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The present paper gives an analysis of fully developed channel flow at Reynolds

number of Re = uτδ/ν = 4000 based on the friction velocity, uτ , and half

the channel height, δ. Since the Reynolds number is high, the LES is cou-

pled to a URANS model near the wall (hybrid LES-RANS) which acts as

a wall model. It it found that the energy spectra is not a good measure of

LES resolution; neither is the ratio of the resolved turbulent kinetic energy

to the total one (i.e. resolved plus modelled turbulent kinetic energy). It is

suggested that two-point correlations are the best measures for estimating

LES resolution. It is commonly assumed that SGS dissipation takes place at

high wavenumbers. Energy spectra of the fluctuating velocity gradients show

that this is not true; the major part of the SGS dissipation takes place at

low to midrange wavenumbers. Furthermore, the energy spectra of the fluc-

tuating velocity gradients reveals that the accuracy of the predicted velocity
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gradients at the highest resolved wavenumbers is very poor.

Key words: LES, two-point correlations, energy spectra, dissipation

spectra, SGS dissipation

1. Introduction

In wall-bounded Direct Numerical Simulations (DNS) and Large Eddy

Simulations (LES) numerical experiments were carried out to determine the

minimum required resolution to obtain accurate results (Moin and Kim, 1982;

Piomelli, 1993; Piomelli and Chasnov, 1996; Moser et al., 1999; Hoyas and

Jiménez, 2006). The grid resolution in DNS and wall-resolved LES is dictated

by the necessity of resolving the energy-generating process high-speed in-

rushes and low-speed ejections (Robinson, 1991) in the viscous sub-layer and

the buffer layer, often called the streak process. Since this process takes place

in the viscous-dominating near-wall region, the required grid resolution must

be expressed in inner variables, i.e. viscous units. In LES, the required grid

resolution is ∆x+ ≃ 100, y+ ≃ 1 (wall-adjacent cell centers) and ∆z+ ≃ 30

where x, y, z denote the streamwise, wall-normal and spanwise directions,

respectively. Since a viscous length unit compared to the boundary layer

thickness becomes smaller the higher the Reynolds number, the simulation

times for DNS and wall-resolved LES at high Reynolds numbers become

prohibitively high.

In the past ten years much research has been dedicated to the task of find-

2



ing wall models that circumvent the requirement of defining the minimum

near-wall cell size using inner variables. Spalart and his co-worker first pro-

posed Detached-Eddy Simulations (Spalart et al., 1997; Travin et al., 2000),

abbreviated as DES; later, different variants of hybrid LES/RANS models

were proposed (Davidson and Peng, 2003; Temmerman et al., 2002; Tucker

and Davidson, 2004; Hamba, 2003). In both DES and hybrid LES/RANS, the

region near the walls is treated with Unsteady Reynolds-Averaged Navier-

Stokes (URANS) and the outer region is treated by LES; the main difference

is that, in DES, the entire boundary layer is treated with URANS whereas,

in hybrid LES/RANS, the interface between URANS and LES is located in

the inner part of the logarithmic region.

Another way to model the near-wall region is to use two-layer mod-

els (Balaras et al., 1996; Cabot, 1995; Cabot and Moin, 1999; Wang and

Moin, 2002), also called “thin boundary layer equations”. Here, the first

node in the LES simulations is located – as when using wall functions – in

the log-region. A new fine near-wall mesh is then created covering the wall-

adjacent LES cell. Good results have been obtained for flow around a smooth

three-dimensional hill (Tessicini et al., 2007), which is a fairly complex flow.

Even wall functions — based on the instantaneous log-law — were found to

give good results for this flow (Tessicini et al., 2007).

Assuming that the near-wall region is modelled using, for example, one
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of the approaches mentioned above, the question arises: how fine does the

mesh need to be in the LES region? And, how do we, after having made an

LES (assuming that there are no experimental data with which to compare),

verify that the resolution was good enough? This is the focus of the present

paper.

There are different ways to estimate the resolution of LES data. The

first measure is probably to compare the modelled turbulence and stresses

with the resolved ones. The smaller the ratio, the better the resolution.

Another, similar way, is to compare the resolved turbulent kinetic energy

to the modelled one. The energy spectra are commonly computed to find

out whether they exhibit a −5/3 range and if they do the flow is considered

to be well resolved. Another measure of the resolution may be to look at

the two-point correlations to identify, for example, the ratio of the integral

length scale to the cell size. A less common approach is to compare the

SGS (i.e. modelled) dissipation due to fluctuating resolved strain-rates to

that due to resolved or time-averaged strain-rates. In steady RANS, all SGS

dissipation takes place due to time-averaged strain-rates whereas, in a well-

resolved LES, most of the SGS dissipation occurs due to resolved fluctuations.

It is commonly assumed that the SGS dissipation takes place at the highest

resolved wavenumbers. This can be verified or disproved by making energy

spectra of the SGS dissipation to find the wavenumbers at which the SGS
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dissipation does in fact take place.

The approaches mentioned above are used in the present paper to evaluate

how relevant they are in estimating the resolution of LES simulations of fully

developed channel flow. The Reynolds number is 4000 based on the friction

velocity and the half-height of the channel. Five different resolutions are

used. In order to be able to carry out LES at high Reynolds number, the

near-wall region is covered by a wall model. In this work we have chosen to

use hybrid LES/RANS.

The paper is organized as follows. The first three sub-sections present

the equations, the turbulence model and the numerical method. The fol-

lowing section presents and analyzes the results using different resolutions.

Conclusions are given in the final section.

2. Numerical details

2.1. The Momentum Equations

The Navier-Stokes equations with an added turbulent/SGS viscosity read

∂ūi

∂t
+

∂

∂xj
(ūiūj) = δ1i −

1

ρ

∂p̄

∂xi
+

∂

∂xj

[

(ν + νT )
∂ūi

∂xj

]

∂ūi

∂xi

= 0

(1)

where νT = νt (νt denotes the turbulent RANS viscosity) close to the wall

for y ≤ yml, otherwise νT = νSGS. The location at which the switch is made

from URANS to LES is called the interface and is located at yml from each
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Figure 1: The LES and URANS regions. The interface is located at y+ = y+

ml and the

number of cells in the URANS region in the wall-normal direction is jml.

wall, see Fig. 1. The turbulent viscosity, νT , is computed from an algebraic

turbulent length scale, see Table 1, and a transport equation is solved for kT ,

see below. The density is set to one in all simulations. A driving constant

pressure gradient, δ1i, is included in the streamwise momentum equation.

2.2. Hybrid LES–RANS

A one-equation model is employed in both the URANS region and the

LES region and reads

∂kT

∂t
+

∂

∂xj

(ūjkT ) =
∂

∂xj

[

(ν + νT )
∂kT

∂xj

]

+ PkT
− Cε

k
3/2

T

ℓ

PkT
= −τij s̄ij , τij = −2νT s̄ij
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where νT = ck1/2ℓ. In the inner region (y ≤ yml) kT corresponds to RANS

turbulent kinetic energy, k; in the outer region (y > yml) it corresponds to

subgrid-scale kinetic turbulent energy, kSGS. The coefficients are different in

the two regions, see Table 1. No special treatment is applied in the equations

at the matching plane except that the form of the turbulent viscosity and

the turbulent length scale are different in the two regions.

2.3. The Numerical Method

An incompressible, finite volume code is used (Davidson and Peng, 2003).

For space discretization, central differencing is used for all terms except the

convection term in the kT equation, for which the hybrid central/upwind

scheme is employed. The Crank-Nicolson scheme is used for time discretiza-

tion of all equations. The numerical procedure is based on an implicit, frac-

tional step technique with a multigrid pressure Poisson solver (Emvin, 1997)

URANS region LES region

ℓ κc
−3/4
µ n[1 − exp(−0.2k1/2n/ν)] ℓ = ∆

νT κc
1/4
µ k1/2n[1 − exp(−0.014k1/2n/ν)] 0.07k1/2ℓ

Cε 1.0 1.05

Table 1: Turbulent viscosities and turbulent length scales in the URANS and LES regions.

n denotes the distance to the nearest wall. ∆ = (δV )1/3

.
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Case ∆x ∆z Nx Nz ∆x+
∆z+ δ/∆x δ/∆z

Baseline 0.1 0.05 64 64 400 200 10 20

0.5∆x 0.05 0.05 128 64 200 200 20 20

0.5∆z 0.1 0.025 64 128 400 100 10 40

2∆x 0.2 0.05 32 64 800 200 5 20

2∆z 0.1 0.1 64 32 400 400 10 10

Table 2: Test cases.
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Figure 2: U velocities. : Baseline; : 0.5∆x; : 0.5∆z; ◦: 2∆x; +: 2∆z; 2:

U+ = (ln y+)/0.4 + 5.2.

and a non-staggered grid arrangement.

3. Results

The flow was computed for Reynolds number Reτ = uτδ/ν = 4000 (δ

denotes the half width of the channel), and five different computational grids
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Figure 3: Resolved shear stress. For legend, see caption in Fig. 2.

are used, see Table 2. The number of cells in the y direction is 80 with a

constant geometric stretching of 15%. This gives a smallest and largest cell

height of ∆y+

min = 2.2 and ∆y+
max = 520, respectively. The grid spacing in the

wall-parallel plane in viscous units is (∆x+, ∆z+)=(200–800, 100–400). The

extent of the domain in the x and z directions is 6.4 and 3.2, respectively,

for all cases. The matching line is chosen along a fixed grid line at y+ = 125

(y = 0.0313) so that 16 cells are located in the URANS region at each

wall. It should be mentioned that in the present work the matching line

between the URANS and the LES regions is located rather close to the

wall. If the matching line were located as in DES (i.e. min(0.65∆m, y),

∆m = max(∆x, ∆y, ∆z)), the agreement would have been much better for

all five cases. However, the object of this work was not to obtain the best

possible results, but to compared different ways of estimating the resolution.
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The velocity profiles are shown in Fig. 2. It can be seen that the Baseline

case over-predicts the velocity in the LES region. When the grid is refined in

the spanwise direction (Case 0.5∆z) much better agreement with the log-law

is obtained. When the grid is coarsened in either the streamwise (Case 2∆x)

or the spanwise direction (Case 2∆z), the agreement with the log-law dete-

riorates as expected. It is somewhat surprising that a grid refinement in the

streamwise direction (Case 0.5∆x) gives worse agreement than the Baseline

case. It turns out that the smaller SGS length scale is the main reason for

this; if the SGS length for Case 0.5∆x is set equal to that in the Baseline

case, the velocity in the outer region decreases compared to the original Case

0.5∆x (not shown). A grid with (0.5∆x, 0.5∆z) gives even better agreement

with the log law (not shown). We argue that the large discrepancy in the

outer region for Case 0.5∆x is a turbulence model issue. When going from

the Baseline case to Case 0.5∆x, the SGS length scale is reduced by a fac-

tor of (1/2)1/3 and the SGS shear stress will as a consequence also decrease.

Since the total shear shear stress must obey the relation y − 1 (dictated

by the time-averaged streamwise momentum equation), the decrease in SGS

shear stress should be compensated by a corresponding increase in the re-

solved shear stress, |〈u′v′〉|. The increase of the magnitude of the resolved

shear stress is facilitated by lower SGS dissipation because of smaller SGS

viscosity. The resolved shear stress, |〈u′v′〉|, does indeed increase in the inner
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region when going from the Baseline case to Case 0.5∆x, see Fig. 3. How-

ever, in the outer region – in which the velocity gradient is much smaller –

the flow is initially not able to increase the magnitude of the resolved shear

stress. Hence, in order to satisfy the linear law of the total shear, the magni-

tude of the SGS shear stress must increase and the flow accomplishes this by

increasing the velocity gradient for y+ > 1000, see Fig. 2. Careful inspection

of Fig. 3 reveals that also the magnitude of the resolved shear stress for Case

0.5∆x is slightly larger (for 1500 < y+ < 3000) than for the Baseline case.

The question then arises why the agreement of the velocity profile with the

log law does not deteriorate when the grid is refined in the spanwise direction

(Case 0.5∆z). The answer is that the refinement in the spanwise direction

allows additional turbulence to be resolved (the peak of |〈u′v′〉| is larger for

Case 0.5∆z than for Case 0.5∆x) which compensates for the decrease in the

SGS shear stress. The discussion above indicates that it could be interesting

to develop new SGS models in which the SGS length scale is sensitized to the

magnitude of the resolved strain, (2s̄ij s̄ij)
1/2; if the resolved strain is large,

the length scale can be taken as ∆, but if it is small the length scale should

maybe be larger.

Figures 4 and 5 present the streamwise and wall-normal resolved fluctu-

ations, respectively. As can be seen, u2
rms and v2

rms increases and decreases,

respectively, as the grid is coarsened. The time-averaged streamwise mo-
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Figure 4: Resolved fluctuations in the streamwise direction. For legend, see caption in

Fig. 2.
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Figure 5: Resolved fluctuations in the wall-normal direction. For legend, see caption in

Fig. 2.

mentum equation requires that the total shear stress must satisfy the re-

lation y − 1, see Fig. 3. When the grid is coarsened, the resolved part of

the total shear stress decreases for y+ . 1000, mainly because the turbu-
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Figure 6: Turbulent viscosity. For legend, see caption in Fig. 2.
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Figure 7: The correlation coefficient, Cuv = 〈u′v′〉/(urmsvrms). For legend, see caption in

Fig. 2.

lent viscosity increases with grid coarsening, see Fig. 6. Furthermore, the

non-linear interaction is weakened so that, in the region of maximum |〈u′v′〉|

(i.e. 200 < y+ < 600), the correlation between the streamwise and wall-

normal resolved fluctuations is diminished, see Fig. 7 (this is also seen in

coarse DNS (Davidson and Billson, 2006)). Initially, this results in too small
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Figure 8: Resolved fluctuations in the spanwise direction. For legend, see caption in Fig. 2.
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Figure 9: Pressure-gradient-velocity terms in the (a) v2
rms and (b) w2

rms equations. For

legend, see caption in Fig. 2.

a resolved shear stress. The equations respond by increasing the resolved

fluctuations by increasing the bulk velocity and hence the velocity gradient,

∂ū/∂y, which is the main agent for producing resolved turbulence. The bulk

velocity, and hence the resolved fluctuations, are increased until the resolved

shear stress is large enough so that the total shear stress satisfies the linear
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Figure 10: Resolved turbulent kinetic energy kinetic energy and the ratio γ (Eq. 2). For

legend, see caption in Fig. 2.

relation. Because of the damping effect of the wall on v′, the equations in-

crease u′ until the linear relation is obtained. This explains the large values

of u2
rms in Fig. 4 for the coarse resolutions. It should be stressed that the pro-

cess of increasing the resolved fluctuations until the total shear stress satisfies

the linear relation y − 1 does not occur in a general flow case with an inlet

and outlet (i.e. a flow case with no prescribed driving pressure gradient). In

a general flow case, the magnitude of the resolved shear stresses will simply

remain too small.

The spanwise fluctuations increase when the grid is coarsened in the span-

wise direction, whereas they decrease upon coarsening in the streamwise di-

rection, see Fig. 8. They increase when the grid is refined. Furthermore,

the location of the peak is not affected neither by grid coarsening nor grid

refinement. This behaviour is completely different from that of the wall-
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normal stresses. The different behavior of the wall-normal fluctuations and

the spanwise fluctuations is explained by Fig. 9, where the pressure-gradient-

velocity terms are presented; these terms are the main source terms in the

transport equations of v2
rms and w2

rms. It can be seen that the term in the

v2
rms equation — like v2

rms itself — decreases/increases in the LES region for

y+ < 1000 when the grid is coarsened/refined and that the peak of the source

term moves away from the wall. The term in the w2
rms equation, however,

shows a different behavior when the grid is coarsened in the spanwise or the

streamwise direction: it increases in the former case whereas it increases in

the latter case. When the grid is refined in the streamwise direction, the

source term increases. This agrees with the behavior of w2
rms, see Fig. 8. A

conclusion from the discussion above is that it is crucial to properly resolve

the interaction between fluctuating resolved velocities and pressure.

The resolved turbulent kinetic energy is presented in Fig. 10a, and since

it is dominated by the streamwise fluctuations, its behavior is similar to that

of u2
rms. Pope (2004) suggests that when 80% of the turbulent kinetic energy

is resolved, i.e.

γ =
kres

< kT > +kres
> 0.8, kres =

1

2
〈u′

iu
′
i〉, (2)

the LES can be consider to be well-resolved. Figure 10b presents this ratio

and as can be seen it is, in the LES region, larger than 85% for all grids.

Hence this quantity does not seem to be a good measure of the resolution.
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Figure 11: Normalized two-point correlation Buu(x̂)/u2
rms. y = 0.11. For legend, see

caption in Fig. 2. Markers on the lines show the resolution.

0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0.6

0.8

1

x̂

B
w

w
(x̂

)/
w

2 r
m

s

Figure 12: Normalized two-point correlation Bww(x̂)/w2
rms. y = 0.11. For legend, see

caption in Fig. 2. Markers on the lines show the resolution.

Figures 11, 12 and 13 present the streamwise and spanwise two-point

correlations, which are defined as Buu(x̂) = 〈u′(x)u′(x − x̂)〉, Bww(x̂) =

〈w′(x)w′(x− x̂)〉 and Bww(ẑ) = 〈w′(z)w′(z− ẑ)〉, respectively. The two-point
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Figure 13: Normalized two-point correlation Bww(ẑ)/w2
rms. y = 0.11. Markers on the

lines show the resolution. For legend, see caption in Fig. 2.

correlations are all presented for y+ ≃ 440 (y = 0.11); they do not vary much

across the channel. The two-point correlations are normalized with u2
rms and

w2
rms, respectively. In Fig. 11, 12, the two-point correlations increase when

the grid is coarsened (Cases 2∆x and 2∆z) because the smaller scales are

not resolved; for these coarse resolutions the streamwise two-point correla-

tions are dominated by the “superstreaks” (Piomelli et al., 2003; Keating

and Piomelli, 2006). When the grid is refined (Cases 0.5∆x and 0.5∆z), the

two-point correlations decrease, as expected. For Case 2∆x, the two-point

correlation formed with u′ (Fig. 11) falls down to 0.4 within four cells. In

the spanwise direction it is even worse: for Case 2∆z the two-point corre-

lation goes to zero within two cells (Fig. 13). The reason is that the grid

is so coarse that the non-linear process of generating turbulence cannot be
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Figure 14: Energy spectra Eww(kx). y = 0.11. The thick dashed line shows −1 slope. For

legend, see caption in Fig. 2.
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Figure 15: Energy spectra Euu(kx). y = 0.11. The thick dashed line shows −1 slope. For

legend, see caption in Fig. 2.

sustained. This is a clear indication that the resolution is too poor for Cases

2∆x and 2∆z.

Figures 14 and 15 present the one-dimensional energy spectra Eww(kx)
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Figure 16: Energy spectra Eww(kz). y = 0.11. The thick dashed line shows −5/3 slope.

For legend, see caption in Fig. 2.

and Euu(kx). The smallest wavenumber is κx,min = 2π/xmax = 2π/6.4 =

0.98. The largest wavenumber included in the plot is κx,max = 2π/2∆x,

where we have assumed that two cells are required to resolve a wavelength.

For the Baseline case, for example, this gives κx,max = π/0.1 = 31. The

energy spectrum Eww(kx) = Ŵ 2, for example, is computed by the DFT

(Discrete Fourier Transform) of w′

Ŵ (kx) =
1

Nx

Nx
∑

n=1

w′(n)

[

cos

(

2π(n − 1)(kx − 1)

Nx

)

−ı sin

(

2π(n − 1)(kx − 1)

Nx

)]

(3)

where Ŵ are the complex Fourier coefficients of w′ and ı2 = −1; the normal-

ized streamwise coordinate appears at the right side as (n−1)/Nx = x/xmax.

The w2
rms can be retrieved by summing the square of the real and imaginary
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parts of Ŵ , i.e.

w2

rms =

Nx
∑

n=1

(Re(Ŵ (kx)))
2 + (Im(Ŵ (kx)))

2 (4)

The energy spectra are all presented for y+ ≃ 440 (y = 0.11) but, when

plotted in log-log as in Figs. 14 and 15, they show the same behavior across

the channel, the main difference being that they are shifted along the Eww

Euu axes as w2
rms and u2

rms vary across the channel. For comparison, a slope

of “−1” is included in the figures. For high wavenumbers (kx > 7 for Eww

and kx > 10 for Euu), the streamwise energy spectra for the Case 2∆x

exhibits a clear “dissipation” range (i.e. a steeper slope than −5/3). For the

other cases the dissipation range starts at higher wavenumbers. If the energy

spectra had been obtained from DNS or experiments, it would indeed have

been a dissipation range but, in the present case, we are using a turbulence

model and hence what is seen in the energy spectra is an SGS dissipation

range.

Figure 16 shows the spanwise energy spectra of the spanwise fluctuations.

A line with a −5/3 slope is included for comparison. As can be seen, no −5/3

range exists. The energy spectra for all cases show a tendency of pile-up of

energy in the small scales. This phenomenon is present across the channel.

The spanwise energy spectra presented, Fig. 16, do not actually give much

guidance as to whether the resolution is sufficient. With an effort, one could

find a −5/3 range for the Baseline case, Cases 0.5∆x and 0.5∆z, indicating
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Figure 17: Energy spectra of an exact and approximated spanwise component of viscous

dissipation versus streamwise wavenumber. y = 0.11. For legend, see caption in Fig. 2.

that these resolutions all are sufficient. But from the two-point correlations

in Fig. 13 we find that the largest scales are covered by 4, 4 and 8 cells,

respectively. Only Case 0.5∆z could be considered to be sufficient. The

streamwise energy spectra, Figs. 14 and 15, indicate that the resolution is

too coarse for all cases (no −5/3 range). The two-point correlation for Case

0.5∆x (Fig. 11), for example, shows that the largest scales are covered by

some 16 cells which should be sufficient.

The energy spectra in Fig. 16 indicate that SGS dissipation is active

at relatively low wave numbers (the pile-up of energy at high wavenumbers

shows that the SGS dissipation is small at high wavenumbers). To investigate

this further, we will study the spectra of the dissipation. The two-point

correlation, Bww(ẑ), is the inverse DFT of the symmetric energy spectrum,
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Figure 18: Energy spectra of an exact and approximated spanwise component of viscous

dissipation versus spanwise wavenumber. y = 0.11. For legend, see caption in Fig. 2.
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Eww, i.e.

Bww(ẑ/zmax) =

Nz
∑

kz=1

Eww(kz) cos

(

2π(kz − 1)(n − 1)

Nz

)

where Nz is the number of cells in the spanwise direction; the normalized
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〈ūi〉〈ūi〉 and kres = 1
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iu
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i〉 denote time-

averaged kinetic and resolved turbulent kinetic energy, respectively. EI denotes internal

energy. ε is viscous dissipation at subgrid scales, see Eq. 10.
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spanwise separation distance appears at the right side as (n−1)/Nz = ẑ/zmax.

εwz can — in theory — be obtained from (Hinze, 1975)

εwz = 2ν

〈

(

∂w′

∂z

)2
〉

= 2ν
∂2Bww(ẑ)

∂ẑ2

∣

∣

∣

∣

ẑ=0

= 2ν

Nz
∑

kz=1

κ2

zEww(kz) (5)

where κz = 2π(kz − 1)/zmax. However, this relation is not satisfied at the

discrete level, because the derivative ∂w′/∂z cannot be evaluated exactly in

a finite-volume approach (the relation would have been satisfied had we used

a spectral method solving for the Fourier coefficients), and thus

εwz,FV 6= 2ν

Nz
∑

kz=1

κ2

zEww,FV (kz) (6)

where subscript FV denotes Finite Volume. Instead, a DFT of ∂w′/∂z as

D̂z(kz) =
1

Nz

Nz
∑

n=1

∂w′(n)

∂z

[

cos

(

2π(n − 1)(kz − 1)

Nz

)

−ı sin

(

2π(n − 1)(kz − 1)

Nz

)]

(7)

must be formed where D̂z are the complex Fourier coefficients of ∂w′/∂z.

Then the Power Spectral Density, i.e. D̂z ∗ D̂∗
z , where superscript ∗ denotes

complex conjugate, can be formed. Now indeed (cf. Eq. 4)

εwz,FV = εwz,exact = 2ν
Nz
∑

kz=1

D̂z ∗ D̂∗
z = 2ν

Nz
∑

kz=1

PSD(∂w′/∂z). (8)

Figures 17 and 18 present the energy spectra of the resolved velocity gradi-

ents ∂w′/∂x and ∂w′/∂z. As mentioned above, κ2
xEww(kx) and PSD(∂w′/∂x),

and κ2
zEww(kz) and PSD(∂w′/∂z), respectively, should in theory be equal;
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as can be seen, the former are larger than the latter. The discrepancy is in

effect a measure of the inaccuracy of the finite volume method in estimating

a derivative, and the error becomes larger for small spanwise scales (large

spanwise wavenumbers, κz). Although Eq. 5 is formally exact, the correct

way to create a spectrum of the computed results is to use Eqs. 7 and 8. The

reason is that, in Eqs. 7 and 8, the velocity gradients are estimated in the

same way as when predicting the flow, whereas the velocity gradients in Eq. 5

are estimated with higher accuracy (actually exactly) than when predicting

the flow. Furthermore, the predicted dissipation in the physical and spectral

space agrees when Eq. 7 is used, whereas they do not when Eq. 5 is used.

It is commonly assumed that the major part of the SGS dissipation takes

place close to the cut-off, i.e. at high resolved wavenumbers. Figures 17a and

18a show that this is not the case at all. The peaks of the resolved velocity

gradients are located at kx, kz < 20. This explains the strong decay in the

energy spectra in Figs. 14, 15 and 16. For wavenumbers, kx, larger than

20, no dissipation takes place for any resolution except for Case 0.5∆x, see

Fig. 17a.

The dissipation energy spectra in the spanwise direction show a large

discrepancy at high wavenumbers between the exact ones (Eqs. 7, 8, Fig. 18a)

and those computed from the energy spectra of w′ (Eq. 5, Fig. 18b). This is

an indication of how poorly the velocity gradients are resolved for the higher
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wavenumbers.

When the dissipation spectra presented above are plotted in the center

of the channel, they do not change a great deal except that the peaks are

shifted slightly towards lower wavenumbers.

Above, components of the energy spectra for the viscous dissipation (e.g.

ν(∂w′/∂z)2) rather than for the SGS dissipation (e.g. νT (∂w′/∂z)2) are pre-

sented. The main reason for this is that it is only for the viscous dissipation

that Eq. 5, in theory, holds. Actually, the exact spectrum of νT (∂w′/∂z)2

has been computed (note that in this case the Fourier coefficients in Eq. 7

are formed with ν0.5
T ∂w′/∂z, whose physical meaning is somewhat obscure),

and it is found that the two energy spectra are very similar; one difference

is that, unlike for the viscous dissipation, the first Fourier mode is non-zero

for the SGS dissipation because 〈ν0.5
T ∂w′/∂z〉 6= 0 whereas 〈ν∂w′/∂z〉 = 0.

Above we have only analyzed the dissipation spectra due to spanwise

and streamwise derivatives. One reason is that the spanwise and streamwise

components of the SGS dissipation make an important contribution to the

total one. Figure 19 shows the ratio of the SGS dissipation in the wall-parallel

plane, ε′SGS,x+z, to the total SGS dissipation, ε′SGS, where

ε′SGS = εSGS − ε〈SGS〉 =

〈

νT
∂ūi

∂xj

∂ūi

∂xj

〉

− 〈νT 〉

(

∂〈ū〉

∂y

)2

ε′SGS,x+z =

〈

νT
∂ūi

∂x1

∂ūi

∂x1

+ νT
∂ūi

∂x3

∂ūi

∂x3

〉
(9)

The contribution of ε′SGS,x+z to ε′SGS is close to 35% or larger for all cases
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except Case 2∆z, see Fig. 19. Another reason why we have not included the

wall-normal derivative in the analyze in Figs. 17 and 18 is that Eq. 5 does

not hold for this derivative (x2 is not an homogeneous direction).

Figure 20 presents the flow of kinetic energy between the time-averaged

kinetic energy, 〈ūi〉〈ūi〉/2, the resolved fluctuating kinetic energy, 〈u′
iu

′
i〉/2,

the modelled (SGS) kinetic energy, 〈kT 〉, and the energy flow of all three

kinetic energies down to the internal energy, EI , i.e. viscous dissipation. ε

denotes viscous dissipation at the subgrid scales, i.e.

ε = ν

〈

∂u′
i,SGS

∂xj

∂u′
i,SGS

∂xj

〉

, kSGS =
1

2
〈u′

i,SGSu′
i,SGS〉 (10)

In steady RANS using an eddy-viscosity model the right circle vanishes, and

most of the energy flow goes from K to kT and only a small fraction directly

from K to EI (assuming low Mach number flow). In a well-resolved LES, the

energy transfers from K to kT and the transfer from K to EI is negligible.

In this case, the flow of kinetic energy goes from K to kres, and from kres to

kT , and then to EI . Only a small fraction goes from kres to EI .

From the discussion above in relation to Fig. 20, it is clear that an in-

dicator of how well the flow is resolved is a comparison of the modelled

dissipation from K and kres. The modelled dissipation in the kres equation

is taken as ε′SGS, see Eq. 9. Figure 21 presents εSGS and ε′SGS. As expected,

the SGS dissipation due to the time-averaged flow dominates in the URANS

region (y+ < 125) near the wall, see Fig. 21a. Further away from the wall
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(160 ≤ y+ ≤ 200, depending on the resolution), the ε′SGS/εSGS ratio becomes

larger than one half and is, for y+ > 800, larger than 0.9 for all cases. It can

also be seen in Fig. 21a that, the higher resolution, the higher the ε′SGS/εSGS

ratio; however, when ε′SGS is not normalized with εSGS (Fig. 21b), the picture

is reversed, i.e. coarse resolution gives large ε′SGS. The results in Fig. 21b

are partly explained by the high turbulent viscosity for the coarse resolutions

(Fig. 6) and partly by higher turbulent resolved fluctuations. The correct ap-

proach is to present ε′SGS in normalized form (Fig. 21a) because, in this way,

the influence of the background flow is minimized; the ε′SGS presented in

Fig. 21b are biased by different mean flows, resolved turbulent fluctuations

and SGS viscosities.

4. Conclusions

Five different grid resolutions have been investigated: Baseline (∆x, ∆z),

two cases with a refined grid (0.5∆x and 0.5∆z) and two cases with a coars-

ened grid (2∆z and 2∆z). The resolution in the streamwise direction lies

in the interval 200 ≤ x+ ≤ 800 and 5 ≤ δ/∆x ≤ 20 and in the spanwise

direction 100 ≤ z+ ≤ 400 and 10 ≤ δ/∆z ≤ 40.

From the two-point correlations we find by how many cells the largest

scales are resolved. This is very useful information. It is up to the re-

searcher/engineer to decide how many cells he/she deems necessary, but the

29



recommended minimum for a coarse LES should be at least four cells, prefer-

ably more than double that. Note that also eight cells is usually very far from

a well-resolved LES. The two-point correlations presented in this work reveal

that the resolutions for Cases 2∆x and 2∆z are much too coarse. Case 2∆z

yields almost zero two-point correlation at a separation distance of two cells.

It is suggested that two-point correlations in the poorest resolved direction

(the spanwise direction in the present work) are suitable for estimating the

resolution.

Pope (2004) suggests that if the ratio of the resolved turbulent kinetic

energy to the total (i.e. the resolved plus the modelled) is larger than 80%,

the LES simulation is well-resolved. The present work indicates that this is

not a good measure because, for all five cases, this ratio is larger than 85%.

One-dimensional energy spectra obtained from the two-point correlations

have been presented. It is concluded that they are not useful for estimating

the resolution.

It is found that the resolved streamwise fluctuation and the resolved tur-

bulent kinetic energy increase, and that the correlation coefficient, 〈−u′v′〉/(urmsvrms),

decreases as the grid is coarsened. These phenomena are coupled to each

other, since the time-averaged flow must satisfy a linear variation of the to-

tal shear stress. The correlation between u′ and v′ is weakened when the

grid is coarsened, and the equations compensate for this by increasing the
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product of urms and vrms.

The spanwise resolved fluctuation, wrms, and the wall-normal one behave

differently when the grid is refined and coarsened. Their behavior is explained

by their largest source terms, the pressure velocity terms, −2〈w′∂p′/∂z〉

(w2
rms equation) and −2〈v′∂p′/∂y〉 (v2

rms equation). Hence, it is seems that

it is vital to accurately capture the interaction of the fluctuating velocities

and pressure. Possibly some work should be directed towards development

of discretization schemes which accurately treat the pressure-velocity cou-

pling. Presumably, iterative solvers which treat pressure and velocities in a

segregated manner (such as pressure correction schemes and fractional step

techniques) are not optimal for accurate treatment of the velocity-pressure

coupling; fully coupled solvers could be more accurate. Perhaps staggered

grids could be more accurate than collocated arrangement since they avoid

the Rhie-Chow interpolation. In fractional-step methods – as in the present

method – the Rhie-Chow dissipation term is not added explicitly. It is,

however, present implicitly, since the pressure gradient after the momentum

equations have been solved is first subtracted from the velocity vector at the

cell center and then, after the pressure Poisson equation has been solved, it

is added to the velocity vector at the cell faces.

It is commonly assumed that the SGS dissipation takes place at the high-

est wavenumbers. It is found that this is not true; the largest dissipation
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takes place at rather small wavenumbers. One interpretation is that the ef-

fective filter width is larger than the grid spacing. As a result the velocity

gradients are inaccurately computed for scales close to cut-off.

Consider the spanwise direction. Since the flow is homogeneous (i.e. pe-

riodic) in this direction, the spectral spanwise component of the spanwise

viscous dissipation, εwz, can, according to the theory be computed from

εwz(κz) = κ2
zEww. It is found that this is different from the viscous dissi-

pation component, εwz,FV , computed from the definition using finite volume

discretization. The discrepancy arises because the derivative ∂w′/∂z appear-

ing in εwz is computed analytically, whereas εwz,FV is obtained in the finite

volume procedure by computing the derivative ∂w′/∂z numerically. Thus,

the difference between εwz,FV and εwz is a measure of the inaccuracy of finite

volume methods. The spectral difference is largest at the highest wavenum-

bers, because the numerical errors when computing these derivatives are the

largest.

The final part of the paper investigates the ratio of the SGS dissipation

due to resolved fluctuating strain rates to the total, i.e ε′SGS/εSGS. It is found

that, in the LES region, this ratio lies between 0.5 and 0.9. It decreases

when the grid is coarsened. It can be noted that in homogeneous decaying

turbulence, this ratio is by definition equal to one which indicates that it

may not be an optimal parameter for estimating LES resolution.
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