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Large-eddy simulation of turbulent Rayleigh–Bénard (RB) convection has been performed for a 6:1:6
open-ended domain for Rayleigh numbers ranging from 6.3 × 105 to 109 at Prandtl number of Pr =
0.71. The scaling analysis based on the LES data shows that the heat transfer follows a single relation of
Nu = 0.162Ra0.286, which is consistent with the scaling law for the hard turbulence regime reported in
several earlier experimental and DNS studies. The present LES also supports some earlier experimental
and DNS findings that most of characteristic parameters can be scaled reasonably well with Ra
number in the considered Ra number range using a single relation. Nonetheless, it is found that the
scaling of several quantities shows a sensible offset from a single relation, and could be fitted better
with the separate scaling relations for the soft and hard convective turbulence transitioned at about
Ra = 4 × 107. It has been argued that the transition, reflected in the scaling relation, may be attributed
to the increasing ‘containing effect’ of the plume leaving the horizontal wall on the plume approaching
the wall at large Ra numbers in the near-wall region.

1. Introduction

Despite extensive theoretical, experimental and numerical studies (for detailed reviews see e.g.
[1–3]), Rayleigh–Bénard (RB) problem, widely viewed as the paradigm of thermal convec-
tion, is still surrounded with controversies. The flow and thermal dynamics in RB convection
depends on the geometrical setup, the temperature difference between the two horizontal
boundaries and the fluid property, which have usually been cast into two dimensionless pa-
rameters, the Rayleigh number, Ra = gβ�T0 H 3/(να), and the Prandtl number, Pr = ν/α,
where �T0 = (Th − Tc) and H are respectively the temperature difference and the distance
between the hot (Th) and cold (Tc) horizontal surfaces, ν is the molecular kinematic viscosity
and α the thermal diffusivity of the fluid.

The dependence of the dynamic and thermal quantities on the Ra and Pr numbers is of
particular interest in RB convection, of which the Ra scaling of heat transfer (in terms of
Nusselt number, Nu) has been perhaps most studied. A number of experiments, conducted
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usually in a closed cylindrical or rectangular small-aspect-ratio containers reported the clas-
sical Nu ∝ Ra1/3 scaling. For example, Deardorff and Willis [4] detected in their experiment
the Ra1/3 scaling for Ra number up to 107. Later, Sano et al. [5], Wu and Libchaber [6]
and others from the Chicago group, in experiments with different aspect ratios, found that
the heat flux obeys the classic Ra1/3 scaling law only at lower Ra numbers. This scaling
regime was termed soft convective turbulence. With increasing Ra number to Ra = 4 × 107

and higher, the soft turbulence evolves into the so-called hard convective turbulence regime,
characterized by different plume structure, temperature probability distribution in the core
region (nearly exponential instead of Gaussian) and following a Ra2/7 scaling law for heat
transfer. In contrast to this, Chu and Goldstein [7] reported a consistent scaling of their
measured Nu with Ra0.278, which is very close to the ‘hard’ regime scaling, for the whole
range of 2.76 × 105 ≤ Ra ≤ 1.05 × 108 covering basically the soft regime and a little
beyond it.

Numerical simulations, with all its potential, are expected to clarify the experimental differ-
ences and bring more insight into the physics of the various convective regimes. A comprehen-
sive analysis by Kerr [8] using well-resolved direct numerical simulations (DNS) for Ra num-
bers 5×105 ≤ Ra ≤ 2×107 (which also provides an overview of several earlier DNS) showed
that the heat transfer follows a single regime with hard-convection scaling, Nu ∝ Ra0.28, for
the whole Ra number range considered. Later, Kerr and Herring [9] conducted DNS on Prandtl
number dependence in the range of 0.07 ≤ Pr ≤ 7.0 for 104 ≤ Ra ≤ 107. Different scaling
relations were reported at low-Prandtl numbers. Kerr [8] has argued that different regimes
detected in experiments (soft) and in numerical simulations (hard) for the same range of Ra
numbers can originate from differences in the setup geometry (e.g. the shape and aspect ratio)
and boundary conditions, among which the most influential are the rigid side walls in the ex-
perimental research as compared with the open boundaries in numerical simulations. Because
the proper DNS of RB convection with side walls are confronted with insurmountable grid
resolution problems for higher Ra numbers, it is sometimes termed ‘numerical RB convection’
to distinguish it from experimental situations in enclosures.

As demonstrated by Kerr, DNS can provide full information on all flow properties up to the
finest dissipative scale. Because of extreme requirements on computer resources, however,
DNS is limited to relatively low Ra numbers, currently aiming at Ra ≈ 108. For higher Ra
numbers, large-eddy simulation (LES) has been considered as the only viable option. LES can
provide full insight into the large-scale convective and turbulence structures at much higher Ra
numbers. However, for capturing accurately the near-wall turbulence structure, heat transfer
and shear, the near-wall grid-resolution restriction similar to those for DNS has limited at
present the possibility to extend the Ra number range to only one or two decades. Several
LES studies have been reported in the literature, but not all can be regarded as reliable for
establishing or verifying the Ra-scaling laws. In an early LES for 4:1:4 domain, in which the
Smagorinsky subgrid-scale (SGS) model was extended to account for buoyancy effects, Eidson
[10] obtained a scaling relation of Nu ∼ Ra0.28 for Ra ≤ 2.5 × 106, but his simulations for
higher Ra numbers, especially for Ra = 108, showed to be erroneous, most probably because of
insufficient grid resolution. For Ra ≤ 108, Kimmel and Domaradzki [11] examined their SGS
estimation model in LES for the RB convection, where the heat transfer was over estimated
as compared with DNS and experimental data.

To reach higher Ra numbers with numerical simulations, Kenjereš and Hanjalić [12, 13]
applied the transient RANS (T-RANS) approach for Ra numbers up to 2 × 1016. These sim-
ulations reproduced well the Nu–Ra scaling of Kerr’s DNS, as well as several experimental
data sets for much higher Ra numbers, showing after Ra ≈ 1014 also a trend toward the
asymptotic regime of Kraichnan Nu → Ra1/2 for Ra → ∞. However, because of inevitable
empirical RANS model used for subscale motions, the T-RANS method cannot be trusted for
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establishing or verifying any physical and scaling laws, but can serve for computations of high
Ra number complex thermal convection of industrial relevance.

We present here LES of RB convection for Ra numbers in the range of 6.3×105 ≤ Ra ≤ 109,
covering thus both the soft and hard convective turbulence regimes with a sufficient margin
above the transitional Ra number. The main purpose of the work is to revisit some scaling
relations in comparison with previous DNS results but for a broader Ra range. Effort has
also been made to analyze the scaling of some dynamic and thermal properties and their Ra
dependence in the soft and hard Ra number regions.

Because LES does not resolve the complete turbulence spectrum and requires an empirical
model for the unfiltered subgrid-scale motion, its use for establishing scaling laws has been
questioned, especially when wall phenomena are involved. For this reason, in order to provide
credibility into the LES results, we consider first in detail the grid resolution criteria and the
used subgrid-scale model. We move then to present and discuss the results.

2. Simulation methodology

Applying a spatial filtering to the governing equations for incompressible flows leads to ad-
ditional subgrid-scale (SGS) stresses in the momentum equations, and extra SGS heat fluxes
in the thermal energy equation, which must be modeled to close the equation system and
to represent the effect of SGS turbulence on the resolved motion and scalar transport. The
SGS model used in the present simulation is the dynamic Smagorinsky model, where the
model coefficient is determined using the dynamic procedure [14, 15]. A similar procedure
is applied to the computation of the thermal field [16], for which the gradient-diffusion hy-
pothesis is employed to model the SGS heat fluxes. Both model coefficients, Cs for the SGS
stresses and Ct for the SGS heat flux, have thus been determined as functions of time and
space. However, in order to stabilize the numerical procedure, a spatial averaging over the
homogeneous x- and z-directions has been employed in the dynamic procedure. These SGS
model coefficients consequently vary only with time and in the inhomogeneous y-direction.
The grid-filtered governing equations are discretized on a collocated grid using the second-
order central differencing finite-volume method. The solution is advanced in time with the
second-order Crank–Nicholson scheme. An implicit, fractional step method is used to solve
the discretized equation system in conjunction with a multigrid pressure Poisson solver. The
initial solution is generated from a coarse-grid solution at the same Ra number, being extrapo-
lated to the refined grid. The time history of flow variables has been probed at some locations
near the wall and in the center of the domain, which may give an indication of the flow- and
thermal-field development with time. After both fields are fully developed (typically, one or
two convective time scale), the statistical analysis is carried out over more than ten time scale,
as will be further demonstrated in the following section. The statistic quantities (denoted by
〈·〉) have been obtained by averaging the solutions in time and over the horizontal x and z
homogeneous directions.

The computations have been carried out for a computational domain with rigid upper and
lower boundaries at fixed temperature and periodic conditions at the open side boundaries.
The aspect ratio of the numerical domain is 6 : 1 : 6 (A = 6), which is the same as in the DNS
by Kerr [8]. In a recent DNS study of RB convection by Hartlep et al. [17, 18], the dependence
of properties on the aspect ratio, A, of the computational domain has been investigated for Ra
numbers up to 107 using periodic boundary conditions in the horizontal directions. Hartlep
et al. have employed aspect ratios up to A = 10 for a set of relatively large Ra numbers in
their DNS. It is shown that for Pr = 0.7 and Ra ≤ 106 the wavelength, λmax, of large-scale
structures holds in general λmax ≤ 5 [17], and that the Nusselt number exhibits insignificant
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dependence on the aspect ratio ranging from A = 5 to A = 10 for Pr = 0.7 at, respectively,
Ra = 106 and Ra = 107 [18]. Apart from their own DNS data in the analysis of λmax as a
function of Ra number, Hartlep et al. [17] have also compiled some existing experimental
data measured in rectangular containers for Ra numbers up to about 3 × 107. At Ra = 106

and above, the experimental data give a constant value of λmax ≈ 6.3, which is however larger
than the numerical result from their DNS (λmax = 5 at Ra = 106). If large scales as such arise
in numerical simulations, it is desired to have A > λmax in order to avoid causing any possible
truncation of large-scale structures.

It is however unclear whether such large scales would perserve at higher Ra numbers
for ‘numerical RB convection’ where periodical conditions are imposed on the end side
boundaries of the domain. According to Hartlep et al. [17], moreover, the large scales are
‘continuations of the structures already present in laminar flows’, and it is not justified whether
the large-scale structures will disappear at high Ra numbers beyond their DNS. In the present
LES computation, we have checked the two-point correlation in the homogeneous horizontal
directions. It is noted that the correlation of resolved large-scale velocity components reduces
from unity to zero over a range generally less than 25% of the horizontal size for a domain
with A = 6. In addition, it should be noted that, if large-scale structures arise with a size
larger than the computational domain, the time-averaging analysis may become troublesome
to converge statistically independent properties. In this case, the turbulence statistics would
shift from a symmetric/anti-symmetric vertical distribution varying with the averaging time.
With the present computations, as will be illustrated below, such problems are not encountered
in the statistical analysis. The computational domain with A = 6 as used in the present LES
work should be justified as being appropriate.

The simulations were performed for Prandtl number Pr = 0.71 at five Rayleigh num-
bers, 6.3 × 105, 1.0 × 107, 4.0 × 107, 1.0 × 108 and 1.0 × 109. A set of relatively coarse
meshes were used in the previous computation, from which the results have shown trends
in Ra-scaling analysis that are generally in line with previous experimental and DNS inves-
tigations [19]. Nevertheless, as shown in table 1, the spatial resolution with these relatively
coarse meshes is questionable at large Rayleigh numbers. Note that a uniform grid has been
used in the homogeneous x- and z-directions, whereas non-uniform mesh spacing is used
in the vertical y-direction with a clustered grid near the top and bottom walls. The param-
eter �yc indicates the vertical mesh spacing in the center of the computational domain and
�yw is the near-wall spacing, both normalized with H . The time step, �t , has been nor-
malized with H and α. The Rayleigh number defined in the computations was varied by
changing α.

Achieving the proper spatial resolution for numerical simulation of turbulent RB convection
has been regarded as the key prerequisite to obtain the trustworthy results. For DNS, the grid
size has in general been regarded as sufficiently fine when it is of the same order as the
Kolmogorov length scale, η = (ν3/ε)1/4, where ε is the dissipation rate of turbulence kinetic
energy, [8, 20, 21]. Specifically, for Pr ≤ 1 Grötzbach [20, 21] used the mesh size by h ≤ πη.

Table 1. Simulation parameters with coarse grid resolutions.

Case Ra Nx = Nz Ny �x = �z �yc �yw �t

CA 6.3 × 105 48 64 0.1250 0.0301 0.0032 8.48 × 10−5

CB 1.0 × 107 48 64 0.1250 0.0301 0.0032 2.13 × 10−5

CC 4.0 × 107 64 80 0.0938 0.0278 0.0021 1.07 × 10−5

CD 1.0 × 108 64 80 0.0938 0.0278 0.0021 0.68 × 10−5

CE 1.0 × 109 64 96 0.0938 0.0263 0.0013 0.21 × 10−5
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Noting that the dimensionless kinetic energy dissipation is scaled with (Nu − 1)Ra, Kerr [8]
has estimated the Kolmogorov length scale as

η/H =
√

Pr/[(Nu − 1)Ra]1/4. (1)

Consequently, the mean spacing, h, of the mesh in a DNS should comply with

h

H
≤ π

√
Pr

[(Nu − 1)Ra]1/4
. (2)

Unlike DNS, LES resolves only the filtered large scales on which the effect of unfiltered
small scales is modeled by a subgrid-scale model. The use of the SGS model makes the
spatial resolution relaxed, tolerating grid-cell size (i.e. filter width) larger than the Kolmogorov
scale. A well-resolved LES should have the filtering cutoff located in the inertial subrange of
the energy spectrum, where the unfiltered scales tend to be more isotropic so that the SGS
turbulence can be assumed in constant spectral equilibrium. This thus suggests

ε ∼ εsgs = νsgs|S̄|2, (3)

where εsgs is the SGS dissipation which represents the energy drain from the resolved to the
SGS turbulence, νsgs is the SGS eddy viscosity and |S̄| is the magnitude of the resolved strain
rate tensor. In the isotropic homogeneous case, one can write approximately

〈|S̄|2〉 = 2
∫ κc

0
κ2 E(κ)dκ, (4)

where κc = π/� is the cutoff wavenumber and � is the filter width proportional to the mesh
size, � = (�x�y�z)1/3. Introducing E(κ) = Ck〈ε〉2/3κ−5/3 into equation (4) gives

〈|S̄|2〉 = 3

2
Ck〈ε〉2/3

( π

�

)4/3
, (5)

where Ck is the Kolmogorov constant Ck = 1.4 − 2.0. Assuming that 〈ε〉 � 〈νsgs〉〈|S̄|2〉 [22],
and using the relation of 〈ε〉H 4/(να2) = (Nu − 1)Ra in equation (5), leads to

�

H
�

(
3

2
Ck

)3/4( 〈νsgs〉
ν

)3/4
π

√
Pr

[(Nu − 1)Ra]1/4
. (6)

Equation (6) can be used to estimate the mean spatial resolution in LES for RB convection.
As compared with the spatial resolution in DNS, equation (2), the LES resolution is further
justified by Rsgs = 〈νsgs〉/ν. For Rsgs < 1, equation (6) gives an estimation comparable with
the spatial resolution for DNS, namely, � ∼ η. In LES, the quantity νsgs represents the intensity
of the unfiltered SGS turbulence, for which Rsgs should be as small as possible to attain a well-
resolved LES, but not necessary to approach a DNS mesh resolution, the missing information
being provided by the SGS model. In practice, a plausible argument is that 〈νsgs〉 should
preferably stay at about the same order as of ν, namely, Rsgs ≤ 10. The mesh size used in
table 1 has been estimated on the basis of such a criterion by taking the upper-bound value
of Rsgs. Nonetheless, it seems that the mesh for higher Ra numbers is not fine enough to
resolve the turbulent heat flux across the fluid layer. Effort has thus been made to further refine
the mesh in this work. In addition, equation (6) implies that the mean SGS eddy viscosity
increases in accordance with 〈νsgs〉 ∝ [(Nu − 1)Ra]1/3 with a certain filtering cutoff in the
inertial subrange.

Apart from equation (6), an alternative way to estimate the spatial resolution in LES is to
let the filtering cutoff width be justified with the Taylor microscale, λ, which for isotropic
turbulence is expressed by λ2 = 15νu2/ε, where u is a velocity scale for large-scale structures
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and can be estimated in terms of the resolved turbulence kinetic energy, K . Using the scaling
for ε, we get

λ

H
=

√
15u∗

[(Nu − 1)Ra]1/2
, (7)

where u∗ = √
K H/α. In LES of isotropic turbulence, the mesh spacing has often been verified

by using a value comparable to λ. We use λ/2 as a reference value in the estimation of the
mesh spacing.

Equations (2), (6) and (7) provide means for estimating the mean mesh size in DNS and
LES for turbulent RB convection. It should be noted that these estimations have been reached
by plausibly assuming isotropic turbulence for unfiltered subgrid scales. They can be used as
indicators for the mean mesh spacing, in particular, for the spatial resolution in the central
region of the fluid layer, where even the resolved turbulence tends to be isotropic [8, 19]. Apart
from these estimations, attention should also be paid to the vertical resolution, particularly
in the near-wall thermal boundary layer, which is characterized by the thermal length scale,
λT � H/Nu [23]. To resolve this layer, the mesh must be clustered in the vicinity of the wall
to account for the large temperature gradient.

In the estimation using equations (2), (6) and (7), we have employed the scaling relations
derived from DNS by Kerr [8]. These are Nu = 0.186 Ra0.276 and λT = 5.9Ra−1/3. In equation
(7), the dimensionless velocity scale u∗ is determined from the resolved turbulence kinetic
energy, Kc. Two velocity scales, uhc and vc, defined respectively from the center of the
horizontal velocity, uh = (u2

rms + w2
rms)

1/2, and of the vertical velocity, vrms, have been used
to estimate K , namely, Kc = (u2

hc + v2
c )/2. The scaling relations obtained from DNS analysis

by Kerr [8] have been employed. These are uhc H/α = 0.074Ra0.52 and vc H/α = 0.25Ra0.46.
For equation (7), these velocity scales indicate

u∗ =
√

K H

α
=

√
0.0027Ra1.04 + 0.0312Ra0.92. (8)

Table 2 summarizes the estimated parameters associated with the grid resolution, which have
been taken as references in generation of a set of refined meshes. Along with these estimated
mean mesh spacings, the estimated Kolmogorov time scale, τk = (ν/ε)1/2, has also been
included in its dimensionless form, τ ∗

k = τkα/H 2 = [(Nu − 1)Ra]−1/2.
Based on the estimated parameters summarized in table 2, the mesh listed in table 1 may

have underresolved the convective structures at large Ra numbers. New computations have thus
been performed for the same range of Ra numbers, using the set of refined meshes shown in
table 3, which have been generated on the basis of the above estimation and in the consideration
of computational effectiveness. Referring to the estimated Kolmogorov time scale in table 2,
the time step has been chosen using the standard CFL criterion with CFL ≤ 1.5 in general,
as done in [8]. For reference, it is noted here that in the LES by Kimmel and Domaradzki

Table 2. Estimated length scales and grid resolutions as references at different Rayleigh numbers.

Ra 6.3 × 105 107 4 × 107 108 109

η/H [equation (1)] 0.0188 0.0076 0.0049 0.0036 0.0017
τ ∗

k 5.0 × 10−4 8.20 × 10−5 3.35 × 10−5 1.85 × 10−5 4.24 × 10−6

h/H [equation (2)] 0.0590 0.0239 0.0153 0.0114 0.0054
Rsgs [in equation (6)] 1.0 2.0 3.0 4.0 5.0
�/H [equation (6)] 0.1084 0.0740 0.0641 0.0592 0.0335
λ/2H [equation (7)] 0.1342 0.0834 0.0667 0.0577 0.0406
λT /H 0.0688 0.0274 0.0173 0.0127 0.0059
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Table 3. Simulation parameters with refined grid resolutions.

Case Ra Nx = Nz Ny �x = �z �yc �yw �t

FA 6.3 × 105 96 64 0.0625 0.0301 0.0032 4.24 × 10−5

FA1 6.3 × 105 72 64 0.0833 0.0301 0.0032 4.24 × 10−5

FA2 6.3 × 105 72 64 0.0833 0.0301 0.0032 2.12 × 10−5

FB 1.0 × 107 96 80 0.0625 0.0278 0.0021 2.13 × 10−6

FC 4.0 × 107 128 96 0.0469 0.0263 0.0013 1.07 × 10−6

FD 1.0 × 108 160 96 0.0375 0.0263 0.0013 0.68 × 10−6

FD1 1.0 × 108 128 80 0.0469 0.0278 0.0021 0.68 × 10−6

FE 1.0 × 109 176 128 0.0341 0.0249 0.0006 0.21 × 10−6

FE1 1.0 × 109 176 128 0.0341 0.0249 0.0006 1.05 × 10−6

[11], a 72 × 129 × 72 mesh has been used for a 6 : 1 : 6 domain at Ra = 108 using their SGS
estimation model. Most recently, Kenjereš and Hanjalić [24] have performed a LES for RB
convection at Ra = 109 on a 4 : 1 : 4 domain meshed with 256 × 128 × 256 cells, where the
buoyancy-extended Smagorinsky model by Eidson [10] was employed with a constant model
coefficient.

3. Results and discussion

We denote a fluctuating quantity of the resolved field as φ′ = φ̄ − 〈φ̄〉 and φrms = 〈φ′2〉1/2.
The overbar, ¯(·), indicates a filtered, resolved variable. To get the time-averaged turbulence
statistics, a sufficiently long time period must be used to converge the time-averaged variables
to statistically independent values. This has often been justified by the convective time scale
[8, 18, 25]. We have used the same method as Kerr [8] in his DNS analysis. The convec-
tive time scale is roughly estimated by tc = 4H/uc, where l = 4H is the distance around a
single roll and uc is the velocity scale taken from the center of the horizontal velocity [8].
Before starting to collect results for the statistic analysis, a time period of about 1–2 convective
time scale is discarded until the resolved flow is fully developed. Figure 1 illustrates a typical
example of the time-averaging history, which has been sampled at the center location of the
domain. It is shown that the time-averaging process starts at about t/tc = 1.2 for the resolved
velocity component ū. The averaged values for ū and (ūū), namely, ūav and (ūū)av, approach
to statistically independent values with an increasing averaging time. For ūav in this example,
it takes about 12t/tc to reach ūav = 〈ū〉 = 0 at this location. The correlation, e.g. (ūū)av, may
reach a statistically independent value within a much shorter period, usually less than 5t/tc. In
practice, the averaging time can be reduced significantly by additional spatial averaging over
the horizontal homogeneous directions. In figure 2, the time-averaging history for the Nusselt
number (see equation (9)) is illustrated for all the computed Rayleigh numbers at the center
point of the domain. For Ra numbers below and at 4 × 107, the computations have been run
for several tens of the convective time scale. At Ra = 108, the simulation has run for about
20t/tc and about 12t/tc for Ra = 109. All these time-averaging periods are much longer than
those used in [8]. The resolved turbulence quantities presented below should be viewed as
being statistically independent values.

We start with a brief analysis of the results sensitivity to the numerical resolution by com-
paring results for grids specified in tables 1 and 3. Note that all results have been normalized
using H , u0 = α/H and �T0. A velocity component is thus expressed in terms of the Péclet
number, Pe = u H/α. At Ra = 6.3 × 105 for vertical profiles, DNS data are available based
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Figure 1. Time history of the resolved velocity component ū (black line), and time-averaging histories for ū, denoted
ūav (blue line), and for (ūū), denoted (ūū)av (red line). Probed at the central point of the domain for Ra = 108.

on a mesh resolution of 200 × 49 × 200 on a 7.92 × 1 × 7.92 domain [26], which have been
included in the plotting where appropriate for comparison.

3.1 Sensitivity of results to numerical resolution

The set of coarse meshes, shown in table 1, has been used in our earlier work [19]. The mesh
resolution was estimated using equation (6) by setting an estimated Rsgs that is generally
derived from the resolution criteria used in LES for forced flows. For example, at Ra = 109,
a value of Rsgs � 10 was set for the resolution in case CE given in Table 1. It seems that for
LES of turbulent thermal convections, this estimation of Rsgs at high Rayleigh numbers may
lead to an insufficient resolution of the energetic thermal structures, of which the characteristic

Figure 2. Time-averaging histories for Nusselt number, Nu, at different Rayleigh numbers. Probed at the central
point of the domain.
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length scale is inversely proportional to Raβ with β > 0. Indeed, the set of coarse meshes has
underestimated the heat transfer [19], as compared with the previous experimental and DNS
scaling relations. Effort has thus been made to investigate the effect of numerical resolution in
terms of the mesh spacing and the time step with some comparisons between the cases given
in Tables 1 and 3.

It is known that the SGS model in LES is closely related to the mesh spacing, for which
the filtering cutoff, i.e. the filter width, has often been chosen as the characteristic length
scale of SGS turbulence. The SGS modeling plays an essential role in representing the
energy drain between the resolved large structure and the unresolved SGS structure. The
more refined the grid, the less turbulence energy is contained in the unfiltered scales. A
subsequent grid refinement will asymptotically drive a LES to DNS as the energy-carrying
structures tend to be fully resolved. It should thus be recognized that the resolved flow
quantities in LES may exhibit a dependence on grid refinement, very small though as the
resolution is asymptotically approaching a DNS mesh. With a good SGS model and appro-
priate LES resolution, however, one can expect that the sum of a resolved flow quantity
and its modeled SGS counterpart may present negligible grid dependence, for which the in-
tensity of the SGS part should decrease while the resolved part may slightly increase with
a grid refinement. Since the dynamic Smagorinsky model is used in the present computa-
tions, which is an eddy-viscosity-based model, the unfiltered SGS part cannot be retrieved
from the modeled SGS contribution. Nevertheless, the turbulent heat flux across the fluid
layer should be a relevant quantity as an indicator in analyzing the effect of grid resolution.
The total turbulent heat flux, 〈v′T ′〉tot, is approximately the sum of the resolved heat flux,
〈v′T ′〉res, and the modeled SGS heat flux, 〈hθ2〉, in the vertical y-direction, namely, 〈v′T ′〉tot =
〈v′T ′〉res + 〈hθ2〉. Along with some other resolved turbulence statistics, the turbulent heat
flux has thus been considered as an indicative variable in the following analysis of resolution
sensitivity.

A comparison is made first for a relatively low Ra number, Ra = 6.3 × 105, for which
simulations have been performed with several meshes. These include a coarse-mesh case
CA in table 1 and three refined-mesh cases FA, FA1 and FA2 in table 3. As seen, for all
cases the resolution in the vertical direction, Ny = 64, has been kept the same, because it is
even finer than the DNS resolution (Ny = 49) in [26]. From case CA to FA, the horizontal
mesh resolution is doubled in both directions and the time step is reduced to a half. Cases
FA1 and FA2 are used to investigate the effect of the time step, which have employed the
same mesh but have doubled the time step in case FA1 compared to in case FA2. Figure
3 presents the resolved turbulence kinetic energy and the rms of temperature fluctuations
in comparison with the DNS data. It is shown that the turbulence quantities have been re-
solved appropriately on the fine meshes, but somewhat underestimated with the coarse-mesh
case CA.

Figure 4 presents the distributions for the resolved turbulent heat flux, 〈v′T ′〉res, and for
the modeled SGS heat flux, 〈hθ2〉. It is clearly demonstrated that the modeled heat flux is
reduced with refined grid, while the resolved part increases marginally. The grid refinement
from case CA to case FA induces only an increase of about 2% in the resolved turbulent heat
flux in the center of the layer, whereas the maximum SGS heat flux has been reduced by about
50%. Moreover, it should be noted that, for cases FA1 and FA2 with the same grid resolution,
different time steps have indeed imposed some effects on the resolved turbulence statistics,
but the modeled SGS counterpart is hardly influenced. More interestingly, with a smaller time
step in case FA2, the resolved heat flux computed on this coarser mesh becomes much closer to
that with the finest mesh (case FA), in spite of the obvious difference in 〈hθ2〉 for the two cases.
This indicates the importance to resolve the evolution of convective, large-scale structures in
time.
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Figure 3. Effect of numerical resolution at Ra = 6.3 × 105. (a) Resolved turbulence kinetic energy, K =(
ū2

rms + v̄2
rms + w̄2

rms

)
/2. (b) Resolved temperature fluctuation.

In figure 5, the total turbulent heat flux, 〈v′T ′〉tot = 〈v′T ′〉res + 〈hθ2〉, is plotted. For cases
CA, FA, FA1 and FA2, the maximum peak value of 〈hθ2〉 (arising at a distance of about 0.08H
from the wall) is, respectively, about 11%, 8%, 8% and 6% of 〈v′T ′〉tot measured at the same
location, and about 8%, 6%, 6% and 4% of the total heat transfer (the total turbulent heat
flux plus the conductive heat transfer, see equation (9)). The grid convergence demonstrated
in the prediction for the total turbulent heat flux suggests that, at Ra = 6.3 × 105, the mesh
resolution in case FA2 with a relevant time step has enabled a prediction of heat transfer that is
grid insensitive. With the coarsest mesh, case CA, the prediction has already been reasonably
accurate in view of the resolved turbulence statistics, for which this case underestimates the
heat transfer by only about 2% as compared with case FA on the finest mesh.

The effect of mesh resolution is further addressed at Ra = 108 in figure 6. As shown in
table 3, two meshes have been used with the same time step in cases FD and FD1, respectively.
The vertical distributions for the total turbulent heat flux and for the modeled SGS heat flux
are compared for these cases in figure 6, where the result computed with the coarse mesh
(Case CD in table 1) has also been included. It is shown that the predicted 〈v′T ′〉tot has



LES of Rayleigh–Bénard convection 11

Figure 4. Effect of numerical resolution at Ra = 6.3 × 105. (a) Resolved turbulent heat flux, 〈v′T ′〉res. (b) Modeled
SGS heat flux, 〈hθ2〉.

converged to almost identical distributions with the two refined meshes (cases FD and FD1).
This indicates that the mesh resolution in FD1 has already been sufficient. Nonetheless, case
CD has obviously underestimated the heat transfer as compared with the results from cases
FD and FD1, about 14% lower in the center of the fluid layer.

At Ra = 109, along with the effect of mesh resolution refined from the coarse mesh (case
CE in table 1) to the fine mesh (cases FE and FE1 in table 3) by ten times of the number of
grid nodes, the effect of time step is also investigated. The time step in case FE is one-fifth
of the time step used in case FE1 and one-tenth as in case CE. The predicted distributions of
turbulent heat transfer are plotted in figure 7. Similar to the observation with cases FA1 and
FA2 at Ra = 6.3 × 105, a reduced time step hardly imposes any effect on the SGS heat flux
when the same mesh is used as in cases FE and FE1 at Ra = 109. Nonetheless, a very slight
difference (about 1%) can be observed in the resolved turbulent heat flux, and thus in the total
turbulent heat flux as shown in figure 7(a). The turbulent heat transfer using the coarse mesh
(case CE) has been significantly underestimated by about 21% relative to that produced using
the refined mesh.
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Figure 5. Effect of numerical resolution at Ra = 6.3×105. The total turbulent heat flux, 〈v′T ′〉tot = 〈v′T ′〉res+〈hθ2〉.
The distribution is zoomed in the low part where the most significant difference exists for different resolutions.

Figure 6. Effect of mesh resolution at Ra = 108. (a) Total turbulent heat flux, 〈v′T ′〉tot = 〈v′T ′〉res + 〈hθ2〉. (b)
Modeled SGS heat flux, 〈hθ2〉.
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Figure 7. Effect of numerical resolution at Ra = 109. (a) Total turbulent heat flux, 〈v′T ′〉tot = 〈v′T ′〉res + 〈hθ2〉.
(b) Modeled SGS heat flux, 〈hθ2〉.

Based on the above sensitivity analysis of grid resolution and time step, it is recognized that
the group of meshes in table 1 is too coarse at larger Ra numbers, and some time steps used
may also have been too large to appropriately resolve the evolution of the filtered large-scale
structures. With the group of refined meshes and time steps given in table 3, nonetheless, it
is anticipated that well-resolved LES can be attained. In the following presentation of results
and scaling analysis, only the results computed with the finest meshes and with the smallest
time step are used, unless otherwise mentioned. These are cases FA, FB, FC, FD and FE.

3.2 Turbulence statistics

Before presenting the resolved turbulence statistics, a couple of illustrations are used to indicate
the modeled SGS turbulence level. As mentioned, it is desirable in LES to resolve the turbulence
energy as much as possible with the affordable costs and, so that the SGS turbulence tends to be
isotropic, making SGS modeling more universal. In the present calculations, the Smagorinsky
model has been used as the base model, which formulates the SGS eddy viscosity with νsgs =
Cs�|S̄|2. The use of the dynamic procedure makes it possible to compute the model coefficient
Cs as a function of local resolved flow properties. Figure 8(a) presents the distribution of the
time-averaged model coefficient, Cs . In a large central part of the domain (0.2 ≤ y/H ≤ 0.8),
this coefficient is located between 0.025–0.045, corresponding to a Smagorinsky constant,
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Figure 8. (a) Time-averaged model coefficient, 〈Cs〉, computed from the dynamic procedure. (b) Time-averaged
SGS eddy viscosity, 〈νsgs〉/ν.

√
Cs , of 0.16–0.21, which is in the range as determined by Lilly for homogeneous turbulence

[27]. In the wall layer, however, Cs may reach a far larger value. At Ra = 109, the near-wall
peak value is Cs,max = 0.085, and Cs,max = 0.041 for Ra = 6.3×105. In figure 8(b), the time-
averaged SGS eddy viscosity, 〈νsgs〉, is presented across the fluid layer. For Ra ≤ 4 × 107,
Rsgs = 〈νsgs〉/ν is generally less than 1. At Ra = 108, the maximum value of Rsgs is about
1.2, while this value raises to about 3.2 for Ra = 109 in the center of the fluid layer. Near
the wall, where Cs,max is located, Rsgs is generally below 1, but Rsgs � 2.7 for Ra = 109.
For Ra = 6.3 × 105, the maximum value for Rsgs is about 0.12. As shown in the sensitivity
analysis, the mesh used in case FA is indeed ‘over-refined’ for LES.

In figure 9, the time-averaged resolved temperature and the rms of temperature fluctuations
are presented. At Ra = 6.3×105, both the resolved temperature and its fluctuation are almost
identical with the DNS data. It is shown that with increasing Ra number, the thickness of the
thermal boundary layer, characterized by a near-wall sharp temperature gradient, is reduced.
Correspondingly, the peak of the T̄rms distribution shifts toward the wall surface. The peak
location of T̄rms, λT , has been often used as the characteristic thickness of the wall thermal
boundary layer. The centreline value of T̄rms, namely, c = T̄rms,c, is reduced obviously, as Ra
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Figure 9. (a) Time-averaged resolved temperature, (〈T̄ 〉−Tc)/�T0. (b) Resolved temperature fluctuation, T̄rms/�T0.
(c) Close view of T̄rms/�T0 near the wall.

number increases, while the near-wall peak value, w = T̄rms,max, exhibits a slight reduction
with the increase in Ra number.

The heat flux across the fluid layer consists of three contributions when computed from an
LES. These include the resolved turbulent heat flux, the modeled SGS part and the molecular
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Figure 10. (a) Molecular diffusive heat transfer, hc = −α∂〈T̄ 〉/∂y. (b) SGS heat flux, 〈hθ2〉. (c) Resolved turbulent
heat flux 〈v′T ′〉res. The symbol in (c) is the DNS data for Ra = 6.3 × 105.

heat flux. The total heat transfer in its dimensionless form, namely the Nusselt number, reads

Nu(y) = 〈v′T ′〉res + 〈hθ2〉 − α∂〈T̄ 〉/∂y

α�T0/H
. (9)

Figure 10 presents the distribution for the three heat transfer components. It is shown that the
molecular diffusive heat flux is the main contributor to the total heat transfer in the vicinity of
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Figure 11. The total heat transfer cross the fluid layer, Nu((y). Same legend as in figure 10.

the wall, but rapidly decreases with increasing Ra number, corresponding to an increasingly
sharp near-wall temperature gradient. The SGS heat flux plays a role in the thermal boundary
layer, from Ra = 6.3 × 105 to the highest Rayleigh number (Ra = 109), the maximum SGS
contributions (the peak value) to the total heat transfer are, respectively, 4%, 9.4%, 9.8%,
9.6% and 11%. Away from the wall, the heat transfer is dominated by the resolved turbulent
heat flux.

In figure 11, the vertical distribution of Nu(y) is presented. Since the horizontal direction
is assumed to be homogeneous in the computation, the total heat flux is constant across the
fluid layer at each Ra number. The smooth uniform distribution of Nu(y) across the box has
confirmed that the time used for averaging is sufficient in obtaining the statistically independent
value of heat transfer.

In figure 12, the distributions for the rms of velocity fluctuations are presented. The two
horizontal velocity components, ūrms and w̄rms, have been combined into a horizontal velocity,
uhrms = (ū2

rms + w̄2
rms)

1/2. The LES data show excellent agreement with the DNS data at Ra =
6.3 × 105. With increasing Ra number, unlike the temperature fluctuation being weakened,
the velocity fluctuation is reinforced. This is attributed to the motion of updraft and downdraft
arising from the hot lower wall and descending from the cold upper wall, respectively. As the
Ra number increases, these thermal plumes become intensified and impinge on the horizontal
walls, causing notable horizontal motions. This has been reflected in the distribution of the
horizontal velocity, uhrms, which exhibits a near-wall peak, indicating the presence of near-wall
shear. On the other hand, the vertical velocity, v̄rms, increases all the way from the wall to the
center, as a consequence of the convective updrafts and downdrafts. Although not shown here,
it is noted that the three velocity components at each Ra number have approximately similar
values in the center of the box, which indicates that the turbulence tends to be isotropic in this
region.

The resolved turbulence kinetic energy, K = (u2
hrms + v̄2

rms)/2, is also plotted in figure 12(c).
The distribution of K presents a fairly flat distribution in a large part of the central mixed layer,
but a small peak remains in the outer edge of the thermal boundary layer, particularly for
Ra ≥ 4 × 107. The fact that the near-wall turbulence energy increases rapidly in the thermal
boundary layer indicates that turbulence energy is transported by the thermal drafts. The
horizontal rms velocity has a profile resembling that in a turbulent boundary layer, while v̄rms

increases all the way to the center. This reflects the fact that the near-wall shear layer and the
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Figure 12. (a) Resolved vertical velocity fluctuation, v̄rms/u0. (b) Resolved horizontal velocity fluctuation, uhrms/u0.
(c) Resolved turbulence kinetic energy,

√
K/u0. Same legend as in figure 9.

off-wall mixed layer co-exist in turbulent RB convection. The values of
√

Kc, as a velocity
scale and taken from the center of the

√
K distribution, will be scaled with the Ra number in

the scaling analysis.
In addition, the centreline value and the near-wall peak value taken from the uhrms distri-

bution, as well as the centreline value of v̄rms, denoted respectively by uhc, uhw and vc, define
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three characteristic velocity scales, of which the scaling relations with the Ra number will be
revisited. Moreover, a length scale, λu , measured at the near-wall peak location of uhrms to
characterize the velocity boundary-layer thickness, is also scaled with the Ra number.

Figure 13(a) plots the skewness of the vertical velocity, Sv = 〈v′3〉/〈v′2〉3/2, which indicates
the degree of asymmetry of the convective downdrafts and updrafts. Positive skewness implies
that the vertical convection is characterized by relatively strong updrafts surrounded by weak
downdrafts near the top cold wall, while negative skewness indicates intensive downdrafts
surrounded by relatively weak updrafts near the bottom hot wall [16, 28]. Although not
presented here, an illustration of the contour of instantaneous vertical velocities reveals that
near the cold upper wall the updrafts (with positive v values) are separated from each other
and surrounded by interconnected downdrafts (with negative v values). Near the hot lower
wall, the situation is opposite, where individual downdrafts are surrounded by interconnected
updrafts. A positive value of Sv indicates that the updraft from the lower hot wall has raised
near the upper cold wall with high momentum and high kinetic energy, which penetrates
locally into the cold thermal boundary layer and, with the aid of buoyancy, has made the
cold fluid ejected locally from the wall layer in the form of relatively weak downdrafts. The
updraft presses the cold thermal boundary layer toward the upper wall and leading to local
positive vertical velocities. Near the lower wall surface, a similar situation occurs, where cold

Figure 13. (a) Skewness of vertical velocity. (b) Cubic root of the third central moment of vertical velocity, µ3 =
|〈v′3〉|1/3. Note that the distribution of 〈v′3〉 is anti-symmetric with positive values near the upper cold wall, and
negative in the lower part of the fluid layer.
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plumes descending from the cold upper wall have caused local negative velocities, giving a
negative Sv . This observation has been addressed previously by Moeng and Rotuno [28], and
revisited by Kerr [8]. As Ra number increases, the near-wall skewness becomes smaller and
the region with large skewness becomes thin. Across the center of the box the skewness profile
approaches to a zero slope, which implies that the areas and the intensities of the updrafts
and the downdrafts are similar over the nearly zero-slope layer. The convective updrafts
and downdrafts alternatively co-exist in the box, which interact with (actually suppress or
contain) each other due to their opposite motions. Both 〈v′2〉 and 〈v′3〉 have consisted of such
an inter-suppressing feature. As a consequence, the skewness alone may not be sufficient
to indicate the intensity of the dominant plume in the near-wall region. As shown in figure
12(a), the intensity of flow fluctuations is indicated by 〈v′2〉, which shows an increasingly
sharp growth near the wall with increasing Ra number, in spite of the possible wall-damping
effect on the approaching plume. On the other hand, the third moment, µ3 = 〈v′3〉, is able
to indicate the direction of the dominant thermal plume. It is thus interesting to probe the
near-wall distribution of µ3, which can be viewed as an indicator of the intensity of the plume
approaching the wall after being damped by the wall and being contained by the plume leaving
the wall.

In figure 13(b), the distribution of |µ3|1/3/u0 is plotted. It should be noted that the distribution
of 〈v′3〉 is anti-symmetric cross the box, with positive values in the upper part of the box,
negative values in the lower part and zero in the center. We focus here on the near-wall
maximum peak value of 〈v′3〉 and its distance to the wall. Figure 13(b) presents thus only a
part of the distribution near the upper wall for |µ3|1/3. With a negative sign, 〈v′3〉 has the same
distribution in the lower part of the fluid layer. As shown, |µ3|1/3/u0 increases with increasing
Ra number. At the same Ra number, |µ3| increases from the center of the box to a peak value and
then decreases to zero on the wall surface. The fact that the large near-wall value of Sv decreases
with increasing Ra number indicates that the near-wall value of 〈v′2〉1/2 is increasingly larger
than |µ3|1/3 as Ra number increases, that is, near the wall (〈v′2〉1/2−|µ3|1/3)/u0 ∝ Raβ(β > 0).
This implies that the leaving plume becomes intensified with increasing Ra number and, as
a result, the approaching plume is more contained by the leaving plume. In other words, the
approaching plumes were contained from frequent penetrating into the viscous sublayer, as
the Ra number is increased. The near-wall value of maximum |µ3|, defining a velocity scale as

uv3 = |〈v′3〉|1/3
max, and its distance to the wall, λv3, should thus be able to indicate some features

of the interaction between the approaching and leaving drafts near the wall. The velocity scale,
uv3, represents the intensity of the approaching plume after being contained by the leaving
plume. The length scale, λv3, may indicate the turning point, at which the leaving plume
starts to play a significantly sensible role in containing further growth of the intensity of the
approaching plume. Kerr [8] has argued that the incoming/approaching plume and negative
Sv may be an important ingredient in producing the shear, which may be associated with the
hard convective turbulence. In the following Ra-scaling analysis, the velocity scale, uv3, and
the length scale, λv3, will be accommodated.

Furthermore, in order to observe the intensity of wall shear, figure 14 plots the time-averaged

magnitude of the resolved flow strain rate, 〈|S̄|〉 = 〈
√

2S̄i j S̄i j 〉, where S̄i j = (∂ ūi/∂x j +
∂ ū j/∂xi )/2. It is shown that across a large central portion of the box, 〈|S̄|〉 is relatively
small and has a uniform distribution, yet its value on the wall, Sw, is rather large, implying
significant wall shear.

The centreline value, Sc, and the wall value, Sw, of 〈|S̄|〉 are taken in the following scaling
analysis. Note that Sc and Sw have a reciprocal dimension of a time scale. The sharp change
of 〈|S̄|〉 from Sw to Sc near the wall indicates the existence of a shear layer in the vicinity of
the wall. By means of the |S̄| distribution, we define a new length scale to characterize the
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Figure 14. Time-averaged magnitude of resolved flow strain rate.

thickness of the near-wall shear layer, namely

λs =
∫ H

0 〈|S̄|〉dy − Sc H

Sw − Sc
. (10)

This length scale will be addressed in the following scaling analysis.

3.3 Rayleigh-number scaling

Using the statistically averaged properties discussed in the previous section, we have analyzed
the Ra-scaling for the range of Rayleigh numbers where LES has been performed, namely,
Ra ∈ [6.3 × 105, 109]. Note that the Ra range considered includes the transition regime (at
Ratr ≈ 4×107) from soft to hard turbulence observed in some experiments [6]. As noted earlier,
from the DNS for Ra ≤ 2×107 by Kerr [8] it was found that a single regime corresponding to
the hard convective scaling can be established to represent the Ra dependence, being applicable
for the heat transfer and several velocity and temperature scales.

Based on the present LES results, the main purpose of the Ra-scaling analysis is twofold:
scrutinizing the scaling relations for Ra numbers covering the soft and hard turbulence regimes
using the present LES computations, and comparing the LES results with the experimental and
DNS-derived scaling laws. With the present LES data and assuming a single-scaling relation
for each characteristic scale, the best-fitted Ra-scaling relations are summarized in tables 4
and 5.

Figure 15 plots the Nusselt number, Nu, versus the Ra number. Note that the Nusselt number
can be calculated at the wall by Nuw = −H〈∂ T̄ /∂y〉w/�T0. Both the integrated Nu(y) (from
equation (9)) and Nuw have been included in figure 15, showing negligible difference. The
scaling does not exhibit any notable transition at Ratr = 4×107 that would otherwise separate
different regimes (soft and hard) with different scaling. The LES data for the five Ra numbers

Table 4. Ra-scaling of flow and thermal quantities with a relation of CRaβ for each. Note that the superscript ∗
denotes being normalized by u0, H and �T0.

u∗
hw u∗

hc v∗
c

√
K ∗

c ∗
w ∗

c S∗
w S∗

c u∗
v3 u∗

τw Nu

C 0.279 0.235 0.405 0.30 0.182 0.501 0.301 0.857 0.287 0.520 0.162
β 0.478 0.468 0.429 0.45 −0.0172 −0.123 0.717 0.549 0.40 0.358 0.286
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Table 5. Ra-scaling of the length scales with a relation of CRaβ for each.

λu/H λT /H λs/H λv3/H

C 0.609 4.549 0.458 0.85
β −0.142 −0.313 −0.146 −0.116

considered all collapse on a single curve for which the least square fit gives Nu = 0.162Ra0.286.
This correlation corresponds closely (apart from slightly larger heat transfer) to the 2/7 (hard
turbulence) scaling observed experimentally by Wu and Libchaber [6] only for Ra ≥ 4 × 107,
and supports the DNS findings of [8] that the hard scaling applies in the ‘numerical thermal
convection’ at much lower Ra numbers, deep in the soft turbulence range of experimental
convection. The present LES data confirm the hard-scaling correlation validity to higher Ra
numbers, at least to Ra = 109.

The normalized temperature rms, w = T̄rms,max and c = T̄rms,center, are plotted in fig-
ure 16, together with the scaling relations derived from DNS data (for Ra ≤ 2 × 107) by
Kerr [8], where c/�T0 and w/�T0 were forced to fit with the Ra−1/7 and Ra−1/14 laws,
respectively. As shown, the LES data are in large discrepancies from these forced scaling
relations. Instead, the LES data for w/�T0 agree better with the DNS data obtained at lower
Ra numbers (cf figure 11 in [8]). Similar to the DNS data, with increasing Ra number, LES
produces temperature fluctuations much less steep near the wall than in the center. The near-
wall w/�T0 presents a moderate reduction at lower Ra numbers. As Ra number increases
from Ra ≥ 4 × 107, w/�T0 seems to approach a constant value of about 0.131, showing an
almost decoupled Ra dependence. This can also be seen from figure 9. With the theoretical
scaling laws, c/�T0 ∼ Ra−1/9 and Ra−1/7 for soft and hard convective turbulence, respec-
tively, c/�T0 shows a fairly good agreement. The varied tendencies presenting respectively
in the scaling relations for w/�T0 and c/�T0 suggest that there indeed exist some tran-
sition features in these scales separated at about Ra = 4 × 107 from soft to hard turbulence
regime, as indicated by the experiment [6].

Figure 15. Nusselt number versus Ra number. The LES data gives 0.162Ra0.286. Also plotted are the experimental
Ra-scaling 0.146Ra0.286 by Wu and Libchaber [6] and the DNS Ra-scaling 0.186Ra0.276 by Kerr [8].
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Figure 16. Ra dependence of T̄rms in the center, c/�T0, and at the near-wall peak, w/�T0. The LES data fit
with w/�T0 = 0.182Ra−0.0172 and c/�T0 = 0.501Ra−0.123, respectively. Black solid line indicates the forced
DNS Ra-scaling by Kerr [8] for w/�T0 = 0.37Ra−1/14, and black dashed line for c/�T0 = 0.62Ra−1/7.

In figure 17, the normalized velocity scales defined from the rms of vertical and hori-
zontal velocity fluctuations are plotted versus the Ra number. The LES gives, respectively,
uhw/u0 = 0.279Ra0.478, uhc/u0 = 0.235Ra0.468 and vc/u0 = 0.405Ra0.429. In the range of
lower Ra numbers with DNS [8], it was shown that uhc/u0 has a somewhat smaller value than
the other two, whereas the present LES data disclose generally smaller values for vc/u0. In
addition, the DNS data for uhw/u0 and vc/u0 are collapsed closely so the two scales were
fitted with an identical scaling relation in [8]. This is not the case with the LES data. Instead,
the two velocities, uhc/u0 and vc/u0 in the center of the box are closer, but with an increasing

Figure 17. Ra dependence of near-wall peak value, uhw/u0, of uhrms, and the scales, uhc/u0 and vc/u0, taken from
the center of distributions for uhrms and vrms, respectively. The LES data give uhw/u0 = 0.279Ra0.478, uhc/u0 =
0.235Ra0.468 and vc/u0 = 0.405Ra0.429. Black solid line is the DNS Ra-scaling by Kerr [8] for both uhw/u0 and
vc/u0 with 0.25Ra0.46, and black dashed line for uhc/u0 = 0.074Ra0.52. The black dash-dotted line is from the
experiment by Sano et al. [5] in a confined vertical cylinder with an aspect ratio of 1, giving Pe = 0.309Ra0.485 for
the mean vertical velocity.
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difference as Ra number increases. The scaling relation for vc/u0 fit very well with the 3/7-
law for hard turbulence [1, 23], while the data for uhc/u0 fit closer to the 4/9-law for soft
convective turbulence. The scaling taken from the experiment by Sano et al. [5] is for the mean
vertical velocity (not fluctuations) measured in a confined vertical cylinder with an aspect ratio
of 1. It was stated that this velocity can be scaled with Ra0.46, if the Pr number dependence is
not neglected. In calculating this velocity based on the measured cross spectrum from paired
bolometers, they have assumed that the vertical velocity is much larger than the horizontal
velocity. If the effect of the horizontal velocity is included, this experimentally measured
scaling relation should be modified and would become closer to the LES data. In addition,
Kerr [8] suggested a check on the consistency of scales with Nu − 1 ≤ (c/�T0)(vc/u0) by
a Cauchy inequality. The LES data give (Nu − 1) = 0.1125Ra0.3035, which complies with the
inequality. With the Ra dependence of these velocity scales, there is no obvious indication on
the transition from soft to hard convective turbulence.

Figure 18 presents the scaling relations with the LES data for another two normalized
velocity scales, u∗

v3 = |〈v′3〉max|1/3/u0 and uτw/u0, respectively. The former is taken from
the near-wall maximum value of the triple correlation for the vertical velocity fluctuations,
and the latter has been calculated as a wall-friction velocity by uτw = √

ν∂uhrms/∂y|wall. In
addition, the scale taken from the resolved turbulence kinetic energy,

√
Kc, in the center

of the box is also presented, which can be viewed also as a velocity scale for the resolved
large-scale structure. All these quantities increase with increasing Ra number. The LES data
give

√
Kc/u0 = 0.30Ra0.45, uτw/u0 = 0.520Ra0.358 and u∗

v3 = 0.287Ra0.40. The scaling for√
Kc/u0 has an exponent of about 4/9, which is the theoretical scaling exponent for soft

turbulence [1]. Of these three velocity scales, u∗
v3 is the only one which has shown a slight

shift from a single-scaling relation, and presenting better matching with scaling exponents for
the soft and hard turbulence regimes separated at Ra = 4 × 107.

The two characteristic boundary-layer thicknesses (‘heights’), λu and λT , measured at the
locations with maximum values of uh rms and T̄rms, respectively, are plotted in figure 19. As with
DNS, LES shows that λu is generally larger than λT for Ra ≥ 6.3 × 105. The LES data give
λu/H = 0.609Ra−0.142 and λT /H = 4.549Ra−0.313, which comply reasonably well with the
DNS scaling relations that agree with soft-turbulence scaling for λT /H and hard-turbulence

Figure 18. Ra dependence of
√

Kc/u0, u∗
v3 = |〈v′3〉|1/3

max/u0 and uτw/u0. The LES data give
√

Kc/u0 = 0.30Ra0.45,
uτw/u0 = 0.520Ra0.358 and u∗

v3 = 0.287Ra0.40. The blue dashed line indicates the 4/9-scaling for soft turbulence
and the red dashed line represents the 3/7-scaling for hard turbulence [1].
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Figure 19. Ra dependence of λu/H and λT /H . LES data give λu/H = 0.609Ra−0.142 and λT /H = 4.549Ra−0.313.
Black solid line indicates DNS Ra-scaling by Kerr [8] for λu/H = 0.65Ra−1/7, and black dashed line for λT /H =
5.9Ra−1/3.

scaling for λu/H . Nonetheless, if the scaling exponent (−2/7) for hard turbulence regime is
plotted for λT /H (the red dashed line in figure 19), it shows an even better fitting with the
LES data than the (−1/3) scaling for large Ra numbers, whereas the Thomae scaling exponent
(−3/14) matches fairly well with the LES data of λu/H . The (−1/3) scaling does not match
well in the soft-turbulence regime for λu/H , however. In summary, the thermal length scale,
λT , may match with two scaling relations for the soft and hard turbulence regimes, respectively.
The velocity length scale, λu , exhibits somewhat an offset from a single-scaling relation at
Ra = 4 × 107 and matches reasonably well with (−1/7) scaling for lower Ra numbers and
with (−3/14) scaling for larger Ra numbers.

In figure 20, the wall (Sw) and centreline (Sc) values of 〈|S̄|〉 are plotted. Both are best fitted
respectively with a single-scaling relation. These are Sw H/u0 = 0.301Ra0.717 and Sc H/u0 =
0.857Ra0.549. It should be noted that the scaling of u∗

τw ∼ Raβuτ can be related to the scaling
of S∗

w ∼ RaβSw with βSw ≈ 2βuτ , as is shown in table 4. Note that 〈|S̄|〉 is a reciprocal time
scale, which might be used together with an appropriate velocity scale to derive a length
scale that can be used to examine the computational resolution of large-scale structures in RB
convection.

Figure 20. Ra dependence of 〈|S̄|〉 on the wall and in the center. LES data give S∗
w = Sw H/u0 = 0.301Ra0.717 and

S∗
c = Sc H/u0 = 0.857Ra0.549, which are represented by the solid line and dashed line, respectively.
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The scaling for λs and λv3, defined respectively by equation (10) and from the location of
the near-wall maximum value of 〈v′3〉, is shown in figure 21. With a single-scaling relation
for each, the LES computation gives λs/H = 0.458Ra−0.146 and λv3/H = 0.85Ra−0.116. The
scaling exponent for λs/H is close to (−1/7), which is the scaling law for λu in the hard-
turbulence regime [1]. Note that λs is a characteristic thickness for the near-wall shear layer,
which is comparable with λu but decreases slowly relative to λu with increasing Ra number,
indicating the additional effect of vertical motions on |S̄|. In general, λv3 is measured outside
of the near-wall diffusive sublayer, which at the same Ra number is larger than the other
length scales defined in this work. As shown in figure 21, λv3 decreases relatively fast for
Ra ≤ 4 × 107, after which its reduction with increasing Ra number becomes smaller. As
shown in the near-wall distribution of |〈v′3〉|1/3 in figure 13(b)), λv3 represents the location at
which the approaching plume has grown to its maximum intensity. Being damped by the wall
and contained by the leaving plume, at this characteristic wall distance the vertical approaching
plume tends to be re-directed to horizontal motions. This length scale separates two layers. The
near-wall layer is a damping layer, where the incoming/approaching plume is mainly damped
by the wall and somewhat contained by the leaving plume, but its intensity is still statistically
dominant over the leaving plume (and thus positive 〈v′3〉 near the cold upper wall and negative
near the hot bottom wall). From the outer edge of this layer (∼λv3) toward the wall up to a
distance characterized by λu , the horizontal motion tends to be formed and reinforced, the
approaching plume being gradually re-directed to the horizontal direction. In the layer with a
thickness of λu , the horizontal motion is dominant and is affected by wall shear. In the outer
layer, the intensity of the approaching plume keeps growing toward the wall but also being
contained sensibly by the leaving plume. With increasing Ra number, one would expect a
reducing λv3 due to the increasing intensity of the approaching plume. But this is not the case
at large Ra numbers after Ra = 4 × 107, the reduction in λv3 becomes instead much slower
with increasing Ra number. This is because the intensity of the leaving plume becomes at
large Ra numbers increasingly strong in containing the approaching plume from penetrating
toward the wall surface. The shift in the scaling relation for λv3/H after about Ra = 4 × 107

may thus be attributed to the leaving plume, of which the intensity increases with increasing
Ra number and imposing increasing containing effect on the approaching plume. This has
consequently, together with the wall-damping effect, stopped its further penetration toward
the wall.

Figure 21. Ra dependence of λs/H and λv3/H . The LES data fit λs/H = 0.458Ra−0.146 and λv3/H =
0.85Ra−0.116, which are plotted by the dashed and solid lines, respectively.



LES of Rayleigh–Bénard convection 27

4. Conclusions

LES with the dynamic Smagorinsky SGS model has been performed for turbulent Rayleigh–
Bénard convection for Ra ∈ [6.3× 105, 109], covering the experimentally observed transition
regime from soft to hard convective turbulence. A priori analysis of the grid resolution require-
ments and a posteriori grid sensitivity test using several grid densities demonstrate that the
finest grids used provided sufficient resolution for trustworthy LES. To attain accurate LES
predictions of heat transfer, the SGS heat flux accounts for only about 10% (or below) of the
total heat flux. The vertical distributions of the resolved turbulence statistics demonstrate Ra
dependence similar to the available DNS and experimental data. The scaling relations derived
from the present LES data have been shown to be in reasonable agreement with the existing
scaling laws.

The convective updrafts ascending from the hot wall and downdrafts descending from the
cold wall have been argued as being the main engine to generate and account for the vertical
profiles and the magnitudes of turbulence quantities. As the Ra number is increased, wall
shear becomes reinforced while the thickness of the shear layer decreases due to intensified
horizontal motions caused by the collision of the vertical draft with the wall. The interaction
of both downdraft and updraft causes increasingly intensive velocity fluctuations in both the
vertical and horizontal directions with increasing Ra numbers. The thermal fluctuation, on
the other hand, is suppressed by opposite buoyant sheets which are surrounded by vertical
drafts stemmed from the opposite wall. The intensities of both the leaving plume and the
incoming/approaching plume increase, as the Ra number is increased, but the increase for the
leaving plume is more effective than for the approaching plume which is also damped by the
wall. When the Ra number is increased to about 4 × 107, the leaving plume becomes much
intensified so that it is able, together with the wall-damping effect, to significantly contain
the approaching plume and, consequently, alleviating its penetration toward the wall. This
is reflected in the near-wall distributions of the rms, the skewness and the triple correlation
of the vertical velocity fluctuations and, in particular, indicated by the small variation in
the location of |〈v′3〉|1/3

max at large Ra numbers. The length scale, λv3, is argued as being the
characteristic location, where the approaching plume is significantly contained and damped
and, consequently, a local balance may set up between the intensities of the approaching plume
and the leaving plume. Moving further toward the wall, at a distance characterized by λu (or
similarly by λs), the approaching plume is redirected to horizontal motions and the flow is
affected by wall shear.

In the Rayleigh-scaling analysis, a number of scales, defined from the computed vertical
profiles, have been revisited in comparison with existing experimental and DNS results. Apart
from the scales conventionally used in previous experimental and theoretical analysis, several
new scales have also been defined and analyzed. Among others, these include the length scales
λs and λv3 and the velocity scale uv3. For the heat transfer, the LES data agrees well with
previous DNS analysis, and is best-fitted with Nu = 0.162Ra0.286. The scaling exponent is
identical with previous experimental data for the scaling in the hard-turbulence regime. Most
characteristic scales, derived from the LES data for ‘numerical RB convection’, can be fitted
reasonably well with a single relation for each, with no obvious change in regimes from soft
to hard convective turbulence at the transitional Ra number (about Ra = 4 × 107) identified
in previous experiments.

Nonetheless, there exist several characteristic quantities, of which the scaling shows indeed
a sensible offset from a single relation at about Ra = 4 × 107, but being fitted better with two
separate scaling relations. These include the temperature scales w and c, the velocity scale
uv3, and the length scales λv3, λu and λT . The scaling relations for c/�T0, uv3/u0 and λT /H
have shown fairly good matching with the scaling laws for soft convective turbulence at low Ra
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numbers and for hard turbulence at large Ra numbers, in consistency with previous theoretical
analysis and experimental observation. These ‘transition-sensitive’ quantities, derived from
‘numerical convection’, are probably scales that are less sensitive to the side-wall effect
encountered in ‘experimental convection’. Instead, they are more closely associated to the
effect of horizontal motions near the top and bottom walls, as well as to the interaction
between the updraft and the downdraft. The transition observed in the scales defined from
the near-wall region is related to the near-wall ‘containing effect’ of the increasingly (with
Ra number) intensified plume leaving the wall on the approaching plume. As the Ra number
increases to Ra = 4 × 107 and larger, at a wall distance characterized by λv3, the leaving
plume, together with the wall-damping effect, significantly alleviates the penetration of the
approaching plume into the wall layer.
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