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Summary. How should the resolution of an LES be estimated? There exist guide-
lines for boundary layers for how to create a grid in terms of the grid size expressed
in viscous units. However, in other flow regions there are few – if any – guidelines
for how to generate a grid that ensures accurate results. Worse, it is not even clear
how to estimate the resolution after having carried out an LES. The present study
evaluates the following quantities: energy spectra, dissipation energy spectra, two-
point correlations, the ratio of SGS shear stress to resolved shear stress, the ratio
of the SGS viscosity to the molecular and the ratio of the SGS dissipation due to
the resolved fluctuating velocity gradients to that due to the mean velocity gradi-
ents. Two flows are analyzed, namely the flow in a plane asymmetric diffuser and
decaying grid turbulence. The main conclusions are that two-point correlations are
the best way to estimate the resolution and that energy spectra are not suitable.
It is usually assumed that the SGS dissipation takes place at wavenumbers close to
cut-off. The present work shows that this idealized picture is not true, but that the
SGS dissipation takes place at rather low wavenumbers.

Key words: LES, resolution, two-point correlations, energy spectra, dissipation
energy spectra, decaying grid turbulence

1 Introduction

After having carried out a Large Eddy Simulation, the question arises: how do
we know that the resolution is sufficient? Or – at least – how do we estimate
the resolution? For attached boundary layer flows, numerical experiments re-
ported in the literature indicate that the streamwise and spanwise resolution
in viscous units should be approximately 100 and 30, respectively; further, the
center of the wall-adjacent cells should be located not more than one viscous
unit away from the wall. However, in flow regions outside attached boundary
layers, there are few guidelines for how to create a sufficiently fine mesh. [5]
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After having carried out an LES simulation, there are a number of ways
to estimate the resolution. Energy spectra are frequently used to find out
whether the resolved turbulence satisfies the −5/3 decay. The ratio of the SGS
to resolved turbulence is another quantity; if is is small, it may indicate that
the resolution is good. Two-point correlations are also useful for estimating the
resolution. If they fall to zero over a separation distance of a few cells, it means
that no turbulence is resolved at all; if, on the other hand, they fall to zero
over five to ten cells, this is an indication that the largest scales are reasonably
well resolved. Another option for evaluating the resolution is to evaluate the
SGS dissipation. This dissipation takes place either through the mean flow
or through the resolved fluctuations. In RANS, the entire dissipation takes
place through the mean flow while in LES it takes places through both the
mean flow and resolved fluctuations. Finally, dissipation energy spectra can
be created that show the wavenumbers at which the SGS dissipation takes
place.

The different ways of estimating resolution mentioned above were eval-
uated in [6] for fully developed channel flow. In the present study, we use
these methods to evaluate the resolution of an LES of recirculating flow and
of decaying grid turbulence.

2 Equations

2.1 The momentum equations

The incompressible momentum equation with an added SGS viscosity reads
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2.2 The turbulence model

The dynamic Smagorinsky is used, which reads

νsgs = C∆2|s̄|, s̄ij =
1

2

(

∂ūi
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The dynamic coefficient is computed as
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where ︷︷. and 〈.〉z denote test filtering and spanwise averaging, respectively.
The dynamic coefficient is limited to avoid negative total viscosity, i.e. ν +
νsgs ≥ 0.
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2.3 The Numerical Method

An incompressible, finite volume code is used [7]. For space discretization,
central differencing is used for all terms in the momentum equations. The
Crank-Nicolson scheme (with α = 0.5) is used. Convective boundary condi-
tions are used at the outlet. The numerical procedure is based on an implicit,
fractional step technique with a multigrid pressure Poisson solver [8] and a
non-staggered grid arrangement.

2.4 Inlet boundary conditions

A fluctuating velocity field is generated each time step using a synthetic
isotropic turbulence generator [4]. The velocity fields are independent of each
other, however, and their time correlation will thus be zero. This is unphysical.
To create correlation in time, new fluctuating velocity fields, U ′

i , are computed
based on an asymmetric time filter.

U ′m
i = aU ′m−1

i + bu′m
i . (4)

Here, m denotes the time step number, and a = exp(−∆t/T ); ∆t and T
denote the computational time step and a prescribed turbulent time scale,
respectively. The asymmetric time filter resembles the spatial digital filter
presented in [10]. The second coefficient is taken as b = (1 − a2)0.5 which
ensures that 〈U ′2

i 〉 = 〈u′2
i 〉 (〈·〉 denotes averaging). The time correlation of U ′

i

will be equal to exp(−∆t/T ), and thus Eq. 4 is a convenient way to prescribe
the turbulent time scale of the fluctuations. The inlet boundary conditions
are prescribed as

ūi(0, y, z, t) = Ui,in(y) + U ′m
i (y, z) (5)

Ui,in(y) denotes the mean inlet profile, which is taken from a DNS of fully
developed channel flow at Reτ = 500. For greater detail, see [4]

The turbulent length scale and time scale are set to Lt = 0.1H/2 and
T = 0.05(H/2)/uτ,in (see Fig. 1), respectively. The RMS amplitudes of the
inlet fluctuations are scaled so that urms,in = vrms,in = wrms,in = uτ

The synthetic fluctuations created with the method presented above yield
homogeneous turbulence in the inlet plane, i.e. urms,in, vrms,in, and wrms,in

are constant (and equal) across the entire inlet plane. The fluctuations must
be reduced near the wall so that they go smoothly to zero as the wall is
approached; this is done for n/H . 0.016, where n is the distance to the
closest wall.

3 Results

3.1 Diffuser

The configuration is an asymmetric plane diffuser with Reynolds number
Re = Ub,inH/ν = 18 000, see Fig. 1. The opening angle is 10o. The inlet bulk
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velocity, the channel height at the inlet and the density are set to one, so that
ν = 1/Re. The dynamic Smagorinsky model is used, and predictions are com-
pared with experiments [1]. The mesh in the x−y plane has 256×64 (Nx×Ny)
or 512× 64 cells (two cells in the x direction in the latter mesh correspond to
one cell in the former mesh). In the z direction, Nz = 32, 64 or 128. In the
inlet region, the friction Reynolds number based on half the channel height is
approximately 500, which gives a spanwise grid size of ∆z+ = (125, 62, 31) for
Nz = (32, 64, 128). The time step is ∆t = 0.023 for Nx = 512 and ∆t = 0.039
for Nx = 256; this results in a maximum instantaneous Courant number of
1.9. Time averaging is carried out over approximately 60 000 time steps. All
simulations are made on a Linux PC using a single core. One or two global
iterations are required each time step to reach convergence. The CPU time
for the finest mesh (512 × 64 × 128) is 45s per time step (two iterations per
time step).

L

H

4.7H

L1 L2

Inlet

x

y

Outlet

Fig. 1. Plane asymmetric diffuser (not to scale). L1 = 7.9H , L = 21H , L2 = 28H .
The spanwise width is zmax = 4H . The origin of x − y − z is at the lower wall at
the entrance of the diffuser.

Figure 2 compares the predicted velocity profiles with experiments [1]. The
agreement is not especially good for any resolution. LES simulations were
also presented in [12]. Their meshes were similar; they employed the same
turbulence model and their domain was shorter but had the same spanwise
extent. They did use a finer mesh in the wall-normal direction and different
inlet boundary conditions. However, the aim of the present work is not to
achieve as good an agreement with experiments as possible but to evaluate
the resolution for different grids.

The resolved shear stresses are presented in Fig. 3. The agreement is rea-
sonable for x ≥ 13H but the stresses are overpredicted compared with exper-
iments for x ≤ 6H . All resolutions give very similar shear stresses.

Below we will make a detailed comparison of the flow at one streamwise
position where the flow is attached (x = −H) and one where the flow exhibits
incipient separation (x = 20H). At x = −H the ratio of streamwise to the
spanwise cell side is 0.3 for Nz = 32 and Nx = 512; at x = 20H the corre-
sponding ratio is one. Figures 4 and 5 show the shear stresses. As can be seen,
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x = 3H 6 14 17 20 24H

x = 3H 6 14 17 20 24H

Fig. 2. 〈ū〉/Ub,in profiles. Top: Nx = 256 cells; bottom: Nx = 512 cells. :
Nz = 32; : Nz = 64; : Nz = 128; markers: experiments [1].

x = 3H 6 13 16 19 23H

x = 3H 6 13 16 19 23H

Fig. 3. 〈u′v′〉/U2

b,in profiles. Top: Nx = 256 cells; bottom: Nx = 512 cells. For
legend, see caption in Fig. 2. Markers: experiments [1].

the spanwise resolution is very important in the attached boundary layer, but
the effect of the streamwise resolution is almost negligible. Also the spanwise
resolution is unimportant in the incipient separation region, and all grids give
virtually identical resolved shear stresses. Since it is seen that the streamwise
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Fig. 4. 〈u′v′〉/U2

b,in profiles. x = −H . Left: Nx = 256 cells; right: Nx = 512 cells.
For legend, see caption in Fig. 2.
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Fig. 5. 〈u′v′〉/U2

b,in profiles. x = 20H . Left: Nx = 256 cells; right: Nx = 512 cells.
For legend, see caption in Fig. 2.

resolution has no effect, we concentrate hereafter on comparing the spanwise
grid resolutions for the coarse streamwise grid (Nx = 256).

Figure 6 presents the two-point correlation (Bww(ẑ) = 〈w′(z)w′(z − ẑ)〉).
The correlations are presented at x = −H (attached flow) and x = 20H
(incipient separation) at y locations for which the magnitude of the resolved
shear stress is large (see Figs. 4 and 5). The resolution for the coarse grid
(Nz = 32) is indicated by markers in Fig. 6. As can be seen, the normalized
two-point correlation at x = −H (Fig. 6a) for Nz = 32 falls to 0.1 within
a separation distance of two cells. This means that the largest scales are
resolved by only two cells, i.e. they are not resolved at all. For the medium
mesh (Nz = 64) and the fine mesh (Nz = 128), the two-point correlations
fall to 0.1 within four and eight cells, respectively. Clearly, both the coarse
and medium meshes are too coarse. The resolution however is good in the
separation region (Fig. 6b). Even in the case of the coarse grid, the largest
scales are covered by some ten cells.
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Fig. 6. Normalized two-point correlation Bww(ẑ)/w2

rms. Nx = 256. Left: x = −H ,
y = 0.15H ; right: x = 20H , y = −2.9H . Markers on the solid line show the coarse
resolution. For legend, see caption in Fig. 2.
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Fig. 7. Integral length scale, Lint,w computed from Bww , see Eq. 6. (y −
ylow)/(yhigh − ylow) = 0.15. For legend, see caption in Fig. 2.

The integral length scale, Lint,w, is computed from the two-point correla-
tions as

Lint,w(x, y, ẑ) =
1

w(x, y)2rms

∫ zlimit

0

〈w′(x, y, z, t)w′(x, y, z, t)〉dẑ (6)

where the averaging 〈.〉 is done, as usual, in time (t) and the spanwise direction
(z). The upper boundary of the integral, zlimit, is zmax or when the normalized
two-point correlation falls below a small value (= 10−4). As can be seen in
Fig. 7, Lint,w is reduced when the grid is refined. Figure 7 also confirms that
the spanwise domain is sufficiently large, since Lint,w < 0.5zmax = 2H .

The energy spectra corresponding to the two-point correlations (Fig. 6) are
shown in Fig. 8. The smallest wavenumber is κz,min = 2π/zmax = 2π/4H =
1.57/H . The largest wavenumber must be resolved by more than two cells,
which for Nz = 32 gives κz,max < 2π/(2∆z) ≃ 25/H . The decay of Eww with
wavenumber is small for the coarse mesh. However, the energy spectra for



276 Lars Davidson

10
0

10
1

10
2

10
−6

10
−5

10
−4

E
w

w
(k

z
)

a) κz = 2π(kz − 1)/zmax

10
0

10
1

10
2

10
−8

10
−6

10
−4

E
w

w
(k

z
)

b) κz = 2π(kz − 1)/zmax

Fig. 8. Energy spectra Eww(kz). The thick dashed line shows −5/3 slope. Nx = 256.
Left: x = −H , y = 0.15H ; right: x = 20H , y = −2.9H . For legend, see caption in
Fig. 2.

10
−2

10
−1

10
0

10
−8

10
−7

10
−6

10
−5

E
w

w
(f

)

a) f
10

−2
10

−1
10

0
10

−10

10
−8

10
−6

10
−4

E
w

w
(f

)

b) f

Fig. 9. Energy spectra Eww(f) vs. frequency. The thick dashed line shows −5/3
slope. Nx = 256. Left: x = −H , y = 0.15H ; right: x = 20H , y = −2.9H . For legend,
see caption in Fig. 2.

the medium and the fine mesh exhibit a decay versus wavenumber close to
−5/3, indicating that the turbulence is well resolved. Still, as seen from the
two-point correlation, the largest scales on the medium mesh are resolved by
only four cells, which must be considered to be insufficient. Hence, it seems
that energy spectra are not suitable for estimating the resolution. The energy
spectra all exhibit a pile-up of energy at the largest wavenumber, and this
indicates that the SGS dissipation is too small at these wavenumbers.

In the incipient separation region, Fig. 8b, all spectra show a decay slightly
larger than −5/3, indicating a sufficient resolution. This indication agrees with
the two-point correlations (Fig. 6b) for which it was seen that the largest scales
are resolved by at least ten cells, even on the coarse mesh.

The energy spectra, Eww(κz), presented in Fig. 8 were obtained by Fourier
transforming (FFT) the corresponding two-point correlation, Bww(ẑ). This
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can be done only if z is a homogeneous coordinate direction, i.e. if the predic-
tions were carried out using periodic boundary conditions in the z direction.
This is of course not the case in general. The only way to create energy spectra
is generally to Fourier transform the time history of a variable (e.g. a velocity
component) at a given point. The time signal is usually chopped up into small
segments, making an FFT of each segment using an overlap of the segments
and then averaging the spectra of all segments. Special treatment is given
here to make the signal in each segment periodic. Here, the pwelch command
in Matlab is used setting the length of each segment to NT = 256 (the time
signal was created by sampling every fifth time step). The pwelch command
reads

[pw1 fw1] = pwelch(w1, NT, [], [], 1/(5 ∗ dt));

where w1, fw1, pw1 and dt denote the resolved spanwise velocity, w′, the
frequency, the square of the Fourier coefficients and the computational time
step, respectively. The length of the w1 vector is approximately 10 000.

Figure 9 presents the spectra versus frequency. At x = −H , all spectra
are flat for f smaller than 1Hz; for larger frequencies, they exhibit a −5/3
decay or steeper. At x = 20H , the spectra for the three resolutions are very
similar and exhibit a rather steep decay for f > 0.1Hz. The steep decay is
related to the fact that the time signal has been sampled with a frequency
higher than that corresponding to a local Courant number of one. The vertical
lines in Fig. 9b show the frequency based on the time averaged velocity over
the spatial grid size, 〈ū〉/∆x. Frequencies above this threshold correspond to
“over-resolution” in time, i.e. the local Courant number is smaller than one. In
Fig. 9a the Courant number based on the sampling frequency (every fifth time
step), is close to three, i.e. the frequency, 〈ū〉/∆x, is equal to approximately
14. The conclusion drawn from the spectra presented in Figs. 8 and 9 is that
they do not present a reliable picture of the resolution. Considering Fig. 9a it
seems that all three simulations are well resolved, and Fig. 8a indicates that
the prediction with the medium mesh is well resolved. However, the two-point
correlation (Fig. 6a) shows that it is only the simulation on the fine mesh
(Nz = 128) that is reasonably well resolved.

The relation between modelled (SGS) and resolved turbulence can be used
as an estimate of how well the turbulence is resolved. Large SGS stresses
could indicate a poorly resolved simulation. Figure 10 presents the ratio of
the SGS shear stress to the resolved one. As can be seen, the SGS shear
stress is negligible in the incipient separation region while it reaches values of
approximately 25% in the turbulent boundary layer at x = −H for the coarse
mesh.

Figure 11 shows the ratio of the turbulent viscosity to the physical one.
For the coarse mesh, the ratio reaches a value of approximately 12 in the
incipient separation region while it is three times smaller (approximately 4)
in the attached flow region. Both ratios 〈τsgs,12〉/〈u

′v′〉 and 〈νsgs〉/ν behave
consistently: the better the resolution, the smaller they are. However, the ratio
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Fig. 10. Ratio of SGS to resolved Reynolds shear stress. Nx = 256. Left: x = −H ;
right: x = 20H . For legend, see caption in Fig. 2.
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Fig. 11. Ratio of SGS to physical viscosity. Nx = 256. Left: x = −H ; right: x = 20H .
For legend, see caption in Fig. 2.

〈νsgs〉/ν is larger at x = 20H than at x = −H which should indicate that the
turbulence is worse resolved at the former location than at the latter which
is incorrect. Hence, this quantity is not reliable for estimating the resolution.

It is commonly assumed that the SGS dissipation is largest at wavenumbers
close to the cut-off. To investigate at which wavenumber the SGS dissipation
does takes place, we will investigate the dissipation energy spectra. Since the
spanwise coordinate, z, is a homogeneous coordinate direction, it is suitable
to investigate the energy spectrum of the spanwise component of the SGS
dissipation including a spanwise derivative, for example ∂w′/∂z. A discrete
Fourier transform of ∂w′/∂z is formed as

D̂z(kz) =
1

Nz

Nz
∑

n=1

∂w′(n)

∂z
[

cos

(

2π(n − 1)(kz − 1)

Nz

)

− ı sin

(

2π(n − 1)(kz − 1)

Nz

)]

(7)



How to estimate the resolution of an LES of recirculating flow 279

0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

−7

2
ν
·
P

S
D

(∂
w

′
/
∂
z
)

a) κz = 2π(kz − 1)/zmax

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 10

−6

2
ν
k

2 z
E

w
w
(k

z
)

b) κz = 2π(kz − 1)/zmax

Fig. 12. Exact (left) and approximated (right) dissipation energy spectra of a span-
wise component of viscous dissipation versus spanwise wavenumber. For legend, see
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Fig. 13. Exact (left) and approximated (right) dissipation energy spectra of a span-
wise component of viscous dissipation versus spanwise wavenumber. For legend, see
caption in Fig. 2. x = 20H , y = −2.9H

where D̂z are the complex Fourier coefficients of ∂w′/∂z. Then the power
spectral density (PSD) of ∂w′/∂z, i.e. D̂z ∗ D̂∗

z , where superscript ∗ denotes
a complex conjugate, can be formed. The time-averaged value of (∂w′/∂z)2

can be computed both in physical and wavenumber space, i.e.

〈

(

∂w′

∂z

)2
〉

=

Nz
∑

kz=1

〈D̂z ∗ D̂∗

z〉 =

Nz
∑

kz=1

PSD

(

∂w′

∂z

)

(8)

The square of the Fourier coefficients, i.e. D̂z ∗ D̂∗

z , is computed, and time and
spanwise averaged at run-time in the LES code.

The viscous dissipation corresponding to ∂w′/∂z for x = −H is shown in
Fig. 12a. As can be seen, it is largest at surprisingly small wavenumbers. In
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Fig. 15. Exact dissipation energy spectra of the SGS dissipation, versus spanwise
wavenumber. Left: x = −H , y = 0.15H ; right: x = 20H , y = −2.9H . For legend,
see caption in Fig. 2.

the inertial subrange with a κ
−5/3
z behaviour, the viscous dissipation should

– according to Eq. 9 – vary as κ
1/3
z .

For x = −H the peaks of the spectra occur at kz = 7, kz = 9 and
kz = 9 for the coarse, medium and fine mesh, respectively (the first wavenum-
ber represents the mean, which is equal to zero). This means that derivative
∂w′/∂z′ is largest for a length scale of ℓ = zmax/6 ≃ 5 cells, zmax/8 = 8 cells
and zmax/8 = 16 cells for the coarse, medium and fine mesh, respectively.
In the incipient separation region the derivatives are largest at even larger
length scales (Fig. 13a), which is reasonable, since the large scales are much
larger and better resolved (see the two-point correlations in Fig. 6); we obtain
ℓ = zmax/3 ≃ 10 cells, ℓ = zmax/2 = 32 cells and ℓ = zmax/2 = 64 cells for
the coarse, medium and fine mesh, respectively.

The spanwise component of the viscous dissipation, εwz, can also — in
theory — be obtained from [9]
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εwz = 2ν

〈

(

∂w′

∂z

)2
〉

= 2ν
∂2Bww(ẑ)

∂ẑ2

∣

∣

∣

∣

ẑ=0

= 2ν

Nz
∑

kz=1

κ2
zEww(kz) (9)

where κz = 2π(kz − 1)/zmax. However, this relation is not satisfied at the
discrete level, because derivative ∂w′/∂z cannot be evaluated exactly in a
finite-volume approach; the expression in Eq. 9 is based on an exact evaluation
of the derivative. The viscous dissipation, εwz, for x = −H is presented in
Fig. 12b. In theory, the spectra presented in Figs. 12a and 12b should be
equivalent. However, as can be seen, there is a large discrepancy between the
spectra, especially at high wavenumbers. This discrepancy is a measure of the
insufficient accuracy of the finite volume method for evaluating ∂w′/∂z at
high wavenumbers (small scales).

Figure 13 presents the exact and approximated spectra in the incipient
separation region. The picture is much the same: the maximum dissipation
takes place at small wavenumbers, and there is a discrepancy between the
exact and the approximated spectra, although the difference is smaller than
for x = −H . The difference is actually very small for the fine mesh (Nk = 128),
which indicates that the resolution is good (which is correct judging from
the two-point correlation). Comparison of the exact and the approximated
spectra could be an interesting approach estimating resolution. Unfortunately,
it requires a homogeneous flow direction.

To get a more visual picture of how well the spanwise velocity compo-
nent is resolved, Fig. 14 presents the w′ velocity at one chosen instant. As
can be seen, the coarse grid results are very poorly resolved and the profile
exhibits odd-even oscillations. Each peak is resolved by at least two nodes at
the medium mesh, but the velocity profile does not look physical. The finest
mesh shows a tendency to be well resolved. The situation at x = 20H is com-
pletely different. The velocity profiles on both the medium and the fine grid
are very well resolved. The w′ profile obtained with the coarse grid exhibits
some odd-even oscillations but its behavior generally seems to be physical. It
should be pointed out that the information from instantaneous pictures can
be misleading and that it is safer to look at time-averaged quantities.

We present energy spectra of the spanwise derivative of w′ in Figs. 12 and
13 and we assume that these spectra are representative for the spectra of the
SGS dissipation. Let us check this assumption. To analyze the spectra of the
total dissipation, a DFT is created by replacing ∂w′/∂z in Eq. 7 with the

square-root of the instantaneous dissipation, i.e. ε
1/2

sgs,inst (see Eq. 10). Fig-
ure 15 presents the energy spectra of the SGS dissipation. The first wavenum-
ber, which corresponds to εsgs,mean (see Eq. 11), is omitted. The peaks are
located at approximately the same κz as those in Figs. 12 and 13, but the
peaks in the former ones are more dominant x = −H . The amplitude in the
SGS spectra also differ more for the different grids than those in Figs. 12 and
13; this is most likely related to the different SGS viscosities for the different
grids, see Fig. 11.
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Contrary to the case in RANS, where the main role of the turbulence
viscosity is to act as a diffusion term in the momentum equation, the main
objective of the SGS viscosity in LES is to dissipate resolved turbulent kinetic
energy, kres = 0.5〈u′

iu
′

i〉. The contribution of diffusion of the SGS viscosity
in LES is usually negligible compared to that of the resolved turbulence. The
SGS dissipation term in the kres reads [3]

ε′sgs =

〈

(τij,sgs − 〈τij,sgs〉)
∂u′

i

∂xj

〉

=

〈

(

νsgs
∂ui

∂xj

)
′

∂u′

i

∂xj

〉

=

〈

νsgs
∂ūi

∂xj

∂ūi

∂xj

〉

−

〈

νsgs
∂ūi

∂xj

〉〈

∂ūi

∂xj

〉

= εsgs −

〈

νsgs
∂ūi

∂xj

〉〈

∂ūi

∂xj

〉
(10)

where the right side on the first line is obtained because the cross-diffusion
term has been omitted in the momentum equations (see Eq. 1). The SGS
viscosity also appears in the dissipation term in the K equation, see Fig. 16,
which reads [3]

εsgs,mean = 〈τij,sgs〉
∂〈ūi〉

∂xj
=

〈

νsgs
∂ūi

∂xj

〉

∂〈ūi〉

∂xj
(11)

which sometimes may be approximated as

εsgs,mean,approx = 〈νsgs〉
∂〈ūi〉

∂xj

∂〈ūi〉

∂xj
(12)
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m
ea

n ε ′

sgs

Fig. 16. Transfer of kinetic turbulent energy between time-averaged, resolved and
SGS kinetic energy. K = 1

2
〈ūi〉〈ūi〉 and kres = 1

2
〈u′

iu
′

i〉 denote time-averaged kinetic
and resolved turbulent kinetic energy, respectively. ksgs denotes time-averaged SGS
kinetic energy. The dissipations, ε′sgs and εsgs,mean, are defined in Eqs. 10 and 11.

In the same manner, Eq. 10 may sometimes be estimated as

ε′sgs,approx =

〈

νsgs
∂ūi

∂xj

∂ūi

∂xj

〉

− 〈νsgs〉

〈

∂ūi

∂xj

〉〈

∂ūi

∂xj

〉

(13)
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Fig. 17. Ratio of dissipation due to resolved fluctuations, ε′sgs, to total SGS dis-
sipation, εsgs = εsgs,mean + ε′sgs. Left: x = −H ; right: x = 20H . For legend, see
caption in Fig. 2.

It is found that the approximations, Eqs. 12 and 13, agree within 10% with
their corresponding exact expressions in Eqs. 11 and 10. However, when the
turbulent viscosity is large – such as in the URANS region in hybrid LES-
RANS [6] – the approximation is inaccurate.

The transfer of turbulent kinetic energy is illustrated in Fig. 16. The right
part of the figure (i.e. ε′sgs) vanishes in RANS whereas it dominates in a
well-resolved LES. Hence, to estimate how well the turbulence is resolved, it
may be interesting to compare ε′sgs and εsgs,mean. This is done in Fig. 17.
At x = −H , ratio ε′sgs/εsgs is larger than 60%, even for the coarse mesh, for
y > 0.1. In the incipient separation region The ratio is larger than 94% in the
incipient separation region for all three meshes. Ratio ε′sgs/εsgs – like that of
shear stresses (Fig. 10) and viscosities (Fig. 11) – behaves consistently when
the resolution is refined, but it is difficult to define a value above which the
flow can be defined to be well resolved.

3.2 Decaying isotropic grid turbulence

Above it was found that the peak of the SGS dissipation for the diffuser flow
is largest at relatively low wavenumbers. This section discussed LES and DNS
of decaying isotropic grid turbulence. The objective is to investigate at which
wavenumbers the dissipation takes place for DNS and well-resolved LES.

The initial velocity field at t = 0 is generated from the experimental energy
spectrum [2] using the synthetic method in [4]. The domain is a cubic box of
side 2π. Three computations were carried out:

1. fine LES using a Smagorinsky model with CS = 0.1 on a 1283 grid;
2. DNS on a 1283 grid;
3. coarse LES using a Smagorinsky model with CS = 0.1 on a 643 grid.
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Fig. 18. Decaying grid turbulence. Energy spectra. t = 2. : fine LES; :
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Fig. 19. Decaying grid turbulence. Dissipation energy spectra. t = 2. Exact (left)
and approximated (right). : fine LES; : DNS; : coarse LES.

Figure 18 presents the one-dimensional energy spectra computed from
the two-point correlations. The predicted amplitudes are scaled so that u2

rms

agrees with the experimental value; the scaling factors are approximately equal
to two. All spectra agree fairly well with the experimental spectrum and they
have a −5/3 decay over a rather large wavenumber range (the fine grid more
than a decade). All predicted spectra exhibit a pile-up of energy at the largest
wavenumbers. The pile-up is, as expected, smallest for LES on the 1283 mesh
because the fine resolution together with the SGS model helps to dissipate
the smallest scales. On the coarse 643 grid, the resolution is too coarse and
the SGS model does not succeed in introducing sufficient SGS dissipation at
the smallest scales to compensate for the poor resolution.

Figure 19a shows that the peak of the fluctuating velocity gradients occurs
at wavenumbers kz = 14, kz = 14 and kz = 12 for the fine LES, the DNS and
the coarse LES, respectively. This gives length scales of ℓ = zmax/13 ≃ 9 cells,
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Fig. 20. Energy spectra. SGS dissipation according to the idealized picture (a) and
SGS dissipation according to the present work (b).

zmax/13 ≃ 9 cells and ℓ = zmax/11 ≃ 6 cells, respectively. As expected, we
find that the SGS model on both the the fine and the coarse mesh moves
the location of the peak in the fluctuating velocity gradients towards slightly
smaller wavenumbers compared to the DNS. Moreover, it can be seen that the
LES on the fine and coarse grids gives the same location of the peak, indicating
that – except for the smallest scales – the coarse resolution is sufficient.

The approximated spectra in Fig. 19b all exhibit a maximum at the highest
wavenumbers. This is in accordance with the pile-up of energy in the energy
spectra, confirming that the smallest scales are not well resolved on any grid.

In conclusion, it is found that also for DNS and well-resolved LES, the
dissipation takes place at surprisingly small wavenumbers.

4 Concluding remarks

Various ways of estimating resolution in recirculating flow have been consid-
ered.

It is concluded that the most useful quantity for estimating resolution are
two-point correlations. They show by how many cells the largest scales are
resolved. It is then up to the CFD user to judge how many cells are required;
at least eight to ten cells seems to be reasonable.

The energy spectra do not give reliable information about the resolution.
The ratio of the SGS to the molecular viscosity, 〈νsgs〉/ν, and the ratio of

the SGS to the resolved shear stress behave consistently upon grid refinement,
i.e. they decrease. However, the ratio 〈νsgs〉/ν indicates incorrectly that the
turbulence is better resolved in the attached flow region of the diffuser than
in the incipient flow region. Hence, the ratio 〈νsgs〉/ν is not a reliable quantity
for estimating the resolution.

Energy spectra of resolved fluctuating gradients and SGS dissipation give
information about the wavenumbers at which the SGS dissipation takes place.
It is commonly assumed that the SGS dissipation occurs close to the cut-off
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wavenumber, see Fig. 20a. The present study (as was found also for channel
flow in [6]), however, show that this idealized picture is not true. Instead the
SGS dissipation takes place at rather low wavenumbers, see Fig. 20b. Note
that this conclusion does not apply for spectral methods for which the relation
Eq. 9 is valid; in these methods ε ∝ κ1/3 applies in the inertial region, see for
example [11]. In the present study the length scales related to the peaks of
the SGS dissipation correspond to approximately 10 cells (spanwise direction)
in attached flow and much more in the incipient separation region. This was
confirmed in DNS and well-resolved LES of decaying grid turbulence. The
disadvantage of these quantities is that they can only be used in flows that
possess a homogeneous direction, which is seldom the case in real flows.

Time-averaged velocity gradients and the resolved fluctuating velocity gra-
dient both contribute to SGS dissipation, denoted by εsgs,mean and ε′sgs, re-
spectively. The latter is zero in RANS, whereas it dominates in well-resolved
LES. Hence, the ratio ε′sgs/(ε′sgs +εsgs,mean) may be useful in evaluating reso-
lution. It is found that this ratio is very large in recirculating flow (more than
94%), revealing good resolution. However, as mentioned with respect to the
ratio of the shear stresses and and the viscosities, it is difficult to give any
recommendations for threshold values.
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