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Abstract

A non-linear subgrid-scale (SGS) heat flux model is introduced in large eddy simulation for turbulent thermal

flows. Unlike the linear isotropic eddy diffusivity model, the proposed model accounts for the SGS heat flux in terms

of the large-scale strain-rate tensor and the temperature gradients. This is equivalent to using a tensor diffusivity. The

model is to some extent similar to a scale-similarity model subjected to a Taylor expansion for the filtering operation.

The formulation leading to the present proposal is discussed. The model is examined in LES for a buoyant flow in an

infinite vertical channel with two differentially heated side walls. It is shown that the proposed model reproduces

reasonable results as compared with the isotropic SGS diffusivity model and DNS data. � 2002 Published by

Elsevier Science Ltd.

1. Introduction

The momentum of fluid motion in turbulent thermal

flows is closely coupled with the thermal energy trans-

port due to the buoyant force in the gravitational field.

The buoyancy significantly characterizes the turbulence

production and evolution process and consequently af-

fects the flow structure. One of the well-known examples

of thermal flows is the Rayleigh–B�eenard (RB) convec-
tion, which consists of a fluid layer between two differ-

ently heated horizontal walls where the lower wall has a

higher surface temperature than the upper wall. The

turbulent RB convection is characterized by large-scale

coherent vortical structures and unsteadiness associated

with plumes, thermal and convective cells, where the

turbulence is generated mainly in the wall boundary

layer and carried away by the large-scale structure. Such

a large-structure dominant flow feature has indeed ren-

dered large eddy simulation (LES) a remarkable success.

Other typical thermal flows include those occurring

in a confined cavity and in an infinite vertical channel

with two differentially heated side walls. In such flows, a

horizontal temperature gradient is generated that is

perpendicular to the gravitational acceleration. For the

buoyant flow in confined cavity at a moderately high

Rayleigh number, the boundary layer along the heated/

cooled vertical wall will evolve towards turbulence un-

dergoing a transition stage. While sharing some com-

mon heat transfer features near the vertical walls, the

buoyant flow arising in a vertical channel with an infinite

height (hereafter termed infinite cavity) possesses its own

dynamics of turbulence. The fully developed buoyant

flow in an infinite cavity is statistically of a one-dimen-

sional type with no thermal stratification in the direction

of buoyancy. A linear isotropic eddy diffusivity Rey-

nolds averaged Navier–Stokes equations (RANS) model

will fail to reproduce the streamwise turbulent heat flux

and will estimate a zero buoyant generation as the mean

temperature gradient vanishes in this direction. By

contrast, a number of measurements have shown that in

a simple shear flow with only a cross-stream temperature

gradient, the streamwise heat flux is often significantly

larger than the wall-normal one.

Apart from RANS modeling, LES has gained in-

creasing implementations for turbulent thermal flows.

Various subgrid scale (SGS) models have been applied

and shown encouraging performance, where the RB

convection has primarily been studied, see e.g. [1–3]. For
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isothermal turbulent flows, on the other hand, remark-

able effort has been put into modeling the SGS stress by

means of a priori and a posterior tests. Among others,

some non-linear SGS stress models have been proposed

and tested by Lund and Novikov [4]. More recently,

Kosovic [5] proposed a non-linear SGS stress model

based on the constitutive theory. This model is able to

considerably improve the prediction over the Smago-

rinsky model when applied to a neutral shear-driven

atmospheric boundary layer. In spite of these and other

developments in modeling the SGS stress, the modeling

of the SGS heat flux in LES for turbulent thermal flows

has often been based on the isotropic eddy diffusivity

model through a linear alignment with the large-scale

temperature gradient. The present work introduces a

non-linear form based on a tensor diffusivity for the SGS

heat flux modeling, which is somewhat analogous to the

RANS modeling, where the heat flux is expressed in

terms of the large-scale velocity deformation and tem-

perature gradients in all directions. The resulting for-

mulation turns out to be similar to the scale-similarity

model undergoing a Taylor expansion for the filtering

operation as proposed by Leonard [6]. The proposed

SGS heat flux model is incorporated into the dynamic

procedure and examined in large eddy simulation for the

turbulent buoyant flow arising in an infinite cavity. The

performance of the proposed model is analyzed in

comparison with the isotropic eddy diffusivity model.

The model for the SGS turbulence and heat transfer

is presented in Section 2. The resulting SGS heat flux

model is then incorporated into the dynamic procedure

to determine the model coefficient. In Section 3 the

model is applied to a fully developed turbulent buoyant

flow in an infinite cavity with a Rayleigh number of

Ra ¼ 5:4� 105. The performance of the model is ana-
lyzed on the basis of the simulation results. Some con-

clusions are then made in Section 4.

2. Model description

The basic philosophy of LES is to explicitly simulate

the large-scale motion on which the effect of small scales

is modeled. To distinguish between the large scales and

small scales, a spatial filtering operation is used to de-

compose the flow variables. The effect of the small scales

on the resolved turbulence is represented in terms of the

SGS stresses and heat fluxes. Applying the filtering op-

eration to the Navier–Stokes equations and the thermal

energy equation leads to the governing equations for the

large-scale momentum and thermal energy transport.

For incompressible flow, this yields

o�uui
ot

þ o

oxj
ð�uui; �uujÞ ¼ � 1

q
o�pp
oxi

þ m
o2�uui
oxj oxj

� osij
oxj

� gibð�hh � HrÞ ð1Þ

and

o�hh
ot

þ o

oxj
ð�uuj �hhÞ ¼ a

o2 �hh
oxj oxj

� ohj
oxj

: ð2Þ

Note that the coordinate system in this work has been

defined by taking the x ðx1Þ direction as the streamwise
(vertical) direction and y ðx2Þ and z ðx3Þ as the wall-
normal and spanwise directions, respectively.

Nomenclature

C model coefficients with various subscripts

gi gravitational acceleration vector, gi ¼
ð�g; 0; 0Þ

h width between two vertical isothermal walls

hi SGS heat flux components

k wave number

Pr Prandtl number

Prt SGS Prandtl number

Ra Rayleigh number

t time

�uui filtered velocity components

u0i resolved velocity fluctuations

xi Cartesian body axes

a viscous diffusivity

at SGS eddy diffusivity

b thermal expansion coefficient

dij Kronecker delta

�DD size of grid filter

e dissipation rate

q density

Hr reference temperature
�hh filtered temperature

T SGS timescale

s turbulent timescale

sij SGS stress tensor

m molecular kinematic viscosity

mt SGS eddy viscosity

h i time and/or spatial averaging

Subscripts

b buoyancy

rms root mean square

SGS subgrid scale

Superscript

+ normalized quantity by wall parameters
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2.1. The SGS stress model

The SGS stress appearing in the filtered Navier–

Stokes equations is responsible for the energy transfer

between the large-scale and the SGS eddies. This means

that it should provide adequate dissipation, which is

actually the flux of turbulent kinetic energy transferred

through the inertial subrange. Since the dissipation rate

is essentially determined by the large-scale motion, it is

plausible to model the SGS stresses in terms of some

large-scale properties. Indeed, the SGS stress tensor has

often been modeled in alignment with the large-scale

strain-rate tensor, �SSij, through the SGS eddy viscosity,
mt, i.e.,

sij ¼ uiuj � �uui�uuj ¼ �2mt �SSij þ
dij

3
skk ð3Þ

with

�SSij ¼
1

2

o�uui
oxj

 
þ o�uuj

oxi

!
: ð4Þ

The SGS eddy viscosity has usually been cast in the re-

lation of mt / L2SGS �xx, where LSGS represents the SGS
turbulent length scale and �xx is the reciprocal of SGS

turbulent timescale, �xx ¼ 1=TSGS. It is natural to relate

the length scale, LSGS, to the filter width, �DD, since the
most active subgrid scales are those closest to the fil-

tering cutoff. This thus suggests

mt ¼ C�DD2 �xx: ð5Þ

To argue the SGS time scaling ( �xx or TSGS), a hy-

pothesis has been often employed by assuming that a

local equilibrium holds for small scale (i.e. subgrid scale)

turbulence. Consequently, the transport of the local SGS

kinetic energy is assumed in a simple balance sustained

by its production and the viscous dissipation, i.e.

PkSGS ¼ e, from which the timescale, TSGS, can be de-

rived. Applying this hypothesis to isothermal turbulent

flows yields the well-known Smagorinsky model, where

the SGS time scaling, �xx, in (5) is set as the magnitude of
the local resolved strain-rate tensor, viz:

�xx ¼ j�SSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�SSij �SSij

q
: ð6Þ

For turbulent buoyant flows, the buoyant production

may be included in the equilibrium argument for the

subgrid scales. As a result, Eidson [7] proposed an SGS

model in which the SGS timescale is explicitly modified

by the buoyancy. This gives

�xx ¼ j�SSj2
 

� gb
Prt

o�hh
oxj

d1j

!1=2
: ð7Þ

Note that the linear eddy diffusivity assumption has

been used here for the SGS heat flux.

With the Eidson model, the eddy viscosity must be

constrained to be equal to zero when

j�SSj2 < gb
Prt

o�hh
oxj

d1j

to avoid incurring non-real solutions, while this situa-

tion is often encountered in thermally stratified flows.

To preserve the direct influence of buoyancy in the mt
formulation and to relax the constraint inherent in the

Eidson model, a modified buoyancy model was pro-

posed in which the SGS time scaling is weighted with the

magnitude of the strain-rate tensor [3]. This gives

�xx ¼ j�SSj
 

� gb
Prtj�SSj

o�hh
oxj

d1j

!
: ð8Þ

For isothermal flows, both the Eidson model and the

modified model return to the Smagorinsky model.

2.2. The SGS heat flux model

The linear isotropic eddy diffusivity model has been

commonly used to model the SGS heat fluxes, hj,
stemming from the filtered thermal energy equation, (2),

by taking the following form

hj ¼ ujh � �uuj �hh ¼ �at
o�hh
oxj

¼ � mt
Prt

o�hh
oxj

; ð9Þ

where at is the SGS diffusivity and

at ¼ Ct
�DD2 �xx ¼ C

Prt
�DD2 �xx: ð10Þ

As mentioned above, the linear relation, Eq. (9), was

assumed in deriving the Eidson model, Eq. (7), through

the SGS production–dissipation equilibrium hypothesis.

For a buoyant flow, the production term of the SGS

kinetic energy consists of two parts: a strain-related

production and a buoyancy production, i.e.

PkSGS ¼ P skSGS þ P bkSGS ¼ �sij �SSij � bgjhj: ð11Þ

Provided that the dissipation is formulated in terms of �DD
and mt, we have

e ¼ Ce
m3t
�DD4

: ð12Þ

With the local equilibrium assumption for the SGS

turbulence and using Eqs. (3), (11) and (12), a general

formulation for the SGS eddy viscosity can be readily

derived, which reads

mt ¼ C�DD2 j�SSj2
�

� b
mt
gihi

�1=2
: ð13Þ

Since the effect of the subgrid scales is designated by

the SGS model, it is possible that the modeling of the
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SGS turbulence would to some extent modify the re-

solved turbulence with some properties similar to those

of the modeled SGS turbulence. Such a conjecture is

similar to the scale-similarity assumption, whose degree

of confidence depends however on the filtering cutoff. It

is reasonable from a time-averaging point of view to

argue for a corresponding relation between the intensi-

ties of SGS turbulence and resolved large-scale turbu-

lence. That is, undergoing a certain filtering, a resolved

turbulence quantity with a large value would have a

large SGS counterpart and vice versa. This argument

may be applied to modeling the SGS stress/heat flux of

which the magnitude should be in harmony with that of

the corresponding resolved stress/heat-flux component.

The linear heat-flux model in Eq. (9) estimates the

mean (time-averaged) SGS heat flux by means of the

correlation of the SGS diffusivity and the large-scale

temperature gradient. That is

hhii ¼ � at
o�hh
oxi

* +
; ð14Þ

where the symbol h i denotes the time-averaging. For a
fully developed channel flow with differentially heated

walls where the mean temperature gradient vanishes in

the streamwise ðx1Þ direction, it is known from exper-

iments [8] that the resolved turbulent heat flux com-

ponent in this direction is significantly larger than in the

wall-normal direction ðx2Þ. In this case, it is expected
that the SGS heat fluxes comply with jhh1ij > jhh2ij. It is
shown in the computation below that the linear model,

as given by (14), will by contrast render a much lower

correlation in the streamwise direction than in the wall

normal direction.

It is noted here that the above modeling argument is

based on a physically plausible hypothesis in analogy to

the scale similarity which assumes scale-invariant tur-

bulence properties for the subgrid scales and the smallest

resolved scales. The present argument in other words

suggests that the characteristic scales for the mean large-

scale turbulence are in harmony with those for the mean

SGS turbulence.

The basic motivation of this study is to replace the

scalar SGS diffusivity with a tensorial one in the mod-

eling of the SGS heat fluxes. An analogous idea has

actually been suggested in the RANS modeling ap-

proach, for which Batchelor [9] suggested the use of a

tensorial thermal diffusivity to model the heat flux vec-

tor, viz:

hu0ih
0i ¼ �Dik

ohhi
oxk

; ð15Þ

where Dik is the turbulent diffusivity tensor. The simplest

model falling in line with (15) in RANS is the so-called

GGDH approach [10], which expresses the turbulent heat

flux vector as

hu0ih
0i ¼ �Chrshu0iu0ki

ohhi
oxk

; ð16Þ

where Chr is a model constant and s is an appropriate
turbulent timescale.

While there have been a number of analyses of the

turbulent heat flux in RANS modeling, see e.g. [8,11],

very few have been reported on the behavior of the SGS

heat-flux transport. It is unclear whether the same or a

similar algebraic relation, which holds reasonably well in

the RANS heat-flux transport, would hold as well for

the SGS heat fluxes. Nevertheless, there have been some

studies on non-linear modeling of the SGS stress, see e.g.

[5,12]. For the SGS heat flux, however, little has been

reported in terms of similar analyses. We directly invoke

here an alignment assumption for the SGS heat flux in

analogy to the RANS modeling approach.

It is well known that the generation of turbulent

energy is essentially accomplished through large scales.

The energy is then transferred in a cascade manner to

the smaller and ever smaller scales and eventually dis-

sipated by the smallest structure of Kolmogorov scales.

In LES, we have the filtering cutoff in the inertial sub-

range of the energy spectra. The SGS scale itself would

neither generate nor destroy but transfers (forward and

backward) turbulent kinetic energy. Turning to the

turbulence heat fluxes, we expect that analogous inter-

changes exist between the large and small scales. The

transport equation for the SGS heat flux, hi, can be
symbolically written as

ohi
ot

þ o

oxj
ð�uujhiÞ ¼ Pih þ Gih þ Dih þ Dm

ih þ Dpih � em
ih; ð17Þ

where the right-hand side includes subsequently the

shear production, the buoyancy production, the SGS

diffusion, the viscous diffusion, the pressure transport

and the viscous dissipation [13]. The production terms in

the transport equation take the following forms, re-

spectively,

Pih ¼ �hj
o�uui
oxj

� sij
o�hh
oxj

; ð18Þ

Gih ¼ �bgiðhh � �hh�hhÞ: ð19Þ

Unlike in the RANS transport equation for turbulent

heat fluxes, the production term for the SGS heat fluxes,

Wih;SGS ¼ ðPih þ GihÞ, represents actually the SGS heat
flux dissipation. If hi > 0, this SGS dissipation indicates
the net heat flux exchange of forward ðWih;SGS > 0Þ and
backward ðWih;SGS < 0Þ transfer between resolved large-
scale and SGS thermal structures. If hi < 0, forward
(backward) transfer corresponds to Wih;SGS < 0
ðWih;SGS > 0Þ.
It is thus reasonable to assume that the SGS heat flux

is proportional to this net heat flux exchange. An
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alignment between hi and Wih;SGS can then be directly

invoked as follows:

hi ¼ ChTSGSðPih þ GihÞ

¼ �ChTSGS hj
o�uui
oxj

 
þ sij

o�hh
oxj

þ bgikh

!
; ð20Þ

where Ch is a scalar model coefficient, TSGS is an ap-

propriate SGS timescale and kh ¼ ðhh � �hh�hhÞ is the SGS
temperature variance. Since it is not intended to solve

the kh equation, a model must be used for kh, which can

be approximated by means of a local equilibrium as-

sumption for the kh equation between its production,

�hjðo�hh=oxjÞ, and viscous dissipation, eh, by approxi-

mating eh / kh=TSGS. This yields

kh ¼ �CkTSGShj
o�hh
oxj

; ð21Þ

where Ck is a scalar model coefficient.

Eqs. (20) and (21) form an implicit algebraic for-

mulation for the SGS heat flux vector, hi, which is rather
complicated to solve in LES. The model invokes more

than one model coefficient that need to be determined.

Moreover, singularities can occur for certain types of

behavior in the large-scale velocity and temperature

gradients. Instead, Eq. (20) is further simplified here in

terms of only the deviatoric part of the SGS stress ten-

sor, saij, and the large-scale temperature gradients. This
renders

hi ¼ �ChTSGSs
a
ij

o�hh
oxj

; ð22Þ

where

saij ¼ sij �
dij

3
skk ¼ �2mtSij:

Formulating the SGS timescale in terms of the filter size,
�DD, and the SGS viscosity, mt, i.e. TSGS / �DD2=mt, we get

hi ¼ Ct
�DD2 �SSik

o�hh
oxk

; ð23Þ

where Ct is a model coefficient that can be determined

using the dynamic procedure [14,15].

Unlike the isotropic diffusivity model, the proposed

heat flux model invokes a tensor diffusivity and takes

into account the temperature gradients in all directions

for each heat flux component. The model is able to

sustain the streamwise SGS heat flux through a cross-

stream large-scale temperature gradient in the presence

of SGS shear stress, even when the thermal gradient

vanishes in the streamwise direction.

It is interesting to note that, in modeling the SGS

stress, Leonard [6,16] applied the Taylor expansion to

the filtering operation and reached a non-linear tensor

eddy viscosity model from the Bardina scale-similarity

model [17]. In the simplest form by a truncation of high-

order terms, the Leonard expansion approximates the

Bardina model as

sij ¼ Cl
�DD2

o�uui
oxk

o�uuj
oxk

; ð24Þ

where Cl � Oð1Þ is a model constant.
Applying the Leonard expansion to the scale-simi-

larity model for the SGS heat flux of Bardina type, one

readily gets

hi ¼ Clh
�DD2

o�uui
oxk

o�hh
oxk

; ð25Þ

where Clh is a model constant. The proposed non-linear

heat flux model, Eq. (23), is then found be similar to a

scale-similarity model, as approximated in Eq. (25).

One of the main purposes of this work is to perform

an a posterior examination of the tensor eddy-diffusivity

model in comparison with the isotropic diffusivity model

for modeling buoyant flows. In the computation, the

SGS stress is represented by means of the linear eddy-

viscosity formulation, Eq. (3), in which the SGS vis-

cosity is computed using the Smagorinsky model, Eqs.

(5) and (6). Eq. (13) may also be used to directly intro-

duce the thermal effect of SGS into the mt formulation, in
which the SGS heat flux vector is represented by Eq.

(23), giving an implicit expression for mt. A further ap-
proximation may be used by invoking the SGS time

scaling in Eq. (6), viz. TSGS / 1=j�SSj. The SGS viscosity
can then be estimated from (13) as

mt ¼ C�DD2 j �SS j2
 

� b

rtj�SSj
gi �SSik

o�hh
oxk

!1=2
; ð26Þ

where rt ¼ ðC=CtÞ. Note that rt in (26) is not the SGS

Prandtl number, which must be specified (as a constant

or iteratively calculated from C and Ct). In the simula-

tion, we focus on the comparison of the tensor diffusivity

model (hereafter GGDH model), Eq. (23), with the linear

isotropic diffusivity model (hereafter Linear model), Eqs.

(9) and (10), for the SGS heat fluxes. Both heat flux

models have thus been used respectively in conjunction

with the dynamic Smagorinsky model based on Eqs. (5)

and (6), to account for the SGS stress by excluding the

buoyancy-related term from the mt formulation.
The model coefficients in these models, C and Ct, are

dynamically determined using the dynamic procedure

[14]. The grid filter is denoted here by an overbar. The

test filter, denoted by a curved overbar, has a width of
�DD
_

¼ 2�DD, as proposed by Germano et al. [14] to extrap-
olate the information from the smallest resolved scales.

The Germano identity reads

Lij ¼ Tij � sij
_ ¼ �uui�uuj

_
� �uui

_
�uuj
_
: ð27Þ
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For the heat fluxes, a similar identity holds as

Ej ¼ Hj � hj
_

¼ �uuj �hh
	


� �uuj
_
�hh
_

: ð28Þ

The right-hand side residual stresses and fluxes in

Eqs. (27) and (28) are resolvable quantities. Assuming a

scale invariance for the filtered stress tensor and heat

flux vector in scales on the test-filtering and grid-filtering

levels, one can then formulate the test-grid scale stress

tensor, Tij, and heat flux vector, Hj, in analogy to their

SGS counterparts. This suggests

Lij ¼ �2C�DD
_2

�xx
_
�SSij
_

þ 2C�DD2 �xx�SSij
	 


ð29Þ

and with GGDH model,

Ej ¼ Ct
�DD
_2

�SSjk
_ o�hh

oxk

	

� Ct

�DD2 �SSjk
o�hh
oxk

;

	 

ð30Þ

where C and Ct have been assumed to be independent of

the test-filtering operation.

By means of the least squares approach [15], the

model coefficient C is determined by

C ¼ � LijMij

2MijMij
ð31Þ

with

Mij ¼ �DD
_2

�xx
_
�SSij
_

� �DD2 �xx�SSij
	 


: ð32Þ

Similarly, the coefficient Ct is determined by

Ct ¼
EjQj

QjQj
; ð33Þ

where

Qj ¼ �DD
_2

�SSjk
_ o �hh

_

oxk
� �DD2 �SSjk

o�hh
oxk

:

	 

ð34Þ

In the computation, to avoid numerical instability,

the model coefficients have been assumed to be functions

of time and of inhomogeneous directions. A spatial av-

eraging for the numerators and denominators in (31)

and (33) was thus done over the direction of flow

homogeneity. The averaged model coefficients are then

C ¼ Cðt; xiÞ and Ct ¼ Ctðt; xiÞ, with xi as the direction of
flow inhomogenity. In the computation below, the flow

is inhomogeneous in the wall-normal (y or x2) direction.

3. Numerical results

The proposed SGS heat flux model is examined in

this section in LES for a buoyant flow in a vertical

channel. Direct numerical simulations of this type of

flow have been carried out by several research groups

[18,19]. The flow is induced by two infinite, vertical,

differentially heated walls. As a result of this configu-

ration, the fully developed mean flow is essentially of a

one-dimensional type in the vertical, streamwise (x) di-

rection with no thermal stratification. Periodic boundary

conditions are assumed in the streamwise and the

spanwise (z) directions. The Rayleigh number,

Ra ¼ gbDHh3=ma, considered in the computation is

5:4� 105, which is based on the gap width, Ly ¼ h, and
temperature difference, DH ¼ Hh � Hc, between the two

vertical isothermal walls (at y ¼ 0 and y ¼ h, respec-
tively). The Prandtl number is Pr ¼ 0:71. In the DNS by
Boudjemadi et al. [18], a computational domain with the

dimensions of Lx � Ly � Lz ¼ 2:5h� h� h was used in
the x; y and z directions, respectively. This domain was
used in the present simulation with a grid resolution of

66� 50� 34 (hereafter termed D1). A larger computa-
tion domain, Lx � Ly � Lz ¼ 12h� h� 6h, was em-

ployed by Versteegh and Nieuwstadt [19] in their DNS

at the same Ra. The two groups of DNS give somewhat

different results. For comparison, a larger computa-

tional domain was also employed in the present work. In

this case, the extension of the domain is Lx � Ly � Lz ¼
5h� h� 4h, corresponding to a grid resolution of

98� 50� 50 (hereafter termed D2). The grid was refined
near the vertical walls with yþ1 ¼ 0:88, while uniform
grid was used in the other two directions.

The differential governing equations were discretized

using the finite volume method, and thereby the box

filter is implicitly used. The second-order central differ-

encing scheme was used for spatial discretization and the

Crank–Nicolson scheme for temporal discretization. An

implicit, fractional-step time-advancement method was

used to solve the filtered governing equations. Bous-

sinesq approximation was employed in the simulation,

by which the fluid properties were evaluated on the basis

of a reference temperature, Hr ¼ ðHh þ HcÞ=2. A sym-

metric Gauss–Seidel method was used to solve the dis-

cretized transport equations of momentum and

temperature. The Poisson equation for the pressure is

solved using the multigrid method. All the quantities

were averaged over time and the homogeneous direc-

tions (xz-plane), denoted by h i. The time step adopted
in the computation is about Dt ¼ 0:0266h=Ub, where the

velocity scale Ub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDHh

p
. Typically, the time period

used to obtain turbulence statistics is about 50,000Dt
after the flow is fully developed.

The statistical results presented below have been

normalized using Ub and DH. Fig. 1 shows the resolved
mean streamwise velocity and mean temperature across

the gap between the side walls. The two models show

nearly identical predictions for the same domain. The

results with different domains are rather different how-

ever. With the small domain (D1), both models obvi-

ously overpredict the mean velocity as compared with

the DNS data of Boudjemadi et al. [18], for which the

peak is overestimated by about 10%. The mean tem-
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perature is also slightly overpredicted by both models.

Turning to the large domain (D2), the models never-

theless reproduce predictions that are in very good

agreement with the DNS data of Versteegh and

Nieuwstadt [19]. It should be noted that the numerical

results depend on the domain size used for both LES

and DNS. Since we have adopted periodic boundary

conditions in the streamwise and spanwise directions,

the computational domain in these directions should be

at least twice as large as those of the largest turbulence

scales, as pointed out by Versteegh and Nieuwstadt [19].

In the computation with the large domain (D2), the

correlation functions were checked. It was found that

the correlation reduces indeed to small values over a

distance of half of the domain size at the present Ra.

The resolved velocity fluctuations are presented in

Fig. 2. The streamwise velocity fluctuation, �uurms, is ob-
viously overestimated by both models, Fig. 2(a), but

with relatively larger discrepancies in the results of the

linear model. This overprediction using the D1 domain

is related in part to the overestimated mean velocity

gradient, ho�uu=oyi, which, together with the resolved

shear stress, hu0v0i, contributes to the production of the
streamwise resolved stress. On the other hand, buoyancy

plays an important role through the streamwise resolved

heat flux, although the mean temperature gradient

vanishes in this direction. The buoyancy production for

�uurms actually dominates the shear production, as the
velocity gradient changes sign near the wall [18]. As seen

in Fig. 5(a), the resolved streamwise heat flux is indeed

correspondingly overpredicted. The resolved wall-nor-

mal and spanwise velocity fluctuations, Fig. 2(b) and (c),

rely on the resolved velocity–pressure–gradient correla-

tion, which redistributes energy among the fluctuations.

Both models have reproduced the two components

reasonably well, giving nearly identical distributions for

the same computational domain. The predicted wall-

normal component, �vvrms, is in nearly identical agreement

with the DNS data for the D1 domain, Fig. 2(b), where,

however, the spanwise fluctuation is overpredicted. For

the D2 domain, �vvrms is underpredicted in comparison
with the DNS data by Versteegh and Nieuwstadt [19],

with which the spanwise components has reached good

agreement.

Fig. 3 gives the distribution of the resolved tem-

perature fluctuation. The results of both models are in

very good agreement with DNS data using both com-

putational domains. This implies that the production of
�hhrms has been reasonably resolved in terms of the wall-
normal heat flux, hv0h0i, and the temperature gradient.
This is indeed the case, as shown in Fig. 1 and as is

identified in Fig. 5(b) for the distribution of hv0h0i.
Fig. 4 shows the distribution of the resolved turbu-

lent shear stress, hu0v0i. The two models again yield very
similar predictions that are in better agreement with the

DNS data by Versteegh and Nieuwstadt [19] in the

center of the channel. A budget analysis of the turbulent

shear stress based on the DNS data [18] showed that

most of the shear production takes place in the central

part of the channel, while this production term becomes

negative near the wall where the velocity gradient

changes sign. The shear stress, however, remains positive

owing to the large, positive buoyancy production in

terms of the vertical streamwise heat flux hu0h0i. Note
that the streamwise heat flux would be predicted as zero

when using a linear eddy-diffusivity model in RANS

modeling and may consequently give a sign change in

the shear stress, in contrast to the results given by DNS

and by present LES.

Distribution of the resolved streamwise and wall-

normal heat fluxes, hu0h0i and hv0h0i are shown in Fig.
5(a) and (b), respectively. With the D1 domain, both

models reproduce hu0h0i an acceptable agreement with
the DNS data, although they overestimate this quantity

in the central region of the channel and the linear model

underpredicts it in the outer part of the near wall

Fig. 1. Distribution of mean velocity and temperature: (a) mean streamwise velocity; (b) mean temperature.
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boundary layer. With the D2 domain, large discrepan-

cies arise for hu0h0i between the LES result and the DNS
data. There may be several causes for this overprediction

in hu0h0i, including the overestimation of the resolved
shear stress in the central part of the channel (Fig. 4) and

the overestimated mean velocity gradient (with the D1

Fig. 2. Distributions of the resolved velocity fluctuations: (a) resolved streamwise velocity fluctuation; (b) resolved wall-normal

velocity fluctuation; (c) resolved spanwise velocity fluctuation.

Fig. 3. Distribution of the resolved temperature fluctuation. Fig. 4. Distributions for the resolved Reynolds shear stress.
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domain, see Fig. 1(a)). The two quantities contribute to

the production of the resolved streamwise heat flux.

Note that the grid resolution of D2 domain is coarser

than that of the D1 domain (about 25% larger of the cell

size in the streamwise direction). It is noted here that

additional simulations were performed (not shown in

this paper) with domains larger than the D2 domain,

including the DNS domain by Versteegh and Nieuw-

stadt [19] and a domain with the dimensions of

Lx � Ly � Lz ¼ 8h� h� 4h, for which the same amount
of grid nodes as in the D2 domain was used. It was

found that the resolved streamwise heat flux is particu-

larly sensitive to the grid resolution (or the computa-

tional domain). A coarse resolution (or a large

computational domain) renders a large prediction in

hu0h0i, as is also shown in the two groups of DNS with
different domains. Nevertheless, the resolved wall-nor-

mal heat flux is reproduced reasonably well as compared

with the DNS data, Fig. 5(b). Note that the gradient

production in the transport equation for hv0h0i is asso-
ciated with the wall-normal stress component, hv0v0i,
which was reasonably reproduced by both models as

shown in Fig. 2(b).

In general, the GGDH model yields predictions that

are similar to those of the linear model, while the former

is able to attain some visible improvements for the flow

considered. Note that both models have been used in

conjunction with the same SGS eddy viscosity model to

handle the SGS stress. This implies that the modeling of

the SGS heat flux gives its impact on the velocities es-

sentially through the simulation of the large-scale ther-

mal field, whereby the buoyancy impose its effects on the

large-scale momentum transport in the streamwise

(gravitational) direction and, consequently, modifies the

large-scale turbulence structure and statistics. The effect

of using different SGS heat flux models has indeed been

reflected most sensitively in the streamwise velocity

fluctuation, as shown in Fig. 2(a).

A straightforward means of observing to what degree

the SGS effect has been represented is to look into the

SGS statistics, which are directly approximated by

the SGS model itself. The discussion below is based on

the results obtained with the D2 domain. A comparison

is made in Fig. 6 of the time-averaged model coefficients.

The linear and GGDH heat flux models hardly exercise

any difference in the model coefficient hCi, Fig. 6(a),
since it was dynamically determined using the same eddy

viscosity model as the base model. As expected, never-

theless, the coefficient hCti, Fig. 6(b), is very different for
the two heat flux models. The coefficient of the GGDH

model is about 4–5 times larger than that of the linear

model. Both hCi and hCti remain approximately at a
constant level in the central region of the channel. Fig.

6(c) illustrates the ratio rt ¼ hCi=hCti. In a large part of
the channel away from the wall, rt remains constant.

For the GGDH mode, rt � 0:075 in the central part of
the channel. For the linear model, rt is actually the SGS

Prandtl number, Prt, which has remained at about 0.4 in
the region away from the wall. This is the standard value

of Prt recommended by Eidson [7], and is also recovered
dynamically in LES for RB convection [1,3]. It seems

that Prt is less dependent on flow problems than hCi and
hCti and may be taken as a constant in simulations of a
large range of thermal flows.

At the Ra number considered, the buoyant flow is

characterized by a relatively low turbulence level. This

may make the SGS turbulence less effective on large

scales. Fig. 7 shows the distribution of time-averaged

SGS eddy viscosity and its variance (normalized by the

molecular one), hmti=m, and mt;rms=m with the GGDH
model (the linear model gives nearly identical distribu-

tions). The time-averaged eddy viscosity is generally less

than 30% of the molecular viscosity. It suggests that the

simulated mean energy transfer from resolved to subgrid

scales is rather weak. Moreover, although rather large

instantaneous SGSviscosity (about 10 times larger than m)

Fig. 5. Distributions of resolved turbulent heat fluxes: (a) resolved streamwise heat flux; (b) resolved wall-normal heat flux.
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has been observed in the computation, the mean maxi-

mum energy transfer from large to small eddies repre-

sented by the SGS model in terms of ðhmti þ mt;rmsÞ is only

marginally comparable with the viscous one, as illus-

trated in Fig. 7. To verify whether the present resolution

is over-refined, a simulation was done with a coarse grid

in the wall-normal direction (34 cells compared with the

present 48 cells). It was found that the time-averaged

SGS viscosity remains at about the same level as was

obtained with the present grid. The weak energy oc-

currence between the large and subgrid scales may lar-

gely be due to the overall weak turbulence intensity in

the flow considered. This will be discussed further below

by means of an analysis of the energy spectra.

A more comprehensive illustration of the modeling of

the effect of subgrid scales can be gained from the

modeled SGS turbulence statistics. Fig. 8 plots the dis-

tributions of time-averaged SGS shear stress and heat

fluxes. Again, the use of the same linear SGS stress

model in conjunction with different heat flux models

renders similar SGS shear stress, Fig. 8(a). Corre-

sponding to the low SGS, viscosity, the time-averaged

SGS shear stress, hs12i, is rather small in the channel
center as compared with its resolved counterpart shown

in Fig. 4. The linear and GGDH heat-flux models re-

Fig. 6. Time-averaged model coefficients (D2 domain).

Fig. 7. Time-averaged SGS eddy viscosity and its fluctuation

(GGDH model, D2 domain).
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produce various distributions of the SGS heat fluxes, as

shown in Fig. 8(b). In the near-wall region, they are

particularly comparable to the resolved heat fluxes pre-

sented in Fig. 5(a) and (b). Due to the statistically un-

stratified flow feature in the vertical streamwise

direction, the linear model yields a negligibly small time-

averaged SGS heat flux, hh1i, as expressed by Eq. (14).
Note that the linear model has generally yielded

jhh1ij < jhh2ij. As we have argued, jhh1ij should be larger
than jhh2ij in line with the fact that hu0h0i is larger that
hv0h0i. The GGDH model complies with this argument,

as shown in Fig. 8(b), which gives indeed jhh1ij > jhh2ij,
as desired.

It is interesting to note that the SGS turbulence sta-

tistics change sign at about the maximum velocity

ðy=h � 0:085 or yþ � 10:5) in the near-wall boundary
layer, as shown in Fig. 8(b), while this is not the case for

hh2i with the linear model, which nevertheless keeps
overall negative values owing to the positive tempera-

ture gradient across the channel. The small value of hh1i
produced by the linear model implies a weak correction

between the SGS diffusivity and the large-scale tem-

perature gradient in the streamwise direction. Because of

the relatively strong correlation between the large-scale

strain rate and the temperature gradient, h�SS12ðo�hh=ox2Þi,
the GGDHmodel by contrast has significantly enhanced

hh1i. The result is opposite for the wall-normal SGS
heat-flux component, hh2i, for which the GGDH model
yields smaller values than does the linear model, because

the large strain rate and the cross-stream temperature

gradient, �SS21 and ðo�hh=ox2Þ, are respectively diminished
by small values of ðo�hh=ox1Þ and �SS22.
As pointed out previously, the GGDH heat flux

model is somewhat similar to a scale-similarity model of

Bardina type. In a priori tests [17], the scale-similarity

model for SGS stresses was verified to account for an

excessive amount of energy backscatter. In an analysis

of the production term (representing the SGS heat-flux

dissipation) in the transport equation of SGS heat-flux,

it was found that the GGDH model has yielded a large

amount of backward (reverse) transfer particularly for

the wall-normal heat flux as compared with the linear

model [13].

It is known that a well-resolved LES should have the

filtering cutoff in the inertial subrange of the energy

spectrum, where the energy decays with wave number, k

as k�5=3. For turbulent thermal flows with appreciable
buoyant influence, a number of experimental measure-

ments have shown that a so-called buoyancy subrange

with steep dependence on k exists next to the k�5=3

subrange in the energy spectra [20–22]. The buoyancy

subrange is characterized by k�m dependence with

m > 5=3, as asserted by Lumley [23]. In Fig. 9, we plot
the one-dimensional spectra for the filtered velocity and

temperature as functions of wave numbers in the

streamwise direction, kx. They are computed from the

GGDH model based on the D2 domain (the spectra by

the linear model are very similar). The resolution barrier

in the streamwise ðxÞ direction is kxc ¼ p=Dx � 603. The
spectra are obtained at two different points, yþ � 17 and
60, respectively, located outside of the velocity peak and

near the channel center. It is shown that the inertial

subrange with k�5=3 is not as extended owing to the
relatively low Ra number considered. For both the

velocity and thermal fluctuations, the spectra indeed

exhibit a k�3 buoyancy subrange at large wave numbers,
where the turbulence is rather isotropic. The buoyancy

force has appreciably modified the transformation of the

potential energy to kinetic energy with an efficiency that

decreases with increasing the eddy size (with small wave

Fig. 8. Comparison of time-averaged SGS turbulence statistics (D2 domain): (a) SGS shear stress; (b) SGS heat fluxes, hh1i and hh2i in
the streamwise and wall-normal direction, respectively.
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numbers). In the central part ðyþ � 60 in Fig. 9(b)), the
flow is more isotropic than at the location in the

boundary layer ðyþ � 17 in Fig. 9(a)), where the thermal
fluctuation is relatively intensive (Fig. 9(c)).

4. Conclusions

A non-linear SGS heat-flux model was proposed in

large eddy simulations of turbulent thermal flows. The

physical reasoning for formulating the present model

was discussed. The model was examined in large eddy

simulation for the buoyant flow in a vertical channel

with differentially heated side walls. The model is able to

yield very encouraging results as compared with the

isotropic SGS diffusivity model and DNS data.

The proposal SGS heat-flux model does not employ a

scalar SGS diffusivity. It is similar to some extent to the

GGDH approach in statistical RANS modeling, yet is

more plausible for subgrid turbulence by assuming that

the SGS heat flux is proportional to the SGS heat-flux

dissipation between the resolved and subgrid scales. It is

argued that the mean SGS turbulence statistics repre-

sented by the SGS model should be in harmony with its

mean resolved counterpart in the reduction or increment

of turbulence intensity. Corresponding to the resolved

turbulent heat fluxes, of which the streamwise compo-

nent is, for example, larger than the wall-normal one as

in an infinite cavity flow where the statistical thermal

gradient vanishes in the streamwise direction, the

GGDH model renders a mean streamwise SGS heat flux

larger than that in the wall-normal direction. In esti-

mation of the SGS thermal turbulence, the GGDH SGS

heat flux model is shown to be generally different from

the isotropic SGS diffusivity model.

The proposed model formulates the SGS heat flux in

terms of the large-scale strain rate and the temperature

gradient in all directions. In the presence of SGS

stresses, it thus enables the large-scale thermal gradient

in other directions to modify the SGS heat flux in the

Fig. 9. One-dimensional spectra vs wavenumbers in the streamwise direction: (a) spectra for velocity fluctuations at

yþ � 17 ðy=h ¼ 0:1383Þ; (b) spectra for velocity fluctuations at yþ � 60 ðy=h ¼ 0:4857Þ; (c) spectra for temperature fluctuations at two
locations.

1404 S.-H. Peng, L. Davidson / International Journal of Heat and Mass Transfer 45 (2002) 1393–1405



direction with no statistical temperature gradient. The

model turns out to be similar to a scale-similarity heat

flux model, provided that the Leonard expansion is

applied to a scale-similarity heat flux model of the

Bardina type.

Finally, it is noted here that the main purpose of this

work is to present the non-linear (GGDH) SGS heat flux

model and to examine its performance in large eddy

simulation for turbulent thermal flows in comparison

with the linear isotropic SGS diffusivity model. Admit-

tedly, the Ra in the present test case is relatively low,

which has somewhat made the SGS model less effective

in the simulation. To proceed with comprehensive ana-

lyses of the model in representing the flow physics, it is

preferable to perform a priori tests with DNS data. To

gain more perceptive insight of the model, on the other

hand, extensive a posterior simulations must be carried

out for flows with intensive turbulence and significant

heat transfer.
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