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Abstract
A new zonal hybrid RANS-LES model is pre-

sented and evaluated in fully developed channel flow.
The PANS model is used in both the URANS region
(near the wall) and the LES region (away from the
wall). In the URANS region,fk is set to one and, in the
LES region,fk is set to a constant value (the baseline
value isfk = 0.4). The interface between the two re-
gions is defined along a prescribed grid line. It is found
that the new model gives good results for a large span
of Reynolds numbers (4 000 ≤ Reτ ≤ 32 000). Three
different grids are used in the wall-parallel planes,322,
642 and1282, and – contrary to SGS models which use
the filter as a turbulent lengthscale – the model yields
virtually grid-independent results. In the LES region
it is found that both thek equation and theε equations
are in local equilibrium. This is possible because there
is a stronger correlation betweenPk, ε andk−1 than
betweenε2 andk−1 in the ε equation, compensating
for the difference inC1 andC∗

2 .
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1 Introduction
Wall-bounded Large Eddy Simulation (LES) is afford-
able only at low Reynolds number. At high Reynolds
number, the LES must be combined with a URANS
treatment of the near-wall flow region. There are dif-
ferent methods for bridging this problem such as De-
tached Eddy Simulation (DES) (Spalart; 2000; Spalart
et al.; 1997) hybrid LES/RANS (Davidson and Peng;
2003a) and Scale-Adapted Simulations (SAS) (Menter
and Egorov; 2010) (for a review, see Fröhlich and von
Terzi (2008)). These models take the SGS length scale
from the cell size (in SAS, the cell size is used as a
limiter).

The partially averaged Navier-Stokes (PANS)
model, proposed by Girimaji (2006), can be used to
simulate turbulent flows either as a RANS, LES or
DNS. An extension of PANS, based on a four-equation
k − ε − ζ − f model, was recently proposed Basara
et al. (2011). A near-wall low-Reynolds number capa-
bility was added to PANS so that the equations can be
integrated all the way up to the wall (Ma et al.; 2011).
In that work, it was furthermore shown that the PANS
model is a good SGS model for wall-resolved LES at
low Reynolds numbers. It was found that a constant
value of fk = 0.4 was appropriate (fk is the ratio
of modeled to total turbulent kinetic energy). In the

present work, the PANS model is used as a zonal hy-
brid LES/RANS model to simulate wall-bounded flow
at high Reynolds number.fk = 1 in the near-wall re-
gion, andfk < 1 in the LES region (a baseline value
of 0.4 is used).

2 Equations

Mean flow equations
The momentum equations with an added turbulent

viscosity reads
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whereD/Dt denotes the material derivative and the
first term on the right side is the driving pressure gra-
dient in the streamwise direction.

The PANS LRN k − ε turbulence model
The low-Reynolds number partially averaged

Navier-Stokes (LRN PANS) turbulence model
reads (Ma et al.; 2011)
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Cε1 = 1.5, Cε2 = 1.9, Cµ = 0.09, fε = 1

In the baseline model,fk = 0.4. The range of0.2 <
fk < 0.6 is evaluated.

The key element in the present use of the PANS
model is that theC∗

ε2 coefficient includesfk. Whenfk

in theC∗

ε2 coefficient is equal to one, the model acts as
a standardk − ε model. Whenfk is decreased to, say,
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Figure 1: The URANS and the LES regions.



0.4, the destruction term is decreased, which increases
ε. This reduces the modelled turbulent kinetic energy,
k, and the turbulent viscosity and the model switches
to an SGS (subgrid-scale) model.

The interface conditions.
The interface plane separates the URANS region

near the wall and the LES region in the outer region.
In the former region, the turbulent viscosity,νt, should
be a RANS viscosity and in the latter region it should
be an SGS viscosity. Henceνt must decrease rapidly
when going from the URANS region to the LES re-
gion. This is achieved by setting the usual convection
and diffusion fluxes ofk at the interface to zero. New
fluxes are introduced in which the interface condition
is set tokint = fkkRANS , wherekRANS is thek value
in the cell located in the URANS region adjacent to the
interface. Unless otherwise stated, no modification is
made for the convection and diffusion ofε across the
interface. The implementation is presented in some
detail below. We write the discretized equation in the
y direction (see Fig. 1) as (Versteegh and Malalasek-
era; 1995)

aP kP = aNkN + aSkS + SU , aP = aS + aN − SP

whereaS andaN are related to the convection and dif-
fusion through the south and north face, respectively,
andSU andSP kP include the production and the dis-
sipation term, respectively. For a cell in the LES re-
gion adjacent to the interface (cellP ), aS is set to zero,
cutting off the usual convection and diffusion fluxes.
New fluxes are included in additional source terms as

SU = (Cs + Ds)fkkS , SP = −(Cs + Ds)

Cs = max (v̄sAs, 0) , Ds =
µtotAs

∆y

(3)

whereCs and Ds denote convection (first-order up-
wind) and diffusion, respectively, through the south
face, andAs is the south area of the cell.

3 Numerical Method
An incompressible, finite volume code is used (David-
son and Peng; 2003b). The numerical procedure is
based on an implicit, fractional step technique with a
multigrid pressure Poisson solver and a non-staggered
grid arrangement. For the momentum equations, cen-
tral differencing is used in space and the Crank-
Nicolson scheme is used in the time domain.

The first-order hybrid central/upwind scheme in
space and the Crank-Nicolson scheme for time dis-
cretization are used in solving for thek andε equations
in the entire domain.

4 Results
Fully developed channel flow is computed for
Reynolds numbersReτ = uτδ/ν = 4 000, 8 000,
16 000 and32 000. The baseline mesh has64 × 64
cells in the streamwise (x) and spanwise (z) directions,
respectively. The size of the domain isxmax = 3.2,
ymax = 2 andzmax = 1.6 (δ = uτ = 1). A simu-
lation with twice as large domain in thex − z plane
(xmax = 6.4 andzmax = 3.2) with 128 × 128 cells

Reτ ∆y+ ∆x+ ∆z+ Ny

4 000 2.2 − 520 200 100 80
8 000 1.5 − 1 050 400 200 96
16 000 0.3 − 2 100 800 400 128
32 000 0.6 − 4 200 1 600 800 128

Table 1: Grids.fy = 1.15 (stretching).
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Figure 2: Velocity and resolved shear stress.(Nx ×
Nz) = (64 × 64) : Reτ = 4 000; : Reτ =
8 000; : Reτ = 16 000; : Reτ = 32 000. Verti-
cal thick dashed lines show the interface line between
the URANS and the LES region.

was also made forReτ = 4 000, and identical results
were obtained as for the smaller domain. The number
of cells in they direction varies between80 and128
cells depending on the Reynolds number, see Table 1.
The baseline position for the interface is aty+ ≃ 500
for all grids unless otherwise stated.

The velocity profiles and the resolved shear
stresses are presented in Fig. 2. As can be seen, the
predicted velocity profiles are in good agreement with
the log-law. Figure 2b presents the resolved shear
stresses. The interface is shown by thick dashed ver-
tical lines; it moves towards the wall for increasing
Reynolds number since it is located aty+ ≃ 500 for
all Reynolds numbers.

Figures 3 and 4 present the velocity and shear
stress profiles on coarse meshes (half as fine inx and
z) and fine meshes (twice as fine inx andz), respec-
tively. The results are almost the same as on the base-
line mesh (the velocity profile on the coarse mesh for
the highest Reynolds number is slightly worse).

The baseline value of the position of the interface is
y+ ≃ 500. Figure 5 presents the sensitivity to the posi-
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Figure 3: Velocity and resolved shear stress.(Nx ×
Nz) = (32 × 32). For legend, see Fig. 2.
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Figure 4: Velocity and resolved shear stress.(Nx ×
Nz) = (128 × 128). For legend, see Fig. 2.

tion of the interface. The peak in the viscosity profiles
is located approximately in the middle of the URANS
region. It can be seen that, as the interface is moved
closer to the wall, the peak of the turbulent viscosity
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Figure 5: Velocity and turbulent viscosity.Reτ =
8000. Interface location at : y+ = 130 :
y+ = 500 : y+ = 980 .
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Figure 6: Velocity and turbulent viscosity.Reτ =
8000. Influence offk. : fk = 0.2 : fk = 0.3

: fk = 0.5 : fk = 0.6

gets smaller. At the innermost location (y+ = 130),
the velocity profile is poorly predicted, but, if the loca-
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Figure 7: Turbulent viscosity.Reτ = 8000. :
(Nx×Nz) = (64×64); : (Nx×Nz) = (32×32);

: (Nx × Nz) = (128 × 128).
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Figure 8: Production term,Pk. Reτ = 8000. :
(Nx×Nz) = (64×64); : (Nx×Nz) = (32×32);

: (Nx × Nz) = (128 × 128).

tion is in the region of500 < y+ < 1000, the velocity
profile is well predicted.

Figure 6 presents the effect offk on the predicted
velocity and turbulent viscosity. The turbulent vis-
cosity increases, as expected, for increasing values of
fk. The velocity profile is very well predicted with
fk = 0.5 and rather well withfk = 0.3. Forfk = 0.6
the velocity profile is poorly predicted because of the
large turbulent viscosity which approaches RANS val-
ues in the outer region.

The turbulent viscosity profiles are shown in Fig. 7
for three different resolutions in thex − z plane. It is
interesting to note that the turbulent viscosity is not af-
fected by the grid resolution. Hence, the model yields
grid independent results. Note that the ratio of the fil-
ter width,∆ = (∆V )1/3, for the fine grid (128× 128)
to that on the coarse (32 × 32) grid is 161/3 ≃ 2.5.
Hence, an SGS model based on∆ would give a2.5
larger viscosity on the coarse mesh than on the fine
mesh. In hump flow simulations carried out by David-
son and Peng (2011) using PANS, it was also found
that a grid refinement (doubling the number of cells in
the spanwise direction) gave no reduction in the turbu-
lent viscosity.

It can be seen that the turbulent viscosity (Fig. 7)
is sharply reduced when moving across the interface
from the URANS region to the LES region. This is
achieved by the modified interface convection and dif-
fusion fluxes in thek equation, see Eq. 3.

It was shown in Fig. 7 that the turbulent viscos-
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Figure 9: Production, destruction and RMS of con-
vection terms in thek and ε equations. Inner scal-
ing. Left vertical axes: inner (URANS) region; right
vertical axes: outer (LES) region.Reτ = 4000.
(Nx × Nz) = (64 × 64).
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ity is independent of the grid. The production term,
〈Pk〉 = 〈εSGS〉, also stays constant when the grid is
refined or coarsened, see Fig. 8. This is correct since
the amount of energy fed into the turbulence energy
spectrum should be independent upon the grid resolu-
tion. As expected, thek equation is in local equilib-
rium, i.e. 〈Pk〉 = 〈ε〉, see Fig. 9a. Interestingly, the
time-averaged production and dissipation terms in the
ε equation are also in balance, see Fig. 9b. If both the
k and theε equations are in local equilibrium, we have
(see Eq. 2)

Pk − ε = 0,
ε

k
(C1Pk − C∗

2ε) = 0 (4)
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Figure 11: Turbulent kinetic energies.(Nx × Nz) =
(64 × 64). For legend, see Fig. 2.◦: DNS atReτ =
2000 (Hoyas and Jiménez; 2006a,b)

They cannot both be satisfied sinceC1 6= C∗

2 . It is
found that the instantaneous convective terms in the
k and theε equations – although their time average
is zero – are of the same order as the production and
dissipation terms, see Fig. 9. Hence, instantaneously,
the production, destruction and convection terms are
the important terms in thek and theε equations.

But one question remains: how can thetime-
averaged production and destruction terms in both the
k andε equations (Eq. 4) be in balance? The reason is
that although

C1

〈ε〉

〈k〉
〈Pk〉 6= C∗

2

〈ε〉2

〈k〉
(5)

(because〈Pk〉 = 〈ε〉), Fig. 8 shows that

C1

〈 ε

k
Pk

〉

= C∗

2

〈

ε2

k

〉

(6)

It is a general feature of any two turbulent quanti-
ties,A= 〈A〉 + A′ andB = 〈B〉 + B′, that〈AB〉 6=
〈A〉〈B〉. In the case of Eq. 6, the correlation between
Pk, ε andk−1 is stronger than that betweenε2 and
k−1, as shown in Fig. 10.

It was mentioned above that the supply of turbulent
kinetic energy from the mean flow to large, energy-
containing eddies in the turbulence energy spectrum
should be grid independent. As a consequence, the
SGS dissipation,εSGS = Pk, at the small scales
should also be grid independent. The SGS dissi-
pation is formulated asεSGS = 2〈νts̄ij s̄ij〉. It
was shown in Davidson (2009) that the time-averaged
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Figure 12: Velocity and turbulent viscosity.Reτ =
4000. (Nx × Nz) = (64 × 64). Influence ofCs in
Eq. 8. : Cs = 0.1; : Cs = 0.5; : no
interface condition onε; : no interface condition
onε or k.

strain〈s̄ij〉〈s̄ij〉 is negligible compared to the fluctuat-
ing one, i.e.〈s̄′ij s̄

′

ij〉 ≫ 〈s̄ij〉〈s̄ij〉, which means that
the SGS dissipation can be written as

εSGS = 2〈νts̄ij s̄ij〉 ≃ 2〈νts̄
′

ij s̄
′

ij〉 (7)

Zero equation SGS models based on the cell size (e.g.
the Smagorinsky model) compute the SGS viscosity
as the product of the square of the filter size,∆2, and
the magnitude of the strain rate,|s̄|. In order to sat-
isfy the requirement thatεSGS is grid independent, the
strain rate must compensate (i.e. increase) for the de-
crease in∆ when the grid is refined. To be able to
increasēsij when the grid is refined, the SGS dissipa-
tion must take place at larger wavenumbers compared
to the coarse grid. This put high requirements on the
accuracy of the discretization and is probably one rea-
son why the SGS models based on the filter width are
so sensitive to grid refinement. It was shown in David-
son (2009, 2010) that the SGS dissipation did to some
extent take place at higher wavenumber when the grid
was refined in channel flow and diffuser flow, but the
effect was not sufficient to compensate for decrease in
filter width. The present model seems to much better
in this respect. A drawback of the present model may
be that, as the grid is refined towards DNS, the mod-
elled viscosity does not go to zero. On the other, this
is rarely an issue in industrial applications.

Figure 11 shows how the modelled, resolved
and total turbulent kinetic energy vary for different
Reynolds numbers. It was shown in Yakhot et al.



(2010) that the turbulent kinetic energy should be in-
dependent of Reynolds number provided thatRe2h >
105 (Reτ & 2000). As can be seen, this is well sat-
isfied in the outer region (y > 0.1) where the total
kinetic energies also agree nicely with DNS data. For
the highest Reynolds number, the resolved kinetic en-
ergy is too large near the wall.

No special treatment was used forε at the interface
in the simulations presented above. Initially, simula-
tions were made in which the convection and the diffu-
sion were modified in the same way as fork, see Eq. 3.
Theε value that was transported from the URANS re-
gion to the LES region was set from the Smagorinsky
model in the same way as in embedded LES (Davidson
and Peng; 2011)

εS = C3/4
µ k

3/2

S /ℓsgs, ℓsgs = Cs∆ (8)

where∆ = V 1/3, andV is the volume of the cell adja-
cent to the interface. A value ofCs = 0.07 was found
to be suitable for embedded LES. Figure 12 presents
simulations using different values ofCs. The results
achieved when using

• no interface condition onε

• no interface condition onk, ε

are also included for reference. First, it can be noted
that when using no interface condition onk, the tur-
bulent viscosity in the LES region becomes much too
large, and as a consequence the velocity profile is
poorly predicted. Furthermore, a value ofCs = 0.1
give a good agreement with the log-law; a value of
Cs = 0.05 gives almost identical results (not shown).
Theses smallCs values succeed in strongly reducing
the turbulent viscosity in the LES region adjacent to
the interface. When making these tests it was realized
that the best and most accurate treatment ofε at the
interface is to do nothing at all. It turns out that com-
putingCs from Eq. 8 in the post-processing using data
for which no interface condition onε was used gives a
value ofCs = 0.11.

5 Conclusions
A new approach for using PANS as a zonal hybrid
RANS-LES model has been presented. It has been
evaluated for channel flow at different Reynolds num-
bers (4 000 ≤ Reτ ≤ 32 000) and gives good agree-
ment with the log-law. Furthermore, it was found
that the model gives virtually grid-independent re-
sults when refining the grid in the wall-parallel planes
(Nx × Nz = 32 × 32, 64 × 64 and128 × 128). The
turbulent viscosities obtained on these three grid are
nearly the same. An SGS model using the cell size as a
turbulent length scale would give a161/3 ≃ 2.5 larger
turbulent lengthscale on the finest mesh compared to
the coarsest mesh.
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