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1 The dissipative scale-similarity model

When the first scale-similarity model was proposed it was found that it is not

sufficiently dissipative [1]. An eddy-viscosity model has to be added to make

the model sufficiently dissipative; these models are called mized models. The

present work presents and evaluates a new dissipative scale-similarity model.
The filtered Navier-Stokes read
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where 7;, denotes the SGS stress tensor. In the scale-similarity model, the
SGS stress tensor is given by
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This model is not sufficiently dissipative. Let us take a closer look at the
equation for the resolved, turbulent kinetic energy, K = (uju})/2 (where u} =
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Fig. 1. Dissipation terms and production term from channel flow DNS data. 96°
mesh data filtered onto a 48 mesh. Re, = 500. — : —ngS; ---! —€gqgi -
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Fig. 2. Channel flow DNS data from a 96* grid filtered to 48*. Re, = 500.
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The first term on the last line is the viscous diffusion term and the second
term, e, is the viscous dissipation term which is always positive. The last
term, £sas, is a source term arising from the SGS stress tensor, which can be
positive or negative. When it is positive, forward scattering takes place (i.e.
it acts as a dissipation term); when it is negative, back scattering occurs.

Figure 1 presents SGS dissipation, esgg in Eq. 3, computed from filtered
channel flow DNS data. The forward scatter, aferS, and back scatter, egqg,
SGS dissipation are defined as the sum of all instants when eggg is positive
and negative, respectively. As can be seen, the scale-similarity model is slightly
dissipative (i.e. esgs > 0) , but the forward and back scatter dissipation are
both much larger than e5gs.

One way to make the SGS stress tensor strictly dissipative is to set the
back scatter to zero, i.e. max(esag,0). This could be achieved by setting
OTir /O, = 0 when its sign is different from that of u} (see the last term in
Eq. 3). This would work if we were solving for K. Usually we do not, and
the equations that we do solve (the filtered Navier-Stokes equations) are not
directly affected by the dissipation term, eggs.
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Instead we have to modify the SGS stress tensor as it appears in the filtered
Navier-Stokes equations, Eq. 1. The second derivative on the right side is
usually called a diffusion term because it acts like a diffusion transport term.
When analyzing the stability properties of discretized equations to an imposed
disturbance, u', using Neumann analysis (see, for example, Chapter 8 in [2]),
this term is referred to as a dissipation term. In stability analysis the concern
is to dampen numerical oscillations; in connection with SGS models, the aim is
to dampen turbulent resolved fluctuations. It is shown in Neumann analysis
that the diffusion term in the Navier-Stokes equations is dissipative, i.e. it
dampens numerical oscillations. However, since it is the resolved turbulent
fluctuations, i.e. K in Eq. 3, that we want to dissipate, we must consider
the filtered Navier-Stokes equations for the fluctuating velocity, u}. It is the
diffusion term in this equation which appears in the first term on the right
side (first line) in Eq. 3. To ensure that esgs > 0, we set —07;, /0y, to zero
when its sign is different from that of the viscous diffusion term (cf. the two
last terms on the second line in Eq. 3). This is achieved by defining a sign
function
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M;y, = sign <— ) ,n0 summation on i, k (4)
where M;;, = £1. The problem is that we do not know u} (= @; — (4;)) until
the simulations have been carried out. Fortunately, the sign of the second
derivative of the resolved velocity fluctuation, u}, is mostly the same as that
of the resolved velocity, @;. Figure 2(a) presents a comparison of the two
second derivatives using channel flow DNS data from a 96° grid filtered onto
a 483 grid. As can be seen, the RMS of the second derivative of u’ is larger
— or much larger — than that of (). Figure 2(b) shows the correlation of the
signs of the two second derivatives. It can be seen that the correlation is larger
than 95% for y* > 40. Hence Eq. 4 can be replaced by
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Each component of the divergence of SGS stress tensor in Eq. 1 is then simply
multiplied by M;;, = max(M;,0) i.e.
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The SGS dissipation, e§gs = (37 /dwr)uy) (cf. Eq. 3), is shown in Fig. 1.
It should be noted that, since the limiter M;; operates on each cell rather
than on each face, the SGS diffusive fluxes, Ti[k) , are not conservative. However,
this is unavoidable since we need to control the net force per unit volume,
o1l |0z, rather than the stresses at the face, 71). It could also be mentioned

that Orf 0z, is not coordinate invariant; however, this feature is shared by
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Fig. 3. Decaying isotropic grid turbulence. — : Dissipative scale-similarity model;
- - - : scale-similarity model; - - - : Smagorinsky model (C's = 0.14); o experiments [3].

Left: Decaying of (u'u'),,. versus time; right: Longitudinal one-dimensional spectra.

most bounded discretization schemes where numerical limiters are used for
the convective fluxes.

It can be noted that by using Eq. 5 rather than Eq. 4 the model is no
longer strictly dissipative in the K = (uju})/2 equation. It is now only 95%
dissipative, see Fig. 2(b). However, the model is — assuming that the diffusion
term v9?K/0z;0r; in Eq. 3 is negligible — indeed strictly dissipative in the
(@;1;)/2 equation.

In order to avoid that the sign function changes sign between two itera-
tions within a time step, the second derivatives in Eq. 5 are evaluated using
velocities at the old time step.

By using the limiter Mj; we omit the back scatter caused by the SGS
stresses; another way to express it is that we exclude the part of the subgrid
stress stress term that acts as counter-gradient diffusion.

2 Results

2.1 Decaying grid turbulence

The domain is a cubic box of side 47 covered by 64 cells. Figure 3a presents the
decay of the turbulent resolved fluctuations versus time and Fig. 3b compares
the predicted one-dimensional energy with experimental data. The pile-up of
energy at the small scales exhibited by all models occurs because the smallest
scales cannot be resolved by the grid. As can be seen, both the decay and
the one-dimensional spectrum obtained with the dissipative scale-similarity
model are very similar to those obtained with the Smagorinsky model. It can
also be seen that the dissipative model is indeed much more dissipative than
the original scale-similarity model.
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Fig. 5. a) Terms in the momentum equation. b) Terms in the K equation.

2.2 Fully developed channel flow

The Reynolds number is 500 based on the half channel height and the friction
velocity. The mesh has 64 x 80 x 64 (x,y, z) cells. The extent of the computa-
tional domain is 3.2 and 1.6 in the streamwise (x) and spanwise (z) directions,
respectively. A grid stretching of 12% is used in the wall-normal direction.

Figure 4 presents the velocity profiles obtained with the dissipative scale-
similarity model, the dynamic model and with no model. No converged results
could be obtained with the standard scale-similarity model. As can be seen,
no model gives perfect agreement with DNS and the log-law. Hence, this flow
is not a good test case for evaluating the accuracy of SGS models. Here it
is used to analyze the dissipative scale-similarity model. The dynamic model
gives slightly better agreement with DNS than the dissipative scale-similarity
model.
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Figure 5(a) presents the momentum diffusion terms close to the wall. Tt
can be seen that the SGS diffusion term evaluated using the standard scale-
similarity model is of opposite sign to that of the viscous diffusion. When
introducing the sign function in Eqs. 4 and 5, it can be seen that the SGS
diffusion term takes the same sign as the viscous diffusion term for y™ > 10.
The fact that the two terms have opposite signs for y* < 10 simply means
that the viscous diffusion is very large at instants when the SGS diffusion
term is set to zero. The diffusion due to the resolved shear stress is included
in the figure. It is, as can be seen, much larger (more than five times) than
the SGS term.

Figure 5(b) compares the SGS dissipation from the scale-similarity model
with that from the dissipative scale-similarity model (recall that the simula-
tion was carried out with the latter model). As can be seen, the SGS dissipa-
tion is indeed much larger with the dissipative model than with the standard
model. For comparison, the SGS dissipation, esmay, is also included.

3 Concluding Comments

In the proposed new scale-similarity model the back scatter generated by the
model is omitted. An alternative way to modify the scale-similarity model is to
omit, the forward scatter, i.e. to include instants when the subgrid stresses act
as counter-gradient diffusion. In hybrid LES-RANS, the stresses can then be
used as forcing at the interface between URANS and LES. This new approach
is the focus of [5].
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