shear production and dissipation rate. For turbu-
lent thermal convection flows, an additional buoyancy production term can also be included in
this argument. The buoyancy effect on the SGS eddy viscosity is then explicitly accommodated
in the base model. This in turn forms the so-called buoyancy model. A problem usually encoun-
tered with this model is that it may entail non-real solutions for thermal convection flows. To
remedy this problem, a new SGS time scaling is proposed to re-formulate the eddy viscosity. In
the modified model, the magnitude of the local strain rate tensor is employed to weight the SGS
time scaling in the original buoyancy model. This approach makes the base model capable of ac-
counting for energy backscatter from subgrid scales to resolved large scales for thermally strati-
fied flows. The modified model was applied to the Rayleigh-Bénard convection flow and com-
pared with the scalar model and the buoyancy model. The results are found to be in good agree-
ment with both DNS and experimental data.

Paper 7

Large eddy simulation was performed for turbulent natural convection flows induced by two dif-
ferentially heated vertical walls. These include the flow in a confined cavity with an aspect ratio
of 5 at a Rayleigh number, Ra, of about 5 x 10' and the flow between two differentially heated,
infinite vertical walls at Ra = 5.4 x10° (an infinite cavity). The SGS models employed were the
conventional Smagorinsky model and the dynamic model. A recently proposed SGS buoyancy
model was also used in comparison. The performance of SGS models in handling these flows
was investigated. It was found that the dynamic model fails to reasonably capture the flow
structure and gives poor predictions when solving the buoyant cavity flow where the boundary
layer subsequently exhibits laminar, transitional and fully developed turbulent characteristics
along the vertical side walls. The dynamic model over-estimated the thickness of the boundary
layer with under-predicted streamwise velocities. The unreasonable model behaviour was ana-
lyzed. Arguments were imposed on the prediction of energy backscatter from subgrid to resolved
large scales, which is regarded as being an essential ingredient in accounting for transitional and
low-Reynolds/Rayleigh-number turbulent flows. For the flow created in the infinite cavity, the
SGS models generally showed acceptable performance. Variations can, however, also be ob-
served between the LES prediction and DNS data for some turbulent quantities. The success and
failure of applying LES to these flows were discussed.
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