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1 Introduction

Turbulence modeling is one of the most important aspects
in numerical simulations of fluid flow and heat transfer. In
conjunction with empirical wall functions, the conventional &-
¢ model (Launder and Spalding, 1974) has been widely used
in engineering practice, and has turned out a success in many
applications. Nevertheless, some problems exist when using the
wall-function method (Patel et al., 1984 ). The lack of universal-
ity of the wall functions has been frequently criticized. Exten-
sive research has thus been made to develop near-wall low-
Reynolds-nuniber (LRN) corrections.

Most of LRN models have been developed based on the k-¢
model. A major deficiency with the k-e-based LRN models is
the uncertainty of specifying e at the wall. There are other
deficiencies with some LRN k-¢ models (Peng et al., 1996a).
The damping functions used in LRN models usually rely on
wall-proximity-dependent variables (e.g., y* = u,y/v and R, =
k'"y/v etc.). This gives rise to complications in numerics when
solving for internal flows with non-planar wall geometries. Fur-
ther, Savill (1995) has indicated that LRN models that use
damping functions dependent on the turbulent Reynolds num-
ber, R,, are more appropriate for predicting low-Reynolds-num-
ber transitions than those that only introduce a dependence on
wall proximity. In addition, for some turbulent recirculating
flows of engineering interest, e.g., low-velocity displacement
ventilation flows, where laminar and transitional phenomena
exist locally not only in near-wall regions-but also in regions
remote from the walls, using an LRN k-¢ model often turns out
unrealistic laminar solutions (Davidson, 1989).

In recent years, some new LRN two-equation models have
been proposed as alternatives to the LRN k-e models, e.g., the
LRN k-7 model by Speziale et al. (1992). Wilcox has developed
a standard two-equation k-w model (Wilcox, 1988) and its LRN
variant (Wilcox, 1994). The standard k-w model has been vali-
dated for predicting boundary layer and free shear flows (Wil-
cox, 1988). Combining the standard k-w model with the k-¢
model, Menter (1994 ) developed two new models, and obtained

Contributed by the Fluids Engineering Division for publication in the Journal
of Fluids Engineering. Manuscript received by the Fluids Engineering Division
July 8, 1996; revised manuscript received May 5, 1997. Associate Technical
Editor: P. M. Sockol.

Journal of Fluids Engineering

Copyright © 1997 by ASME

model is applied to channel flow, backward-facing step flow with a large expansion
ratio (H/h = 6), and recirculating flow in a ventilation enclosure. The predictions
are considerably improved.

predictions improved for adverse pressure gradient flows. Patel
and Yoon (1995) used the standard k-w model to solve sepa-
rated flows over rough surfaces, and reported good accuracy.
Abid et al. (1995) used the k-w model in combination with
an explicit algebraic stress model for recirculating flows, and
obtained results in good agreement with experiments. Larsson
(1996) applied the k-w model to predictions of turbine blade
heat transfer, and concluded that the k-w model performs as
well as or better than the k-e model. Some other recent applica-
tions with the standard k-w model can also be found, see e.g.,
Liu and Zheng (1994) and Huang and Bradshaw (1995). With
both the wall-function method and the extended-to-wall method
(integrating the model directly towards the wall surface). Peng
et al. (1996b) recently applied the standard k-w model to recir-
culating flows. It was found that this model overpredicted the
reattachment length for the flow behind a backward-facing step
with a large expansion ratio (H/h = 6).

With the LRN k-w model, satisfactory results have been re-
ported for simulating transitional boundary layer flows by
means of the concept of numerical roughness strip (Wilcox,
1994). One of the attractive features of Wilcox's LRN model is
that it uses damping functions that depend only on the turbulent
Reynolds number, R,. It is therefore convenient to apply this
model to internal flows with complex geometries. Moreover,
the k-w model possesses a nontrivial laminar solution for w as
k — 0. It can thus be expected to be able to capture flow charac-
teristics for e.g. low-velocity displacement ventilation flows of
which an LRN k-e model fails to handle. However, the LRN &-
w model, as its standard form, yields significant inaccuracy
in predictions for the flow over a large backward-facing step.
Furthermore, this model does not reproduce correct asymptotic
behavior for —u'v’, with —u’v’ « y* ag y = 0. It has been
argued that the correct wall-limiting condition for —u'v’, as
well as for e, contributes to the improvement of predictions of
by-pass transitions (Savill, 1995).

This paper presents an improved form of the LRN k-w model.
A turbulent cross-diffusion term is added to the modeled w-
equation, in analogy to its viscous counterpart in the exact trans-
port equation. The model constants are re-established. New R-
dependent damping functions are devised to make the model
asymptotically consistent as the wall is approached. In addition,
the mechanism for simulating boundary layer transitions is pre-
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served. The modified model is applied to channel flow, a back-
ward-facing step flow with a large expansion ratio, and recircu-
lating flow in a ventilation enclosure. The results are compared
with DNS data, experimental data and predictions given by

other LRN models. The effects due to the modification are-

discussed.

2 Development of the Modified k- Model

In the k-w model, it is assumed that the turbulence is charac-
terized by a velocity scale, k'2, and a length scale, k'"*/w. The
eddy viscosity is thus formulated as v, ~ k/w. Wilcox termed
w as the specific dissipation rate of k, which is actually the
reciprocal turbulent time scale, 1/7. The transport equations
for k and w, together with the equations for continuity and
momentum, form the mathematical description. In Wilcox’s
LRN k-w model (1994), the k- and w-transport equations are

written as
8k . P W\ Ok
axj ’ Ckﬂp“’ (9Xj H O 0)(/ ( )
a jw «
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Py is the production of turbulence energy, and for incompress-
ible flows takes the form

61 Ou;  Ou;\ O
Py wiu} = + | — 3
TP e <6xj 6x,-) B, )
With the Kolmogorov-Prandtl relation, the eddy viscosity, .,
is defined by

efy )
w

In Wilcox’s model, the closure constants are determined as
¢, = 1.0, ¢, = 0.09, ¢, = 0.56, ¢, = 0.075, 0y = 0, = 2.0,
and the damping functions are

fo = (0.1 + R/27T)[(L + RI2T)f]7 7

where R, is the turbulent Reynolds number, and R, = k/(wv).

2.1 Near-Wall Asymptotic Behavior. In the vicinity of
the wall, the fluctuating velocity components can be written
with the Taylor series expansion as

’

u'=ay+ay+ ... (8)
= byy? + ... 9)

!

w' =y + eyt oL (10)
where a;, b;, and ¢; are functions of x, z, #, and the coordinate
y is normal to the wall.

With the aid of equations (8—10) and the definitions of &
and ¢, the asymptotic behavior of wall turbulence can be repre-
sented by the relations: k « y2, € = y°, u, = y*, —u'v’ =y,
P, « y* and R, = y* as y = 0. Note that u* = y ™ has been used
near the wall and thus (u/8y) = y°. The specific dissipation
rate w can be expressed in terms of k and ¢, i.e. w ~ e/k. This
gives w = y %, From Egs. (3) and (4), f, = y ™" is thus required
to make the near-wall shear stress asymptotically consistent.

Close to the wall, the turbulent transport term is negligible
in comparison to the dissipation and the viscous diffusion
(Speziale et al., 1992). With the aid of DNS data, Mansour et
al. (1989) further pointed out that the pressure diffusion term
in the turbulent kinetic-energy budget remains negligibly small
compared to the other terms. In the immediate wall proximity,
Wilcox (1988) showed that the balance between the dissipation
term and the molecular diffusion term holds in the equations
for both k and w, from which the asymptotic solutions for &
and w can be derived

y — 0, with

n=(1+V1+24cfilc.,)/2 (11)

k—cy" as

and

(12)

w —

as v—0
sz,\’

From Eq. (12), it is apparent that c., must satisfy c., = y°,
$0 as to keep the correct asymptotic behavior for w. In equation
(11), the damping function for coefficient ¢, i.e. fi, should
then asymptotically behave as f; = y°. Furthermore, the follow-
ing relation is needed in order to ensure k = y*

* = dimensionless distance from

fu = (0.025 + R/6)(1 + R/6)™' (5)
fi = [0.278 + (R/8)*1[1 + (R,/8)*]1"! (6)
Nomenclature
Ciy Cus Cut, Cuz = turbulence model con- R, = turbulent Reynolds number
stants T = height of outlet

fus fo, o = damping functions of
turbulence model
h = height of inlet
H = height of computa-
tional domain
k = turbulent kinetic en-
ergy
L, = turbulent length scale
p = pressure
Re = inlet-based Reynolds
number, Uph/v
Re, = Reynolds number,
based on friction ve-
locity, u.(H/2)/v
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U, = inlet velocity
u, = Kolmogorov velocity scale
u,, = mean velocity of channel
flow
u; = mean velocity component in
direction x;
u, = friction velocity, (7./p)""*
u',v', w' = fluctuating velocities in x, y,
z directions, respectively
u* = dimensionless velocity, u/u,
W = height of backward-facing
step
= Cartesian space coordinate
x, = reattachment length of back-
ward-facing step flow

wall surface, u,y/v
e = dissipation rate of k
7 = Kolmogorov length scale
«x = von Kdrmén constant
p = molecular dynamic viscosity
turbulent dynamic viscosity
v = kinematic viscosity, p/p
v, = turbulent kinematic viscosity,
wl p
p = density of air
oy, 0., = model constants
7 = turbulent time scale
T, = wall shear stress
w = specific dissipation rate of k
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(exfi)lcw = 113 as (13)

Since Dw/Dt = (1/k)(De/Dt) — (w/k)(Dk/Dt), the exact
w-equation can readily be obtained from the exact k- and e-
equations (Speziale et al., 1992; Peng et al., 1996b)

O(pu;w) _

(fE_AEE + ( Wt — e
ax, Kk p k

+<£_g>+< 62w +2._‘u'§_('(_).§.li> (14)
k k # Ox;0x;  k Ox; Ox;
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where P,, 1. and D, are the production, destruction and diffu-
sive transport terms, respectively, in the exact e-equation, while
P and D are the production and diffusive transport terms in the
exact k-equation. The exact production term for w is P, = (P,
~ wP)/k, and P, o y, P < y* as y — 0. Therefore, P, < y~'
near the wall. Compared with the modeled production term in
the w-equation, this term will be asymptotically consistent if
the damping function £, = y® as y = 0.

2.2 The Modified w-Equation and Model Constants. In
Wilcox's LRN model, the same model equations and constants
are adopted as those in the standard k-w model, but the inconsis-
tent wall-limiting behavior of k is corrected by means of the
damping functions. Wilcox’s LRN model is capable of satisfac-
torily yielding the near-wall turbulence level for attached turbu-
lent flows, e.g., channel flows. However, it is found in this study
that the reattachment length is significantly overpredicted when
this LRN model is applied to a separated flow over a backward-
facing step with a large expansion ratio. To improve it, the w-
equation and the model constants need to be modified.

In analogy to its viscous counterpart, the turbulent diffusion
term in the exact w-equation (Eq. (14)) is modeled with two
parts: a second-order diffusion term and a first-order cross-
diffusion term. In the modeled w-equation, however, the viscous
cross-diffusion term has to be dropped to make the asymptotical
solution of w realizable as the wall is approached (Peng et al.,
1996b). Otherwise, a negative w value arises close to the wall
unless ¢, is damped. Keeping the viscous cross-diffusion term,
Speziale et al. (1992) showed that the near-wall asymptotical
solution of w will behave correctly if ¢, takes the form of c..
= (constant- f, — 1), where f, is a damping function and f,
y? as y = 0. This decomposition, however, will destroy the
mechanism preserved in the model for transition simulation
according to Wilcox (1994). With the LRN k-w model, the
closure constants have been established to ensure that the pro-
duction of k is amplified earlier than that of w. This is an
essential condition for the k-w model to account for transition
from laminar to turbulence. This condition consequently re-
quires that a relation, as given by Eq. (17a) in Section 2.3,
must be held for the coefficients of the production and dissipa-
tion terms in the k- and w-equation. It is obvious that the above
decomposition of c,, does not satisfy this relation. Instead of
damping c,,, we feel that it is more practical to preserve the
mechanism for transition simulation in the modified model as
well as in Wilcox’s model by dropping the viscous cross-diffu-
sion term. The modified w-equation then takes the following
form

9(pu;w) _

w
Cofy = Py = Corpw?
ox, of. X k 2P

15} i\ Ow w [ Ok 6w)
+ = + BV B ==) 5
Ox; [(M crw> 6x,-] “k <8x, Ox; (15)

Compared to the original w-equation in Wilcox’s model (Eq.
(2)), an additional turbulent cross-diffusion term is included
in Eq. (15). Note that the inclusion of this term makes the
present model somewhat similar to the k-¢ model, since a similar
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turbulent cross-diffusion term can be reproduced by trans-
forming the modeled e-equation into an w-equation.

In order to eliminate the sensitivity of the k-w model to the
freestream value of w when solving free shear flows, Menter
(1992) has proposed an w-equation similar to equation (15).
A so-called ‘‘blending function’’ is used to determine c,,. As a
result, the turbulent cross-diffusion term disappears close to the
wall surface, while being switched on in regions away from the
solid boundaries. This approach becomes particularly functional
when approaching the shear layer edge of a free shear flow.
Wilcox (1993) has also given a simple and straightforward
proposal that is nearly identical to Menter’s blending function.
When applying either Menter’s or Wilcox’s approach to internal
recirculating flows, however, the role played by the cross-diffu-
sion term in the w-equation is negligibly small, since the gradi-
ents for both k and w often tend to vanish in regions away
from walls. These approaches then possess a behavior similar
to Wilcox’s standard model for internal recirculating flows. In
contrast to both Menter’s and Wilcox’s approaches, the present
modification, initiated from the exact w-equation, makes the
cross-diffusion term generalized in both near-wall and far-wall
regions. Close to the wall, the gradients of k and w are often
of opposite sign. The turbulent cross-diffusion term as a whole
reduces w and thus raises k near the wall, as desired.

With the e-equation derived from the original k-w model (i.e.,
from Egs. (1) and (2)), Wilcox (1993) has shown that an extra
cross-diffusion term appears in the resultant e-equation. This
term, similar to the so-called ‘“Yap correction’’, helps to sup-
press the rate of increase of the near-wall turbulent length scale,
which is often overpredicted by the k-¢ model for wall-bounded
flows in the presence of adverse pressure gradient. When using
the modified w-equation (Eq. (15)), it is easy to show that a
similar cross-diffusion term retains in the resultant e-equation,
only if ¢, < (1/o, + 1/0,). The effect of the turbulent cross-
diffusion term on the turbulent length scale will be further dis-
cussed in Section 3, by investigating its distribution near the
wall and its effects on the turbulent length scale near the reat-
tachment zone for a separated flow.

It is desirable, for an LRN model, to adopt the same model
constants as used in its high-Re-number form (the parent
model). The closure constants for the high-Re-number form of
the present LRN model were evaluated and discussed in a previ-
ous work (Peng et al., 1996b). For fully developed turbulence,
the model constants were re-established as

¢, = 1.0, c.2 = 0.075,

ca = 0.09, c, =042,

c, =075 o0,=08, o,=135 (16)

2.3 Damping Functions. In order not to violate the mech-
anism for describing transitions contained in the k and w equa-
tions, the following relations are required (Wilcox, 1994)

Cwlfwc;.gfp < Cu,2 @S R, -0 (1761)

(afi)l (e fy) 1 as

Equations (17a) and (17b), together with Eq. (13), form
the lower bound when determining the model constants for
viscous modification as the wall is approached (y = 0 or R, —
0). Equation ( 16) gives the upper bound of the model constants
for fully developed turbulence as R, = . The coefficient c,,;,
as R, — o, is re-evaluated in the predictions of the reattachment
length for backward-facing step flow. For local-equilibrium
wall-turbulent flows, this coefficient must also satisfy

R —0 (17b)

Cu2 K2

Ck O VCiCy

To make numerical implementation convenient for internal
flows with complex geometries, the turbulent Reynolds number,

(18)
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R,, is used as the only dependent variable in the damping func-
tions.
In view of the above discussion, the following model func-
_tions are proposed

fu=0025 + {1 - exp[—(%)am}}
X {0.975 + 0'2?1 ¢xp[~(%)z]} (19)

fi=1-0722 exp[—<%>4]

et aae] ()]

As the wall is approached, applying the Taylor series expan-
sion to Eq. (19) gives f, ~ (1/R?* + ...), which complies
with the correct asymptotic condition f, « y~'. Furthermore,
using Eq. (4) gives

o~ (kK/w)RTV ~ Lag,

where L, ~ k'"?/w is the turbulent length scale, and 1 is the
Kolmogorov velocity scale, u, ~ (vkw)''*. Equation (22) thus
suggests that the near-wall eddy viscosity is determined by the
small-scale eddies. The turbulent length scale, L,, is proportional
to y* as the wall is approached, and thus decreases towards the
wall surface. As L, approaches the Kolmogorov length scale,
~ (V3/kw)''*, the eddy viscosity is reduced to the same order
as the molecular viscosity. This is consistent with the analysis
of Kolmogorov behavior in near-wall turbulence by Shih and
Lumley (1993). With the present proposal, the turbulent effect
is therefore suppressed by damping the turbulent velocity scale
as the wall is approached.

With the damping functions in Egs. (19-21), the asymptotic
behavior in the modified model is consistently satisfied for near-
wall turbulence, and the mechanism of simulating transitions,
contained in the k- and w-equations, is preserved.

(20)

(21

(22)

3 Application of the Model

In this section, the present model is first applied to a fully
developed channel flow, and the results are compared with DNS

w

——; ;

w Hh=6 |H
IR
< xlOOh |

Fig. 1(a) Backward-facing step

‘f—‘ > Uy
h=0056 H H T
T=016H e x

Fig. 1(b) Confined ventilation enciosure

Fig. 1 Configurations for the computed recirculating flows
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Fig. 2 Typical convergence procedure when solving for the flow in the
ventilation enclosure

data. Two internal recirculating flows are then solved: the sepa-
rated flow over a backward-facing step with a large expansion
ratio, and the flow in a confined ventilation enclosure, see Figs.
1(a) and 1(b). The predictions are compared with experimen-
tal data. The effects of the modification are discussed.

3.1 Numerical Procedure. The numerical procedure can
affect the results of turbulence models. Attention was thus paid
to the numerics so as to make the model appraisal meaningful.
The calculation was performed with a finite-volume-based com-
puter program (Davidson and Farhanieh, 1992). The third-order
QUICK scheme (Leonard, 1979) was used for the convection
terms in the momentum equations, and the hybrid upwind/cen-
tral differencing scheme (Patankar, 1980) was employed in
the turbulence-transport equations to ensure a stable solution
procedure. The other terms were discretized with the second-
order central difference. A collocated grid was used with the
aid of Rhie-Chow interpolation (Rhie and Chow, 1983) to avoid
non-physical oscillation. The SIMPLEC algorithm was used to
handle the pressure-velocity coupling. When solving the dis-
crete algebraic equation for w, the turbulent cross-diffusion term
was added to the right-hand side if it was positive, otherwise
to the left-hand side to increase the diagonal dominance for the
resulting coefficient matrix.

The iterative solution process was considered to be converged
when the sum of absolute cell residuals for each equation, nor-
malized by the respective inlet fluxes, was less than 10 ™*. When
solving the ventilation flow in Fig. 1 (b) with the present model
and the LRN k-¢ model by Abe et al. (1994; AKN model),
respectively, a typical convergence procedure is shown in Fig.
2, where the normalized residual is plotted versus the iteration
number. A faster convergence is shown with the k-w model.
This has also been pointed out earlier by Peng et al. (1996b).

The boundary condition at the inlet was prescribed for all
the variables. At the outlet, the streamwise derivatives of the
flow variables were assumed to be zero. For the flow in the
two-dimensional ventilation enclosure, the velocity component
normal to the outlet was specified from global mass conserva-
tion. At the wall, u = v = 0 and k = 0. Equation (12) was used
at the near-wall first grid point as the boundary condition of w.

Adopting the asymptotical solution of w as the boundary
condition, requires a very fine grid close to the wall. Extensive
tests were made to establish the grid mesh. The grid was nonuni-
formly distributed, and controlled by the ratio of two successive
cells, i.e. A = A, /A, . The grid dependence was investigated
by varying both \ and the number of mesh points. Various grids
were tested for each case considered in this study. The relative
difference, Ry, between the solutions yielded with different
grids was checked. It is required to be sufficiently small to
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Fig. 3 Evaluation of the relative difference of solutions with two grids
(102 x 132 and 204 x 264) for the flow in the ventilation enclosure
(at x = 2H)

minimize the dependence of the solution on the grid used. For
the flow in the confined ventilation enclosure, the relative differ-
ences for « and k at v = 2H, i.e., R, and R,, respectively, are
shown in Fig. 3 as an example to demonstrate the grid depen-
dence. The solutions used for estimating R, and R, in Fig. 3
were obtained with two grids of 102 X 132 and 204 X 264.
The solution hardly varies with refining grid when the grid used
has already been sufficiently fine. Using N = 1.05 for a channel
flow, Yang and Shih (1993) showed that the solutions were
almost identical as the cross-stream mesh points varied from
30 to 150. For the channel flow considered here, 100 cross-
stream grid points were used. It was found that the results
became rather insensitive to the number of the mesh points as
long as there were two or more points arranged in y* < 1. This
has also been observed by Yang and Shih (1993). A 202 X 86
mesh was used when solving the backward-facing step flow,
and 102 X 132 grid points were used to calculate the recirculat-
ing flow in the ventilation enclosure. In general, two or more
points were located within the range of y* < 1. For all the
flows considered here, numerical tests disclosed that nearly grid-
independent solutions were reached.

3.2 Fully Developed Channel Flow. To assess the modi-
fied model, the channel flow at Re, = 395 was first solved. The
results were compared with both the DNS data (Kim, 1990)
and the predictions obtained with other LRN models, including
the Lam-Bremhorst k-¢ model (LB model; Lam and Bremhorst,
1981), the Abe-Kondoh-Nagano k-¢ model (AKN model; Abe
et al., 1994) and Wilcox’s LRN k-w model (Wilcox model;
Wilcox, 1994). Wilcox’s standard k-w model (SKW model;
Wilcox, 1988) was also included in the comparison, since this
model can be used by integrating it directly to the wall surface
without using the wall function as a bridge (termed here the
extended-to-wall method).

Figure 4 shows the distributions of mean velocity and turbu-
lent kinetic energy: The near-wall maximum (peak) values for
k*, as well as the friction velocity u., are compared in Table
1. The present model shows reasonable agreement with the
DNS data. Both Wilcox’s and the present LRN models predict
satisfactory profiles for the mean velocity and the turbulent
kinetic energy, particularly in the near-wall region. The present
model shows acceptable abilities for accommodating the near-
wall low-Reynolds-number effect for attached turbulent flows.

When using Wilcox’s standard k-w model (the SKW model)
with the extended-to-wall method, the result gives rise to the
largest error, compared to the DNS data. This model consider-
ably underpredicts the near-wall peak value of k. The SKW
model also overpredicts the wall shear stress (and thus ., see
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25 — - - — SKW model
------ Wilcox model -
20 4 —-—- LB model 2
— = — AKN model
15 A

Fig. 4(b) Turbulent kinetic energy

Fig. 4 Predictions for turbulent channel flow at Re, = 395 (Re = 13750)

Table 1). The u*-profile deteriorates in the far-wall region
because u, is overpredicted, though the non-normalized mean
velocity predicted there is actually in reasonable agreement with
the DNS data. The dissatisfactory predictions for near-wall tur-
bulence imply that the SKW model cannot satisfactorily account
for near-wall viscous effects. It is therefore inappropriate to
integrate this model directly towards the wall surface. However,
when the extended-to-wall method was applied to internal recir-
culating flows with the standard form of the present model, i.e.
with the damping functions set to unity, reasonable predictions
were obtained, particularly for the mean flow profiles (Peng et
al., 1996b). By using the SKW model with the extended-to-
wall method, satisfactory simulations have been reported in
other engineering applications, e.g., by Wilcox (1988), Patel
and Yoon (1995), Menter (1994), and Liu and Zheng (1994).

The addition of the turbulent cross-diffusion term enhances
the diffusion of w. To make the diffusion of k compatible, it is
thus necessary to set oy < 0., see Eq. (16). This also improves
the near-centerline predictions, where the dissipations of both
k and w are mainly balanced by their diffusions, with the produc-
tion terms negligible.

3.3 Backward-Facing Step Flow. The separated flow
over a high backward-facing step (H/h = 6, see Fig. 1(a) is
particularly relevant to ventilation flows (Restivo, 1979), which

Table 1 -, and near-wall maximum (peak) k*-value for
channel flow at Re, = 395

Model AKN LB Wilcox SKW Present - DNS
wlu, 00557 00560 0.0562  0.0621 0.0574  0.0571
4,51 4.52 2.90 4,48 4.58

k* 4.21

DECEMBER 1997, Vol. 119 / 871




Table 2 Comparison of the predicted reattachment length,
x,

Measured AKN Wilcox Present
data model model model
6.12W 6.60W 8.24W 6.40W

are usually induced by a wall-jet below the ceiling to create
recirculating and mixing air motions. It has therefore been
widely used in validations of turbulent models for predicting
recirculating ventilation flows (Restivo, 1979; Skovgaard,
1991). With the experimental data available (Restivo, 1979),
the flow at Re = 5050 is calculated here.

The reattachment lengths computed with different LRN mod-
els are compared in Table 2. Wilcox’s LRN model considerably
overpredicts the reattachment length by nearly thirty-five per-
cent. By contrast, the modified model is capable of yielding an x,
whose error is less than five percent. By assuming the damping
functions to be unity in the modified model, i.e. by using its
standard form, a satisfactory result was also predicted with ei-
ther the wall-function method or the extended-to-wall method
(Peng et al., 1996b).

The reattachment length, x,, is very sensitive to the coefficient
.1+ It was found that x, changes by about 1.4 times the step
height, with a variation of 0.1 for c,;. The turbulent cross-
diffusion term alters x, by about ten percent. This suggests that
the modified constant c,,, together with the damping function
J., plays a main role in raising k by suppressing the production
of w to improve the prediction of x,.

Figure 5 shows the distributions of the mean streamwise
velocity and the turbulent kinetic energy at five positions (x/h
= 5, 10, 15, 20, 30). The largest error in the prediction of
reattachment length corresponds to the largest inaccuracy in the
prediction of velocity with the original model, which unrealisti-
cally keeps predicting a too-high velocity peak in the wall-jet
along the upper wall. All the models predict reasonable and
similar velocity distributions in the far-wall recirculating region.
Near the step and close to the lower wall (at x/4 = 5 and 10),
the AKN model under-estimates the mean velocity. The AKN
model also predicts a slightly higher velocity peak in the wall-
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Fig. 5(a) Mean streamwise velocity
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Fig. 5 Distributions calculated for the flow over a backward-facing step
(the experimental data used in the comparison of k are for yu '2/ Uo)
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Fig. 6 Predicted turbulent length scales near the lower wall of the back-
ward-facing step at x = 30h

jet than the present model does. As the flow approaches the
reattachment position (near x/h = 30), the Wilcox model fails
to capture the mean flow property.

Note that the measured data for \/;_"_ have been used for
comparison of k in Fig. 5. The turbulent kinetic energy com-
puted by all three models is higher than the measured turbulence
level. With the Launder-Sharma LRN k-e model, similar predic-
tions have been reported by Skovgaard (1991). For other back-
ward-facing step flows, the predicted maximum value of k has
usually been in a range of (0.02 ~ 0.04) U2 near the reattach-
ment position, see e.g., Abe et al. (1994). The same can be
found in Fig. 5 from the predicted distributions of k near the
reattachment zone (x/h = 30). In contrast to other backward-

facing step flows, however, the measured Vu'? data for the flow
situation considered here are much smaller. In a recent calcula-
tion (not included here) the present model was applied to the
backward-facing step flow with a lower expansion ratio of H/
h = 1.2. In comparison with DNS data (Le et al., 1993), it
was found that the present model improved significantly the
prediction over Wilcox’s original model, particularly for the
turbulence kinetic energy.

To further explore the influence of the turbulent cross-diffu-
sion term, the turbulent length scales, L,, predicted with various
models near the reattachment position (x = 304), are compared
in Fig. 6. L, has been evaluated by means of relations: L, =
Cuf,k'"*/w for the k-w model and L, = C,f,k**/¢ for the k-¢
model. The present model yields a turbulent length scale very
close to that given by Wilcox’s model, and the AKN model
predicts the largest L, in the region near the lower wall. It is
known that Wilcox’s model performs well for boundary layers
with adverse pressure gradient (Wilcox, 1994), because this
model possesses the same effect as of the Yap correction used
often in the k-¢ model. The Yap correction was originally in-
vented to suppress the turbulent length scale in the reattachment.
zone after a sudden pipe expansion (Yap, 1987). The result in
Fig. 6 suggests that the addition of the turbulent cross-diffusion
term does not change the behavior retaining in Wilcox’s model
for predicting the turbulent length scale near the reattachment
zone for separated flows.

3.4 -- Recirculating Flow in a Ventilation Enclosure. The
flow through a two-dimensional ventilation enclosure (see Fig.
1(b)) is similar to the recirculating flow behind a backward-
facing step, but with a nearly closed end opposite the inlet. The
recirculation in the enclosure depends on the depth reached by
the wall-jet, and thus relies on the inlet-based Reynolds number.
The present calculations were carried out for the flow at Re =
5000, where experimental data are available.
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Fig. 7 Distributions calculated for the flow in the ventilation enclosure (the experimental data used in the comparison of k are for Ju '2/U°)

In Fig. 7, the calculated distributions are compared with the
experimental data of Restivo (1979). In general, the present
model gives improved predictions for both the mean streamwise
velocity and the turbulent kinetic energy. Wilcox’s model and
the AKN model overpredict the velocity peak, and under-esti-
mate the near-wall turbulence level in the wall-jet. Near the
floor, there is no large variation in the results (see the distribu-
tions at x = H and x = 2H). At the edge of the wall-jet,
however, the turbulent kinetic energy, which is underpredicted
by both the AKN model and Wilcox’s model, is enhanced by
the present model. The enhancement of the turbulent kinetic
energy is partly due to the addition of the turbulent cross-diffu-
sion term. This term increases the velocity scale in the near-
wall region by reducing the near-wall specific dissipation rate
when the gradients of k and w are of opposite sign, which often
holds in regions close to the wall. The constant ¢, also makes
contributions to the increment of & by reducing the generation of
w, since this constant is decreased comparing to that in Wilcox’s
model.

On the one hand, it is desired to enhance the near-wall turbu-
lent kinetic energy that is under-estimated by the original LRN
model. On the other hand, as the principal aspect for any LRN
models, the turbulence level close to the wall needs to be sup-
pressed so as to accommodate viscous effects. This means that
an equilibrium between the two contrary requirements, damping
the turbulent effect and enhancing the turbulent kinetic energy
in the near-wall region, must be properly achieved. The present
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model seems to achieve this equilibrium, and is capable of
yielding improved predictions when applied to the recirculating
flow considered.

To further investigate the influence of the turbulent cross-
diffusion term, we devised an additional group of damping func-
tions and model constants when the turbulent cross-diffusion
term was dropped in the w-equation. These closure functions
and constants were capable of yielding reasonable predictions
for both channel and backward-facing step flows. However, it
was found that the velocities predicted in the wall-jet and near
the floor were unsatisfactory (not shown here). Indeed, the
model preserves the wall-jet better with the turbulent cross-
diffusion term than without it. In the wall-jet, with increasing
wall distance, the turbulent kinetic energy k increases in the
immediate proximity of the ceiling, then decreases close to the
maximum velocity where du/dy — 0, before it increases again
in the outer shear layer (see Figs. 7(a) and 7(8)). The gradient
of k thus changes sign in the wall-jet. Accordingly, the contribu-
tion of turbulent-cross diffusion can be either positive or nega-
tive across the wall-jet, depending on the change in w. The
largest contribution, usually, occurs in the immediate proximity
of the wall, where the: gradients for both k and w are rather
large and of opposite sign. Figure 8 shows that the addition of
the cross-diffusion term in the modified model, together with
the decreased coefficient ¢, , in general, reduces w in the wall-
jet. Compared to Wilcox’s model, the modified model thus
gives a higher eddy viscosity there. This, in turn, enhances the
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turbulent diffusion for the momentum, and predicts a lower and
wider velocity peak in the wall-jet (Fig. 7(a)), as desired.

A more detailed investigation was conducted by analyzing
the budget of the w-equation to clarify the contribution of each
term. Figure 9 illustrates the budget of the w-equation in both
Wilcox’s and the modified models in the wall-jet at sections x
= 2H and y = H ~ h/2, respectively. The modification makes
each term redistribution. The near-wall change in the turbulent
cross-diffusion term across the wall-jet is consistent with the
above analysis. Figure 9(a) shows that the contribution of this
term is limited mainly in the inner region of the wall-jet where
the large gradients exist for both & and w. Compared with Wil-
cox’s model, all the terms in the modified model have been
reduced near the wall surface, particularly the generation and
destruction terms.

4 Conclusions

A modified form of Wilcox’s two-equation LRN k-w model
is proposed for predicting internal recirculating flows. The mod-
ifications include adding a turbulent cross-diffusion term in the
w-equation, and re-establishing the closure constants and damp-
ing functions. The modified model reproduces correct near-
wall asymptotic behaviors, and leads to improvements in the
prediction of recirculating flows.

The turbulent cross-diffusion term in the w-equation plays a
role in the near-wall region. By altering the specific dissipation
rate close to the wall, this term affects the prediction of the
near-wall turbulence level, and thus of the eddy viscosity and
momentum. The role played by this term depends on the sign
of the gradients for both & and w, and is usually limited in the
region close to the wall. In general, this term reduces w and
enhances k near the wall, since the gradients there are often of
opposite sign. The addition of this term helps to improve the
model performance for the wall-jet inducing recirculation in an
enclosure, where the original model underpredicts the near-wall
turbulent kinetic energy.

In addition, it is well known that the k-¢ model returns too
high turbulent viscosity due to over-estimated turbulent length
scale for flows with adverse pressure gradient ( Launder, 1992),
whereas Wilcox’s standard k-w model performs well (Wilcox,
1988). The present model has shown a reasonable ability to
simulate the separated recirculating flows considered. The addi-
tion of the turbulent cross-diffusion term shows negligible in-
fluences on the turbulent length scale near the reattachment
zone. On the other hand, this term is able to reduce the model’s
sensitivity to the freestream value of w when solving free shear
flows. Nonetheless, it is necessary to further validate this model
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in predictions of adverse-pressure-gradient boundary layer
flows in future work.

The calculation of channel flow shows that the new damping
functions are able to properly reflect the near-wall low-Reyn-
olds-number effect for attached turbulent flows. For the sepa-
rated and recirculating flows considered, the damping functions,
together with the other modifications, show a satisfactory ability
to account for an equilibrium between damping the near-wall
turbulence and enhancing the near-wall turbulent kinetic energy
underpredicted by Wilcox’s original model. The present model
appears to be an effective LRN two-equation closure for pre-
dicting recirculating flows.

With the new damping functions, moreover, the mechanism
describing transitions is preserved in the modified model. It can
therefore be used for simulating transitions in boundary layers,
as with Wilcox’s LRN model.

In future work, this model will be further applied to 3D low-
velocity and buoyancy-influenced recirculating flows of engi-
neering interest, such as ventilation flows, where the existing
LRN k-¢ models fail to produce reasonable predictions. The
model also needs to be validated for transition simulations of
boundary layer flows.
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